
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GEPO: Group Expectation Policy Optimiza-
tion for Stable Heterogeneous Reinforce-
ment Learning

Anonymous authors
Paper under double-blind review

Abstract

As single-center computing approaches power constraints, decentralized
training becomes essential. However, traditional Reinforcement Learn-
ing (RL) methods, crucial for enhancing large model post-training, cannot
adapt to decentralized distributed training due to the tight coupling be-
tween parameter learning and rollout sampling. For this, we propose Het-
eroRL, a heterogeneous RL architecture that decouples these processes,
enabling stable training across geographically distributed nodes connected
via the Internet. The core component is Group Expectation Policy Opti-
mization (GEPO), an asynchronous RL algorithm robust to latency caused
by network delays or heterogeneity in computational resources. Our study
reveals that high latency significantly increases KL divergence, leading to
higher variance of importance weights and training instability. GEPO mit-
igates this issue by using group expectation weighting to exponentially re-
duce the variance of importance weights, with theoretical guarantees. Ex-
periments show GEPO achieves superior stability—only a 3% performance
drop from online to 1800s latency—and reduces the best-to-last gap by 85%
versus GSPO (∆=1.8 vs. 12.0) while attaining the highest scores, highlight-
ing its effectiveness in decentralized, resource-heterogeneous environments.

GEPO

GRPO

GSPO

Figure 1: Left: GEPO improves upon GRPO and GSPO by employing group-level impor-
tance weights to enhance training stability. Right: In both zero-delay (online) and high-delay
(up to 1800 seconds) heterogeneous reinforcement learning scenarios, GEPO demonstrates
superior stability and better evaluation performance.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1 Introduction

Training ever-larger AI models (Achiam et al., 2023; Dubey et al., 2024; Yang et al., 2025) is
pushing the limits of single datacenters, making decentralized training across geographically
distributed, heterogeneous nodes connected via the Internet an increasingly necessary pur-
suit (Team et al., 2025; Noukhovitch et al., 2024). Reinforcement Learning (RL), crucial for
post-training LLMs on complex tasks like mathematical reasoning (Shao et al., 2024), faces
a fundamental systemic challenge in this emerging paradigm: traditional RL frameworks
(Guo et al., 2025; Stiennon et al., 2020; Bai et al., 2022; Wu et al., 2025; Dai et al., 2024; Fu
et al., 2025) are architecturally incompatible with decentralized environments. Their tight
coupling between rollout sampling and parameter learning demands strict synchronization
— a requirement that becomes untenable under the high network latency and computational
heterogeneity inherent in real-world distributed settings.

This architectural incompatibility manifests in two critical bottlenecks. First, synchronous
frameworks force computational resources (e.g., GPUs) to idle while waiting for the slowest
processes—such as generating long reasoning chains—severely constraining efficiency (Fu
et al., 2025). Second, and more fundamentally, the inevitable network latency inherent in
decentralized, Internet-connected environments creates a temporal gap (policy staleness)
between the sampler (generating data) and the learner (updating parameters). Most ex-
isting RL algorithms, designed for homogeneous, low-latency clusters, are ill-equipped to
handle this staleness. As our analysis reveals, high latency significantly inflates KL diver-
gence, causing the variance of importance weights to explode—ultimately leading to training
instability or reward collapse (Song et al., 2023). This renders conventional RL methods
impractical for real-world, geographically distributed training scenarios.

To tackle these systemic bottlenecks, we introduce HeteroRL (Heterogeneous Reinforce-
ment Learning), a novel RL framework explicitly architected for asynchronous, geographi-
cally distributed, and resource-heterogeneous environments. HeteroRL is designed to enable
efficient and stable training of large language models for complex tasks such as mathematical
reasoning, even under high network latency. At its core, HeteroRL decouples the two com-
putationally intensive phases of the RL pipeline — rollout sampling and parameter learning
— and deploys them on physically or logically independent nodes with potentially heteroge-
neous hardware (e.g., mixing NVIDIA and Ascend chips). The sampler nodes continuously
generate reasoning trajectories without interruption, while the learner node asynchronously
consumes this data to update model parameters. Critically, neither component waits for
the other: communication occurs infrequently and tolerates high latency, with model check-
points and rollout batches exchanged over the Internet.

To address the instability arising from KL divergence under high-latency conditions, we
introduce Group Expectation Policy Optimization (GEPO), a novel policy gra-
dient algorithm that stabilizes asynchronous RL under high latency by replacing fragile
token/sample-level importance weights with robust group-level importance weights — al-
lowing samplers and learners to operate independently, communicating infrequently and
tolerating arbitrary delays. This shift fundamentally improves the quality of gradient esti-
mation — transforming a high-variance, unstable estimator into a low-variance, robust one,
especially under large policy divergence. As we prove in Theorem 1, GEPO exponentially
reduces the variance of importance weights under high KL divergence — precisely the regime
where traditional methods like GRPO and GSPO collapse. Crucially, GEPO is not an ad
hoc fix — it is a principled algorithmic response to the root cause of instability: variance
explosion under policy divergence.

In summary, our key contributions are as follows:

Framework: We propose HeteroRL, an asynchronous reinforcement learning framework
designed for heterogeneous compute networks, enabling decentralized training of large lan-
guage models (LLMs) on mathematical reasoning tasks.

Insight: We identify a strong correlation between latency and the KL divergence between
the rollout sampler and the learner. High latency induces high KL divergence, leading to
training instability and reward collapse.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Algorithm: We introduce Group Expectation Policy Optimization (GEPO), which im-
proves upon the importance sampling mechanism in GRPO (Shao et al., 2024). We theo-
retically show that GEPO exponentially reduces the variance of importance weights, and
empirically demonstrate its superior stability and efficiency — not only under high-latency
conditions, but also in the ideal zero-latency setting.

This work provides both algorithmic and system-level advancements for scalable LLM RL-
training and establishes a practical foundation for large-scale distributed AI training in
future heterogeneous compute network environments.

2 Background

2.1 Problem Definition and Notation

Consider a standard policy gradient framework. Let πθ denote the language model policy
(i.e., the Actor) parameterized by θ, x be an input prompt of a Dataset D (e.g., math
problems), and y be the output sequence generated by the model (e.g., a chain-of-thought
solution). We define the following core notation:

• πθk (short for q): the policy used by the sampler at time step k to generate rollout
trajectories.

• πθk+τ
(short for p): the latest policy at the learner at time step k + τ , used for

gradient updates.

• τ(≥ 0): policy staleness, representing the discrepancy in policy versions between
the sampler and the learner, caused by network delays and computational
asynchrony.

• y: a trajectory sampled from the stale policy πθk . yit denotes the t-th token of the
i-th response in a group.

• r(x, y): the reward for response y given input x.

• A(x, y): the advantage for response y to input x, typically defined as A(x, y) =
r(x, y)− b(x), where b(x) is a baseline reward computed for input x. In this paper,
we use the within-group average reward (Shao et al., 2024) as the baseline b(x) =
1
G

∑G
i=1 r(x, y

i).

The goal of HeteroRL is to optimize the policy πθ to maximize the expected cumulative
reward. To reduce gradient variance, an advantage function is used, leading to the objective:

L(θ) = Ex∼D,y∼πθk
(·|x)

πθ
k+ τ

(y|x)

πθk(y|x)
·A(x, y)

 , (1)

where τ is a random variable: τ ∼ p(Sync Model Time, Sync Data Time, Rollout Time).
For online RL, τ ≡ 0.

3 GEPO: Group Expectation Policy Optimization

Our method builds upon the group-based policy optimization paradigm of GRPO and intro-
duces the group expectation importance sampling mechanism. We emphasize a paradigm
shift from token-level to group-level importance weighting, which significantly reduces the
variance of importance weights and alleviates gradient instability during training.

3.1 Group Expectation Importance Weighting

To enhance the stability of importance weights, we propose the Group Expectation
Importance Weight (GEIW), which replaces the individual proposal probability q(y|x) in

the standard importance weight p(y|x)
q(y|x) with its group-wise expected value under the current

prompt x, denoted as Êq[q(y|x)]. Inspired by GRPO, for each input x, we generate a group
of G responses {y1, . . . , yG} ∼ q(·|x) to form a sampling group. Since G is typically much

smaller than the full policy space and top-P/top-K sampling leads to
∑G

i=1 q(y
i|x) ≫ 1,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

the vector (q(y1|x), . . . , q(yG|x)) does not constitute a valid probability distribution. Sim-

ply using the arithmetic mean 1
G

∑G
i=1 q(y

i|x) would introduce bias due to ignoring the
relative sampling probabilities. To obtain a more accurate estimate, we employ a weighted
expectation:

Êq[q(y|x)] ≈
G∑
i=1

÷q(yi|x) · q(yi|x) = ∑G
i=1 q(y

i|x)2∑G
i=1 q(y

i|x)
, (2)

where ÷q(yi|x) = q(yi|x)∑G
i=1 q(yi|x) is the within-group normalized probability, serving as an empir-

ical estimate of the sampling likelihood of each yi. We define the GEIW importance weight
as:

wGEIW(y|x) = p(y|x)
Êq[q(y|x)]

. (3)

The key advantages of this mechanism are as follows:

Numerically stable and gradient-effective: The denominator is decoupled from any
single q(y|x), avoiding extreme weight values when individual proposal probabilities ap-
proach zero. Although clip(1± ϵ) can also improve numerical stability, the gradients of the
clipped tensors will be set to zero, effectively skipping this data point (ineffective gradient).

