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Abstract

Foundation models (FMs) are pre-trained on large-scale datasets and then fine-
tuned for a specific downstream task. The most common fine-tuning method is
to update pretrained weights via low-rank adaptation (LoRA). Existing initial-
ization strategies for LoRA often rely on singular value decompositions (SVD)
of gradients or weight matrices. However, they do not provably maximize the
expected gradient signal, which is critical for fast adaptation. To this end, we
introduce Explained Variance Adaptation (EVA), an initialization scheme that uses
the directions capturing the most activation variance, provably maximizing the
expected gradient signal and accelerating fine-tuning. EVA performs incremental
SVD on minibatches of activation vectors and selects the right-singular vectors for
initialization once they converged. Further, by selecting the directions that capture
the most activation-variance for a given rank budget, EVA accommodates adaptive
ranks that reduce the number of trainable parameters. We apply EVA to a variety
of fine-tuning tasks as language generation and understanding, image classification,
and reinforcement learning. EVA exhibits faster convergence than competitors
and achieves the highest average score across a multitude of tasks per domain
while reducing the number of trainable parameters through rank redistribution.
In summary, EVA establishes a new Pareto frontier compared to existing LoORA
initialization schemes in both accuracy and efficiency.

1 Introduction

Foundation models (Bommasani et al., 2021, FMs) are usually trained on large-scale data and then
fine-tuned towards a particular downstream task. This training paradigm has led to significant
advances in the realm of language modeling (OpenAl, 2023; Touvron et al., 2023a; Reid et al., 2024),
computer vision (Dehghani et al., 2023; Oquab et al., 2023), and reinforcement learning (Brohan
et al., 2023; Zitkovich et al., 2023). With an increasing number of model parameters, fine-tuning (FT)
becomes prohibitively expensive. This results in the need for efficient alternatives to fine-tuning al/
parameters of the pre-trained model.

Parameter-efficient fine-tuning (PEFT) approaches are commonly used as an efficient alternative to
full fine-tuning (FFT). They modify the pre-trained model by introducing a small number of new
trainable parameters, while the pre-trained weights remain frozen. A particularly successful approach,
LoRA (Hu et al., 2022), introduces new weights in the form of a low-rank decomposition for each
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Figure 1: Left: We perform incremental SVD on activation vectors for the first 7" minibatches.
Middle: We globally sort all right-singular vectors according to their explained variance given by
their respective normalized singular values and only keep the top-k. Right: We allocate the top-k
vectors as initialization for A and continue the standard LoRA fine-tuning procedure.

weight matrix in the pre-trained model. After training, the new weights can be readily merged
into the pre-trained weights without any additional inference latency. Recent research has explored
various extensions of LoRA, such as different initialization schemes and adaptive rank allocation
(see Table 1). Most of them rely on SVD-based approaches on either model weights or gradients.
However, these approaches do not optimally maximize the expected gradient signal at the beginning
of fine-tuning, still resulting in potentially slow convergence.

We propose Explained Variance Adaptation (EVA), a method designed to provably maximize the
expected gradient signal at the onset of fine-tuning. This optimal initialization is achieved by
performing incremental Singular Value Decomposition (SVD) on activation vectors derived from
minibatches of the downstream data. Upon convergence of this procedure, we populate the LoRA
matrices with the resulting right-singular vectors. These vectors represent the projection onto the
principal components, thereby capturing the directions that preserve activation variance. To ensure
this maximization of the expected gradient signal within a fixed rank budget, the right-singular vectors
are sorted by their explained variance. This process yields an adaptive rank allocation, computed at
the beginning of fine-tuning, which assigns greater complexity (i.e., higher rank) to weights where
the variance is distributed across more components.

We demonstrate the benefits of EVA on a variety of downstream tasks, namely language generation
and understanding, image classification, and reinforcement learning (RL). EVA consistently improves
average performance across a multitude of tasks in each domain compared to LoRA and other
recently proposed initialization or rank redistribution methods. In addition, we demonstrate that
the additional computational overhead for initialization is negligible and it is mostly invariant with
respect to the batch size and order, verifying its robustness. Moreover, EVA exhibits improved
convergence compared to other initialization methods, and our rank redistribution reduces the number
of trainable parameters, since ranks are usually redistributed from higher-dimensional feedforward
weights to lower-dimensional attention weights. Overall, we demonstrate that EVA is pareto dominant
to competitors, as our rank redistribution reduces the number of trainable parameters while usually
improving performance. Our contributions are as follows.

* We propose EVA, a novel data-driven initialization scheme for LoRA that uses incremental
SVD on minibatches of activation vectors.

* We propose a data-driven heuristic for adaptive rank allocation to provably maximize the
expected gradient signal for a given rank budget.

* We demonstrate pareto-dominance of EVA compared to other initialization schemes across
a variety of different domains.



Table 1: Comparison of EVA to existing initialization schemes for LoRA. Existing works focus on
initialization or adaptive rank allocation. EVA combines data-driven initialization with adaptive rank
allocation to enhance convergence and downstream performance.

Method Initialization ~ Adaptive ranks
LoRA (Hu et al., 2022) Random X
AdalLoRA (Zhang et al., 2023a) Random v
PiSSA (Meng et al., 2024) Weight-driven X
MiLoRA (Wang et al., 2024a) Weight-driven X
OLoRA (Biiyiikakytiz, 2024) Weight-driven X
LoRA-GA (Wang et al., 2024b) Data-driven X
CorDA (Yang et al., 2024) Data-driven X
EVA (Ours) Data-driven v

2 Related Work

LoRA (Hu et al., 2022) has sparked widespread interest in leveraging low-rank decompositions for
fine-tuning due to its simplicity. Following the success of LoRA, several other variants have been
proposed (Kopiczko et al., 2024; Zi et al., 2023; Babakniya et al., 2023; Dettmers et al., 2023; Li
et al., 2023; Nikdan et al., 2024; Liu et al., 2024a; Zhang et al., 2023a; Hayou et al., 2024; Chavan
et al., 2023). The variants most similar to EVA are CorDA (Yang et al., 2024) and LoRA-GA (Wang
et al., 2024b), which are data-driven but do not leverage rank redistribution. Both rely on subsampling
training data to estimate either gradients or input-output correlations for initialization. In contrast,
EVA provides a variance-optimal initialization that maximizes the expected gradient signal, unified
with rank redistribution. Rank redistribution approaches learn gates to switch ranks on/off during
fine-tuning (Liu et al., 2024b; Meo et al., 2024) or different adapters with different ranks (Valipour
et al., 2023). In contrast, our data-driven heuristic allows redistributing ranks prior to fine-tuning.

Initialization of LoRA matrices Common initialization schemes for neural networks (He et al.,
2015; Glorot & Bengio, 2010) were designed to stabilize deep neural network training based on
activation functions and depth. In the context of PEFT, Hu et al. (2022) and Liu et al. (2022) explored
data-driven initialization by pre-training on a different task first, or by unsupervised pre-training on
the task at hand. Similarly, Nikdan et al. (2024) utilize a warm-up stage in LoRA fine-tuning, where
gradients with respect to LoORA weights are used to initialize a sparse matrix for sparse adaptation
(Sung et al., 2021). Alternatively, Babakniya et al. (2023) initialize the LoRA matrices using SVD on
the weight matrices obtained after a few steps of full fine-tuning. Weight-driven initializations (Meng
et al., 2024; Biiytkakytiiz, 2024) leverage information from the pre-trained weights for initialization.
Current data-driven initialization schemes consider either gradients (Wang et al., 2024b) or input-
output correlations (Yang et al., 2024); however neither of them yields optimality with respect to
the expected gradient signal. Similar initialization schemes to EVA were proposed for training deep
networks from scratch (Mishkin & Matas, 2016; Krihenbiihl et al., 2016).

Increasing efficiency of LoRA Several works have investigated how to improve the efficiency of
LoRA fine-tuning. Kopiczko et al. (2024) decrease the memory complexity by keeping both A and
B frozen while only training newly introduced scaling vectors. This way, only random seeds for
initializing A and B need to be stored. Another prominent approach is quantization (Dettmers et al.,
2022), which has been successfully combined with LoRA (Dettmers et al., 2023). Building on this,
other variants of LoRA are also compatible with quantization (Nikdan et al., 2024; Meng et al., 2024).
Initialization has also been shown to improve the fine-tuning of quantized models (Li et al., 2023).

3 Method

Our aim is to provide a data-driven initialization for LORA weights that aligns the parameter update
space with directions that capture the most variance in activations. Hence, for any downstream task
using these activations, the update space is biased toward the most informative directions, providing
better starting conditions. We first briefly explain LoRA in Section 3.1. Then, we explain the two
essential steps conducted in EVA, namely (i), computing a variance optimal initialization for the



LoRA matrices via incremental SVD on activation vectors (Section 3.2) and (ii), adaptive assignment
of ranks across layers to maximize the expected gradient signal for a given rank budget (Section 3.5).

3.1 Low-Rank Adaptation (LoRA)

LoRA adds new trainable weights that are computed using an outer product of low-rank matrices (Hu
et al., 2022). This is motivated by the low intrinsic dimensionality of language models (Aghajanyan
etal., 2021) and relies on the assumption that the gradients during fine-tuning are also of low rank
(Gur-Ari et al., 2018; Zhang et al., 2023b; Gauch et al., 2022). Let & € R*1 pe the input to a
pre-trained weight matrix W € R**?_ Then, LoRA introduces new weight matrices A and B as
a low-rank decomposition h = Wx + B Ax, where B € R**™ and A € R"*%, The rank r is a
hyperparameter with » < min(k, d). During fine-tuning, W remains frozen while A and B are
updated. Usually, B is initialized with zeros and A at random, so that fine-tuning starts from the
pre-trained model. In addition, a hyperparameter « is used to scale BAx by .

