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ABSTRACT

As single-center computing approaches power constraints, decentralized
training becomes essential. However, traditional Reinforcement Learn-
ing (RL) methods, crucial for enhancing large model post-training, cannot
adapt to decentralized distributed training due to the tight coupling be-
tween parameter learning and rollout sampling. For this, we propose Het-
eroRL, a heterogeneous RL architecture that decouples these processes,
enabling stable training across geographically distributed nodes connected
via the Internet. The core component is Group Expectation Policy Opti-
mization (GEPO), an asynchronous RL algorithm robust to latency caused
by network delays or heterogeneity in computational resources. Our study
reveals that high latency significantly increases KL divergence, leading to
higher variance of importance weights and training instability. GEPO mit-
igates this issue by using group expectation weighting to exponentially re-
duce the variance of importance weights, with theoretical guarantees. Ex-
periments show GEPO achieves superior stability—only a 3% performance
drop from online to 1800s latency—and reduces the best-to-last gap by 85%
versus GSPO (A=1.8 vs. 12.0) while attaining the highest scores, highlight-
ing its effectiveness in decentralized, resource-heterogeneous environments.
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Figure 1: Left: GEPO improves upon GRPO and GSPO by employing group-level impor-
tance weights to enhance training stability. Right: In both zero-delay (online) and high-delay
(up to 1800 seconds) heterogeneous reinforcement learning scenarios, GEPO demonstrates
superior stability and better evaluation performance.
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1 INTRODUCTION

Training ever-larger Al models (Achiam et al.||2023;|Dubey et al [2024; [Yang et al., 2025)) is
pushing the limits of single datacenters, making decentralized training across geographically
distributed, heterogeneous nodes connected via the Internet an increasingly necessary pur-
suit (Team et al) [2025; Noukhovitch et al.l 2024). Reinforcement Learning (RL), crucial for
post-training LLMs on complex tasks like mathematical reasoning (Shao et al., |2024), faces
a fundamental systemic challenge in this emerging paradigm: traditional RL frameworks
(Guo et al.l |2025; [Stiennon et al., |2020; Bai et al., [2022; [Wu et al., [2025; Dai et al., 2024} |Fu
et al.l 2025) are architecturally incompatible with decentralized environments. Their tight
coupling between rollout sampling and parameter learning demands strict synchronization
— a requirement that becomes untenable under the high network latency and computational
heterogeneity inherent in real-world distributed settings.

This architectural incompatibility manifests in two critical bottlenecks. First, synchronous
frameworks force computational resources (e.g., GPUs) to idle while waiting for the slowest
processes—such as generating long reasoning chains—severely constraining efficiency (Fu
et al., 2025). Second, and more fundamentally, the inevitable network latency inherent in
decentralized, Internet-connected environments creates a temporal gap (policy staleness)
between the sampler (generating data) and the learner (updating parameters). Most ex-
isting RL algorithms, designed for homogeneous, low-latency clusters, are ill-equipped to
handle this staleness. As our analysis reveals, high latency significantly inflates KL diver-
gence, causing the variance of importance weights to explode—ultimately leading to training
instability or reward collapse (Song et al. 2023)). This renders conventional RL methods
impractical for real-world, geographically distributed training scenarios.

To tackle these systemic bottlenecks, we introduce HeteroRL (Heterogeneous Reinforce-
ment Learning), a novel RL framework explicitly architected for asynchronous, geographi-
cally distributed, and resource-heterogeneous environments. HeteroRL is designed to enable
efficient and stable training of large language models for complex tasks such as mathematical
reasoning, even under high network latency. At its core, HeteroRL decouples the two com-
putationally intensive phases of the RL pipeline — rollout sampling and parameter learning
— and deploys them on physically or logically independent nodes with potentially heteroge-
neous hardware (e.g., mixing NVIDIA and Ascend chips). The sampler nodes continuously
generate reasoning trajectories without interruption, while the learner node asynchronously
consumes this data to update model parameters. Critically, neither component waits for
the other: communication occurs infrequently and tolerates high latency, with model check-
points and rollout batches exchanged over the Internet.

To address the instability arising from KL divergence under high-latency conditions, we
introduce Group Expectation Policy Optimization (GEPO), a novel policy gra-
dient algorithm that stabilizes asynchronous RL under high latency by replacing fragile
token/sample-level importance weights with robust group-level importance weights — al-
lowing samplers and learners to operate independently, communicating infrequently and
tolerating arbitrary delays. This shift fundamentally improves the quality of gradient esti-
mation — transforming a high-variance, unstable estimator into a low-variance, robust one,
especially under large policy divergence. As we prove in Theorem [IJ, GEPO exponentially
reduces the variance of importance weights under high KL divergence — precisely the regime
where traditional methods like GRPO and GSPO collapse. Crucially, GEPO is not an ad
hoc fix — it is a principled algorithmic response to the root cause of instability: variance
explosion under policy divergence.

In summary, our key contributions are as follows:

Framework: We propose HeteroRL, an asynchronous reinforcement learning framework
designed for heterogeneous compute networks, enabling decentralized training of large lan-
guage models (LLMs) on mathematical reasoning tasks.

Insight: We identify a strong correlation between latency and the KL divergence between
the rollout sampler and the learner. High latency induces high KL divergence, leading to
training instability and reward collapse.
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Algorithm: We introduce Group Expectation Policy Optimization (GEPO), which im-
proves upon the importance sampling mechanism in GRPO (Shao et al., 2024)). We theo-
retically show that GEPO exponentially reduces the variance of importance weights, and
empirically demonstrate its superior stability and efficiency — not only under high-latency
conditions, but also in the ideal zero-latency setting.

This work provides both algorithmic and system-level advancements for scalable LLM RL-
training and establishes a practical foundation for large-scale distributed AI training in
future heterogeneous compute network environments.

2 BACKGROUND

2.1 PROBLEM DEFINITION AND NOTATION

Consider a standard policy gradient framework. Let mp denote the language model policy
(i.e., the Actor) parameterized by 6, x be an input prompt of a Dataset D (e.g., math
problems), and y be the output sequence generated by the model (e.g., a chain-of-thought
solution). We define the following core notation:

e 7y, (short for ¢): the policy used by the sampler at time step k to generate rollout
trajectories.

® Ty, (short for p): the latest policy at the learner at time step k + 7, used for
gradient updates.

e 7(> 0): policy staleness, representing the discrepancy in policy versions between
the sampler and the learner, caused by network delays and computational
asynchrony.

e y: a trajectory sampled from the stale policy my, . ¥ denotes the t-th token of the
i-th response in a group.

e r(z,y): the reward for response y given input z.

o A(x,y): the advantage for response y to input z, typically defined as A(z,y) =
r(z,y) — b(z), where b(x) is a baseline reward computed for input z. In this paper,
we use the within-group average reward (Shao et al., [2024)) as the baseline b(z) =

1 G i

G iz (@, y’).
The goal of HeteroRL is to optimize the policy my to maximize the expected cumulative
reward. To reduce gradient variance, an advantage function is used, leading to the objective:

7T9k+(y|37)

E(G) = Ewa,ywwek(~\w) o (y‘x)
k

Az, y) | (1)

where 7 is a random variable: 7 ~ p(Sync_Model Time, Sync_Data_Time,Rollout_Time).
For online RL, 7 = 0.

3 GEPO: Groupr ExXPECTATION POLICY OPTIMIZATION

Our method builds upon the group-based policy optimization paradigm of GRPO and intro-
duces the group expectation importance sampling mechanism. We emphasize a paradigm
shift from token-level to group-level importance weighting, which significantly reduces the
variance of importance weights and alleviates gradient instability during training.