Biased yet low-variance: By leveraging within-group statistical information, GEIW pro-

vides a more reliable scale estimate. Even under large divergence between p and q, Êq[q(y|x)]
remains well-conditioned, effectively preventing gradient explosion. Although this estimator
introduces a small bias (wGEIW is a biased estimator), both theoretical analysis (see Theo-
rem 1) and empirical results demonstrate that it significantly reduces variance under high
KL divergence, yielding more stable gradient directions and improved training convergence.

a

0.2
0.4

0.6
0.8

b

0.2 0.4 0.6 0.8
Variance

0

5

10

15

Variance Comparison

Standard IS: Var(p
q)

Ours: Var(p
qq)

Var(p
qq) > Var(p

q)

a

0.2
0.4

0.6
0.8

b

0.2 0.4 0.6 0.8

KL(p||q)

0.0
0.5
1.0
1.5
2.0
2.5

KL Divergence

a = b

a

0.2
0.4

0.6
0.8

b

0.2 0.4 0.6 0.8

Var = Var(pq) - Var(
pq q)

0

5

10

15

Variance Reduction

a = b

0 1 2
KL Divergence

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Var = Var(pq) - Var(
pq q)

KL vs Variance Reduction

Var = 0

0.0

0.2

0.4

0.6

0.8

|a-b|

(a) Variance comparison of p
q
and p

Eq [q]
under Bernoulli distributions, where p ∼ Bernoulli(a) and

q ∼ Bernoulli(b).

a

1.0
0.5

0.0
0.5

1.0
b

1.0 0.5 0.0 0.5 1.0

Variance

0
10
20
30
40
50

Variance Comparison

Standard IS: Var(p
q)

Ours: Var(p
qq)

Var(p
qq) > Var(p

q)

a

1.0
0.5

0.0
0.5

1.0
b

1.0 0.5 0.0 0.5 1.0

KL(p||q)

0.0

0.5

1.0

1.5

2.0

KL Divergence

a = b

a

1.0
0.5

0.0
0.5

1.0
b

1.0 0.5 0.0 0.5 1.0

Var = Var(pq) - Var(
pq q)

0
10
20
30
40
50

Variance Reduction

a = b

0 1 2
KL Divergence

0

10

20

30

40

50

Var = Var(pq) - Var(
pq q)

KL vs Variance Reduction

Var = 0

0.0

0.5

1.0

1.5

2.0

|a-b|

(b) Variance comparison of p
q

and p
Eq [q]

under Gaussian distributions, where p ∼ N (a, 1) and

q ∼ N (b, 1).

Figure 2: In high-KL regions, Var[p(y|x)
Êq [q(y|x)

] ≪ Var[p(y|x)q(y|x)].

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Theorem 1. Let p, q be discrete probability distributions. Then there exists a constant C
such that:

Var

ï
p(y|x)
q(y|x)

ò
−Var

ñ
p(y|x)

Êq[q(y|x)]

ô
≥ exp (DKL(p∥q)) − C. (4)

In particular, when DKL(p∥q) > logC, it holds that Var
î
p(y|x)
q(y|x)

ó
> Var

[
p(y|x)

Êq [q(y|x)]

]
.

Theorem 1 shows that GEPO can exponentially reduce the variance of importance
weights, making it particularly well-suited for heterogeneous RL training under high KL
divergence. The full mathematical proof is provided in Appendix A. As shown in Figure 2,
we visualize the relationship between KL divergence and importance weight variance when
both p and q are Bernoulli or Gaussian distributions with varying parameters. The results
indicate that in the high-KL regime, the group expectation approach significantly reduces
the variance of importance weights, which benefits training stability under high network
latency. Nevertheless, there exist regimes—such as the green regions in the plots—where
our method incurs a slight increase in variance.

The difference across all GRPO-like algorithms lies in the computation of the importance
weights, as detailed in Listing 1:

1 if self.loss_type in ["grpo","dr_grpo","bnpo"]: # Token level
2 coef_1 = learner_token_p / sampler_token_p
3 elif self.loss_type == "gspo": # Sequence level
4 coef_1 = learner_seq_p / sampler_seq_p
5 elif self.loss_type == "gepo": # Group level
6 normalized_q = sampler_seq_p.detach () / (sampler_seq_p.sum().

detach ())
7 coef_1 = learner_seq_p / (normalized_q * sampler_seq_p).sum()

Listing 1: Coefficient computation for different policy optimization methods

3.2 Gradient Comparison Across Tokens

What does the GEPO update do? For a mechanistic understanding of GEPO, it is
useful to analyze the gradient of the loss function LGEPO. The equivalent gradient of each
token in a group with respect to the parameters θ of GRPO, GSPO and GEPO can be
written as:

∂L(θ)
∂θ

= A⊙


p′1,1(θ)

q1,1
· · ·

p′1,T (θ)

q1,T
...

. . .
...

p′G,1(θ)

qG,1
· · ·

p′G,T (θ)

qG,T


︸ ︷︷ ︸

GRPO

or


p′1,1(θ)

q1
· · ·

p′1,T (θ)

q1
...

. . .
...

p′G,1(θ)

qG
· · ·

p′G,T (θ)

qG


︸ ︷︷ ︸

GSPO

or


p′1,1(θ)

Eqq
· · ·

p′1,T (θ)

Eqq
...

. . .
...

p′G,1(θ)

Eqq
· · ·

p′G,T (θ)

Eqq


︸ ︷︷ ︸

GEPO (ours)

,

(5)
where A ∈ RG×T is token-level advantages matrix, ⊙ denotes Hadamard product, qi,t =

q(yit | xi, yi<t), qi = q(yi | x), and Eqq = Êq[q(y|x)]. From the perspective of gradient
stability, GSPO uses a shared denominator q(yi | x) for all tokens in sequence i, while
GEPO further aggregates across the entire group by using a common denominator Eqq. This
progression—from token-level (GRPO) to sequence-level (GSPO) to group-level (GEPO)
coefficients—demonstrates that coarser importance-weight granularity significantly reduces
gradient variance. Empirically, leveraging group-level statistics enhances robustness and
stabilizes training, especially under high policy divergence.

4 Experiments

4.1 Experimental Setup

Model, Dataset and Benchmarks We conduct reinforcement learning training and
evaluation on the Qwen3-1.7B/8B model. The models are trained by strong-to-weak dis-
tillation (Yang et al., 2025), but have not been tuned with any RL. We train the model
on 8,290 samples from the MATH level 3–5 dataset (Zeng et al., 2025) and evaluate it by

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

WeibullLogNormal

LatencyFramework

Learner

Sampler-1

Sampler-2

Sampler-3

Sampler-4

Rollout-1

Rollout-2

Rollout-3

Rollout-4

Data Flow

Sliding w
indow

Rollout-5

Rollout-6

Sync Delay

Pipeline

Topology

Ascend
910a

Ascend
910a

Ascend
910a

Ascend
910a

Nvidia
A100

Train Node Rollout Node
Sync Delay

Rollout Data

Sync Model Exponential

Figure 3: The Overview of HeteroRL. By decoupling sampling and training, HeteroRL en-
ables decentralized distributed RL training of LLMs across five compute nodes: one param-
eter update node (learner) and four data generation nodes (sampler), forming a star-shaped
network topology. Network delays between the sampler and learner nodes are explicitly mod-
eled and can be simulated using stochastic distributions such as the log-normal or Weibull
distribution.

reporting average Pass@1 over 8 sampled responses on the MATH500 (Hendrycks et al.,
2021), AMC23 (Li et al., 2024), AIME24 (AIME, 2024), and AIME25 (AIME, 2025)
benchmarks. To better evaluate the inherent stability of policy optimization algorithms, we
remove KL divergence constraints during training under online RL scenario, and use the
same KL coefficient under the heterogeneous RL scenario. We compare our method against
baseline methods GRPO (Shao et al., 2024), GSPO (Zheng et al., 2025), BNPO (Xiao
et al., 2025) andDr.GRPO (Liu et al., 2025) under both zero-delay and high-delay settings.
More experimental details can be found in Section B.1.

Heterogeneous Computing Environment As shown in Figure 3, we perform heteroge-
neous training across five compute nodes: one learner node and four sampler nodes, forming
a star-shaped topology centered at the learner. During training, the sampler nodes gener-
ate rollout data, which is transmitted over the network to the learner node in a streaming
fashion. The learner updates the model parameters and periodically broadcasts the up-
dated weights back to the sampler nodes. The learner processes incoming rollouts in the
order they arrive, operating within a fixed time window for data eligibility. Since data is
transmitted in batch units—each containing text, generation probabilities, and rewards—a
maximum delay of 1800 seconds is sufficient for typical network conditions. Within this
window, the iteration gap (in terms of gradient updates) between the learner and samplers
remains within 64 steps.

4.2 Main Experimental Results

Table 1: Performance comparison using Qwen3-1.7B/8B under Online RL (4k limiation).