3.2 Variance-optimal initialization of Low-Rank Adaptation

For an effective initialization of A that is optimal with respect to propagated activation variance,
we utilize incremental SVD (Ross et al., 2008) on minibatches of activation vectors X & Rbxd
(see Figure 1, left). This process involves collecting activation batches X* € {X*, ..., X~} for
N selected pre-trained weight matrices Wi € {W! ... W™}, Naively, we could simply collect
batches of activations and stack them into a single matrix and perform SVD. However, this results in
excessive memory overhead, as we usually deal with large datasets and models. To reduce memory
requirements, we incrementally update Vi . following the approach of Ross et al. (2008), which is
based on the sequential Karhunen-Loeve algorlthm (Levy & Lindenbaum, 2000). This process is
independent of the dataset size; therefore, the computation of the singular values and their respective
vectors is constant in time and memory complexity. For each activation batch X ¢, we compute SVD to
obtain the right-singular vectors v’ . and their respective singular values o7. In practlce we compute
truncated SVD (Halko et al., 2011), which is significantly faster. After each SVD computation, we
update the right-singular vectors and singular values and check whether V' has converged by cosine
similarity cossnn(v’ L gt t) >1 V 1<j<r. Weillustrate the incremental SVD procedure
applied to a sequence of data batches in Algorithm 2 and discuss the complexity of this procedure in
Appendix F. Finally, by initializing A* = V.2 . we obtain an optimal initialization for A with respect
to the activation variance. "

Theorem 3.1. Let X € R**? be a matrix of activation vectors obtained from a pretrained model,
where b is the number of samples and d is the feature dimension. Suppose we wish to adapt a weight
matrix W € R**? ysing a low-rank update of the form AW = BA, where B € R**", A € R™*4,
and r < min(k,d). Let X = UXV " be the singular value decomposition (SVD) of the activation
matrix with o1 > 02 > - -+ > 0 being the singular values of 3. Then the top r right singular vectors
V., € R4X7 solve the following optimization problem:

V, = arg max Tr(VIXTXV),
VeERIXr VTV=]

and also minimize the Frobenius norm reconstruction error:

V.. = arg min ||X—M||%
M eRbXd rank(M)<r
Hence, V... forms the optimal basis for capturing the maximum variance of activations under a rank-r
projection.

The minimization of the reconstruction error under the Frobenius norm in Theorem 3.1 is directly
given by the Eckart-Young theorem (Eckart & Young, 1936). For details see Appendix H

3.3 Gradient Signal Amplification

We hypothesize that initializing LoRA weights along directions of high variance leads to stronger,
more stable gradient signal. To theoretically verify this claim, we consider a simple feedforward layer
= (W + BA)x. The gradients w.r.t. A and B in this example are
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respectively. Using an explained variance optimal initialization of A ensures that LoRA updates are
aligned with high-variance directions in activation space. This leads to a higher expected gradient
magnitude as shown below.

Theorem 3.2. Let AW = B A be a low-rank adaptation to a pretrained weight matrix W € R¥*,
where B € R**", A € R"™ %, and r < min(k, d). Let € R? be the activation input to this layer.
Assume activations T are drawn from a distribution with covariance matrix ¥ = E[xzx "]. Then
initializing A with the top right singular vectors of a sample activation matrix X € R**% maximizes
the expected squared gradient norm:

oL |I?
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We provide a proof for Theorem 3.2 in Appendix H. As a result, aligning A with high-variance
directions (via SVD), leads to amplification gradient signals and enable more effective low-rank
updates. Importantly, this is true for initialization of both B and A. Following (Hayou et al., 2024),
we initialize A in an explained variance optimal manner and set B = 0, as this setup has favorable
properties, such as usage of higher learning rates.

x Tr(AXAT).

3.4 Connection to Neural Tangent Kernel and Generalization Error

To provide further theoretical insights into the effect of explained variance optimal initialization on
the generalization error, we view the fine-tuning problem through the lens of the Neural Tangent
Kernel (Jacot et al., 2018, NTK). For a network with parameters 6, the NTK is defined as

K(w,x') = Vo fo(z) Vo fo(x), 2
and its expectation over the fine-tuning data can be written as
E [Vofs(x)Vofo(z)'] =E[(6(z) ® h(x))(é(z) @ h(x)) "], ©)

where d(x) denotes upstream gradients and h(x) represents input activations of a weight matrix, and
® denotes the Kronecker product. Under the simplifying assumptions that (i) h(x) and () are
weakly correlated, and (ii) the covariance of the upstream gradients J(x) is approximately isotropic,
the NTK simplifies to

E [Vofo(2)Vofo(x)")] = ofE [h(z)h(z)"]. @)

Since we only consider the onset of fine-tuning, i.e. the time of initialization, these assumptions
are reasonable. Therefore, EVA effectively approximates the empirical NTK’s leading subspace.
Directions associated with larger NTK eigenvalues \; are learned faster and generalize more ro-
bustly, whereas directions with smaller \; dominate the residual error and thus the kernel-regression
generalization bound (Arora et al., 2019; Lee et al., 2019)

T,02
) ; &)

where {u;, \;} denotes the NTK spectrum and y represents the labels. Consequently, EVA approxi-
mately initializes the LoRA adapters along the dominant principal directions of the NTK, thereby
minimizing the spectral tail of the NTK-based generalization error.

3.5 Adaptive Rank Allocation

The singular values provide an estimate of the amount of variance that each component in V% .
explains. Leveraging this 1ns1ght we can redistribute ranks across weight matrices of the pre- tramed
model such that the maximum amount of variance is explained for a given rank budget [ = Nr.
To achieve this, we sort right singular vectors obtained for all weight matrices according to their
explained variance ratio (see Figure 1, middle)

-2
ot

[ — 6
S TE ©



where || - ||; denotes the ¢; norm, o is a vector containing all r singular values, and M is the total
number of samples used for the incremental SVD. Note that £ is normalized for each weight matrix
to ensure comparable ranges. Then, we take the top-{ entries of the globally sorted singular vectors
and set the rank of each pre-trained weight based on how many of its singular vectors are contained
in this selection (see Figure 1, right).

Additionally, we introduce a hyperparameter
p € [1,00) that controls the uniformity of the Algorithm 1 Fine-tuning via EVA
rank distribution. p determmes the number of Input: FM ¢(-), p, rank r, dataset D
ranks that we compute during SVD and increas- .
. : . 1: while not all_converged(t)) do
ing p allows for an increasingly heterogeneous L

A X « ¢(next(D)) > get activations
rank distribution. Moreover, p controls the max-
. . X View, & < Incremental-SVD(X, pr)
imum number of ranks that a weight matrix can o

if isclose(Viq, View) then

receive. For each W' we compute the top 7p A
components via incremental truncated SVD, re- wrap_and_initialize(W;, View)

AR A

sulting in Nrp components in total. For redistri- end if
: V old % V new
bution, we then only use the top-/ components, .
;; 8. end while

according to their explained variance ratio &;.
This ensures that the number of total ranks used
is the same for EVA compared to other LoORA
variants. Setting p = 1, results in a uniform rank
distribution as in LoRA, but initialized according to EVA. Therefore, p provides us with the means to
change the rank distribution in a controlled manner prior to fine-tuning at the initialization stage. In
practice, we found that the redistribution converges for values of p > 2 (see Appendix G). Finally, we
set B = 0 and perform standard LoRA fine-tuning. In Algorithm 1 we provide pseudocode for EVA.

9: redistribute_ranks(v, &, View)
10: lora_finetune(¢), X)

4 Experiments

First, we elaborate on implementation details of EVA in Section 4.1. Then, we show results for
fine-tuning large language models (LLMSs) on math and reasoning tasks in Section 4.2 and language
understanding tasks in Section 4.3. In addition, we show results for image classification in Section 4.4
and decision-making tasks in Section 4.5. Finally, in Section 4.6 we demonstrate that the computa-
tional overhead induced by EVA on LoRA is negligible and that incremental SVD converges and is
invariant to batch order and batch size.

4.1 Implementation Details

We follow the standard LoRA training procedure from Hu et al. (2022). Similarly to Kalajdzievski
(2023), we found that LoRA training is very sensitive to the scaling parameter «.. Therefore, we set
o = 1 for all our experiments as we found this to be the most stable setting. For EVA with p > 1 we
set @ = ”;"G;“ to preserve the scaling factor for different ranks. Following Zhang et al. (2023a), we
apply EVA adapters to all pre-trained weight matrices except for the embedding layer. All models
we used for fine-tuning are publicly available on the huggingface hub (Wolf et al., 2020). For the
implementation of baselines, we utilize the widely used PEFT library (Mangrulkar et al., 2022).
Across experiments, we highlight the highest scores in boldface and underline the second-highest.

4.2 Language Generation

We fine-tune five different LLMs, namely Llama-2-7B (Touvron et al., 2023b), Llama-3.1-8B (Dubey
et al., 2024), Llama-3.1-70B, Gemma-2-9B (Riviere et al., 2024), and Gemma-2-27B on common
sense reasoning benchmarks. We follow Liu et al. (2024a) and amalgamate a training set consisting
of BoolQ (Christopher et al., 2019), PIQA (Bisk et al., 2020), SIQA (Sap et al., 2019), HellaSwag
(Zellers et al., 2019), Winogrande (Sakaguchi et al., 2020), ARC-e and ARC-c (Clark et al., 2018)
and OpenBookQA (Mihaylov et al., 2018). We apply all the methods listed in Table 1 to all five
models, except LORA-GA and CorDA, which we do not apply to Llama-3.1-70B and Gemma-2-27B,
as it requires an excessive amount of computation for initialization (see Figure 5, left). We train all
methods with rank » = 16 and a learning rate of 5e — 4 for three random seeds. For Llama-3.1-70B,
we leverage gradient checkpointing and the ZeRO optimizer (Rajbhandari et al., 2020) for optimizer
state and gradient offloading. More details on the fine-tuning settings can be found in Appendix B.
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Figure 2: Performance of all methods on eight common sense reasoning tasks (left) and MATH after
being finetuned on MetaMathQA (right). EVA reduces the number of trainable parameters while

reaching performance on-par or better.
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iments where we add rank stabilization (Kala-  Fjoure 3: Performance of all methods for
jdzievski, 2023), different learning rates for A fine-tuning Llama-2-7B, Llama-3.1-8B, and
and B, and different values for « in Table 10 in Gemma-2-9B on GSMSK after fine-tuning on the
Appendix B. EVA consistently yields the best MetaMathQA dataset.

results in these settings compared to LoRA. To

demonstrate that EVA initialization starts closer
to its final solution, we report the distance of EVA to the adapter weights after training compared to

the distance of LoRA to the adapter weights after training for different weight matrices of the model
in Table 6 (right). The CorDA baseline exhibited high seed sensitivity, prompting us to conduct a light
hyperparameter search over the number of initialization examples in consultation with the CorDA
authors. Despite these efforts, training performance collapsed for certain seeds, as evidenced in our
results. Additionally, we provide results for leveraging the components that explain the least amount
of variance in Table 12, which results in worse performance compared to EVA, and additional results
for training with varying number of ranks for Llama-2-7B in Table 9. We find that across ranks and

hyperparameters, EVA is consistently among the best performing methods.
For math fine-tuning experiments, we fine-tune Llama-2-7B, Llama-3.1-8B, and Gemma-2-9B on the

MetaMathQA dataset (Yu et al., 2024) for one epoch with the same hyperparameters as for common
sense reasoning tasks and evaluate them on MATH (Hendrycks et al., 2021) (see Figure 2, right) and
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Figure 4: Gradient norm (left) and training loss (right) for fine-tuning Llama-3.1-8B on the Meta-
MathQA dataset. We compare EVA to other initialization methods and random initialization (LoRA).
We show mean and standard deviation across three random seeds.