3.1 GROUP EXPECTATION IMPORTANCE WEIGHTING

To enhance the stability of importance weights, we propose the Group Expectation
Importance Weight (GEIW), which replaces the individual proposal probability ¢(y|z) in
p(y|z)
N a(ylz)
prompt z, denoted as E4[g(y|z)]. Inspired by GRPO, for each input z, we generate a group
of G responses {y',...,y%} ~ q(-|z) to form a sampling group. Since G is typically much

smaller than the full policy space and top-P/top-K sampling leads to Zil q(yilx) > 1,

the standard importance weight with its group-wise expected value under the current
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the vector (q(y'|x),...,q(y“|x)) does not constitute a valid probability distribution. Sim-

ply using the arithmetic mean é Zil q(y*|z) would introduce bias due to ignoring the
relative sampling probabilities. To obtain a more accurate estimate, we employ a weighted
expectation:

G

= TS L (i Y aly'|z)?
Eq )| ~ ‘) - r)==2"0""" 2
[a(yl)] ;:lq(yl ) - a(y'lz) S (2)

where ¢(y*|z) = % is the within-group normalized probability, serving as an empir-
i=1

ical estimate of the sampling likelihood of each y;. We define the GEIW importance weight
as:

_pll)
B la(ylo)]

The key advantages of this mechanism are as follows:

wGEIW(y|x) =

(3)

Numerically stable and gradient-effective: The denominator is decoupled from any
single ¢(y|z), avoiding extreme weight values when individual proposal probabilities ap-
proach zero. Although clip(1+¢) can also improve numerical stability, the gradients of the
clipped tensors will be set to zero, effectively skipping this data point (ineffective gradient).

Biased yet low-variance: By leveraging within-group statistical information, GEIW pro-
vides a more reliable scale estimate. Even under large divergence between p and ¢, E4[q(y|x)]
remains well-conditioned, effectively preventing gradient explosion. Although this estimator
introduces a small bias (wggrw is a biased estimator), both theoretical analysis (see Theo-
rem [1)) and empirical results demonstrate that it significantly reduces variance under high
KL divergence, yielding more stable gradient directions and improved training convergence.
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Figure 2: In high-KL regions, Var[%] < Var[zgz‘lg].
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Theorem 1. Let p,q be discrete probability distributions. Then there exists a constant C

such that:
p(ny)} { p(ylz)
ar | VD] v | > [exp (Dic.(plla)) | - € @
q(ylx) Eqla(ylz)] | |
In particular, when Dxr,(p|lq) > log C, it holds that Var [2&‘3] > Var [%} .
qla(y|x

Theorem [I| shows that GEPO can exponentially reduce the variance of importance
weights, making it particularly well-suited for heterogeneous RL training under high KL
divergence. The full mathematical proof is provided in Appendix A. As shown in Figure 2]
we visualize the relationship between KL divergence and importance weight variance when
both p and ¢ are Bernoulli or Gaussian distributions with varying parameters. The results
indicate that in the high-KL regime, the group expectation approach significantly reduces
the variance of importance weights, which benefits training stability under high network
latency. Nevertheless, there exist regimes—such as the green regions in the plots—where
our method incurs a slight increase in variance.

The difference across all GRPO-like algorithms lies in the computation of the importance
weights, as detailed in Listing

if self.loss_type in ["grpo","dr_grpo","bnpo"]: # Token level
coef_1 = learner_token_p / sampler_token_p
elif self.loss_type == "gspo": # Sequence level
coef_1 = learner_seq_p / sampler_seq_p
elif self.loss_type == "gepo": # Group level
normalized_q = sampler_seq_p.detach() / (sampler_seq_p.sum().
detach())
coef_1 = learner_seq_p / (normalized_q * sampler_seq_p).sum()

Listing 1: Coefficient computation for different policy optimization methods

3.2 GRADIENT COMPARISON ACROSS TOKENS

What does the GEPO update do? For a mechanistic understanding of GEPO, it is
useful to analyze the gradient of the loss function Lggpo. The equivalent gradient of each
token in a group with respect to the parameters 8 of GRPO, GSPO and GEPO can be
written as:

Pia(0)  pir(6) Pia(0)  pir(0) Pia(0)  pir(8)
OE(B) (J1',1 Q1.,T 21 q.1 E?q E(.Zq
o0 AO : : or : : or : - :
p/G,1(0) L p/G,T(O) plG,l(e) o p/G,T(o) pi’;,1(0) L p/G,T(B)
qG,1 qG,T qG qc Eqq Eqq
GRPO GSPO GEPO (ours)
(5)

where A € RE*T is token-level advantages matrix, ® denotes Hadamard product, Git =
q(yi | %,v%,), @ = q(y' | z), and Eqq = Ey[q(y|z)]. From the perspective of gradient
stability, GSPO uses a shared denominator ¢(y’ | z) for all tokens in sequence i, while
GEPO further aggregates across the entire group by using a common denominator [E,q. This
progression—from token-level (GRPO) to sequence-level (GSPO) to group-level (GEPO)
coeflicients—demonstrates that coarser importance-weight granularity significantly reduces
gradient variance. Empirically, leveraging group-level statistics enhances robustness and
stabilizes training, especially under high policy divergence.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Model, Dataset and Benchmarks We conduct reinforcement learning training and
evaluation on the Qwen3-1.7B/8B model. The models are trained by strong-to-weak dis-
tillation (Yang et al., 2025), but have not been tuned with any RL. We train the model
on 8,290 samples from the MATH level 3-5 dataset (Zeng et al.| 2025) and evaluate it by
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Figure 3: The Overview of HeteroRL. By decoupling sampling and training, HeteroRL en-
ables decentralized distributed RL training of LLMs across five compute nodes: one param-
eter update node (learner) and four data generation nodes (sampler), forming a star-shaped
network topology. Network delays between the sampler and learner nodes are explicitly mod-
eled and can be simulated using stochastic distributions such as the log-normal or Weibull
distribution.

reporting average Pass@1 over 8 sampled responses on the MATHS500 (Hendrycks et al.l
2021), AMC23 2024), AIME24 2024), and AIME25 (AIME] [2025)
benchmarks. To better evaluate the inherent stability of policy optimization algorithms, we
remove KL divergence constraints during training under online RL scenario, and use the
same KL coefficient under the heterogeneous RL scenario. We compare our method against
baseline methods GRPO (Shao et al., 2024), GSPO (Zheng et al., |2025), BNPO
and Dr.GRPO (Liu et al.,|2025) under both zero-delay and high-delay settings.

More experimental details can be found in Section [B:1}

Heterogeneous Computing Environment As shown in Figure[3] we perform heteroge-
neous training across five compute nodes: one learner node and four sampler nodes, forming
a star-shaped topology centered at the learner. During training, the sampler nodes gener-
ate rollout data, which is transmitted over the network to the learner node in a streaming
fashion. The learner updates the model parameters and periodically broadcasts the up-
dated weights back to the sampler nodes. The learner processes incoming rollouts in the
order they arrive, operating within a fixed time window for data eligibility. Since data is
transmitted in batch units—each containing text, generation probabilities, and rewards—a
maximum delay of 1800 seconds is sufficient for typical network conditions. Within this
window, the iteration gap (in terms of gradient updates) between the learner and samplers
remains within 64 steps.