Method
AMC2023 AIME2024 AIME2025 MATH500 Average

1.7B 8B 1.7B 8B 1.7B 8B 1.7B 8B 1.7B 8B

Qwen3-1.7/8B 44.6 70.6 10.9 32.4 14.0 26.1 72.4 87.1 35.5 54.1

Max Tolerable Delay 0

BNPO 59.4 78.8 27.7 44.1 23.4 29.3 83.7 91.4 48.6 60.9
Dr.GRPO 61.6 77.5 24.6 41.0 22.7 27.7 82.9 91.6 48.0 59.4
GRPO 60.9 81.3 30.9 42.6 24.2 31.3 83.7 92.0 49.9 61.8
GSPO 60.3 77.8 28.5 41.8 25.0 31.3 83.9 90.9 49.4 60.5
GEPO (ours) 62.2 85.6 31.6 44.1 25.8 37.5 84.7 92.6 51.1 65.0

In this section, we compare GEPO with baselines under online RL and Hetero RL settings.
The experimental results in Tables 1 and 2 demonstrate that GEPO not only achieves

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

superior performance but also exhibits exceptional stability across both online and Hetero
RL settings. Below, we dissect these findings in depth.

Table 2: Performance comparison using Qwen3-8B under Hetero RL (4k limiation).

Method
AMC2023 AIME2024 AIME2025 MATH500 Average

best last best last best last best last best last

Qwen3-8B 70.6 - 32.4 - 26.1 - 87.1 - 54.1 -

Max Tolerable Delay 64

GRPO 71.6 71.6 38.7 35.9 27.3 27.0 88.8 88.8 56.6 55.8
GSPO 76.2 60.0 37.9 16.4 28.9 27.3 90.7 81.9 58.4 46.4
GEPO (ours) 83.4 82.8 42.6 37.5 33.2 32.0 91.3 90.9 62.6 60.8

In the online RL setting (Table 1), GEPO consistently outperforms all baselines across
both model sizes and all benchmarks. On Qwen3-8B, it achieves an average score of 65.0,
surpassing GRPO (61.8) and GSPO (60.5) by 3.2 and 4.1 points, respectively. The gain is
most notable on AIME2025 (+6.2 points over GRPO/GSPO, 20% relative improvement).
Even on the 1.7B model, GEPO sets a new SOTA, exceeding the best baseline by 1.5 points
in average, confirming that group-level importance weighting improves gradient quality even
without asynchrony.

In the Hetero RL setting (Table 2), GEPO’s stability advantage becomes decisive. Both
GEPO and GSPO improve over GRPO in best performance (+10.6% and +3.2%, respec-
tively). However, GEPO further surpasses GSPO by 7.2% in accuracy while reducing its
best-to-last degradation by 85% versus GSPO (∆=1.8 vs. 12.0), achieving both higher per-
formance and far greater stability. While GSPO’s last scores collapse dramatically, GEPO
maintains near-peak performance throughout training.

These results validate GEPO’s core design: by replacing token or sequence-level importance
weights with group-level expectations, it exponentially reduces importance weight variance
under high KL divergence (Theorem 1), enabling stable, scalable decentralized RL. GEPO
thus sets a new frontier in both performance and stability across ideal and real-world dis-
tributed settings. In the HeteroRL setting, the training process recorded in Figure 4 shows

0 200 400 600 800 1000 1200
Training Steps

10 6

10 5

10 4

10 3

10 2

10 1

100

GSPO
GRPO
GEPO (ours)

(a) Variance of IW

0 200 400 600 800 1000 1200
Training Steps

100

102

104

106

108

1010

1012

1014

1016

GSPO
GRPO
GEPO (ours)

(b) Gradient Norm

0 200 400 600 800 1000 1200
Training Steps

0.3

0.4

0.5

0.6

0.7

0.8

0.9

GSPO
GRPO
GEPO (ours)

(c) Training Reward

Figure 4: Curves of importance sampling variance, training gradient norm, and train/eval
reward under max delay 64. Compared to GRPO and GSPO, GEPO maintains more stable
importance weight variance, resulting in less drastic gradient changes, more stable training,
and no decline in training reward.

that GRPO stably improves the reward at a slower pace, while GSPO rapidly increases the
reward in the first 200 steps but becomes unstable between 500 and 700 steps. As seen in
Figure 4a, GEPO exhibits significantly lower variance in importance weights compared to
GRPO and GSPO, which experience sharp spikes and fluctuations. These unstable weight
variances lead to erratic gradient updates, as evidenced by the large oscillations in gradient
norm (Figure 4b) for GRPO and GSPO, especially during early and mid-training phases.
In contrast, GEPO’s gradient norms remain relatively smooth and bounded, contributing

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

to stable learning progress. Consequently, the training reward curve (Figure 4c) shows con-
sistent improvement for GEPO without any noticeable decline, whereas GRPO and GSPO
exhibit periods of stagnation or even degradation.

4.3 Analysis Experiment

5 10 15 20 25 30
Latency Steps

125

150

175

200

225

250

275

300

KL
 D

iv
er

ge
nc

e
(1

e-
5)

(a) KL-divergence

5 10 15 20 25 30
Latency Steps

12

13

14

15

16

17

18

19

Va
ri

an
ce

 o
f i

m
po

rt
an

ce
 w

ei
gh

ts
 (

1e
-4

)

(b) Variance of IW

5 10 15 20 25 30
Latency Steps

1

2

3

4

5

6

7

8

M
SE

: |
qp q

ad
v

pa
dv

|2
(1

e-
8)

(c) Estimation error

Figure 5: KL-divergence, Variance of IW, and Estimation error are all positively correlated
with the number of delay steps.

Impact of Latency As shown in Figure 5, we analyze the changes in KL divergence
between the trainer and sampler, variance of importance weights, and estimation error of
the expected value of the advantage function (optimization objective) during heterogeneous
RL training as latency increases. We observe that latency leads to increased KL divergence
(Figure 5a), which in turn causes an increase in the variance of importance weights (Figure
5b), ultimately resulting in increased estimation error of the expected advantage function
(Figure 5c). Since the optimization objective is to maximize the estimated expectation of the
advantage function, large estimation errors will cause significant fluctuations in gradients,
thereby affecting training stability and performance. To show that high latency harms
training stability, we compare max delays of 8 and 64 steps. As Figure 7 shows, with 64-step
delay—especially near step 900—the KL divergence spikes and evaluation accuracy drops
sharply, confirming that latency induces instability. Although GEPO improves stability, it
still suffers a performance dip around step 900, highlighting that heterogeneous RL under
high latency remains challenging.

12 13 14 15 16 17 18
Variance of importance weights (1e-4)

1

2

3

4

5

6

M
SE

: |
qp q

ad
v

pa
dv

|2
(1

e-
8)

(a) The correlation between im-
portance weight variance and
estimation error of Ep[adv(x, y)]
is 0.76.

12 13 14 15 16 17 18
Variance of importance weights (1e-4)

125

150

175

200

225

250

275

KL
 D

iv
er

ge
nc

e
(1

e-
5)

(b) The correlation between im-
portance weight variance and
KL divergence is 0.96.

1 2 3 4 5 6
MSE: | q

p
qadv padv|2 (1e-8)

150

200

250

300

KL
 D

iv
er

ge
nc

e
(1

e-
5)

(c) The correlation between KL
divergence and Ep[adv(x, y)] es-
timation error is 0.78.

Figure 6: Correlation analysis (95% CI) of training delay steps, importance sampling
variance, and estimation error of expected advantage function.

Correlation and Causality. Figure 6 quantifies the pairwise correlations among KL-
divergence, variance of importance weights, and estimation error of the expected advantage
function. The correlation coefficients range from 0.76 to 0.96 (α = 0.05), confirming a strong
statistical association between these variables. This observation empirically supports our
hypothesis (illustrated in Figure 5) that increased latency induces higher KL divergence,
which in turn amplifies the variance of importance weights and the estimation error, ulti-
mately threatening training stability. However, correlation does not imply strict causation.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

While latency is a significant contributing factor to KL divergence, it is not the sole de-
terminant — the model’s internal state and the statistical properties of the sampled data
also play crucial roles. This explains the observed variance in training outcomes under
identical latency: sometimes collapse occurs, sometimes not. Critically, what determines
survival versus collapse is not latency itself, but the algorithm’s capacity to mitigate the
downstream instability caused by high KL divergence. As demonstrated in Figure 4 and
Table 2, GEPO’s group expectation mechanism effectively suppresses the explosion of im-
portance weight variance even when KL divergence is high. This allows GEPO to maintain
stable training and avoid collapse in many scenarios where baseline methods (like GRPO
and GSPO) fail — thereby establishing algorithmic robustness to policy divergence as a
core contribution of this work.

0 200 400 600 800 1000 1200
Training Steps

0

10

20

30

40

50

GEPO-MaxDelay 8
GEPO-MaxDelay 64

(a) Latency steps

0 200 400 600 800 1000 1200
Training Steps

10 3

10 2

10 1

100

GEPO-MaxDelay 8
GEPO-MaxDelay 64

(b) KL divergence

0 200 400 600 800 1000 1200
Training Steps

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80 GEPO-MaxDelay 8
GEPO-MaxDelay 64

(c) Evaluation accuracy

Figure 7: Training processes under different latency conditions

5 Related Work

In recent years, reinforcement learning has become central to post-training LLMs (Ziegler
et al., 2019). Researchers have identified efficiency bottlenecks in traditional synchronous RL
frameworks. IMPALA(Espeholt et al., 2018) is a centralized, high-throughput distributed
reinforcement learning architecture designed for traditional RL settings—not LLMs—that
uses V-trace to correct policy lag between asynchronous actors and a central learner. Wu
et al. (2025) first theoretically explored asynchronous RLHF (Ouyang et al., 2022), propos-
ing to decouple generation and training across GPU clusters, enabling scalable and efficient
RL fine-tuning of large language models up to 405B parameters with provable speedup over
synchronous baselines. However, it focuses on single-machine or small clusters, neglecting
dynamic network delays in heterogeneous environments. To address practical efficiency,
AREAL (Fu et al., 2025) fully decouples generation and training, using staleness thresh-
olds and a decoupled PPO objective (Schulman et al., 2017b) to handle outdated samples.
It improves both training speed and final performance on reasoning and code tasks—but
assumes stable networks, unlike the unpredictable, high-latency settings targeted by Het-
eroRL. Prime Intellect (Team et al., 2025) offers a decentralized, asynchronous framework for
community compute, ensuring trust via verifiable inference, stability via two-sided GRPO
clipping, and controllable reasoning with length-aware rewards. These works motivate our
design: a robust, delay-tolerant framework for heterogeneous, geographically distributed
RL.