GSMSK (Cobbe et al., 2021) (see Figure 3). We also report the performance of each method on each
model and task, again including DoRA and EVA+DoRA, in Table 8§ in Appendix B. EVA is pareto-
dominant compared to all competitors on both datasets as it trains fewer parameters while resulting
in on-par or improved performance. For example, EVA achieves the highest performance on the
GSMBSK dataset for Gemma-2-9B, while performance is on-par for Llama-2-7B and Llama-3.1-8B.
In Figure 4 we show gradient norm and training loss for Llama-3.1-8B on the MetaMathQA dataset.
We observe that EVA converges faster than competitors and exhibits the largest gradient norm. We
provide additional loss curves in Figure 6. Furthermore, we provide a comprehensive overview on
the effect of rank redistribution on different model types for both downstream tasks in Table 11. Our
results indicate that the performance of adaptive rank allocation depends on a combination of the
selected model and the downstream task. We further analyze the resulting rank distributions for
different values of p for Llama-2-7B and their effect on downstream performance in Appendix G.
Finally, we provide additional results for Llama-2-7B on code fine-tuning tasks in Appendix B.

4.3 Language Understanding

We train ROBERTar o1 (Liu et al., 2019) and DeBERTav3g, (He et al., 2023) on the GLUE bench-
mark (Wang et al., 2019). The GLUE benchmark comprises eight downstream tasks, such as natural
language inference, or sentiment analysis. In addition to learning rate, we also search for different
ranks within a maximal rank budget (» < 16). For further details on datasets, implementation, or
hyperparameters, see Appendix C. We also add FFT as a baseline and report Matthew’s correlation
for CoLA, Pearson’s correlation for STS-B, and accuracy for the remaining tasks in Table 2. EVA
achieves the highest average score in all tasks for both ROBERTay 4¢e and DeBERTav3p,,.. Inter-
estingly, DoRA usually only slightly improves over LoRA on low resource tasks (RTE, MRPC),
while performing worse on high resource tasks (MNLI, QNLI, QQP, SST2). We also compare
LoRA with EVA in Table 17 in Appendix C for different rank budgets, where EVA consistently
improves over LoORA. We visualize the resulting rank distribution patterns for different GLUE tasks
in Appendix C. More ranks are assigned to higher layers of the query, key, and value projections in
self-attention, whereas the remaining weights often receive less ranks. This is a consistent pattern
for both DeBERTav3p,s. and ROBERTar a4 and is in line with the reduced number of trainable
parameters for larger models.

4.4 Image Classification

We evaluate EVA on the VTAB-1K (Zhai et al., 2019) benchmark, which comprises 19 image
classification tasks that are divided into natural images, specialized images (medical images and
remote sensing), and structured images (e.g. object counting). We fine-tune a DINOv2-g/14 model
(Oquab et al., 2023) that consists of around 1.1B parameters. For implementation details and
hyperparameters see Appendix D. Our results are shown in Table 20 and we additionally report error
bars in Table 21. EVA attains the best average accuracy across all tasks. Interestingly, EVA mainly



Table 2: Comparison of all methods for ROBERTay 4, (top) and DeBERTav3g,,. (bottom) on GLUE
tasks. We report mean and standard deviation of Matthew’s correlation for CoLA, Pearson correlation
for STS-B, matched accuracy for MNLI, and accuracy for remaining tasks. For CoLA, RTE, MRPC,
and STS-B we average over five seeds and for the remaining tasks over three seeds.

Method MNLI QNLI QQP SST2 CoLA MRPC RTE STS-B  Avg

FFT 90.2 94.7 92.2 96.4 68.0 90.9 86.6 92.4  88.9
LoRA 90.747 94.8:; 92010 96.2+5 69.1rs 91, 881i1; 9231, 89.3
AdaLoRA | 90.54; 94815 90.6:; 96.1io 682:7; 90746 844i9 9184, 884
PiSSA 9014, 94710 91.010 961y, 6874135 904i¢ 87645 925, 88.9

OLoRA  90.94; 95.041;, 920r, 963,, 690415 91.0:10 879410 924+, 893
LoRA-GA  90.8,, 949+, 920+, 963,, 68449 9101, 8701, 92315 89.1
CorDA 89310 92610 897+ 955:0 67.8i19 90.1ig 865rs 9181, 87.9

EVA 908, , 9501, 921,, 9621, 695154 91.41g 88.8415 92.61, 89.6
DoRA 8954, 94641 8991, 961y, 693, 91.016 884.,, 9244, 889
FFT 90.1 94.0 92.4 95.6 69.2 89.5 83.8 91.6 88.3
LoRA 90-51_1 94-3;&_1 m:l:‘l 95~2i,3 72.0:*:1.3 91'4ﬂ:.7 88.9i,5 91-7:|:.1 89.6
AdaLoRA 90.8 94.6 92.2 96.1 71.5 90.7 88.1 91.8 89.5
PiSSA 90.1+s 941+, 91.84; 95.8:; 727417 909:i¢ 865110 91615 89.2

OLoRA 90.54 1 94.4:‘:‘1 92.6;&.1 96.2;|:,2 72.041.0 91.6+ 7 wi.f} 92.0:&.2 89.8
LoRA-GA 89.817 94.61L; 922,.9 95645 722419 90849 86.6411 90546 89.0
CorDA 90.04; 93841 91141 95544 7184112 89.615 83.94 3 91.1L, 88.3
EVA 9064, 9441, 924, 96.24, 725,,; 918, 89.4;, 92.01. 89.9
DoRA 89.0Lo 94117 88.0L71 946+, 70315 91.9.¢ 8787 91.8.; 884

improves over competitors on natural tasks, i.e., in-domain datasets. On out-of-distribution datasets,
we find that FFT still performs better than most PEFT approaches.

4.5 Decision Making

We follow the single task fine-tuning experiments in Schmied et al. (2024) and fine-tune a Decision
Transformer (Chen et al., 2021a, DT) on the Meta-World benchmark suite (Yu et al., 2020). Meta-
World consists of a diverse set of 50 tasks for robotic manipulation, such as grasping, or pushing
buttons. We split Meta-World according to Wolczyk et al. (2021) into 40 pre-training tasks (MT40)
and 10 fine-tuning tasks (CW10). We pre-train a 12 M parameter DT on MT40 and fine-tune it
on the CW10 holdout tasks. We report success rates and standard errors for each CW10 task in
Table 23. We observe that EVA significantly reduces that gap between LoRA and FFT. Furthermore,
combining EVA with DoRA improves upon DoRA and attains the best average performance across
all tasks. We report results for different rank budgets in Table 24, as well as implementation details
and hyperparameters in Appendix E.

4.6 Efficiency and convergence

We compare the computational overhead of EVA to competitors. In Figure 5 (left) we show the wall
clock time as a fraction of the training time as well as memory requirements. For CorDA we use a
sample size of 2560 as recommended by Yang et al. (2024). We observe that EVA with batch size
of 16 requires only 0.7% of the training time for initialization, which is the fastest for data-driven
initializations. In Figure 5 (right) we provide additional evidence that reducing the batch size for EVA
results in the same initialization. Therefore, by reducing the batch size, we can reduce the overhead
induced by EVA to 0.2%, resulting in one of the most efficient initializations. Furthermore, we also
provide evidence that the incremental SVD is invariant to batch order and consistently converges for
different batch sizes in Figure 12 (left), and Figure 11 in Appendix F, respectively.

5 Discussion and Limitations

Low rank setup. Due to computational constraints we mainly chose lower values for the LoRA
rank (r = 16). Other initialization schemes (Yang et al., 2024; Meng et al., 2024; Wang et al.,
2024b) usually rely on higher ranks (r > 128). However, for such values, EVA suffers from the
computational overhead of repeated SVD computations. In Table 9 we provide results for fine-tuning
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Figure 5: Left: Percentage of training time required for computing data-driven initializations for
Llama-2-7B on a single A100 GPU on the common sense reasoning tasks. We report the maximum
batch size and track peak memory usage. Right: Average cosine similarity between components
after incremental SVD for different batch sizes. The components strongly correlate indicating that
the SVD computation is mostly invariant to the batch size.

with ranks up to r = 64, which show that EVA works particularly well on lower-rank setups. This is
an advantage for compute-constrained fine-tuning of larger models which is usually only feasible
with smaller ranks. Finally, EVA assumes access to a fixed static downstream dataset which may not
always be available.

Effect of rank redistribution. We provide additional results for the effect of rank redistribution
in Appendix I. The results show that rank redistribution in combination with explained variance
optimal initialization in principle performs best. We observed cases where there is no improvement
in performance for rank redistribution (e.g. decision making). However, since rank redistribution in
all our experiments decreased the number of trainable parameters, we recommend using it by default.

What method performs well in which tasks? We conducted fine-tuning experiments for 51 tasks
and four domains and found that EVA usually performs best on average across multiple tasks per
domain. Despite this, there is usually variation in the ranking of methods for single tasks, i.e. LORA
performed better on specialized images and FFT performed best on structured images. Therefore,
there is no one algorithm that performs the best on every task, verifying that there is no free lunch
(Wolpert & Macready, 1997).

Reproducibility. We provide the source code along with the submission (see Appendix A) to ensure
reproducibility. In addition, we added support for EVA in the widely used PEFT library (Mangrulkar
et al., 2022) to make it more accessible.

6 Conclusion and Broader Impact

We propose a novel method named Explained Variance Adaptation (EVA), extending the widely used
LoRA with explained variance optimal initialization and rank redistribution to provably maximize the
expected gradient signal. EVA performs incremental SVD on minibatches of activation vectors and
redistributes ranks across weight matrices according to the amount of variance that they explain. We
demonstrate performance gains of EVA over LoRA and initialization schemes thereof in a variety of
domains, ranging from language to vision and RL. Moreover, EVA is more efficient than most existing
initialization methods while reducing the number of trainable parameters.Our results demonstrate
that EVA consistently achieves the highest average performance on a wide range of tasks across a
variety of domains.

We believe that EVA can have a significant impact on future research on fine-tuning foundation models
because it inherits all the benefits of LoRA while improving performance and reducing the number
of trainable parameters at no significant additional cost. In the future, our aim is to additionally
incorporate gradient information and exploring ways to enhance interpretability by relating different
singular vectors to different forms of pre-trained knowledge. Another fruitful avenue would be
combining EVA with mixture-of-experts training to enable more efficient fine-tuning.
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A Reproducibility Statement

The source code to reproduce the results collected in our work can be found at https://github.
com/ml- jku/EVA.