4.2 MAIN EXPERIMENTAL RESULTS

Table 1: Performance comparison using Qwen3-1.7B/8B under Online RL (4k limiation).

AMC2023 AIME2024 AIME2025 MATHS500 Average
1.7B 8B 1.7B 8B 1.7B 8B 1.7B 8B 1.7B 8B
Qwen3-1.7/8B 44.6 70.6 109 324 140 26.1 724 871 355 54.1
Max Tolerable Delay 0

Method

BNPO 59.4 788 277 44.1 234 293 837 914 486 60.9
Dr.GRPO 616 775 246 41.0 227 277 829 916 480 594
GRPO 60.9 81.3 309 426 242 313 837 920 499 6138
GSPO 60.3 778 285 418 250 313 839 909 494 605

GEPO (ours) 62.2 85.6 31.6 44.1 25.8 37.5 84.7 92.6 51.1 65.0

In this section, we compare GEPO with baselines under online RL and Hetero RL settings.
The experimental results in Tables [I] and [2] demonstrate that GEPO not only achieves
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superior performance but also exhibits exceptional stability across both online and Hetero
RL settings. Below, we dissect these findings in depth.

Table 2: Performance comparison using Qwen3-8B under Hetero RL (4k limiation).

AMC2023 AIME2024 AIME2025 MATH500 Average

Method
best last best last best last best last best last
Qwen3-8B 70.6 - 32.4 - 26.1 - 87.1 - 54.1 =
Max Tolerable Delay 64
GRPO 71.6 T71.6 38.7 359 273 27.0 888 888 56.6 558
GSPO 76.2 60.0 379 164 289 273 90.7 819 584 464

GEPO (ours) 83.4 82.8 42.6 37.5 33.2 32.0 91.3 90.9 62.6 60.8

In the online RL setting (Table , GEPO consistently outperforms all baselines across
both model sizes and all benchmarks. On Qwen3-8B, it achieves an average score of 65.0,
surpassing GRPO (61.8) and GSPO (60.5) by 3.2 and 4.1 points, respectively. The gain is
most notable on AIME2025 (46.2 points over GRPO/GSPO, 20% relative improvement).
Even on the 1.7B model, GEPO sets a new SOTA, exceeding the best baseline by 1.5 points
in average, confirming that group-level importance weighting improves gradient quality even
without asynchrony.

In the Hetero RL setting (Table , GEPQO’s stability advantage becomes decisive. Both
GEPO and GSPO improve over GRPO in best performance (+10.6% and +3.2%, respec-
tively). However, GEPO further surpasses GSPO by 7.2% in accuracy while reducing its
best-to-last degradation by 85% versus GSPO (A=1.8 vs. 12.0), achieving both higher per-
formance and far greater stability. While GSPO’s last scores collapse dramatically, GEPO
maintains near-peak performance throughout training.

These results validate GEPQO’s core design: by replacing token or sequence-level importance
weights with group-level expectations, it exponentially reduces importance weight variance
under high KL divergence (Theorem , enabling stable, scalable decentralized RL. GEPO
thus sets a new frontier in both performance and stability across ideal and real-world dis-
tributed settings. In the HeteroRL setting, the training process recorded in Figure [4] shows

—— GSPO "
—— GRPO 10
—— GEPO (ours)

—— GSPO
03 —— GRPO
—— GEPO (ours)

-6 Iy s - b S P
10 200 400 600 800 1000 1200 0 200 400 800 1000 1200 0 200 400 600 800 1000 1200

Training Steps Training Steps Training Steps

(a) Variance of IW (b) Gradient Norm (¢) Training Reward

Figure 4: Curves of importance sampling variance, training gradient norm, and train/eval
reward under max delay 64. Compared to GRPO and GSPO, GEPO maintains more stable
importance weight variance, resulting in less drastic gradient changes, more stable training,
and no decline in training reward.

that GRPO stably improves the reward at a slower pace, while GSPO rapidly increases the
reward in the first 200 steps but becomes unstable between 500 and 700 steps. As seen in
Figure [da] GEPO exhibits significantly lower variance in importance weights compared to
GRPO and GSPO, which experience sharp spikes and fluctuations. These unstable weight
variances lead to erratic gradient updates, as evidenced by the large oscillations in gradient
norm (Figure for GRPO and GSPO, especially during early and mid-training phases.
In contrast, GEPQO’s gradient norms remain relatively smooth and bounded, contributing
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to stable learning progress. Consequently, the training reward curve (Figure shows con-
sistent improvement for GEPO without any noticeable decline, whereas GRPO and GSPO
exhibit periods of stagnation or even degradation.

4.3 ANALYSIS EXPERIMENT
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Impact of Latency As shown in Figure we analyze the changes in KL divergence
between the trainer and sampler, variance of importance weights, and estimation error of
the expected value of the advantage function (optimization objective) during heterogeneous
RL training as latency increases. We observe that latency leads to increased KL divergence
Figure , which in turn causes an increase in the variance of importance weights (Figure
bb]), ultimately resulting in increased estimation error of the expected advantage function
Figure. Since the optimization objective is to maximize the estimated expectation of the
advantage function, large estimation errors will cause significant fluctuations in gradients,
thereby affecting training stability and performance. To show that high latency harms
training stability, we compare max delays of 8 and 64 steps. As Figure [7]shows, with 64-step
delay—especially near step 900—the KL divergence spikes and evaluation accuracy drops
sharply, confirming that latency induces instability. Although GEPO improves stability, it
still suffers a performance dip around step 900, highlighting that heterogeneous RL under
high latency remains challenging.
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Figure 6: Correlation analysis (95% CI) of training delay steps, importance sampling
variance, and estimation error of expected advantage function.

Correlation and Causality. Figure [0 quantifies the pairwise correlations among KL-
divergence, variance of importance weights, and estimation error of the expected advantage
function. The correlation coefficients range from 0.76 to 0.96 (o = 0.05), confirming a strong
statistical association between these variables. This observation empirically supports our
hypothesis (illustrated in Figure [5)) that increased latency induces higher KL divergence,
which in turn amplifies the variance of importance weights and the estimation error, ulti-
mately threatening training stability. However, correlation does not imply strict causation.
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While latency is a significant contributing factor to KL divergence, it is not the sole de-
terminant — the model’s internal state and the statistical properties of the sampled data
also play crucial roles. This explains the observed variance in training outcomes under
identical latency: sometimes collapse occurs, sometimes not. Critically, what determines
survival versus collapse is not latency itself, but the algorithm’s capacity to mitigate the
downstream instability caused by high KL divergence. As demonstrated in Figure [4] and
Table [2) GEPO’s group expectation mechanism effectively suppresses the explosion of im-
portance weight variance even when KL divergence is high. This allows GEPO to maintain
stable training and avoid collapse in many scenarios where baseline methods (like GRPO
and GSPO) fail — thereby establishing algorithmic robustness to policy divergence as a
core contribution of this work.