6 Conclusion

We propose HeteroRL, a heterogeneous reinforcement learning framework designed for train-
ing LLMs across geographically distributed and resource-heterogeneous nodes, paired with
GEPO—a novel policy optimization algorithm that stabilizes training under high latency.
By decoupling rollout sampling from parameter updates, HeteroRL eliminates synchroniza-
tion bottlenecks inherent in traditional RL pipelines. GEPO addresses the explosion of vari-
ance of importance weight caused by stale policies through group expectation importance
weight, provably reducing variance exponentially, particularly under large KL divergence
between the sampling and learning policies. This work establishes a practical foundation
for scalable, delay-tolerant decentralized RL, making it well-suited for real-world LLM post-
training in heterogeneous, wide-area network environments.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Ethics Statement

This work presents a systems and algorithmic contribution to stable reinforcement learning
in heterogeneous, geographically distributed environments. It uses only public, non-sensitive
datasets (e.g., MATH, AIME) and does not involve human subjects, personal data, or high-
risk applications. The proposed method (GEPO) is task-agnostic and neutral in intent;
it does not introduce bias or discrimination, as training focuses solely on mathematical
reasoning.

Reproducibility Statement

We provide full implementation details in Appendix B.1, including model configurations,
training hyperparameters, and latency simulation setup. All datasets used (MATH, AMC,
AIME) are public. The algorithm (GEPO) is precisely described in Section 3 and Listing 1,
with theoretical guarantees in Appendix A. Anonymous code and configuration files
are included in the supplementary materials.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al.
Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

AIME. Aime 2024. https://huggingface.co/datasets/HuggingFaceH4/aime_2024,
2024. Accessed: 2025-03-17.

AIME. Aime 2025. https://huggingface.co/datasets/yentinglin/aime_2025, 2025.
Accessed: 2025-03-17.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy
Jones, Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Consti-
tutional ai: Harmlessness from ai feedback. ArXiv Preprint ArXiv:2212.08073, 2022.

Josef Dai, Xuehai Pan, Ruiyang Sun, Jiaming Ji, Xinbo Xu, Mickel Liu, Yizhou Wang,
and Yaodong Yang. Safe RLHF: Safe reinforcement learning from human feedback. In
Proceedings of the Twelfth International Conference on Learning Representations, 2024.

Muzhi Dai, Shixuan Liu, and Qingyi Si. Stable reinforcement learning for efficient reasoning,
2025. URL https://arxiv.org/abs/2505.18086.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama
3 herd of models. ArXiv Preprint ArXiv:2407.21783, 2024.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir Mnih, Tom
Ward, Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray
Kavukcuoglu. Impala: Scalable distributed deep-rl with importance weighted actor-
learner architectures, 2018. URL https://arxiv.org/abs/1802.01561.

Wei Fu, Jiaxuan Gao, Xujie Shen, Chen Zhu, Zhiyu Mei, Chuyi He, Shusheng Xu, Guo Wei,
Jun Mei, Jiashu Wang, et al. Areal: A large-scale asynchronous reinforcement learning
system for language reasoning. arXiv preprint arXiv:2505.24298, 2025.

Daya Guo, Dejian Yang, Haowei Zhang, et al. Deepseek-r1 incentivizes reasoning in
llms through reinforcement learning. Nature, 645(8081):633–638, 2025. doi: 10.1038/
s41586-025-09422-z. URL https://doi.org/10.1038/s41586-025-09422-z.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang,
Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with the
math dataset. arXiv preprint arXiv:2103.03874, 2021.

10

https://huggingface.co/datasets/HuggingFaceH4/aime_2024
https://huggingface.co/datasets/yentinglin/aime_2025
https://arxiv.org/abs/2505.18086
https://arxiv.org/abs/1802.01561
https://doi.org/10.1038/s41586-025-09422-z

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang,
Kashif Rasul, Longhui Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The largest
public dataset in ai4maths with 860k pairs of competition math problems and solutions.
Hugging Face repository, 13(9):9, 2024.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee,
and Min Lin. Understanding r1-zero-like training: A critical perspective. arXiv preprint
arXiv:2503.20783, 2025.

Michael Noukhovitch, Shengyi Huang, Sophie Xhonneux, Arian Hosseini, Rishabh Agar-
wal, and Aaron Courville. Asynchronous rlhf: Faster and more efficient off-policy rl for
language models. arXiv preprint arXiv:2410.18252, 2024.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language
models to follow instructions with human feedback. Advances in neural information
processing systems, 35:27730–27744, 2022.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. ArXiv Preprint ArXiv:1707.06347, 2017a.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017b.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathe-
matical reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Vaishnavi Shrivastava, Ahmed Awadallah, Vidhisha Balachandran, Shivam Garg, Harkirat
Behl, and Dimitris Papailiopoulos. Sample more to think less: Group filtered policy
optimization for concise reasoning. arXiv preprint arXiv:2508.09726, 2025.

Ziang Song, Tianle Cai, Jason D. Lee, and Weijie J. Su. Reward collapse in aligning large
language models, 2023. URL https://arxiv.org/abs/2305.17608.

Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M. Ziegler, Ryan Lowe, Chelsea Voss, Alec
Radford, Dario Amodei, and Paul Christiano. Learning to summarize from human feed-
back. In Proceedings of the International Conference on Neural Information Processing
Systems, pp. 3008–3021, 2020.

Prime Intellect Team, Sami Jaghouar, Justus Mattern, Jack Min Ong, Jannik Straube,
Manveer Basra, Aaron Pazdera, Kushal Thaman, Matthew Di Ferrante, Felix Gabriel,
et al. Intellect-2: A reasoning model trained through globally decentralized reinforcement
learning. arXiv preprint arXiv:2505.07291, 2025.

Bo Wu, Sid Wang, Yunhao Tang, Jia Ding, Eryk Helenowski, Liang Tan, Tengyu Xu,
Tushar Gowda, Zhengxing Chen, Chen Zhu, et al. Llamarl: A distributed asynchronous
reinforcement learning framework for efficient large-scale llm trainin. arXiv preprint
arXiv:2505.24034, 2025.

Changyi Xiao, Mengdi Zhang, and Yixin Cao. Bnpo: Beta normalization policy optimiza-
tion. arXiv preprint arXiv:2506.02864, 2025.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei
Huang, Feng Hu, Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu,
Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai
Dang, Keqin Bao, Kexin Yang, Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li,
Pei Zhang, Peng Wang, Qin Zhu, Rui Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao
Li, Tianyi Tang, Wenbiao Yin, Xingzhang Ren, Xinyu Wang, Xinyu Zhang, Xuancheng
Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger Zhang, Yu Wan, Yuqiong Liu, Zekun
Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan Qiu. Qwen3 technical report.
arXiv preprint arXiv:2505.09388, 2025.

11

https://arxiv.org/abs/2305.17608

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He.
Simplerl-zoo: Investigating and taming zero reinforcement learning for open base models
in the wild. arXiv preprint arXiv:2503.18892, 2025.

Han Zhang, Yu Lei, Lin Gui, Min Yang, Yulan He, Hui Wang, and Ruifeng Xu. Cppo:
Continual learning for reinforcement learning with human feedback. In The Twelfth In-
ternational Conference on Learning Representations, 2024.

Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang,
Yuqiong Liu, Rui Men, An Yang, et al. Group sequence policy optimization. arXiv
preprint arXiv:2507.18071, 2025.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei,
Paul Christiano, and Geoffrey Irving. Fine-tuning language models from human prefer-
ences. arXiv preprint arXiv:1909.08593, 2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A Theoretical Proof of Importance Sampling Variance

This appendix analyzes a newly proposed importance sampling weight wnew(x) =
p(x)

Eq[q]
,

where Eq[q] =
∫
q(x)2dx, and compares its variance with the standard importance sampling

weight wstd(x) =
p(x)

q(x)
.

Problem Setting Let the target distribution be p(x) and the proposal distribution be
q(x). We aim to estimate:

Ep[f] =

∫
f(x)p(x)dx. (6)

Since direct sampling from p is difficult, we employ importance sampling by drawing samples
from q.

Standard Importance Sampling The standard weight is defined as:

wstd(x) =
p(x)

q(x)
. (7)

Its expectation under q is:

Eq

ï
p(x)

q(x)

ò
=

∫
p(x)

q(x)
q(x)dx =

∫
p(x)dx = 1, (8)

thus it is unbiased. Its variance is:

Varq(wstd) = Eq

ñÅ
p

q

ã2ô
−
Å
Eq

ï
p

q

òã2
=

∫
p(x)2

q(x)
dx− 1.