B Natural language generation

We follow the experiments conducted in Hu et al. (2023) and fine-tune Llama-2-7B, Llama-3.1-8B,
Gemma-2-9B, Gemma-2-27Band Llama-3.1-70B on 8 common sense reasoning tasks with Qa-style
prompts. We keep the original prompt templates unchanged except for two minor modifications: For
BoolQ we prepend the passage field before the question, and for WinoGrande we add a line "Answer
format:..." analogous to the other prompts. As done by Hu et al. (2023) and Liu et al. (2024a) we
perform joint fine-tuning on all 8 tasks. We furthermore evaluate the pre-trained models mentioned
above on the mathematical reasoning tasks GSM8K (Cobbe et al., 2021) and Math (Yu et al., 2024)
after fine-tuning on MetaMathQA (Yu et al., 2024) as done in Meng et al. (2024). We keep the
original prompt template for fine-tuning and evaluation. For all datasets, we performed fine-tuning
for one epoch. For training Llama-3.1-70B, we use 4-bit quantization of the base model and training
of adapter weights in bfloat16, as recommended in Dettmers et al. (2023).

B.1 Implementation details
Table 4: hyperparameters for finetuning on com-
For fine-tuning our code base leverages PEFT  op sense reasoning and math reasoning
implementations of adapter methods LoRA,
AdaLLoRA, PiSSA, OLoRA, LoRA-GA, CorDA
and DoRA. The initialization step for EVA is

a custom implementation, but for fine-tuning Training
we can reformulate EVA as a LoRA adapter Optimizer AdamW
leveraging the rank_pattern argument of Wzigh ¢ Deca 0.0
peft.LoraConfig. For evaluation, we used Lora Dro oui/ 0'0
scripts provided by the MetaMath github repos- Batch SizI; 3'2
itory (Yu et al., 2024) for math reasoning tasks. #Epoch 1
For common sense reasoning, we make use of LRp Schedule Linear
the Im evaluation harness project (Gao et al., Warmup ratio 003
2024) and define custom tasks using the fine- Label SIr)nooth 0'0
tuning prompts. For the SVD computation for Learning Rate 5'6_ 4
joint fine-tunine on the common sense reason- LoRA Dim 16
ing tasks, we experiment with random and strat- LoRA o 1
ified samplmg.of exgmples frgm the 8 tasks Batch Size SVD (EVA) 16
and do not notice a difference in performance. - 0.99
All training and evaluation runs for Llama-2-7B i
were performed on 4 A100 GPUs. The runs for Inference
L}ama-3.1—8B and Gemma—2-9B utilized two Beam Size 10
different nodes, one with 4 A100 GPUs and Leneth Penalt 1.0

. gth Penalty .
one with 4 H200 GPUs. repetition penalty 1.0

B.2 Hyperparameter search

The results reported on language generation tasks in Table 7 and Table 8 are the best setting based
on a grid search over different learning rates. We apply adapters to all linear layers including the
language modeling head. Furthermore, we set a = 1 for all our experiments. We use AdamW with
weight decay and a linear learning rate schedule with warm-up. We train for 1 epoch and use the final
checkpoint for evaluation. All hyperparameters are summarized in Table 4. As mentioned in 4.2 we
tuned the number of samples for initialization for CorDA after consulting with the CorDA authors.
Specifically we increased the number of samples from 256 to 2560 after observing weak fine-tuning
performance.
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Table 3: Prompt templates with examples (red) used for finetuning on common sense and math
reasoning tasks.

Dataset Fine-tuning Data Template

BoolQ Passage: Drinking in public — Drinking in public is most commonly accepted.
After reading this passage, please answer the following question with true or
false, question: can you drink on the street in china

Answer format: true/false

the correct answer is true

PIQA Please choose the correct solution to the question: When boiling butter, when
it’s ready, you can

Solution1: Pour it onto a plate

Solution2: Pour it into a jar

Answer format: solution 1/solution2

the correct answer is solution2

SIQA Please choose the correct answer to the question: Carson relocated somewhere
new. How would you describe Carson?

Answerl: mobile

Answer2: anxious

Answer3: lonely

Answer format: answerl/answer2/answer3

the correct answer is answer |

HellaSwag Please choose the correct ending to complete the given sentence: Playing
drums: People are standing behind large drums. A man

Endingl: is playing a bag pipe.

Ending2: starts to play around the drums.

Ending3: begins playing a drum set.

Ending4: begins playing the drums.

Answer format: endingl/ending2/ending3/ending4

the correct answer is ending4

WinoGrande | Please choose the correct answer to fill in the blank to complete the given
sentence: lan volunteered to eat Dennis’s menudo after already having a bowl
because _ despised eating intestine.

Optionl: lan

Option2: Dennis

Answer format: optionl/option2

the correct answer is option2

ARC-e & Please choose the correct answer to the question: Which factor will most
ARC-c likely cause a person to develop a fever?

Answerl: a leg muscle relaxing after exercise

Answer?2: a bacterial population in the bloodstream

Answer3: several viral particles on the skin

Answer4: carbohydrates being digested in the stomach

Answer format: answerl/answer2/answer3/answer4

the correct answer is answer?2

OBQA Please choose the correct answer to the question: The sun is responsible for
Answerl: puppies learning new tricks

Answer2: children growing up and getting old

Answer3: flowers wilting in a vase

Answer4: plants sprouting, blooming and wilting

Answer format: answerl/answer2/answer3/answer4

the correct answer is answer4

MetaMathQA | Below is an instruction that describes a task. Write a response that
appropriately completes the request.

### Instruction:
What is the value of the cosine of 90 degrees?

### Response:
s $\\boxed{0}$.The answer is: 0
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Table 5: Distance between final adapters trained with LoRA or EVA. We report spectral norm (o)
and average cosine similarity (cos) for Llama-2-7B, Llama-3.1-8B, and Llama-3.1-70B. Our results
demonstrate that the effect of different initializations are massive, as the final adapters converge to
entirely different solutions, which is indicated by large o and cos around zero.

Query Key Value Out Gate Up Down
Model

cos lo cos lo cos )2 cos lo cos /2 cos lo cos lo
Llama-2-7B -0.01 498 0.00 500 001 4.00 0.00 4.05 000 664 -0.00 367 -0.00 4.02

Llama-3.1-8B  -0.00 4.05 -0.01 525 -0.00 3.83 -0.01 353 -0.00 698 001 337 -000 3.73
Llama-3.1-70B  -0.01 7.57 0.00 752 -0.00 6.70 001 563 0.00 1281 0.00 630 -0.00 6.33

Table 6: Distance between initialization of EVA and LoRA with their respective final adapters
after training. We report spectral norm (o) and average cosine similarity (cos) for Llama-2-7B,
Llama-3.1-8B, and Llama-3.1-70B. Our results demonstrate that EVA initialization is a larger
constituent of the final adapter than LoRA, indicating that EVA contains more information at
initialization.

Query Key Value Out Gate Up Down
Method  Model cos(t) o()) cos(t) o) cos(t) o) cos(t) o) cos(t) o(l) cos() o) cos(l) o(l)
Llama-2-7B 0.51 3.85 0.48 4.08 0.60 3.10 0.59 3.09 0.44 5.27 0.62 2.83 0.61 3.13

LoRA Llama-3.1-8B 051 346 047 396 059 293 061 273 035 58 060 258 059 298
Llama-3.1-70B 045 462 042 507 052 38 061 3.17 039 674 061 311 062 3.3

Llama-2-7B 062 348 059 359 062 29 062 278 042 492 066 261 067 284
EVA Llama-3.1-8B 0.64 293 0.6l 3.62 063 246 0.64 227 041 512 0.67 246 067 271
Llama-3.1-70B  0.53 427 052 462 053 368 058 291 033 653 059 324 059 3.6

B.3 Additional results

To demonstrate the effect of initialization, we measure the distance between the final adapters trained
via LoRA and EVA and report cosine similarity and frobenius norm in Table 5. Our results demon-
strate that depending on the initialization the two methods converge to substantially different solutions
as there is almost no similarity between them. Furthermore, to highlight that EVA initialization
starts closer to its final solution, we report the distance of EVA to the adapter weights after training
compared to the distance of LoRA to the adapter weights after training for different weight matrices
of the model in Table 6. In Figure 12, right we also visualize this finding for the three variants of
Llama. Our results consistently indicate that (i) initialization has a tremendous impact on the final
solution, and (ii) EVA initialization results in less information being learned than for LoRA, as it
initializes the adapters to contain most of the information at initialization.

We present the per-task performance for the eight common sense reasoning tasks in Table 7. The
respective standard deviations are shown in Table 14. Further, we show the results for all methods on
the two math reasoning datasets in Table 8.

To investigate whether the observed improvement in performance depends on the rank, we conducted
an additional experiment in which we vary the rank. Recall that in Section 4.2 we only used r = 16.
Therefore, we conduct experiments for r € {8,16, 32,64} for Llama-2-7B on the eight common
sense reasoning tasks. We report the results in Table 9. Our results demonstrate that EVA or
EVA-+DoRA are consistently the best performing methods for all ranks. Also, perhaps surprisingly,
we find that a higher number of ranks does not always perform better. Our intuition is that the final
performance strongly depends on the dataset size, i.e. the more parameters are introduced, the more
likely the model tends to overfit.

We present additional loss curves for Llama-2-7B, Llama-3.1-8B, and Gemma-2-9B in common
sense and math reasoning tasks in Figure 6. We find that EVA converges the fastest for all different
models on the different tasks.

Another experiment we conduct is to apply recently proposed changes to the scaling factor and
learning rate. In Table 10 we show results for changing the scaling factor to o = % which results in

rank stabilization (Kalajdzievski, 2023). In addition, we present results for the regular setting v = 27
as proposed in Hu et al. (2022). Finally, we also show different learning rates for the two matrices A
and B as proposed by Hayou et al. (2024). We make the following observations.
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Table 7: Comparison of LoRA and DoRA to different initialization and rank re-distribution methods
on NLG tasks. We report average performance across three seeds and respective standard deviation in
Table 14. EVA+DoRA and EVA consistently attain the highest average performance across all tasks.

Model

Method BoolQ PIQA SIQA HellaSwag Winogrande ARC-e ARC-c OBQA Avg.