.
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Figure 7: Training processes under different latency conditions

5 RELATED WORK

In recent years, reinforcement learning has become central to post-training LLMs (Ziegler
et al.L|2019)). Researchers have identified efficiency bottlenecks in traditional synchronous RL
frameworks. IMPALA (Espeholt et al.| |2018)) is a centralized, high-throughput distributed
reinforcement learning architecture designed for traditional RL settings—mnot LLMs—that
uses V-trace to correct policy lag between asynchronous actors and a central learner. [Wu
et al.| (2025) first theoretically explored asynchronous RLHF (Ouyang et al., 2022), propos-
ing to decouple generation and training across GPU clusters, enabling scalable and efficient
RL fine-tuning of large language models up to 405B parameters with provable speedup over
synchronous baselines. However, it focuses on single-machine or small clusters, neglecting
dynamic network delays in heterogeneous environments. To address practical efficiency,
AREAL (Fu et al., [2025) fully decouples generation and training, using staleness thresh-
olds and a decoupled PPO objective (Schulman et al., 2017b) to handle outdated samples.
It improves both training speed and final performance on reasoning and code tasks—but
assumes stable networks, unlike the unpredictable, high-latency settings targeted by Het-
eroRL. Prime Intellect (Team et al.,2025)) offers a decentralized, asynchronous framework for
community compute, ensuring trust via verifiable inference, stability via two-sided GRPO
clipping, and controllable reasoning with length-aware rewards. These works motivate our
design: a robust, delay-tolerant framework for heterogeneous, geographically distributed
RL.

6 CONCLUSION

We propose HeteroRL, a heterogeneous reinforcement learning framework designed for train-
ing LLMs across geographically distributed and resource-heterogeneous nodes, paired with
GEPO—a novel policy optimization algorithm that stabilizes training under high latency.
By decoupling rollout sampling from parameter updates, HeteroRL eliminates synchroniza-
tion bottlenecks inherent in traditional RL pipelines. GEPO addresses the explosion of vari-
ance of importance weight caused by stale policies through group expectation importance
weight, provably reducing variance exponentially, particularly under large KL divergence
between the sampling and learning policies. This work establishes a practical foundation
for scalable, delay-tolerant decentralized RL, making it well-suited for real-world LLM post-
training in heterogeneous, wide-area network environments.
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ETHICS STATEMENT

This work presents a systems and algorithmic contribution to stable reinforcement learning
in heterogeneous, geographically distributed environments. It uses only public, non-sensitive
datasets (e.g., MATH, AIME) and does not involve human subjects, personal data, or high-
risk applications. The proposed method (GEPO) is task-agnostic and neutral in intent;
it does not introduce bias or discrimination, as training focuses solely on mathematical
reasoning.

REPRODUCIBILITY STATEMENT

We provide full implementation details in Appendix including model configurations,
training hyperparameters, and latency simulation setup. All datasets used (MATH, AMC,
AIME) are public. The algorithm (GEPO) is precisely described in Section [3]and Listing[l]
with theoretical guarantees in Appendix A. Anonymous code and configuration files
are included in the supplementary materials.
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A  THEORETICAL PROOF OF IMPORTANCE SAMPLING VARIANCE

This appendix analyzes a newly proposed importance sampling weight wpew () = g(:[y)],
qld
where E,[q] = [ q(z)?dx, and compares its variance with the standard importance sampling
. p(x)
weight wgpa(z) = —=.
(@) q(x)

Problem Setting Let the target distribution be p(z) and the proposal distribution be
g(z). We aim to estimate:

MWz/ﬂMMMu (6)

Since direct sampling from p is difficult, we employ importance sampling by drawing samples
from gq.

Standard Importance Sampling The standard weight is defined as:

wera(z) = 28' (7)
Its expectation under q is:
p@)] _ @)
B = [ B atads = [ ple)is =1, 0

thus it is unbiased. Its variance is:

Var,(wsta) = E, {
p

()] (= [2))

(9)
2
:/ (z) dr — 1.
q(x)
Denoted as: ()2
p(x
Vargq = dxr — 1. 10
e / a(@) (10)
Group Expectation Importance Sampling The new weight is defined as:
Whew (T) = p(z) , where Ej[q] = /q(x)de. (11)
E,[q]
Its expectation is:
1 (p,q)
Byfunen] = o [ ool = 0, (12
! Eqlq] llall3

where (p, ) denotes the inner product [ p(z)g(x)dz. Generally, (p,q) # ||q||3, making this
estimator biased. Its variance is:

Vi) =2, [ (282 - (e [ 23]

= m (/p(x)2q(a:)dx — (/p(x)q(x)dx>2> .

Varew = (fq(xl)2cl:z:)2 </p(3;)2q(x)d:c - (/p(x)q(x)d:U)Q) . (14)

Variance Comparison We compare:

2
Vargq = /p(x) dr —1,
q(x)

Varpey = (fq(xl)de)Z (/p(z)Qq(x)dx — (/p(x)q(x)dx)Q) :

13

(13)

Denoted as:
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A.1 VARIANCE COMPARISON IN DISCRETE SPACE

Since the action space of large models is discrete, this section discusses the variance difference
A = Vargq — Var,ey in discrete probability space. The integral expressions in the continuous
case naturally transition to discrete summation forms:

e Replace continuous integrals [ -dz with discrete summations Z?zl;
e Replace probability density functions p(x), g(x) with probability masses p;, ¢;;
e Maintain the structural form of variance expressions unchanged.

Notation and Setting Let the sample space be a finite set X = {1,2,...,n}, where
n>2 Let p=(p1,...,pn) and ¢ = (¢1,- -, ¢n) be two probability distributions satisfying:

e pi>0,30 pi=1,
¢ ¢ >0, 1¢i=1

Define the following four key quantities, corresponding to the integral terms in the contin-
uous expressions:

A= (i qf) 2 ) (corresponding to (/ q(aL‘)Qdac)2 ) (16)

B = (i piqi> 2 , (corresponding to (/p(x)q(x)dx>2 ) (17)

n_, 2 2
P; : p(z)
I = -, corresponding to dx 18
=y u (corsesponding to. [ 2y (18)
I, = E P2q;, (corresponding to /p(a:)Qq(x)dx) (19)
i=1

Accordingly, the variance difference can be written as:

B-A-1I

A=1 + 1

(20)

Lemma 1 (Range of Quantities). Under the above setting, we have:

1
e del )
e B0, 1],
° 116[1, OO),

o Ir, c (O, 1]

Proof.

. Range of A: By the power mean inequality, > ¢? > L and >_ ¢? < 1, thus 4 € [1/n?,1].
. Range of B: Y piq; € (0,1], thus B € [0,1].

. Range of I;: By the Cauchy-Schwarz inequality, I; > 1, and it can approach infinity.
. Range of I»: Since p? < p;, we have Iy < 1, and I > 0. O

W N =

Theorem 1. Let p, g be discrete probability distributions. Then there exists a constant C

such that:
p(y\x)} { plylz)
ar { — Var | =————| > exp (Dxkw(p|q)) — C. (21)
q(ylx) Eqlq(yl2)]
In particular, when Dkr,(p||q) > log C, it holds that Var[zgz‘lig] > Var[%].
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Proof. Step 1. From the fundamental inequality relationship between KL divergence and
x? divergence (Pinsker’s inequality):

Dy (pllg) <log (1+ Dy2(pllg)), (22)

where the chi-square divergence is defined as:

n

2 n 2
bi —4q; b;
Dutpll =3, B tE S g (23)

i=1

Substituting yields:

Dxw(pllg) <log(lh), (24)
therefore:
I > exp (Dxwi(pllg)) - (25)
Step 2. From Lemma 1, we know that A, B, and I, satisfy the following bounds:
Aclg) (26)
B e ][0,1], (27)
I, € (0,1]. (28)

A

— I
Consider the lower bound of the expression 2 To obtain its minimum value, we

take:
e Minimum value of B: B=0
e Minimum value of A: A = #
o Maximum value of Iy: I =1

Substituting yields:
B-A-1I S 0—1/n*—1

2
=— 1). 2
e i = ) (29)
Step 3. Substituting inequalities (1) and (2) into the expression for A:
B-—A-1
A=1I+ % > exp (Dxu(pllg) — (n* +1). (30)
When Dxi,(pllg) > log(n? + 1), we have:
exp (DkL(pllg)) > n* +1, (31)
thus:
A >0, (32)
i.e., Vargq > Varpew-. O

Corollary 1. In discrete space, if Dk (pllq) > log(n? + 1), then:
Vargq > Var,ew, (33)
i.e., the new estimator has smaller variance.