(9)

Denoted as:

Varstd =

∫
p(x)2

q(x)
dx− 1. (10)

Group Expectation Importance Sampling The new weight is defined as:

wnew(x) =
p(x)

Eq[q]
, where Eq[q] =

∫
q(x)2dx. (11)

Its expectation is:

Eq[wnew] =
1

Eq[q]

∫
p(x)q(x)dx =

⟨p, q⟩
∥q∥22

, (12)

where ⟨p, q⟩ denotes the inner product
∫
p(x)q(x)dx. Generally, ⟨p, q⟩ ̸= ∥q∥22, making this

estimator biased. Its variance is:

Varq(wnew) = Eq

ñÅ
p(x)

Eq[q]

ã2ô
−
Å
Eq

ï
p(x)

Eq[q]

òã2
=

1

(Eq[q])2

Ç∫
p(x)2q(x)dx−

Å∫
p(x)q(x)dx

ã2å
.

(13)

Denoted as:

Varnew =
1(∫

q(x)2dx
)2
Ç∫

p(x)2q(x)dx−
Å∫

p(x)q(x)dx

ã2å
. (14)

Variance Comparison We compare:

Varstd =

∫
p(x)2

q(x)
dx− 1,

Varnew =
1(∫

q(x)2dx
)2
Ç∫

p(x)2q(x)dx−
Å∫

p(x)q(x)dx

ã2å
.

(15)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.1 Variance Comparison in Discrete Space

Since the action space of large models is discrete, this section discusses the variance difference
∆ = Varstd−Varnew in discrete probability space. The integral expressions in the continuous
case naturally transition to discrete summation forms:

• Replace continuous integrals
∫
·dx with discrete summations

∑n
i=1;

• Replace probability density functions p(x), q(x) with probability masses pi, qi;

• Maintain the structural form of variance expressions unchanged.

Notation and Setting Let the sample space be a finite set X = {1, 2, . . . , n}, where
n ≥ 2. Let p = (p1, . . . , pn) and q = (q1, . . . , qn) be two probability distributions satisfying:

• pi > 0,
∑n

i=1 pi = 1,

• qi > 0,
∑n

i=1 qi = 1.

Define the following four key quantities, corresponding to the integral terms in the contin-
uous expressions:

A =

(
n∑

i=1

q2i

)2

, (corresponding to

Å∫
q(x)2dx

ã2
) (16)

B =

(
n∑

i=1

piqi

)2

, (corresponding to

Å∫
p(x)q(x)dx

ã2
) (17)

I1 =

n∑
i=1

p2i
qi
, (corresponding to

∫
p(x)2

q(x)
dx) (18)

I2 =

n∑
i=1

p2i qi, (corresponding to

∫
p(x)2q(x)dx) (19)

Accordingly, the variance difference can be written as:

∆ = I1 +
B −A− I2

A
. (20)

Lemma 1 (Range of Quantities). Under the above setting, we have:

• A ∈
ï
1

n2
, 1

ò
,

• B ∈ [0, 1],

• I1 ∈ [1, ∞),

• I2 ∈ (0, 1].

Proof.
1. Range of A: By the power mean inequality,

∑
q2i ≥ 1

n , and
∑

q2i ≤ 1, thus A ∈ [1/n2, 1].
2. Range of B:

∑
piqi ∈ (0, 1], thus B ∈ [0, 1].

3. Range of I1: By the Cauchy-Schwarz inequality, I1 ≥ 1, and it can approach infinity.
4. Range of I2: Since p2i ≤ pi, we have I2 ≤ 1, and I2 > 0.

Theorem 1. Let p, q be discrete probability distributions. Then there exists a constant C
such that:

Var

ï
p(y|x)
q(y|x)

ò
−Var

ñ
p(y|x)

Êq[q(y|x)]

ô
≥ exp (DKL(p∥q))− C. (21)

In particular, when DKL(p∥q) > logC, it holds that Var[p(y|x)q(y|x)] > Var[p(y|x)
Êq [q(y|x)]

].

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Proof. Step 1. From the fundamental inequality relationship between KL divergence and
χ2 divergence (Pinsker’s inequality):

DKL(p∥q) ≤ log
(
1 +Dχ2(p∥q)

)
, (22)

where the chi-square divergence is defined as:

Dχ2(p∥q) =
n∑

i=1

(pi − qi)
2

qi
=

n∑
i=1

p2i
qi

− 1 = I1 − 1. (23)

Substituting yields:

DKL(p∥q) ≤ log(I1), (24)

therefore:

I1 ≥ exp (DKL(p∥q)) . (25)

Step 2. From Lemma 1, we know that A, B, and I2 satisfy the following bounds:

A ∈ [
1

n2
, 1], (26)

B ∈ [0, 1], (27)

I2 ∈ (0, 1]. (28)

Consider the lower bound of the expression
B −A− I2

A
. To obtain its minimum value, we

take:

• Minimum value of B: B = 0

• Minimum value of A: A = 1
n2

• Maximum value of I2: I2 = 1

Substituting yields:

B −A− I2
A

≥ 0− 1/n2 − 1

1/n2
= −(n2 + 1). (29)

Step 3. Substituting inequalities (1) and (2) into the expression for ∆:

∆ = I1 +
B −A− I2

A
≥ exp (DKL(p∥q))− (n2 + 1). (30)

When DKL(p∥q) > log(n2 + 1), we have:

exp (DKL(p∥q)) > n2 + 1, (31)

thus:

∆ > 0, (32)

i.e., Varstd > Varnew.

Corollary 1. In discrete space, if DKL(p∥q) > log(n2 + 1), then:

Varstd > Varnew, (33)

i.e., the new estimator has smaller variance.

It should be noted that A only attains the value 1
n2 when q follows a uniform

distribution. In practice, when large models generate responses, the distribution tends to
be long-tailed, so the value of A is much greater than 1

n2 , and the constant Creal ≪ log(n2+
1). For example, we randomly generated 128 tokens using Qwen3-1.7B (n = 151936), and
the standard variance and average of A was 0.432±0.36 ≫ 1

n2 .

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B Supplementary experiments

B.1 Implementation Details

All experiments use the Qwen3-1.7B/8B model with a maximum input length of 768 and
output length of 2048/4096 tokens under both think and no-think mode, limited by com-
putational constraints and low token efficiency (Shrivastava et al., 2025) (reward/length)
at full context length1. Training follows a GRPO-like algorithm with a learning rate of
1× 10−6, 3% linear warmup, per-device batch size 8, and gradient accumulation of 1, with
gradient checkpointing enabled for memory efficiency. Evaluations occur every 32 or 64
steps. To model network latency in heterogeneous environments, we introduce a log-normal
delay simulator bounded between 60 and 1800 seconds (99.5% CI), with default delay at
60 seconds and policy staleness varied across 0–64 effective steps. For online training, KL
divergence is not used, in order to better evaluate the training stability of the algorithms.
For heterogeneous settings, CPPO-KL (Zhang et al., 2024) loss with coefficient 0.005 is
applied. Another reason for using CPPO-KL is memory efficiency, as it does not require a
separate reference model. Rollouts are generated using vLLM with 8 parallel responses per
prompt, and each run lasts 3 epochs, with metrics logged via Weights & Biases. The system
prompt used in the experiments is shown in Figure 8.

 [think mode] You are a helpful AI Assistant, designed to provided well-reasoned and detailed responses.
 You FIRST think about the reasoning process as an internal monologue and then provide the user with the
 answer. Please put your final answer within \boxed{}. Also, indicate that it is the answer.

 [no-think mode] You are a helpful AI Assistant, designed to provided well-reasoned and detailed responses.
 Please put your final answer within \boxed{}. Also, indicate that it is the answer.

Figure 8: System prompt of all trainings in our experiments.

B.2 Baselines

The baseline methods compared in our experiments are as follows:

• Group Relative Policy Optimization (GRPO) (Shao et al., 2024) is a reinforcement
learning algorithm that enhances mathematical reasoning in LLMs by estimating ad-
vantages through group-relative reward normalization—comparing responses within
a group to the same query—thereby eliminating the need for a separate value net-
work and reducing memory overhead compared to PPO.

• Dr. GRPO (Liu et al., 2025) is a debiased variant of GRPO that removes the
per-response length normalization and per-question reward standard deviation nor-
malization, thereby eliminating optimization biases that artificially inflate response
length and improving token efficiency while preserving reasoning performance.

• Beta Normalization Policy Optimization (BNPO) (Xiao et al., 2025) is a novel rein-
forcement learning algorithm that dynamically normalizes binary rewards using an
adaptively parameterized Beta distribution to reduce gradient variance and enhance
training stability for large language models.

• Group Sequence Policy Optimization (GSPO) (Zheng et al., 2025) is a novel re-
inforcement learning algorithm for large language models that defines importance
ratios based on sequence likelihood and performs sequence-level clipping and opti-
mization, thereby achieving superior training stability, efficiency, and performance
compared to token-level methods like GRPO.

1This 2k/4k-token limit balances cost and efficiency. Longer outputs increase memory and train-
ing time, making high-latency experiments impractical. Crucially, as shown in Figure 9(c), “think
mode” yields a high “Overlength Ratio”—most long outputs are truncated and wasted. Recent
studies (Shrivastava et al., 2025; Dai et al., 2025) consistently show that reasoning
does not require excessively long chains of thought; redundant thinking merely wastes
resources. Thus, 2048 tokens ensure fair, stable, and manageable experiments.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B.3 Supplementary Results of Main Experiments

As shown in Table 3, GEPO outperforms all baselines—including GRPO and GSPO—in
both best and final performance across zero-delay and high-delay settings, demonstrating
superior effectiveness and training stability. A critical observation from the results is that,
although GSPO’s technical report claims improved stability, we only observe GSPO to be
more stable than GRPO under the Online RL setting.