Llama-2-7B

LoRA 67.2
AdaLoRA 82.2 805 93.3 79.4 86.1 71.1 80.6 &1.0
PiSSA 62.6
MiLoRA 65.0
OLoRA 68.7
LoRA-GA  69.0
CorDA 68.7 804 79.7 91.7 679 784 784

EVA 68.3
DoRA 68.3
EVA+DoRA

Llama-3.1-8B

LoRA
AdalLoRA .
PiSSA 729 873 81.6
MiLoRA
OLoRA
LoRA-GA
CorDA 9. 82.8 794 5 3.7 823 809
EVA
DoRA

EVA+DoRA _

Gemma-2-9B

LoRA

AdaLoRA
PiSSA 90.0 82.5 95.5 d . 83.5
MiLoRA
OLoRA

LoRA-GA
Corda q1 872 822 4.0 844 90.8 854

Gemma-2-27B

LoRA
AdalLoRA
PiSSA 82.0 899 824 5.7 4.7 91.3 88.7

EVA
DoRA
EVA+DoRA

LoRA
AdaLoRA

OLoRA
EVA

DoRA
EVA+DoRA

Llama-3.1-70B PiSSA 40.6 515 354 25.8 53 272 353

OLoRA
EVA

1. The standard setting o = 2r from Hu et al. (2022) leads to the worst performance

2. Rank stabilization via o = % significantly improves the performance of both LoRA and

EVA

3. Different learning rates for A and B did not improve the results

To provide a comprehensive comparison of the effect of rank redistribution, we compare uniform
ranks (p = 1) to adaptive ranks (p = 2) on common sense and math reasoning tasks in Table 11.
We find that adaptive ranks consistently improve performance for Gemma-2-9B. For Llama-2-7B

and Llama-3.1

-8B we observe improvements in common sense reasoning tasks only, while uniform

ranks perform better on math fine-tuning tasks. In Table 11 we also show the number of trainable
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Table 8: Comparison of EVA to other initialization and adaptive rank methods on GSM8K and MATH
datasets. We report mean and standard deviation across three random seeds.

Model Method GSMS8K MATH
LoRA 59-7:|:.8 10~9i'2
AdaLoRA 56.94 4 9.64 2
PiSSA 61.1ss 12.644
MiLoRA 59.7014 1124,
OLoRA 60.74+ 5 11.84 3
Llama-2-7B [ BA'GA  602+¢ 11744
CorDA 59.0010 11.845
EVA 619, 131,
DoRA 59.84 5 11.54 o
EVA+DoRA 62.5:&.8 13.43:,01
LoRA 78316 3014
AdaLLoRA 76.94 o 28.91 7
PiSSA 788, 5, 29515
MiLoRA 78.64 1 3031 3
OLoRA 780+, 310,
Llama-3.1-8B LoRA-GA 788, 30.05
CorDA 768454 27.94 0
EVA 788, 5 312:3
DoRA 779+1 30215
EVA+DoRA 79.1:|:,5 30.8i,4
LoRA 83.4:&,9 40-7i42
AdaLoRA | 835, . 4l.1iy
PiSSA 79.84 5 34.94 5
MiLoRA 837., 419,
OLoRA 82219 394415
Gemma-2-9B [ PA'GA | 828.x 404.,
CorDA 56.3162 25.4140
EVA 83.6.5 4l5,,
DoRA 82.54 ¢ 39.74 4

EVA+DoRA | 829:5 40.04

parameters for EVA (p = 2) compared to LoRA on common sense and math reasoning tasks. We
find that after rank redistribution, EVA leads to improved performance while reducing the parameter
count by approximately 1M. The reason for this is that parameters are usually redistributed from
higher dimensional projections to lower dimensional ones, i.e. from non-attention weights to attention
weights. This results in improved performance while reducing the parameter count.

Finally, to verify our intuition that the LoRA matrix A should be initialized with the projection onto
the components that explain the most variance, we compare its performance with initializing EVA
with the components that explain the least amount of variance. We call this method EVA-minor and
present results for it in Table 12. To implement EVA-minor, we sample 20 minibatches of data and
perform truncated SVD on those and select the resulting minor components. This incurs substantial
additional cost, as we must compute all components, whereas for EVA we only approximate the
components that explain the most variance. Hence, incremental SVD is not beneficial in this case
anymore and it is also not practical as obtaining the initialization takes hours instead of seconds for
EVA. Moreover, our data-driven heuristic for adaptive rank allocation is no longer applicable to this
case; therefore, we consider uniform ranks. Finally, we find that EVA consistently improves over
EVA-minor, highlighting the importance of initializing EVA with the major components, i.e. the ones
that explain the most variance.

In addition we also fine-tune Llama-2-7B on the Code-Feedback dataset Zheng et al. (2024) consisting
of multi-turn conversations between user and Al Assistant. Due to limited computational resources
and the long sequence lengths of the examples in this dataset we do not fine-tune Llama-3.1-8B
and Gemma-2-9B or any DoRA variants. We evaluate the fine-tuned checkpoints on four coding
benchmarks: MBPP Austin et al. (2021), HumanEval Chen et al. (2021b), MBPP+ and HumanEval+
Liu et al. (2023). The results are presented in Table 13. EVA shows the best performance on MBPP
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Table 9:

Comparison of different ranks for fine-tuning Llama-2-7B on the eight common sense

reasoning tasks.

Rank

Method BoolQ PIQA SIQA HellaSwag Winogrande ARC-e ARC-c OBQA Avg.

LoRA 676 840 821 946 842 881 742 835 823
AdaLoRA 82.4 80.7 93.4 80.1 864 709 79.9
PiSSA 81.2 93.9
OLoRA

LoRA-GA
EVA(p=1)

EVA (p=2)

DoRA

EVA+DoRA (p = 1)
EVA+DoRA (p = 2)

16

LoRA 630 840 821 947 838 &8 738 845 823
AdaLoRA . 79.2 86.1 71.1 80.1 80.8
PiSSA 87.6 82.0
OLoRA

MiLoRA

LoRA-GA

EVA (p = 1)

EVA (p=2)

DoRA

EVA+DoRA (p = 1)
EVA+DoRA (p = 2)

32

LoRA 840 820 947 87 882 739 844 825
AdaLoRA 82.2 80.6 93.2 80.3 862 71.1 799 80.8
PiSSA 81.0 94.1 87.6 735

OLoRA

LoRA-GA
EVA(p=1)

EVA (p = 2)

DoRA

EVA+DoRA (p = 1)
EVA+DoRA (p = 2)

64

LoRA 83.8
AdaLoRA d I 79.9 80.5
PiSSA
OLoRA
LoRA-GA
EVA(p=1)
EVA (p =2)
DoRA
EVA+DoRA (p=1) 674
EVA+DoRA (p = 2)

Table 10:

Comparison of EVA to LoRA using recently proposed advancements, such as rank stabilized

scaling (Kalajdzievski, 2023) or different learning rates for B and A (Hayou et al., 2024), as well as
the originally proposed scaling from Hu et al. (2022).

Adaptation Method BoolQ PIQA SIQA HellaSwag Winogrande ARC-e ARC-c OBQA Avg.

LoRA+ LoRA 64.5 84.7 81.6 94.4 83.8 87.3 73.9 85.5 82.0
EVA 68.6 85.0 81.2 94.2 84.7 87.4 73.5 84.1 82.3

rsLoRA LoRA 71.5 85.3 82.5 95.2 84.5 89.0 75.8 86.8 83.8
EVA 75.5 86.1 82.7 95.4 86.1 89.3 76.3 86.3 84.7

o =32 LoRA 719 82.1 80.1 93.2 79.8 86.3 71.5 79.3 81.3
B EVA 68.6 84.9 82.2 94.6 84.1 87.8 74.7 844 827

and MBPP+ while also exhibiting good performance on HumanEval and HumanEval+. For the latter
two datasets, PiSSA is the best-performing method. For fine-tuning, we use a maximum sequence
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Figure 6: Loss curves for Llama-2-7B on common sense reasoning (top left), Llama-3.1-8B on
common sense reasoning (top right), Gemma-2-9B on common sense reasoning (bottom right), and
Gemma-2-9B on MetaMathQA. EVA consistently converges the fastest among all competitors.

length of 2028 with a right-hand side truncation. For decoding, we set the temperature to 0.2 and
top_pto 0.7

C Natural language understanding

C.1 Dataset Statistics

The dataset statistics for each task in the GLUE benchmark (Wang et al., 2019) are shown in Table 15.
Generally, GLUE contains four low-resource datasets (RTE, MRPC, STS-B, and CoLLA) and four
high-resource datasets (SST-2, QNLI, QQP, and MNLI). While CoLA and SST-2 rely on single
sentence classification, STS-B evaluates for similarity and the remaining tasks are based on pairwise
text classification.

C.2 Implementation Details

We base our implementation on the LoRA codebase'. For these experiments, we initially precompute
our initialization prior to the fine-tuning stage and store it as a checkpoint. However, we also provide
the possibility to directly compute the initialization during the fine-tuning stage, as done for our
experiments on VTAB-1k and Meta-World. By default, we always offload the computation of the
initial checkpoint to CPU to save VRAM. We ran all our experiments on nodes with four A100 GPUs
and used PyTorch’s data-distributed parallel functionality (Paszke et al., 2019). Runtimes range from
as little as 10 minutes per run for smaller datasets (RTE, STS-B) to around 15 hours for the largest
datasets (QQP, MNLI).

"https://github.com/microsoft/LoRA
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Table 11: Comparison of number of trainable parameters between LoRA-based methods and EVA on
the math and common sense reasoning tasks. Common sense reasoning is an average over eight tasks.
#Trainable represents the number of trainable parameters. EVA consistently improves performance
while decreasing the number of trainable parameters.

Model Method #Trainable Common sense GSMSK MATH
LoRA 40.6M 82.2 59.7 10.9
AdaLoRA 40.6M 81.0 56.9 9.6
PiSSA 40.6M 82.0 61.1 12.6
Llama-2-7B MiLoRA 40.6M 82.5 59.7 11.2
OLoRA 40.6M 82.9 60.7 11.8
LoRA-GA 40.6M 83.4 60.2 11.7
EVA(p=1) 40.6M 83.4 61.9 13.1
EVA(p=2) 39.3M 83.4 61.0 12.5
LoRA 44.1M 89.2 78.3 30.1
AdalLoRA 44.1M 87.6 76.9 28.9
PiSSA 44.1M 85.7 78.8 29.5
Llama-3.1-8B MiLoRA 44.1M 89.4 78.6 30.3
: OLoRA 44.1M 89.4 78.0 31.0
LoRA-GA 44.1M 89.0 78.8 30.0
EVA(p=1) 44.1IM 89.4 78.8 31.2
EVA (p =2) 42M 89.5 78.3 30.8
LoRA 58.2M 92.2 83.4 40.7
AdaLoRA 58.2M 91.5 83.5 41.1
PiSSA 58.2M 88.3 79.8 34.9
Gemma-2-9B MiLoRA 58.2M 92.3 83.7 41.9
OLoRA 58.2M 91.8 82.2 394
LoRA-GA 58.2M 91.8 82.8 40.4
EVA(p=1) 582M 92.4 83.6 41.3
EVA(p=2) 559M 92.5 83.6 41.5
LoRA 114.2M 93.1 - -
AdaLoRA 114.2M 93.0 - -
PiSSA 114.2M 88.8 - -
Gemma-2-27B OLoRA 114.2M 93.7 - -
EVA(p=1) 1142M 93.7 - -
EVA (p=2) 104.8M 93.7 - -
LoRA 209.3M 93.6 - -
AdalLoRA 209.3M 93.9
PiSSA 209.3M 35.2 - -
Llama-3.1-70B OLoRA 209.3M 94.4 - -
EVA(p=1) 209.3M 94.5 - -
EVA (p =2) 193.6M 94.5 - -

C.3 Hyperparameter search

For LoRA and EVA, we search the number of ranks € {2, 4, 6,8} and the different learning rates
n € {le—3,4e —4,1e — 4} for ROBERTay 4o and 1 € {4e — 3, 1le — 3, 4e — 4} for DeBERTav3p,se.
We report the best hyperparameter settings for both ROBERTay 5rsc and DeBERTav3p,. for LORA
and EVA in Table 16. For AdaLoRA, we search the same ranks and always start the initial ranks with
r + 4 that are then redistributed during training. For BOFT we sweep over different combinations of
block sizes b € {2,4, 8,16} which determine the number of multiplicative matrices. Additionally,
for both AdaLoRA and BOFT, we search over the same learning rates as for the other LoRA variants.
Further, we introduce hyperparameters that result in additional speed-up of our initialization, namely
a threshold 7 that considers components as converged, and a threshold § that stops computation of the
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Table 12: Comparison of EVA to EVA-minor, which leverages components that explain the least
amount of variance for initialization of A, on the common sense reasoning tasks.