In practice, when large models generate responses, the distribution tends to
be long-tailed, so the value of A is much greater than #, and the constant Cy..q; < log(n?+
1). For example, we randomly generated 128 tokens using Qwen3-1.7B (n = 151936), and

the standard variance and average of A was 0.4321¢ 35 > #

15
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B SUPPLEMENTARY EXPERIMENTS

B.1 IMPLEMENTATION DETAILS

All experiments use the Qwen3-1.7B/8B model with a maximum input length of 768 and
output length of 2048/4096 tokens under both think and no-think mode, limited by com-
putational constraints and low token efficiency (Shrivastava et al., [2025) (reward/length)
at full context lengt}ﬂ Training follows a GRPO-like algorithm with a learning rate of
1 x 1079, 3% linear warmup, per-device batch size 8, and gradient accumulation of 1, with
gradient checkpointing enabled for memory efficiency. Evaluations occur every 32 or 64
steps. To model network latency in heterogeneous environments, we introduce a log-normal
delay simulator bounded between 60 and 1800 seconds (99.5% CI), with default delay at
60 seconds and policy staleness varied across 0—-64 effective steps. For online training, KL
divergence is not used, in order to better evaluate the training stability of the algorithms.
For heterogeneous settings, CPPO-KL (Zhang et al., [2024) loss with coefficient 0.005 is
applied. Another reason for using CPPO-KL is memory efficiency, as it does not require a
separate reference model. Rollouts are generated using vLLM with 8 parallel responses per
prompt, and each run lasts 3 epochs, with metrics logged via Weights & Biases. The system
prompt used in the experiments is shown in Figure

You are a helpful Al Assistant, designed to provided well-reasoned and detailed responses.
You FIRST think about the reasoning process as an internal monologue and then provide the user with the
answer. Please put your final answer within \boxed{}. Also, indicate that it is the answer.

You are a helpful Al Assistant, designed to provided well-reasoned and detailed responses.
Please put your final answer within \boxed{}. Also, indicate that it is the answer.

Figure 8: System prompt of all trainings in our experiments.

B.2 BASELINES

The baseline methods compared in our experiments are as follows:

e Group Relative Policy Optimization (GRPO) (Shao et al.||2024) is a reinforcement
learning algorithm that enhances mathematical reasoning in LLMs by estimating ad-
vantages through group-relative reward normalization—comparing responses within
a group to the same query—thereby eliminating the need for a separate value net-
work and reducing memory overhead compared to PPO.

e Dr. GRPO (Liu et al) [2025)) is a debiased variant of GRPO that removes the
per-response length normalization and per-question reward standard deviation nor-
malization, thereby eliminating optimization biases that artificially inflate response
length and improving token efficiency while preserving reasoning performance.

e Beta Normalization Policy Optimization (BNPO) (Xiao et al.l2025) is a novel rein-
forcement learning algorithm that dynamically normalizes binary rewards using an
adaptively parameterized Beta distribution to reduce gradient variance and enhance
training stability for large language models.

e Group Sequence Policy Optimization (GSPO) (Zheng et al., |2025)) is a novel re-
inforcement learning algorithm for large language models that defines importance
ratios based on sequence likelihood and performs sequence-level clipping and opti-
mization, thereby achieving superior training stability, efficiency, and performance
compared to token-level methods like GRPO.

I This 2k /4k-token limit balances cost and efficiency. Longer outputs increase memory and train-
ing time, making high-latency experiments impractical. Crucially, as shown in Figure El(c), “think
mode” yields a high “Overlength Ratio”—most long outputs are truncated and wasted. Recent
studies (Shrivastava et al., 2025; Dai et al., 2025) consistently show that reasoning
does not require excessively long chains of thought; redundant thinking merely wastes
resources. Thus, 2048 tokens ensure fair, stable, and manageable experiments.
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B.3 SUPPLEMENTARY RESULTS OF MAIN EXPERIMENTS

As shown in Table [3] GEPO outperforms all baselines—including GRPO and GSPO—in
both best and final performance across zero-delay and high-delay settings, demonstrating
superior effectiveness and training stability. A critical observation from the results is that,
although GSPO’s technical report claims improved stability, we only observe GSPO to be
more stable than GRPO under the Online RL setting.

Table 3: Performance of GEPO and baseline methods under Online RL and Hetero RL
scenarios (2k limiation).

AMC2023 AIME2024 AIME2025 MATHS500 Average

Method

Best Last Best Last Best Last Best Last Best Last
Qwen3-1.7B 25.6 - 1.6 - 3.9 - 54.7 - 21.5 -

Max Tolerable Delay 0 (Online RL)

BNPO 54.3 0.0 18.4 0.0 19.1 0.0 78.7 0.0 42.6 0.0
Dr.GRPO 53.4 14.3 19.1 1.6 18.8 2.0 78.6 359 425 135
GRPO 56.3 23.4 20.7 0.4 19.9 2.3 79.8 49.7 44.2 19.0
GSPO 54.1 27.8 23.8 3.1 20.7 43 79.9 62.1 446 24.3

GEPO (ours) 56.9 56.9 219 16.4 203 14.1 804 78.1 449 414
Max Tolerable Delay 64 (Hetero RL)

BNPO 45.0 431 121 113 125 101 711 69.3 352 335
Dr.GRPO 484 484 172 172 148 148 739 739 386 38.6
GRPO 46.6 46.6 19.1 145 148 148 749 749 389 377
GSPO 54.4 23.8 17.6 1.6 17.6 2.7 782 556 42.0 209

GEPO (ours) 53.8 53.8 21.9 21.9 18.8 18.8 79.6 79.6 43.5 43.5

B.4 ABLATION STUDY

Since the removal of the variance divisor term in the advantage function has already been
extensively validated in prior work (Liu et al., 2025, we focus solely on ablating the Group
Expectation component. Table [4| compares three importance weights (IW) in Listing
namely token-level (IW of GRPO), sequence-level (IW of GSPO), and group-level (IW of
GEPO), under a max tolerable delay of 64 steps. Table presents the results, the sequence-
level IW proposed by GSPO does not bring significant stability improvement. Although
it outperforms token-level weighting in terms of best performance, it suffers from severe
performance degradation by the end of training.

Table 4: Ablation study of different importance weights (Hetero RL mode).

AMC2023 AIME2024 AIME2025 MATHS500 Average
Best Last Best Last Best Last Best Last Best Last
group-lv.  53.8 53.8 21.9 21.9 18.8 18.8 79.6 79.6 43.5 43.5

token-lv 46.1 439 187 142 153 143 743 749 386 36.8
seq-lv 55.2 241 172 1.9 18.1 2.1 773 569 42.0 21.3

Ablation

B.5 COMPARISON OF THINK AND NON-THINK MODE

In non-think mode, all methods struggle with exploration, shown by consistently lower last
scores vs. best — indicating late-stage instability.