Table 3: Performance of GEPO and baseline methods under Online RL and Hetero RL
scenarios (2k limiation).

Method
AMC2023 AIME2024 AIME2025 MATH500 Average

Best Last Best Last Best Last Best Last Best Last

Qwen3-1.7B 25.6 - 1.6 - 3.9 - 54.7 - 21.5 -

Max Tolerable Delay 0 (Online RL)

BNPO 54.3 0.0 18.4 0.0 19.1 0.0 78.7 0.0 42.6 0.0
Dr.GRPO 53.4 14.3 19.1 1.6 18.8 2.0 78.6 35.9 42.5 13.5
GRPO 56.3 23.4 20.7 0.4 19.9 2.3 79.8 49.7 44.2 19.0
GSPO 54.1 27.8 23.8 3.1 20.7 4.3 79.9 62.1 44.6 24.3
GEPO (ours) 56.9 56.9 21.9 16.4 20.3 14.1 80.4 78.1 44.9 41.4

Max Tolerable Delay 64 (Hetero RL)

BNPO 45.0 43.1 12.1 11.3 12.5 10.1 71.1 69.3 35.2 33.5
Dr.GRPO 48.4 48.4 17.2 17.2 14.8 14.8 73.9 73.9 38.6 38.6
GRPO 46.6 46.6 19.1 14.5 14.8 14.8 74.9 74.9 38.9 37.7
GSPO 54.4 23.8 17.6 1.6 17.6 2.7 78.2 55.6 42.0 20.9
GEPO (ours) 53.8 53.8 21.9 21.9 18.8 18.8 79.6 79.6 43.5 43.5

B.4 Ablation Study

Since the removal of the variance divisor term in the advantage function has already been
extensively validated in prior work (Liu et al., 2025), we focus solely on ablating the Group
Expectation component. Table 4 compares three importance weights (IW) in Listing 1,
namely token-level (IW of GRPO), sequence-level (IW of GSPO), and group-level (IW of
GEPO), under a max tolerable delay of 64 steps. Table 4 presents the results, the sequence-
level IW proposed by GSPO does not bring significant stability improvement. Although
it outperforms token-level weighting in terms of best performance, it suffers from severe
performance degradation by the end of training.

Table 4: Ablation study of different importance weights (Hetero RL mode).

Ablation
AMC2023 AIME2024 AIME2025 MATH500 Average

Best Last Best Last Best Last Best Last Best Last

group-lv 53.8 53.8 21.9 21.9 18.8 18.8 79.6 79.6 43.5 43.5

token-lv 46.1 43.9 18.7 14.2 15.3 14.3 74.3 74.9 38.6 36.8
seq-lv 55.2 24.1 17.2 1.9 18.1 2.1 77.3 56.9 42.0 21.3

B.5 Comparison of Think and Non-think Mode

In non-think mode, all methods struggle with exploration, shown by consistently lower last
scores vs. best — indicating late-stage instability.

Notably:

• GEPO (ours) dominates across all benchmarks and delays in both best and last,
proving superior efficiency and stability — even without thinking steps.

• At zero delay, GEPO beats top baseline (GSPO) by +3.7 (best) and +20.8
(last), resisting early collapse.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

• With delay=64, baselines improve (e.g., Dr.GRPO: 0.0 → 33.4), showing slack
aids stability. GEPO still leads (last = 38.0 vs. 35.7).

• VanillaQwen3-1.7B (best=33.2) is outperformed by all RL methods — confirming
RL’s value even without reasoning.

In short: while non-think mode limits reasoning, GEPO delivers unmatched stability
and final performance, ideal for latency-sensitive or real-time settings.

Table 5: Performance comparison using Qwen3-1.7B (non-think, 2k).

Method
AMC2023 AIME2024 AIME2025 MATH500 Average

Best Last Best Last Best Last Best Last Best Last

Qwen3-1.7B 42.8 - 10.2 - 9.4 - 70.2 - 33.2 -

Max Tolerable Delay 0

BNPO 43.7 0.0 13.7 0.0 13.3 0.0 74.2 0.4 36.2 0.1
Dr.GRPO 45.0 0.0 14.4 0.0 11.3 0.0 73.6 0.0 36.1 0.0
GRPO 50.0 28.8 16.4 7.8 13.7 7.2 77.5 59.7 39.4 25.9
GSPO 53.1 23.8 14.4 2.7 16.0 0.4 76.5 55.6 40.0 20.6
GEPO (ours) 55.0 52.5 22.3 22.3 18.4 13.7 79.2 77.1 43.7 41.4

Max Tolerable Delay 64

BNPO 42.1 28.6 11.1 4.7 10.2 6.4 68.3 36.1 32.9 19.0
Dr.GRPO 45.0 41.6 14.1 9.7 13.3 10.1 72.5 72.3 36.2 33.4
GRPO 46.3 46.3 14.5 14.5 13.6 10.1 72.6 71.7 36.8 35.7
GSPO 47.2 36.6 13.7 4.3 13.3 8.9 75.1 67.9 37.3 29.4
GEPO (ours) 52.5 52.5 14.5 10.2 14.5 12.1 77.4 77.1 39.7 38.0

A comparison of RL under think vs. non-think modes reveals key trade-offs in reasoning,
stability, cost, and performance.

1) Performance and Stability (Delay = 0) GEPO in non-think achieves Best =
43.7 and Last = 41.4 — near-perfect retention. In think mode, it reaches Best = 44.9
(+1.2) but identical Last = 41.4 — no final gain. Baselines like GRPO collapse (44.2 →
19.0), showing thinking destabilizes training without proper control.

2) With Delay = 64 In non-think, methods rebound sharply: Dr.GRPO (0.0 → 33.4),
GRPO (25.9 → 35.7) — minimal slack prevents collapse. In think, only GEPO retains peak
perfectly (Last = Best = 43.5); others degrade (e.g., GSPO: 41.9 → 20.9). ⇒ Thinking
introduces instability unless explicitly regularized.

3) Exploration vs. Efficiency (Fig. 9) Think produces longer rollouts — deeper
reasoning — but with higher overlength ratios, risking wasted compute and divergence.
non-think yields shorter, efficient trajectories with lower overlength — yet matches or
exceeds performance when paired with stable optimizers like GEPO.

Overall, think offers marginal peak gains at the cost of instability and overhead. Non-think
+ GEPO is more stable, efficient, and often equally effective — ideal for real-time
or latency-sensitive deployment. Choose based on delay tolerance, interpretability needs,
and required training stability. Figure 9 compares rollout lengths in GEPO under think vs.
non-think modes, with three subplots:

1) Average Length: The red curve (think) stays consistently above blue (non-think),
showing longer rollouts — likely due to added reasoning or policy deliberation.

2) Terminated Length: think again produces significantly longer successful rollouts,
suggesting it enables deeper, valid exploration.

3) Overlength Ratio: think incurs a much higher overlength rate, especially early in
training — indicating that while it boosts exploration, it also risks inefficient, overly long
sequences.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

0 200 400 600 800 1000 1200
Training Steps

600

800

1000

1200

1400

1600

1800

2000 GEPO (non-think)
GEPO (think)

(a) Average Length

0 200 400 600 800 1000 1200
Training Steps

600

800

1000

1200

1400

1600 GEPO (non-think)
GEPO (think)

(b) Terminated Length

0 200 400 600 800 1000 1200
Training Steps

0.0

0.2

0.4

0.6

0.8

GEPO (non-think)
GEPO (think)

(c) Overlength Ratio

Figure 9: Comparison of rollout (cliped by 2k tokens) lengths under think and non-think
modes.

Takeaway: think extends useful exploration and improves completion quality, but at the
cost of higher computational overhead. In practice, this trade-off can be managed via length
limits or dynamic rollout control to preserve efficiency without sacrificing performance.

C Network Latency

We test the performance limits of GEPO and baseline methods in simulated network delay
scenarios and train the model on heterogeneous computing resources connected through a
real-world internet connection.

C.1 Simulated Network Latency Configuration

Our goal is to simulate RL training of large models over internet-connected heterogeneous
compute clusters, where network delays are inherently uncertain. To evaluate algorithmic
performance and training stability under extreme and variable latency conditions, we employ
three widely used delay distributions Pd: log-normal, Weibull, and exponential. We set a
high maximum delay threshold of 1800 seconds, which is sufficient to cover typical model and
data transmission times. In our simulation, model parameter synchronization and rollout
data transfer are implemented as follows:

• Learner saves model: The learner periodically saves model checkpoints to a
shared model file path Model Sync Path via torch.save pretrained().

• Sampler loads model: The sampler generates data using the current model
until a delay DM , drawn from Pd, elapses. It then loads the latest model from
Model Sync Path. The sampler remains active throughout—no idling occurs.

• Sampler sends data: Generated rollout batches are saved to Rollout Sync Path
with timestamp Tsync. To simplify implementation, data transmission is assumed
instantaneous; its latency is effectively merged into the model sync delay DM , with-
out affecting simulation validity.

• Learner uses data: The learner trains on rollout data from Rollout Sync Path
that falls within a recent time window (e.g., no older than 1800 seconds).