Method BoolQ PIQA SIQA HellaSwag Winogrande ARC-e ARC-c OBQA Avg.

EVA 68.6 85.0 81.2 94.2 84.7 874 73.5 84.1 82.3
EVA-minor  64.0 83.4 81.5 94.3 82.0 87.3 73.0 81.6 80.9

Table 13: Comparison of EVA to other initialization and rank re-distribution schemes on code fine-
tuning datasets. We report mean and standard deviation across three random seeds.

Method MBPP HumanEval MBPP+ HumanEval+

LoRA 22.2:|:1.1 &io.s 30.7:&1,1 &:I:O.G
AdalLoRA 21-5:I:0.2 17.1:‘:0.0 29.4:|:0_7 17.1:‘:0.0
PiSSA 228.,, 199,60  308i07 1990,
OLoRA 223106 189,00 324,94 189,49
EVA 29.0; 189,,, 326106 189,

initialization when a certain percentage of components have converged. By default, we set 7 = 0.99
and § = 1, i.e. we only stop when all components converge. These parameters provide additional
leeway to speed up the initialization stage of EVA.

We have explored the sensitivity of LoRA to different initialization schemes and found that, similar
to other prominent initialization schemes (He et al., 2015; Glorot & Bengio, 2010), scale plays an
important role along with directions. Originally, (Hu et al., 2022) propose to set o = 2r, however, we
found that this parameter is quite sensitive as also shown in (Kalajdzievski, 2023). Similarly, different
ranks lead to very different results on different downstream tasks. Therefore, we suggest that one
always search over more ranks and choose the best performing one if the required compute budget is
available. We also experimented with different learning rates for the A and B matrices as proposed
in (Hayou et al., 2024), however, this did not result in consistent improvements. Instead, we found
that learning rates for LoRA-style training can be surprisingly high (4e — 3 for DeBERTav3p,.),
while for larger models the learning rate needs to be approximately a magnitude smaller. A simple
recipe that worked consistently well was to set « = 1, which results in a similar scaling factor as in
Kalajdzievski (2023), and searching over a set of small learning rates for larger models and higher
learning rates for smaller ones. For EVA, the only tunable hyperparameter is the rank budget, which
we recommend to tune along with the learning rate.

C.4 Additional results

We report additional results for EVA compared to LoRA for different rank budgets in Table 17.
We find that EVA consistently outperforms LoRA for different rank budgets. This demonstrates
the effectiveness of EVA among different compute budgets. In addition, we show additional rank
redistributions for CoLA, MRPC, RTE, and STSB tasks for different for r = 2 (Figure 7), r = 4
(Figure 8), r = 8 (Figure 9), and r = 16 (Figure 10) for both ROBERTay 4¢e and DeBERTav3pys..
The distributions for the different models show different patterns. For DeBERTav3g,., the higher
attention layers usually receive more ranks than the lower ones. For CoLA, there are also a large
number of ranks in the very first layer. For ROBERTay 4, it seems to be the opposite, as the very
first layers consistently receive more ranks compared to the later layers. There is also a notable
difference between tasks for both models, which demonstrates the flexibility of EVA to allocate ranks
dependent on the downstream task. Interestingly, for a higher initial rank ( = 16), the redistribution
for DeBERTav3g,s. puts more emphasis on fine-tuning the self-attention specific weight matrices.
This is not true for ROBERTay 4rc, as W also receives plenty of ranks across all tasks. Overall, the
rank redistribution incurs different fine-tuning paradigms depending on the task and the initial rank.

Additionally, we show results for different rank redistributions that we obtain by using alternative
measures for explained variance. Specifically, we compare EVA to using (i) the raw eigenvalues
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Table 14: Per-task standard deviation across three seeds for all methods on common sense reasoning
tasks.

Model Method BoolQ PIQA SIQA HellaSwag Winogrande ARC-e ARC-¢c OBQA
LoRA 1.498 0.252 0.233  0.102 0.658 0.072 0.489 0.822

AdaLoRA  1.315 0.251 0.182  0.098 0.392 0.362 0.106 0.899

PiSSA 0.358 0.294 0.138  0.096 0.298 0.386 0.494 1.117

Llama-2-7B MiLoRA 3.950 0.392 0.329  0.097 0.810 0.064 1.100 0.231
OLoRA 4938 0.190 0.524  0.062 0.652 0.339 0.672 0.660

LoRA-GA 10.573 0416 1.049  0.115 0.344 0.170 0.560 0.721

CorDA 8.801 2.039 0.253 0.549 2.009 1.756 2.836 4.243

EVA 7.974 0.137 1.054 0.101 0.810 0.526 0.421 0.577

DoRA 2.599 0.290 0.483 0.113 0.244 0.215 0.489 0.525

EVA+DoRA 5.281 0.273 0.293  0.034 0.853 0.110 0.494 0.249

LoRA 0.472 0.194 0419 0.070 0.197 0.052 0.563 0.189

AdalLoRA  0.510 0.044 0.261 0.040 0.392 0.201 0.804 0.748

PiSSA 6.516 0.373 0.603  0.195 0.707 0.325 0.245 0.589

Llama-3.1-8B MiLoRA 0.511 0.163 0.300 0.125 0.613 0.445 0.887 0.503
’ OLoRA 0.298 0.245 0.397  0.057 0.451 0.173 0.329 0.189
LoRA-GA  0.539 0.237 0.695 0.115 0.592 0.135 0.729 0.800

CorDA 3.676 0.077 0.145  0.070 2.009 1.905 1.508 0.424

EVA 0.353 0.031 0.194  0.046 0.209 0.292 0.178 0.808

DoRA 0.225 0.112 0.315 0.014 0.260 0.119 0.698 0.000

EVA+DoRA 0.225 0.168 0.121  0.117 0.392 0.105 0.175 0.249

LoRA 0.095 0.277 0.386  0.062 0.324 0.072 0.070 0.589

AdalLLoRA  0.088 0.353 0.217  0.033 0.098 0.209 0.106 0.432

PiSSA 2761 0.286 0.214  0.109 0.621 0.447 0.121 0.163

Gemma-2-9B MiLoRA 0.284 0.191 0.325  0.089 1.008 0.239 0.903 0.115
OLoRA 0.066 0.451 0.501 0.099 0.501 0.267 0.448 0.573

LoRA-GA 0.662 0.463 0.252  0.072 0.526 0.129 0.617 1.026

CorDA 17.299 0.154 0.109  1.486 1.730 0.268 0.845 0.000

EVA 0.275 0.136 0.111  0.094 0.260 0.119 0.040 0.249

DoRA 0.189 0.420 0.301 0.074 0.419 0.091 0.000 0.499

EVA+DoRA 0.132 0.296 0.490  0.070 0.037 0.150 0.715 0.340

LoRA 0.202 0.045 0424  0.109 0.196 0.155 0.600 0.497

AdalLoRA  0.300 0.286 0.158  0.022 0.429 0.020 0.161 0.249

PiSSA 3.035 0.645 0.529  0.135 0.578 0.288 0.408 0.736
Gemma-2-27B OLoRA 0.038 0.200 0.233  0.046 0.226 0.182 0.435 0.864
EVA 0.250 0.277 0.147  0.031 0.322 0.292 0.707 0.432

DoRA 0.364 0.194 0.111  0.038 0.149 0.110 0.329 0.189

EVA+DoRA 0.336 0.000 0.026  0.085 0.316 0.084 0.555 0.500

LoRA 7.296 0.068 0.230  0.059 0.134 0.105 0418 0.327

AdalLoRA  0.300 0.077 0.274  0.060 0.232 0.110 0.224 0.189
Llama-3.1-70B PiSSA 1.208 0.544 1.407  0.070 0.079 0.968 1.195 3.400
OLoRA 0.548 0.143 0.301  0.119 0.207 0.209 0426 0411

EVA 0.227 0.204 0.319  0.059 0.335 0.069 0.420 0.249

(EVA-Raw) and (ii) normalizing by the maximum eigenvalue (EVA-Max). We report results for
RoBERTay 44 on four GLUE tasks, namely CoLA, RTE, MRPC, and STS-B in Table 18. Our results
show that while EVA-Raw and EVA-Max slightly improve upon LoRA, they perform worse on
average than EVA.

D Image Classification

D.1 Dataset statistics

The VTAB-1K benchmark consists of 19 datasets, each containing a subset of 1000 examples of their
respective samples. We summarize the statistics for each dataset in Table 19. Although the original
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Figure 7: Rank distribution after initialization with EVA on four tasks of the GLUE benchmark
(CoLA, MRPC, RTE, STSB) for DeBERTav3p,s. (left) and ROBERTay 4 (right) with initial rank
r=2.
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Figure 8: Rank distribution after initialization with EVA on four tasks of the GLUE benchmark
(CoLA, MRPC, RTE, STSB) for DeBERTav3p,s. (left) and ROBERTay 4 (right) with initial rank

r=4.
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Figure 9: Rank distribution after initialization with EVA on four tasks of the GLUE benchmark
(CoLA, MRPC, RTE, STSB) for DeBERTav3p,s. (left) and ROBERTay 4 (right) with initial rank
r=8.
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Figure 10: Rank distribution after initialization with EVA on four tasks of the GLUE benchmark
(CoLA, MRPC, RTE, STSB) for DeBERTav3p,s. (left) and ROBERTay 4 (right) with initial rank
r = 16.
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Table 15: GLUE benchmark suite statistics and evaluation metric for each corpus sorted by the
number of examples in the training set.