Notably:

e GEPO (ours) dominates across all benchmarks and delays in both best and last,
proving superior efficiency and stability — even without thinking steps.

e At zero delay, GEPO beats top baseline (GSPO) by +3.7 (best) and +20.8
(1last), resisting early collapse.
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e With delay=64, baselines improve (e.g., Dr.GRPO: 0.0 — 33.4), showing slack
aids stability. GEPO still leads (last = 38.0 vs. 35.7).

e Vanilla Qwen3-1.7B (best=33.2) is outperformed by all RL methods — confirming
RL’s value even without reasoning.

In short: while non-think mode limits reasoning, GEPO delivers unmatched stability
and final performance, ideal for latency-sensitive or real-time settings.

Table 5: Performance comparison using Qwen3-1.7B (non-think, 2k).

AMC2023 AIME2024 AIME2025 MATHS500 Average

Method

Best Last Best Last Best Last Best Last Best Last
Qwen3-1.7B 42.8 - 10.2 - 9.4 - 70.2 - 33.2 -

Max Tolerable Delay 0

BNPO 43.7 0.0 13.7 0.0 13.3 0.0 74.2 0.4 36.2 0.1
Dr.GRPO 45.0 0.0 14.4 0.0 11.3 0.0 73.6 0.0 36.1 0.0
GRPO 50.0 28.8 164 7.8 13.7 7.2 775  59.7 394 259
GSPO 53.1 23.8 144 2.7 16.0 0.4 76.5 55.6 40.0 20.6

GEPO (ours) 55.0 52.5 22.3 22.3 18.4 13.7 79.2 77.1 43.7 414
Max Tolerable Delay 64

BNPO 421 28,6 11.1 4.7 10.2 6.4 68.3 36.1 329 190
Dr.GRPO 45.0 416 14.1 9.7 13.3 101 725 723 362 334
GRPO 46.3 46.3 145 14.5 136 101 72,6 71.7 36.8 35.7
GSPO 472 36.6 13.7 4.3 13.3 8.9 75.1 679 373 294

GEPO (ours) 52.5 52.5 14.5 102 14.5 12.1 774 77.1 39.7 38.0

A comparison of RL under think vs. non-think modes reveals key trade-offs in reasoning,
stability, cost, and performance.

1) Performance and Stability (Delay = 0) GEPO in non-think achieves Best =
43.7 and Last = 41.4 — near-perfect retention. In think mode, it reaches Best = 44.9
(4+1.2) but identical Last = 41.4 — no final gain. Baselines like GRPO collapse (44.2 —
19.0), showing thinking destabilizes training without proper control.

2) With Delay = 64 In non-think, methods rebound sharply: Dr.GRPO (0.0 — 33.4),
GRPO (25.9 — 35.7) — minimal slack prevents collapse. In think, only GEPO retains peak
perfectly (Last = Best = 43.5); others degrade (e.g., GSPO: 41.9 — 20.9). = Thinking
introduces instability unless explicitly regularized.

3) Exploration vs. Efficiency (Fig. E[) Think produces longer rollouts — deeper
reasoning — but with higher overlength ratios, risking wasted compute and divergence.
non-think yields shorter, efficient trajectories with lower overlength — yet matches or
exceeds performance when paired with stable optimizers like GEPO.

Overall, think offers marginal peak gains at the cost of instability and overhead. Non-think
+ GEPO is more stable, efficient, and often equally effective — ideal for real-time
or latency-sensitive deployment. Choose based on delay tolerance, interpretability needs,
and required training stability. Figure [J] compares rollout lengths in GEPO under think vs.
non-think modes, with three subplots:

1) Average Length: The red curve (think) stays consistently above blue (non-think),
showing longer rollouts — likely due to added reasoning or policy deliberation.

2) Terminated Length: think again produces significantly longer successful rollouts,
suggesting it enables deeper, valid exploration.

3) Overlength Ratio: think incurs a much higher overlength rate, especially early in
training — indicating that while it boosts exploration, it also risks inefficient, overly long
sequences.
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Figure 9: Comparison of rollout (cliped by 2k tokens) lengths under think and non-think
modes.

Takeaway: think extends useful exploration and improves completion quality, but at the
cost of higher computational overhead. In practice, this trade-off can be managed via length
limits or dynamic rollout control to preserve efficiency without sacrificing performance.

C NETWORK LATENCY

We test the performance limits of GEPO and baseline methods in simulated network delay
scenarios and train the model on heterogeneous computing resources connected through a
real-world internet connection.

C.1 SIMULATED NETWORK LATENCY CONFIGURATION

Our goal is to simulate RL training of large models over internet-connected heterogeneous
compute clusters, where network delays are inherently uncertain. To evaluate algorithmic
performance and training stability under extreme and variable latency conditions, we employ
three widely used delay distributions Py: log-normal, Weibull, and exponential. We set a
high maximum delay threshold of 1800 seconds, which is sufficient to cover typical model and
data transmission times. In our simulation, model parameter synchronization and rollout
data transfer are implemented as follows:

e Learner saves model: The learner periodically saves model checkpoints to a
shared model file path Model Sync_Path via torch.save pretrained().

e Sampler loads model: The sampler generates data using the current model
until a delay Djs, drawn from Py, elapses. It then loads the latest model from
Model_Sync_Path. The sampler remains active throughout—mno idling occurs.

e Sampler sends data: Generated rollout batches are saved to Rollout_Sync_Path
with timestamp Tyyn.. To simplify implementation, data transmission is assumed
instantaneous; its latency is effectively merged into the model sync delay D, with-
out affecting simulation validity.

e Learner uses data: The learner trains on rollout data from Rollout_Sync_Path
that falls within a recent time window (e.g., no older than 1800 seconds).

C.2 REAL-WORLD NETWORK SCENARIOS

To evaluate the performance of heterogeneous reinforcement learning algorithms in realistic
network environments, we develop a communication toolkit based on ZeroMQ, supporting
TCP /IP-based transmission of inference trajectories from samplers to learners and synchro-
nized model parameter updates. As shown in Figure the toolkit enables multi-node
communication over wide-area networks (WANS), with the following core communication
logic:

e The learner continuously listens for and buffers inference trajectory messages from
samplers. It automatically updates its trajectory buffer upon message arrival and
broadcasts the latest model parameters to all connected samplers once a predefined
synchronization interval is reached.
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Figure 10: Communication flow between a learner and sampler in a distributed reinforce-
ment learning system, showing trajectory collection and model synchronization over a bidi-
rectional endpoint.

o After generating an inference trajectory, the sampler sends it to the learner and
continuously listens for parameter update messages. Upon receiving new model
parameters, the sampler updates its local parameters and resumes sampling before
the next sampling step.

Key features of the communication toolkit include:

1) Many-to-Many Communication Pattern The toolkit supports elastic node scal-
ing with dynamically reconfigurable routing topologies, enabling seamless adaptation to
node join/leave events. This facilitates efficient distributed parameter synchronization and
trajectory collection in large-scale deployments.

2) Chunked Message Transmission Inspired by Shardcast, the toolkit employs adap-
tive message chunking for both model parameters and trajectory data. The chunk size is
dynamically adjusted according to real-time bandwidth conditions. At the receiver side,
chunks are reassembled and integrity-verified, effectively mitigating the impact of high la-
tency in wide-area networks.

3) Communication Safety Mechanisms Thread-safe message passing across multiple
processes is ensured via a double-buffering queue design and fine-grained locking. This
prevents race conditions during concurrent read/write operations and guarantees reliable
parameter synchronization.