C.2 Real-World Network Scenarios

To evaluate the performance of heterogeneous reinforcement learning algorithms in realistic
network environments, we develop a communication toolkit based on ZeroMQ, supporting
TCP/IP-based transmission of inference trajectories from samplers to learners and synchro-
nized model parameter updates. As shown in Figure 10, the toolkit enables multi-node
communication over wide-area networks (WANs), with the following core communication
logic:

• The learner continuously listens for and buffers inference trajectory messages from
samplers. It automatically updates its trajectory buffer upon message arrival and
broadcasts the latest model parameters to all connected samplers once a predefined
synchronization interval is reached.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure 10: Communication flow between a learner and sampler in a distributed reinforce-
ment learning system, showing trajectory collection and model synchronization over a bidi-
rectional endpoint.

• After generating an inference trajectory, the sampler sends it to the learner and
continuously listens for parameter update messages. Upon receiving new model
parameters, the sampler updates its local parameters and resumes sampling before
the next sampling step.

Key features of the communication toolkit include:

1) Many-to-Many Communication Pattern The toolkit supports elastic node scal-
ing with dynamically reconfigurable routing topologies, enabling seamless adaptation to
node join/leave events. This facilitates efficient distributed parameter synchronization and
trajectory collection in large-scale deployments.

2) Chunked Message Transmission Inspired by Shardcast, the toolkit employs adap-
tive message chunking for both model parameters and trajectory data. The chunk size is
dynamically adjusted according to real-time bandwidth conditions. At the receiver side,
chunks are reassembled and integrity-verified, effectively mitigating the impact of high la-
tency in wide-area networks.

3) Communication Safety Mechanisms Thread-safe message passing across multiple
processes is ensured via a double-buffering queue design and fine-grained locking. This
prevents race conditions during concurrent read/write operations and guarantees reliable
parameter synchronization.

4) Configurable Routing Topology The toolkit supports user-defined connectivity pat-
terns between learners and samplers, accommodating asymmetric node configurations (e.g.,
one learner connected to four samplers). This enhances communication flexibility and scal-
ability in dynamic, heterogeneous environments.

D Engineering Optimization: Localized Reward Computation
for Reduced Communication

In large-scale heterogeneous reinforcement learning (HeteroRL), where sampler and learner
nodes are geographically distributed, network communication overhead becomes a critical
bottleneck. A major source of this overhead lies in the reward aggregation phase, where
traditional implementations require an all gather operation across all processes to collect
rewards for group-wise normalization (e.g., computing mean and standard deviation per

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Sampler Learner

group

group

group

group

group

group

group

group

rank1 rank2 rank3 rank4

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

Global Batch (Gradient Accumulation)

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

Train Input

rank1 rank2 rank3 rank4

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

rank1 rank2 rank3 rank4

Global Batch (Gradient Accumulation) Train Input

rank1 rank2 rank3 rank4

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

Train GPUs

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

mini-batch-1

mini-batch-2

mini-batch-3

mini-batch-4

mini-batch-5

mini-batch-6

mini-batch-7

mini-batch-8

rank1 rank2 rank3 rank4

v.s.

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

rank1 rank2 rank3 rank4

Rollout Batch

Native DDP

After Revision

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

rank1 rank2 rank3 rank4

Rollout Batch

Communication group Group outputs per queryNo Communication

Train GPUs

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

group

mini-batch-1

mini-batch-2

mini-batch-3

mini-batch-4

mini-batch-5

mini-batch-6

mini-batch-7

mini-batch-8

rank1 rank2 rank3 rank4

Figure 11: Native Distributed Data Parallel and Revision.

group of generations). This global synchronization introduces significant latency, especially
under high network delay or when using large numbers of distributed nodes. To address this,
we introduce a key engineering optimization: Localized Reward Computation. Instead
of gathering rewards from all processes, we ensure that each group of generations (e.g., G
responses per prompt) is entirely generated and scored within the same process or node.
This design guarantees that all samples belonging to a single group reside locally, enabling
the calculation of group statistics (mean, std) without any cross-process communication.

This optimization is particularly synergistic with GEPO’s design philosophy. GEPO miti-
gates training instability under high latency by reducing the variance of importance weights
through group-level expectation. Our engineering improvement complements this by re-
ducing the system’s sensitivity to communication latency itself, creating a virtuous cycle:
the algorithm is robust to policy staleness, and the system is optimized to minimize the
communication that causes staleness.

The core change is implemented by removing the global gather operation in the reward
calculation function. This seemingly minor change yields substantial performance benefits.
The following table summarizes the key improvements:

Table 6: Comparison of Communication Overhead: Before vs. Optimized (Localized Re-
ward)

Component Before Optimization After Optimization (Ours)

Reward Aggregation Requires all gather for every
batch

No communication re-
quired

Group Statistics Computed globally across all
GPUs

Computed locally per GPU

Communication Frequency High (per batch) None for reward calculation
Latency Sensitivity High (blocked by slowest node) Low (fully asynchronous)
Scalability Limited by network bandwidth Highly scalable with node

count

By eliminating this frequent and costly synchronization point, our system achieves higher
throughput and better resource utilization. This is especially crucial in the HeteroRL set-
ting, where network conditions are unpredictable. The optimization allows sampler nodes to

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

operate more independently, reducing their idle time waiting for global synchronization and
making the overall training pipeline more resilient to network fluctuations. This engineering
refinement, combined with the GEPO algorithm, provides a holistic solution for stable and
efficient training in truly heterogeneous, high-latency environments.

E From Token-Level to Group-Level Importance Weight

Token-Level Importance Weight In traditional policy optimization methods, such as
GRPO (Shao et al., 2024) or PPO (Schulman et al., 2017a), importance sampling is typically
performed at the token-level. Specifically, for a generated sequence y = (y1, . . . , yT), the
importance weight is computed token by token:

wtoken = clip

Å
p(yt | x, y<t)

q(yt | x, y<t)
, 1− ϵ, 1 + ϵ

ã
, (34)

and used to compute the policy gradient at each time step. However, this per-token reweight-
ing scheme suffers from two key limitations:

1) Inconsistency between optimization and reward granularity: Concurrent work
such as GSPO (Zheng et al., 2025) argues that since the reward is assigned at the sequence
level—i.e., to the full response y—the importance weighting for policy updates should also
operate at the same granularity, rather than at the token level.

2) High variance in token-level probabilities: Beyond this alignment issue, we provide
an explanation from the perspective of importance weight variance: because the final reward
depends on the entire sample, large local changes in token probabilities can lead to extreme

values in the ratio p(yt|x,y<t)
q(yt|x,y<t)

. This inflates the variance of token-level importance weights,

causing them to frequently fall outside the clipping range. Once clipped, gradients for
these tokens are effectively zeroed out due to the stop-gradient behavior of torch.clamp,
preventing meaningful updates. As a result, tokens that require large corrections may be
ignored, leading to inefficient optimization.

Sample-Level Importance Weight The sample-level importance weighting treats the
entire response as a sampling unit and computing the weight based on its full conditional
probability. Given a prompt x, both the target policy p(y|x) and the behavior policy q(y|x)
are defined as the joint probability of the sequence:

p(y|x) =
∣∣∣∣∣

T∏
t=1

p(yt | x, y<t)

∣∣∣∣∣
1
T

, q(y|x) =
∣∣∣∣∣

T∏
t=1

q(yt | x, y<t)

∣∣∣∣∣
1
T

. (35)

The sample-level importance weight is then:

wsequence(y|x) = clip

Å
p(y|x)
q(y|x)

, 1− ϵ, 1 + ϵ

ã
. (36)

This formulation computes the full sequence-level ratio before clipping, thereby avoiding
premature truncation caused by high-variance individual tokens. By preserving gradient
flow across the entire sequence, sample-level weighting enables more stable and effective
policy updates, especially under high policy divergence induced by network latency.

Group-Level Importance Weight Group-level importance weighting represents a
paradigm shift in reinforcement learning optimization by recognizing that policy updates
should not only align with the granularity of reward assignment but also leverage higher-
order statistical relationships among multiple samples. The key insight is that individual
samples should not be treated in isolation; instead, their collective behavior under the
same prompt provides crucial information for stable policy updates. By considering the ex-
pected value of proposal probabilities within a group of responses, we effectively smooth out
the erratic fluctuations that plague token-level and even sequence-level weighting schemes.
This approach acknowledges an important reality of distributed training: in heterogeneous
environments with network latency, policy divergence is inevitable, and our optimization
methods must be designed to gracefully handle—not merely tolerate—this divergence. The
group-level perspective transforms what was previously seen as a limitation (policy staleness
due to latency) into an opportunity for more robust learning through statistical regulariza-
tion of importance weights.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 7: Core Characteristics of Online, Offline, and Heterogeneous Reinforcement Learning
Paradigms

Aspect Online RL Offline RL Heterogeneous RL

Data
Generation

Online interaction: Data
generated instantly by
the current policy.

Fixed, pre-collected
dataset: Uses static
data collected by
some (unknown)
behavior policy.

Delayed interaction: Data
generated by historical
policy versions (due to
unpredictable network
delay).

Policy Version
during Data
Generation

Always current:
Requires strict
synchronization with
the learning policy.

Fixed: The
behavior policy is
fixed and inherent to
the dataset.

Dynamically stale:
Staleness determined by
unpredictable network
delay (core characteristic).

System
Architecture

Tightly-coupled: Actor
(environment
interaction) and
Learner (parameter
update) typically
co-located or on a
low-latency network.

Single-machine or
simple distributed:
No real-time
interaction
required; training is
data-driven.

Geographically decoupled:
Actor and Learner
separated by a
high-latency network,
tolerant to delays.