Corpus | #Train #Dev  #Test | Metric
RTE 2.5k 276 3k Accuracy
MRPC | 3.7k 408 1.7k Accuracy

STS-B 7k 1.5k 1.4k Pearson correlation
CoLA 8.5k 1k 1k Matthew’s correlation

SST-2 67k 872 1.8k Accuracy
QNLI 108k 5.7k 5.7k Accuracy
QQP 364k 40k 391k Accuracy
MNLI 393k 20k 20k Accuracy

train sizes of the datasets vary drastically, the 1K subset provides equal datasets across tasks. The
number of classes also varies from as little as two to almost 400.

D.2 Implementation details

We implemented a custom pipeline to fine-tune DINOv2-L/14 on VTAB-1K that supports LoRA,
DoRA and EVA. To train AdaLora, PiSSA and OLoRA, we integrate their implementation from
the peft library (Mangrulkar et al., 2022) into our pipeline. This pipeline is designed to be highly
parallelizable and to be executed on individual GPUs. A single evaluation run of a L/14 model (all
19 datasets with hyperparameter tuning and evaluation) takes roughly 160 A100 GPU-hours but
can be easily parallelized. A g/14 run takes roughly 140 H100 GPU-hours. A single evaluation run
consists of 1140 hyperparameter tuning runs (19 datasets * 5 learning rates * 4 ranks * 3 seeds) and
95 evaluation runs (19 datasets * 5 seeds). Details to hyperparameter tuning are described below.

We use the original DINOv2 models (Oquab et al., 2023) and train a classification head on top of
the [CLS] token, where we initialize the classification head weights with a normal distribution with
o = 2e-5 and bias with zeros. We train the classification head, LoRA matrices and biases. The images
are resized to 224 x 224 resolution with bicubic interpolation and normalized with the per-channel
mean and variance of ImageNet. We train all models with bfloat16 precision using the AdamW
optimizer with a weight decay of 0.05 for 30 epochs. We use a cosine learning rate schedule with a
linear warm-up for the first 3 epochs. The batch size is set to 64 where we use gradient accumulation
if the batch size does not fit into GPU memory. Full fine-tuning uses a layer-wise Ir decay of 0.75
(Clark et al., 2020).

D.3 Hyperparameter search

We first fine-tune on the 800 train samples of the VTAB-1K datasets to find the best learning rate
for the task. We sweep over learning_rate € {2.5¢-3, le-3,7.5e-4, 5¢-4,2.5e-4} and rank €
{2,4,8,16} and average the accuracy on the 200 validation samples over 3 different seeds to choose
the best learning rate and rank for each dataset. For evaluation, we train on the union of train and
validation set using five different seeds and report the average accuracy on the test set.

D.4 Additional results

We show our main results in Table 20. To complement these results, we report the respective standard
deviations in Table 21.

E Decision Making

E.1 Dataset statistics

Meta-World (Yu et al., 2020) is an established benchmark in RL for multi-task continuous control.
The benchmark consists of 50 challenging robotic tasks simulated using a Sawyer robotic arm in the
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Table 16: The best hyperparameters ROBERTay 4,cand DeBERTav3p,, that were found via gridsearch
for each task of the GLUE benchmark.

Method Dataset | MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

Optimizer AdamW

Warmup Ratio 0.06

LR Schedule Linear

Batch Size 8 16 8 8 8 8 16 8

# Epochs 10 10 20 20 10 20 20 10
ROBflgszge LoRA rank 2 8 8 4 8 4 2 2

© Learning rate 4e-4 le-3 4e-4 le-3 le-3 le-3 le-3 4de4

LoRA « 1

Max Seq. Len. 512

DDP GPUs 4

Batch Size 8 16 8 8 8 8 16 8

# Epochs 10 10 20 20 10 20 20 10
RoBIRMLare  LoRA rank 2 2 4 > 16 8 4 4

Learning rate 4e-4 le-3 4e-4 le-3 4e-4 le-3 1e-3 1le3

LoRA « 1

Max Seq. Len. 512

DDP GPUs 4

Batch Size 32 32 16 32 64 32 32 16

# Epochs 30 60 30 80 25 25 80 40
DeB]igTBm LoRA rank 8 4 4 8 16 4 4 8

Learning rate 4e-4 le-3 4e-3 4e-3  4e-3  4e-3 4e-3  4e3

LoRA « 1

Max Seq. Len. 512

DDP GPUs 4

Batch Size 32 32 16 32 64 32 32 16
DeBERTav3g,, # Epochs 30 60 30 80 25 25 80 40

EVA LoRA rank 8 2 4 8 16 4 2 2

Learning rate 4e-4  de-4 4e-3 4e-3  4e-3  4de-3 4e-3  4e-3

LoRA « 1

Max Seq. Len. 512

DDP GPUs 4

MuJoCo physics engine (Todorov et al., 2012). All 50 tasks in Meta-World share the same underlying
robotic arm. Therefore, all tasks share a common state (39-dimensional continuous vector) and action
space (6-dimensional). The reward functions in Meta-World are dense and based on the distance of
the robotic arm to the target location or objects. All episodes last for 200 environment interactions.

For our experiments on Meta-World, we use the datasets released by Schmied et al. (2024). We
follow Wotczyk et al. (2021) and Schmied et al. (2024), and split the 50 tasks into 40 pre-training
tasks (MT40) and 10 fine-tuning tasks (CW10). The CW10 tasks are the following.

hammer-v2, push-wall-v2, faucet-close-v2, push-back-v2, stick-pull-v2,
stick-pull-v2, handle-press-side-v2, push-v2, shelf-place-v2, window-close-v2,
and peg-unplug-side-v2.

The datasets contain 2M transitions for each of the 50 tasks, which is equivalent to 80M transitions
(320M tokens) for all training tasks. The average success rate and rewards for all MT40 tasks are
84% and 1414.62, respectively. We list the statistics per task in Table 22.

E.2 Implementation details
We implemented our pipeline that supports training on Meta-World on top of the code-base provided

by Schmied et al. (2024). Our custom implementation supports training LoRA, DoRA and EVA.
Furthermore, we leverage the peft library (Mangrulkar et al., 2022) to train the remaining methods.
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Table 17: Comparison of LoRA to EVA using RoOBERTa 4. 0on all tasks from GLUE for equal rank
budgets. Mean and standard deviation of Matthew’s correlation for CoLA, pearson correlation for
STS-B, and accuracy for remaining datasets on the development set across 5 seeds are shown.

Method | CoLA MRPC RTE STS-B MNLI QNLI QQP SST-2 Avg

LoRA,—» 68.0414 9091g 881177 92347 91947 94813 90647 96.1.; 89.09
EVA,_o 69.1414 90845 88247 92547 90847 949.; 919+, 96.2.; 89.30

LoRA,_, [769105 " 90.7:+7 86940 923411 90.61, 94.74. WO2OWEY 96.04, 89.04
EVA,_, 695514 9l4rs 888413 92657 9071, 949.; 918, 96.1,;  89.48

LoRA,_s | 688410 9lilig 87.1o7 92240 90.6.. 94.84; [NOISLG WOGR2IEN 89.08
EVA,_s 69.0014 911, 88416 92645 906+, 949, 921i; 96.1.. 89.35

LORAT:16 68.411'0 90.5:&,5 8&0;{:_5 92~3i.1 90.61.1 94.8:{:.1 91.9:|:.1 96.1:‘:.1 89.08
EVA,_16 | 69.1.5 91215 88.015 92645 90.710 95015 91.81, 962.: 89.33

Table 18: Comparison of LoRA to EVA, EVA-Raw, and EVA-Max for RoBERTa 4;¢c0n the GLUE
tasks CoLA, MRPC, RTE, and STS-B. We report mean and standard deviation of Matthew’s cor-
relation for CoL A, pearson correlation for STS-B, matched accuracy for MNLI, and accuracy for
remaining tasks across 5 seeds.

Method CoLA MRPC RTE STS-B Avg
LoRA 69.14 5 91.14056 88.1411 92.340.1 85.2
EVA 69.5474 914105 88.8112 92.6401 85.6

EVA-Raw 69.4:|:1'1 91.Oi0,9 88.2i0_3 92-5i0.2 85.3
EVA-Max 69.14¢5 91.2405 88.441 2 925102 85.3

For our experiments on Meta-World, we use a GPT2-like network architecture (Radford et al., 2019)
with 4 Transformer layers, 8 heads, and hidden dimension of 512 resulting in 16M parameters. We
use a context of 50 time steps, which amounts to a sequence length of 200, as each timestep contains
states, actions, rewards, and RTGs. We embed states, actions, rewards, and return-to-gos (RTGs)
using separate linear embedding layers per modality, as proposed by Chen et al. (2021a). We train
with a batch size of 128 using a constant learning rate of 1e~%, 4000 linear warm-up steps followed
by a cosine decay to 1e~%, using the AdamW optimizer (Loshchilov & Hutter, 2017). We employ a
gradient clipping of 0.25, a weight decay of 0.01, and a dropout rate of 0.2. Our DT implementation
employs global position embedding. For each task, we set the target return to the maximum return
achieved in the respective training datasets, as proposed by (Schmied et al., 2024). Furthermore, we
employ mixed precision (Micikevicius et al., 2017) and flash attention (Dao, 2023) to speed up the
training.

We first pre-train a DT on all MT40 tasks (80M transitions) for 1M updates via next-action prediction
by minimizing the mean-squared error. The resulting pre-trained model achieves an average success
rate of 80% across all MT40 tasks. Then we fine-tune the DT on each of the CW10 downstream
tasks for 100K updates with the same set of hyperparameters as used for pre-training. We run all our
experiments on a public research cluster with 4xA100-40GB GPU nodes. A single EVA fine-tuning
run for one task takes roughly 1 hour on an A100.

E.3 Hyperparameter search

In line with previous experiments, we tune the rank for LoRA, DoRA, Adal.ora and EVA, rank €
{2,4,8,16}. Further, we sweep over the same learning rates as for the GLUE tasks.

E.4 Additional results

In Table 24, we show the full comparison of all the methods on CW10. EVA+DoRA consistently
outperforms all competitors for the different rank budgets.
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Table 19: Category, train size and classes of the VTAB-1K dataset.

Category Dataset Train size Classes
Natural Caltech101 (Fei-Fei et al., 2006) 3060 102
Natural CIFAR-100 (Krizhevsky, 2009) 50000 100
Natural DTD (Cimpoi et al., 2014) 3760 47
Natural Flowers102 (Nilsback & Zisserman, 2008) 2040 102
Natural Pets (Parkhi et al., 2012) 3680 37
Natural Sun397 (Xiao et al., 2010) 87003 397
Natural SVHN (Netzer et al., 2011) 73257 10
Specialized EuroSAT (Helber et al., 2019) 21600 10
Specialized Resisc45 (Cheng et al., 2017) 25200 45
Specialized Patch Camelyon (Veeling et al., 2018) 294912 2
Specialized Retinopathy (Kaggle & EyePacs, 2015) 46032 5
Structured  Clevr/count (Johnson et al., 2017) 70000 8
Structured Clevr/distance (Johnson et al., 2017) 70000 6
Structured ~ dSprites/location (Matthey et al., 2017) 663552 16
Structured ~ dSprites/orientation (Matthey et al., 2017) 663552 16
Structured SmalINORB/azimuth (LeCun et al., 2004) 36450 18
Structured SmalINORB/elevation (LeCun et al., 2004) 36450 9
Structured  DMLab (Beattie et al., 2016) 88178 6
Structured ~ KITTI/distance (Geiger et al., 2013) 5711 4

Table 20: Fine-tuning DINOv2-g/14 on the VTAB-1K benchmark. Best average performance is
highlighted in boldface. We report average accuracy across five seeds.