4) Configurable Routing Topology The toolkit supports user-defined connectivity pat-
terns between learners and samplers, accommodating asymmetric node configurations (e.g.,
one learner connected to four samplers). This enhances communication flexibility and scal-
ability in dynamic, heterogeneous environments.

D ENGINEERING OPTIMIZATION: LOCALIZED REWARD COMPUTATION
FOR REDUCED COMMUNICATION

In large-scale heterogeneous reinforcement learning (HeteroRL), where sampler and learner
nodes are geographically distributed, network communication overhead becomes a critical
bottleneck. A major source of this overhead lies in the reward aggregation phase, where
traditional implementations require an all_gather operation across all processes to collect
rewards for group-wise normalization (e.g., computing mean and standard deviation per
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Figure 11: Native Distributed Data Parallel and Revision.

group of generations). This global synchronization introduces significant latency, especially
under high network delay or when using large numbers of distributed nodes. To address this,
we introduce a key engineering optimization: Localized Reward Computation. Instead
of gathering rewards from all processes, we ensure that each group of generations (e.g., G
responses per prompt) is entirely generated and scored within the same process or node.
This design guarantees that all samples belonging to a single group reside locally, enabling
the calculation of group statistics (mean, std) without any cross-process communication.

This optimization is particularly synergistic with GEPO’s design philosophy. GEPO miti-
gates training instability under high latency by reducing the variance of importance weights
through group-level expectation. Our engineering improvement complements this by re-
ducing the system’s sensitivity to communication latency itself, creating a virtuous cycle:
the algorithm is robust to policy staleness, and the system is optimized to minimize the
communication that causes staleness.

The core change is implemented by removing the global gather operation in the reward
calculation function. This seemingly minor change yields substantial performance benefits.
The following table summarizes the key improvements:

Table 6: Comparison of Communication Overhead: Before vs. Optimized (Localized Re-
ward)

Component Before Optimization After Optimization (Ours)

Reward Aggregation Requires all_gather for every No communication re-
batch quired

Group Statistics Computed globally across all Computed locally per GPU
GPUs

Communication Frequency High (per batch) None for reward calculation

Latency Sensitivity High (blocked by slowest node) Low (fully asynchronous)

Scalability Limited by network bandwidth  Highly scalable with node

count

By eliminating this frequent and costly synchronization point, our system achieves higher
throughput and better resource utilization. This is especially crucial in the HeteroRL set-
ting, where network conditions are unpredictable. The optimization allows sampler nodes to
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operate more independently, reducing their idle time waiting for global synchronization and
making the overall training pipeline more resilient to network fluctuations. This engineering
refinement, combined with the GEPO algorithm, provides a holistic solution for stable and
efficient training in truly heterogeneous, high-latency environments.

E FRroM TOKEN-LEVEL TO GROUP-LEVEL IMPORTANCE WEIGHT

Token-Level Importance Weight In traditional policy optimization methods, such as
GRPO (Shao et al.}2024) or PPO (Schulman et al.,2017al), importance sampling is typically
performed at the token-level. Specifically, for a generated sequence y = (y1,...,yr), the
importance weight is computed token by token:

x’

Wioken = CLip (M, 1—e1+ e) , (34)
q(ye | T, y<t)

and used to compute the policy gradient at each time step. However, this per-token reweight-

ing scheme suffers from two key limitations:

1) Inconsistency between optimization and reward granularity: Concurrent work
such as GSPO (Zheng et all [2025) argues that since the reward is assigned at the sequence
level—i.e., to the full response y—the importance weighting for policy updates should also
operate at the same granularity, rather than at the token level.

2) High variance in token-level probabilities: Beyond this alignment issue, we provide
an explanation from the perspective of importance weight variance: because the final reward
depends on the entire sample, large local changes in token probabilities can lead to extreme

%. This inflates the variance of token-level importance weights,

causing them to frequently fall outside the clipping range. Once clipped, gradients for
these tokens are effectively zeroed out due to the stop-gradient behavior of torch.clamp,
preventing meaningful updates. As a result, tokens that require large corrections may be
ignored, leading to inefficient optimization.

values in the ratio

Sample-Level Importance Weight The sample-level importance weighting treats the
entire response as a sampling unit and computing the weight based on its full conditional
probability. Given a prompt z, both the target policy p(y|z) and the behavior policy ¢(y|x)
are defined as the joint probability of the sequence:

1 1
T T
pyle) = | |p (e | 2,y<e)|  alyle) = | | a(ye | ©,y<t) (35)
The sample-level unportance weight is then:
. (plylz) )
equen =cl ,1—e¢1 . 36
wﬁeq € ce(y‘x) clip (q(yx) € +€ ( )

This formulation computes the full sequence-level ratio before clipping, thereby avoiding
premature truncation caused by high-variance individual tokens. By preserving gradient
flow across the entire sequence, sample-level weighting enables more stable and effective
policy updates, especially under high policy divergence induced by network latency.

Group-Level Importance Weight Group-level importance weighting represents a
paradigm shift in reinforcement learning optimization by recognizing that policy updates
should not only align with the granularity of reward assignment but also leverage higher-
order statistical relationships among multiple samples. The key insight is that individual
samples should not be treated in isolation; instead, their collective behavior under the
same prompt provides crucial information for stable policy updates. By considering the ex-
pected value of proposal probabilities within a group of responses, we effectively smooth out
the erratic fluctuations that plague token-level and even sequence-level weighting schemes.
This approach acknowledges an important reality of distributed training: in heterogeneous
environments with network latency, policy divergence is inevitable, and our optimization
methods must be designed to gracefully handle—not merely tolerate—this divergence. The
group-level perspective transforms what was previously seen as a limitation (policy staleness
due to latency) into an opportunity for more robust learning through statistical regulariza-
tion of importance weights.
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Table 7: Core Characteristics of Online, Offline, and Heterogeneous Reinforcement Learning

Paradigms
Aspect Online RL Offline RL Heterogeneous RL
Data Online interaction: Data  Fixed, pre-collected Delayed interaction: Data
Generation generated instantly by dataset: Uses static  generated by historical

the current policy.

data collected by
some (unknown)
behavior policy.

policy versions (due to
unpredictable network
delay).

Policy Version
during Data

Always current:
Requires strict

Fixed: The
behavior policy is

Dynamically stale:
Staleness determined by

Generation synchronization with fixed and inherent to unpredictable network
the learning policy. the dataset. delay (core characteristic).

System Tightly-coupled: Actor  Single-machine or Geographically decoupled:

Architecture (environment simple distributed: Actor and Learner

interaction) and
Learner (parameter
update) typically
co-located or on a
low-latency network.

No real-time
interaction
required; training is
data-driven.

separated by a
high-latency network,
tolerant to delays.

Handling of

Treated as failure:

Not applicable:

Algorithmic

System Requires Training process has  compensation: Employs
Latency synchronization; latency = no real-time corrective techniques
causes resource idling interaction. (e.g., importance sampling)
and training stalls. to mitigate latency effects.
Core Exploration- Distributional Algorithmic stability
Challenge exploitation trade-off shift and limited under dynamic delays:

during learning.
*Resource utilization™*
under sequential tasks.

data coverage.

High/variable latency
causes importance
weight variance
explosion.

' THE COMPARISON OF DIFFERENT REINFORCEMENT LEARNING

PARADIGMS

F.1 CoRE CHALLENGE: OFF-PoLICY LEARNING AND IMPORTANCE SAMPLING

This formulation highlights the central challenge in asynchronous RL: the mismatch between
the behavior policy (7g, ) and the target policy (mg,. ), which grows with 7 and introduces
bias and variance into the learning process. Addressing this mismatch under high and
uncertain latency is the primary focus of our work.