Handling of
System
Latency

Treated as failure:
Requires
synchronization; latency
causes resource idling
and training stalls.

Not applicable:
Training process has
no real-time
interaction.

Algorithmic
compensation: Employs
corrective techniques
(e.g., importance sampling)
to mitigate latency effects.

Core
Challenge

Exploration-
exploitation trade-off
during learning.
Resource utilization
under sequential tasks.

Distributional
shift and limited
data coverage.

Algorithmic stability
under dynamic delays:
High/variable latency
causes importance
weight variance
explosion.

F The Comparison of Different Reinforcement Learning
Paradigms

F.1 Core Challenge: Off-Policy Learning and Importance Sampling

This formulation highlights the central challenge in asynchronous RL: the mismatch between
the behavior policy (πθk) and the target policy (πθk+τ

), which grows with τ and introduces
bias and variance into the learning process. Addressing this mismatch under high and
uncertain latency is the primary focus of our work.

The HeteroRL framework decouples rollout sampling from parameter learning, leading to
a setting where the learner updates the new policy πθk+τ

using data generated by an older
policy πθk—a canonical off-policy learning scenario. To correct for the distributional shift
between the behavior and target policies, importance sampling (IS) is commonly employed.
Under the GRPO framework, this weight is used to scale the advantage during policy gra-
dient updates. However, when the delay τ is large, causing significant divergence between
the policies (i.e., high KL divergence DKL(πθk+τ

∥πθk)), we observe in practice that the vari-
ance of the importance weights increases rapidly with τ , and the estimation error of the
expected reward also grows. As a result, the variance of wstd explodes, introducing high
noise into gradient estimates and ultimately leading to training instability or collapse. The
central challenge of this work is thus to design a robust algorithm that mitigates the train-
ing instability caused by the explosion of importance sampling variance under high network
latency.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

G Case Study

A case of MATH level 3-5: GRPO v/s GSPO v/s GEPO

User:

Find the greatest integer less than (
√
7 +

√
5)6. (Do not use a calculator!).

GRPO

<think> Okay, so I need to find the greatest integer less than (
√

(7)+
√

(5))6. Hmm, that
seems pretty complicated at first glance. Let me think about how to approach this.
Wait, maybe ...(« Omitted numerous ineffective thoughts and reflections)
Alternatively, maybe I can find a recurrence relation for Sn. Let me try to find a recurrence.
Let me note that x and y are roots of the equation t2 − 2

√
7 t+ 2 = 0. Therefore, for any

n ≥ 2, we have

xn = 2
√
7xn−1 − 2xn−2.

Similarly for yn. Therefore,

Sn = xn + yn = 2
√
7(xn−1 + yn−1)− 2(xn−2 + yn−2) = 2

√
7Sn−1 − 2Sn−2.

(­ This is the key step to solving this problem) ...

But this seems to involve
√
(7), which complicates things. However, if I consider Sn

+ something, maybe I can eliminate the
√

(7) term? Wait, but maybe I need another
approach.
Alternatively, maybe I can compute Sn for n = 0, 1, 2, ... and find a pattern. Let me try
that.
First, let’s compute S0 = x0 + y0 = 1 + 1 = 2.
...(« Omitted numerous ineffective thoughts and reflections)

Wait, but S6 is x6 + y6. However, since x =
√

(7)+
√

(5) and y =
√
(7)−

√
(5), and since

x > 0 and y is positive? Wait,
√

(7) is about 2.645,
√

(5) is about 2.236. So
√

(7) +
√

(5)

is about 4.881, and
√

(7)−
√

(5) is about 0.409. So y is positive, but small. Therefore, x6

is a large number, and y6 is a small number. Therefore, S6 = x6 + y6 is approximately x6,
and the integer part of x6 would be S6 − 1, since y6 is positive but less than 1. Therefore,
the greatest integer less than x6 is S6 − 1.
But wait, let me check if y6 is less than 1. Since y =

√
(7) −

√
(5) ≈ 0.409, then y6 is

(0.409)6. Let me compute that: 0.4092 ≈ 0.167, then 0.1673 ≈ 0.004
(­ Over length here, although close to arriving at the correct answer)

GSPO

<think> Okay, so I need to find the greatest integer less than (
√

(7) +
√

(5))6. Hmm,
that seems a bit intimidating at first, but I’ll try to break it down step by step. First, I
remember that expressions like (a + b)n often have a pattern when expanded, especially
when a and b are irrational numbers. Since the question is about the greatest integer less
than this value, I might need to find an expression that’s just below the actual value.
Let me think. If I consider (

√
(7) +

√
(5))6 and (

√
(7) −

√
(5))6, their sum might be an

integer because the irrational parts cancel out. That’s a common trick with conjugates.
So, the sum of these two would be (sqrt(7) + sqrt(5))6 + (sqrt(7)− sqrt(5))6, which is an
integer. Therefore, the integer part of the original expression would be that integer minus
the (sqrt(7)− sqrt(5))6, which is a small positive number.
So, the answer would be boxed as the boxed integer boxedboxedboxedboxedboxed. Wait,

no, the boxed answer should be the boxed boxed answer boxed. So, boxed boxed boxed
but boxed in the final answer boxed.
Therefore, the boxed answer is the boxed boxed boxed boxed boxed boxed boxed answer
boxed. So boxed boxed boxed boxed boxed boxed boxed boxed boxed boxed boxed boxed...
(­ Numerous repetitions occur here.)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

GEPO

<think> Okay, so I need to find the greatest integer less than (
√

(7)+
√

(5))6. Hmm, that
seems pretty big. I don’t have a calculator, so I have to figure this out without calculating
the actual value. Let me think.
...

But maybe I can find a recurrence formula. Let’s see:
We know that x and y are roots of the quadratic equation t2 − (x + y)t + xy = 0. So

t2−2
√
(7)t+2 = 0. Therefore, the recurrence relation for Sn is Sn = 2

√
(7)Sn−1−2∗Sn−2.

(­ This is the key step to solving this problem) ...

Therefore, the answer is 13535 .
</think>
To find the greatest integer less than (

√
7+

√
5)6, we use the identity that for any expression

of the form (
√
a+

√
b)n+(

√
a−

√
b)n, the result is an integer. This is because the irrational

parts cancel out when the two expressions are added together.
Let: - x =

√
7 +

√
5 - y =

√
7−

√
5

We compute:
x6 + y6

First, calculate x2:

x2 = (
√
7 +

√
5)2 = 7 + 2

√
35 + 5 = 12 + 2

√
35

Then x4 = (x2)2 = (12 + 2
√
35)2 = 144 + 48

√
35 + 4 · 35 = 284 + 48

√
35

Next, x6 = x4 · x2 = (284 + 48
√
35)(12 + 2

√
35). Expanding this:

284 · 12 + 284 · 2
√
35 + 48

√
35 · 12 + 48

√
35 · 2

√
35

= 3408 + 568
√
35 + 576

√
35 + 96 · 35 = 3408 + 1144

√
35 + 3360

= 6768 + 1144
√
35

Similarly, y6 = 6768− 1144
√
35

Adding x6 and y6:
x6 + y6 = 2 · 6768 = 13536

Since x6 = 13536− y6, and y6 is a small positive number (as
√
7−

√
5 ≈ 0.4097), we have:

x6 ≈ 13536− 0.004 ≈ 13535.996

Thus, the greatest integer less than x6 is:

13535

Comparison:

GRPO exhibits a large number of ineffective reflections, wasting many valuable tokens;
statistics show that GRPO uses words such as ”wait” and ”however” more than 22 times.
Due to reward collapse, GSPO begins generating extensive repetitions after brief reasoning,
rendering the response unreadable. GEPO arrives at the correct answer during the thinking
phase through sound reasoning and reflection. When formally responding, its thought
process is clear and steps are concise.

H Future Work

H.1 Defensive Sampling and Smooth Denominator Mechanism

As a promising direction for future work, we propose to explore a defensive sampling strategy
that adaptively blends the target policy probability into the importance weight denomina-
tor. This approach aims to mitigate bias introduced by approximating the denominator
while improving training stability—particularly in asynchronous or heterogeneous learning
settings. By introducing a variance-aware smoothing coefficient, the method could dynami-
cally interpolate between standard importance weighting and the policy gradient objective,
thereby reducing sensitivity to high-variance estimates. We hypothesize that such a smooth,

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

adaptive weighting scheme would lead to more robust and stable policy updates, and plan
to investigate its theoretical properties and empirical effectiveness in future studies.

I Large Language Model Usage

The use of LLMs in this article is limited to text polishing and code generation for plotting.

26

	Introduction
	Background
	Problem Definition and Notation

	GEPO: Group Expectation Policy Optimization
	Group Expectation Importance Weighting
	Gradient Comparison Across Tokens

	Experiments
	Experimental Setup
	Main Experimental Results
	Analysis Experiment

	Related Work
	Conclusion
	Theoretical Proof of Importance Sampling Variance
	Supplementary experiments
	Implementation Details
	Baselines
	Supplementary Results of Main Experiments
	Ablation Study
	Comparison of Think and Non-think Mode

	Network Latency
	Simulated Network Latency Configuration
	Real-World Network Scenarios

	Engineering Optimization: Localized Reward Computation for Reduced Communication
	From Token-Level to Group-Level Importance Weight
	The Comparison of Different Reinforcement Learning Paradigms
	Core Challenge: Off-Policy Learning and Importance Sampling

	Case Study
	Future Work
	Defensive Sampling and Smooth Denominator Mechanism

	Large Language Model Usage