The HeteroRL framework decouples rollout sampling from parameter learning, leading to
a setting where the learner updates the new policy 7, using data generated by an older
policy mg,—a canonical off-policy learning scenario. To correct for the distributional shift
between the behavior and target policies, importance sampling (IS) is commonly employed.
Under the GRPO framework, this weight is used to scale the advantage during policy gra-
dient updates. However, when the delay 7 is large, causing significant divergence between
the policies (i.e., high KL divergence Dy (7, |7, )), we observe in practice that the vari-
ance of the importance weights increases rapidly with 7, and the estimation error of the
expected reward also grows. As a result, the variance of wgq explodes, introducing high
noise into gradient estimates and ultimately leading to training instability or collapse. The
central challenge of this work is thus to design a robust algorithm that mitigates the train-
ing instability caused by the explosion of importance sampling variance under high network
latency.
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G CASE STUDY

A case of MATH level 3-5: GRPO v/s GSPO v/s GEPO

Find the greatest integer less than (v/7 4+ v/5)%. (Do not use a calculator!).

<think> Okay, so I need to find the greatest integer less than (1/(7) ++/(5))°. Hmm, that
seems pretty complicated at first glance. Let me think about how to approach this.
Wait, maybe ...("# Omitted numerous ineffective thoughts and reflections)
Alternatively, maybe I can find a recurrence relation for S,,. Let me try to find a recurrence.
Let me note that 2 and y are roots of the equation ¢ — 21/7t + 2 = 0. Therefore, for any
n > 2, we have

2" =27t — 2272,

Similarly for y™. Therefore,
Sp=z" +y" = Q\ﬁ(:c"_l + y"_l) = 2(:cn_2 + yn_2) = 2V7Sn_1 — 28, 2.

(@ This is the key step to solving this problem) ...

But this seems to involve ﬂ?), which complicates things. However, if I consider S,
+ something, maybe I can eliminate the ﬂ?) term? Wait, but maybe I need another
approach.

Alternatively, maybe I can compute S,, for n = 0,1,2, ... and find a pattern. Let me try
that.

First, let’s compute Sp = 2° +¢9° =141 = 2.

...("® Omitted numerous ineffective thoughts and reflections)

Wait, but Se is 2° 4+ y°. However, since z = /(7) +1/(5) and y = 1/(7) — 1/(5), and since
x> 0 and y is positive? Wait, 1/(7) is about 2.645, \/(5) is about 2.236. So /(7) + 1/(5)
is about 4.881, and ﬂ?) — \ﬂf)) is about 0.409. So y is positive, but small. Therefore,
is a large number, and y° is a small number. Therefore, Sg = x°® + % is approximately z°,
and the integer part of z® would be Sg — 1, since 3° is positive but less than 1. Therefore,
the greatest integer less than % is Sg — 1.

But wait, let me check if y° is less than 1. Since y = /(7) — /(5) ~ 0.409, then y° is
(0.409)°. Let me compute that: 0.409% =~ 0.167, then 0.167% ~ 0.004

(t Over length here, although close to arriving at the correct answer)

<think> Okay, so I need to find the greatest integer less than (ﬂ?) + \[(5))6. Hmm,
that seems a bit intimidating at first, but I'll try to break it down step by step. First, I
remember that expressions like (a + b)™ often have a pattern when expanded, especially
when a and b are irrational numbers. Since the question is about the greatest integer less
than this value, I might need to find an expression that’s just below the actual value.

Let me think. If I consider (1/(7) ++/(5))® and (1/(7) — v/(5))°, their sum might be an
integer because the irrational parts cancel out. That’s a common trick with conjugates.
So, the sum of these two would be (sqrt(7) + sqrt(5))® + (sqrt(7) — sqrt(5))®, which is an
integer. Therefore, the integer part of the original expression would be that integer minus
the (sqrt(7) — sqrt(5))°, which is a small positive number.

So, the answer would be boxed as the boxed integer boxedboxedboxedboxedboxed. Wait,

no, the boxed answer should be the boxed boxed answer boxed. So, boxed| boxed boxed

but boxed in the final answer boxed.

Therefore, the boxed answer is the boxed boxed boxed boxed boxed boxed boxed answer
boxed. So boxed boxed boxed boxed boxed boxed boxed boxed boxed boxed boxed boxed...
(® Numerous repetitions occur here.)
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<think> Okay, so I need to find the greatest integer less than (1/(7) ++/(5))°. Hmm, that
seems pretty big. I don’t have a calculator, so I have to figure this out without calculating
the actual value. Let me think.

But maybe I can find a recurrence formula. Let’s see:
We know that 2 and y are roots of the quadratic equation t* — (x + y)t + zy = 0. So

t?—2./(7)t+2 = 0. Therefore, the recurrence relation for S, is S = 2/(7)Sn—1—2%Sn_2.
(® This is the key step to solving this problem) ...

Therefore, the answer is | 13535 |.

</think>

To find the greatest integer less than (v/7-++/5)¢, we use the identity that for any expression
of the form (v/a+v/b)"+ (/a—v/b)", the result is an integer. This is because the irrational
parts cancel out when the two expressions are added together.

Let: -2 =vV7T+V5-y=vV7-5

We compute:
25+ o

First, calculate z%:

2 =(VT+V5)?2=74+2V/354+5=12+2V35

Then z* = (2%)? = (12 + 2v/35)? = 144 + 48+/35 + 4 - 35 = 284 + 481/35
Next, 26 = z* - 2% = (284 + 48/35)(12 + 2v/35). Expanding this:

284 - 12 4 284 - 2+/35 + 48V 35 - 12 + 48V 35 - 2V 35

= 3408 + 568v/'35 + 576V 35 + 96 - 35 = 3408 + 1144+/35 + 3360
= 6768 + 1144V 35

Similarly, y® = 6768 — 1144+/35
Adding z°® and /°:
2% + % = 26768 = 13536

Since 28 = 13536 — 4, and y° is a small positive number (as v/7 — /5 ~ 0.4097), we have:
2° ~ 13536 — 0.004 ~ 13535.996

Thus, the greatest integer less than ° is:

GRPO exhibits a large number of ineffective reflections, wasting many valuable tokens;
statistics show that GRPO uses words such as ”"wait” and ”however” more than 22 times.
Due to reward collapse, GSPO begins generating extensive repetitions after brief reasoning,
rendering the response unreadable. GEPO arrives at the correct answer during the thinking
phase through sound reasoning and reflection. When formally responding, its thought
process is clear and steps are concise.

H FuTurRE WORK

H.1 DEFENSIVE SAMPLING AND SMOOTH DENOMINATOR MECHANISM

As a promising direction for future work, we propose to explore a defensive sampling strategy
that adaptively blends the target policy probability into the importance weight denomina-
tor. This approach aims to mitigate bias introduced by approximating the denominator
while improving training stability—particularly in asynchronous or heterogeneous learning
settings. By introducing a variance-aware smoothing coefficient, the method could dynami-
cally interpolate between standard importance weighting and the policy gradient objective,
thereby reducing sensitivity to high-variance estimates. We hypothesize that such a smooth,
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adaptive weighting scheme would lead to more robust and stable policy updates, and plan
to investigate its theoretical properties and empirical effectiveness in future studies.

I LARGE LANGUAGE MODEL USAGE

The use of LLMs in this article is limited to text polishing and code generation for plotting.
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