Natural Specialized Structured
— | 8 = 2 £ ]

E 25 :2; 5|2t EELEEE B

S Eg T g 224 F|gcREEE g F=
FFT 73.1 89.7 78.4 99.7 92.2189.5 55.5|74.8 95.0 88.2 70.5|93.6 64.2/63.6 68.8[92.0 64.3 50.2 56.8|76.8
LoRA 85.9 92.2 82.2 99.7 94.5 64.1 63.6(88.8 97.0 92.6 76.6/97.7 65.3 62.1 83.6 90.6 63.0 37.1 52.3|78.4
AdaLoRA |85.4 92.5 81.4 99.7 95.2 90.5 62.2|87.1 96.4 91.2 76.6/94.4 64.4 60.3 83.7 85.4 61.0 32.9 46.078.2
PiSSA 85.5 93.6 82.3 99.7 94.6 92.8 62.3|87.1 96.6 91.9 76.3|95.0 66.3 63.2 84.9 90.5 60.1 36.3 48.6/79.4
OLoRA 85.5 93.0 82.1 99.7 95.1 78.3 62.1(86.7 96.3 91.9 76.8/94.3 66.0 62.4 71.3 89.0 60.9 34.3 49.5|77.6
EVA 85.6 93.9 82.2 99.7 95.9 93.2 63.6(86.8 96.6 92.3 76.1(96.1 65.1 61.1 83.3 91.4 61.6 35.0 55.0|79.7
DoRA 85.9 92.7 82.1 99.7 95.2 34.4 61.4|88.6 96.8 92.4 76.8/97.6 65.4 62.7 84.4 43.2 63.1 37.8 52.6|74.4
EVA+DoRA [86.2 92.1 81.9 99.7 94.9 93.8 62.4|88.3 96.6 92.6 76.7|97.2 65.5 54.1 83.7 93.3 62.3 37.5 54.5|79.6

F Incremental SVD convergence analysis

For simplicity, assume that A = X &7 and B = X7 are two batches of activations for the weight
matrix W* obtained by passing two subsequent batches of downstream data through the model.
The aim is now to compute the SVD of the concatenated activation matrix [AB] =U'Y'V'Tin
constant memory. Further, we obtain A = U; X, V," via SVD. Now let B be the component of B
that is orthogonal to U, which can be obtained by QR decomposition or by B = orth(B —~UU " B),
where orth(-) performs orthogonalization. Then the SVD of the concatenated activation matrix can
be expressed in partitioned form as
~ > U'B vT 0
[AB]_{UBHO BTBH o 1| 7
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Table 21: Standard deviations for the VTAB-1K results (Table 20) over 5 seeds.

Natural Specialized Structured

= e = 2 E o
S2o5.z8/5595 328834
E 28R :& > 5|8 EE2|tE 2 E & 58 Z|
O = o mmaﬁgggﬂmhw%ooé

O = O v | © R Z Z
FFT 1511160004 12 0914904 0.6 2.7/1.709 1.2 23.6/0.5 04 1.6 1.9(3.0
LoRA 0.2 0.4 0.2 0.0 0.3 36.40.1| 0.5 0.3 0.1 04/0.20.3 0.5 12 04 04 0.7 04|23
AdaLoRA 0.0 0.2 0.4 0.0 0.1 04 0.1 0.3 0.3 0.20.3/030.2 03 0.8 0.8 0.3 0.3 0.4(0.3
PiSSA 0204 030.002 0.5 0207 020.1 040304 0.2 0.7 0.3 0.5 0.4 05|03
OLoRA 0.3 0.3 04 0.0 0.3 294/0.1{0.3 0.1 0.2 0.2(0.5 0.1 0.3 24.6 0.3 0.4 0.3 0.8(3.1
EVA 0.2 0.50.20.00.1 0.3 0.1/ 0.3 0203040503 0.6 0.6 0.5 0.50.205|0.3
DoRA 0.1 0.2 0.5 0.0 0.2 29.7 0.4/ 0.7 0.1 0.2 0.4/0.4 0.3 0.3 0.6 36.2 0.5/0.3 0.3|3.8
EVA+DoRA|0.2 1.3/0.6 0.0 0.3/ 0.5 0.3/ 0.4 0.2 0.3 0.3/0.4 0.4 12.8[ 1.3 2.5 0.3 0.6 0.6(1.2

> U'B
0 BB
performing SVD on R,R = UXVT, which is constant in time and memory as we only need to
compute U’ and X, which do not scale with the number of data samples. Hence, we perform

s = ([vs]o)= (v % 9]). ®)

and subsequently obtain U’ = {UB} Uand¥' = 3.

By setting R = [ ], we can obtain SVD of the concatenated activation matrix by

As this algorithm incrementally updates the U and ¥ components, we need to keep track of changing
mean and variance estimates. For the mean, this is trivial, but the computation of running variances
can introduce numerical instabilities. To counteract this, young and cramer update is commonly
employed (Chan et al., 1983). The supporting proof that the covariance matrix of the original data
matrix is equal to the covariance matrix of the concatenated matrix up to a constant factor is given
in Ross et al. (2008). In our example, the left-singular values U do not scale with the number of
samples. However, in our case we have A = Xti and B = Xti 11, i.e. transposed data matrices,
therefore it is the right-singular values V' that do not depend on the number of samples and can be
incrementally updated in constant time and memory. We show pseudocode for the incremental SVD
algorithm in Algorithm 2. In the following sections, we analyze the behavior of this algorithm under
different conditions, i.e. different batch sizes, etc.

F.1 Complexity

The SVD computation introduces computational overhead in the initial training stage. Since we
do not require gradient computation or storing of optimizer states, there is no overhead in terms
of memory. SVD has a time complexity of O(min(b?d, bd?)) that can be reduced to O(k?b) for
k << d by performing truncated SVD Halko et al. (2011). Let 7" be the number of minibatches until
all components are converged for NV weight matrices, then the time complexity is O(NTk?b). In
other words, the complexity scales linearly with the number of weight matrices and the number of
minibatches. To speed up the computation of SVD, we provide an implementation that runs entirely
on GPU.

F.2 Batch Size invariance

We perform an analysis of the convergence of the components obtained via SVD. Specifically, we
investigate the difference in components according to cosine similarity across different batch sizes.
Previously, we have seen that the components obtained across different batch orderings are heavily
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Table 22: Dataset statistics for all MT40 tasks from Schmied et al. (2024).

Task |S|  |A]  Success Rate Reward
assembly-v2 39 4 0.0 1206.9
basketball-v2 39 4 0.9 1375.95
bin-picking-v2 39 4 0.0 474.81
box-close-v2 39 4 0.0 759.15
button-press-topdown-v2 39 4 1.0 1299.24
button-press-topdown-wall-v2 39 4 1.0 1296.16
button-press-v2 39 4 1.0 1430.44
button-press-wall-v2 39 4 1.0 1508.16
coffee-button-v2 39 4 1.0 1499.17
coffee-pull-v2 39 4 1.0 1313.88
coffee-push-v2 39 4 0.6 508.14
dial-turn-v2 39 4 0.8 1674.29
disassemble-v2 39 4 1.0 1396.55
door-close-v2 39 4 1.0 1535.4
door-lock-v2 39 4 1.0 1712.65
door-open-v2 39 4 1.0 1544.32
door-unlock-v2 39 4 1.0 1733.64
drawer-close-v2 39 4 1.0 1845.92
drawer-open-v2 39 4 1.0 1710.65
faucet-open-v2 39 4 0.9 1727.98
hand-insert-v2 39 4 1.0 1607.17
handle-press-v2 39 4 1.0 1854.79
handle-pull-side-v2 39 4 1.0 1613.72
handle-pull-v2 39 4 1.0 1581.75
lever-pull-v2 39 4 1.0 1449.05
peg-insert-side-v2 39 4 1.0 1545.19
pick-out-of-hole-v2 39 4 1.0 1435.64
pick-place-v2 39 4 0.0 6.59
pick-place-wall-v2 39 4 0.1 702.59
plate-slide-back-side-v2 39 4 1.0 1766.24
plate-slide-back-v2 39 4 1.0 1773.56
plate-slide-side-v2 39 4 1.0 1663.35
plate-slide-v2 39 4 1.0 1667.35
reach-v2 39 4 1.0 1858.99
reach-wall-v2 39 4 1.0 1831.14
soccer-v2 39 4 0.4 445.84
stick-push-v2 39 4 1.0 1470.71
sweep-into-v2 39 4 1.0 1761.69
sweep-v2 39 4 1.0 1458.35
window-open-v2 39 4 1.0 1537.59
Average - - 0.84 £0.34  1414.62 +439.39
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Table 23: Results for single task fine-tuning experiments on the Meta-World benchmark. We report
mean success rates and standard error across three seeds for every task.

2 2 6 — " _ 2

S f & £ 2 s T o2 % %%

i F 0§ 3 ¢ & i £ 5 ff

: ¢ ¢ 2 E = 5 * 5|7
FFT 1.040 0.97, o5 1.040/ 077, o5 0.87, g5 1.000 1.000 1.040[0.63, o3 1.0 /092
LoRA 1010 2040 1.040 06105 0.63+; [1.009 1.000 1.0.0 04199 1.0.0[0.86
AdalLoRA 1~OiA0 Miﬂfﬁ 1~0i40 0-4iA09 0-57iA1 Mi,o"i Miﬂ:} 1.()1‘0 0-13iA07 1~0i40 0.80
PiSSA 1.04 0 P00 1.04 0 0.43.40.11 0.5740.03 100G 120207 1.04 0 0.53501 | 1.0 ¢/ 0.85
OLoRA 1.04.0 0.97, 903 1.04.0 0.574+0.1 0.6349.03 1.049 1.0+ 1.0+ 0.64912 1.0+0]0.88
EVA 1.040 097, o5 1020 063203 0.77+05 1.040 1.0+9 1.010 0.63, o= 1.050]0.90
DoRA 1.01 002000 1.04 0 06412 | 1.009 1.009 1.000 1.0.00.67x15 1.0. 0 0.93
EVA+DoRA|1.04 0 1.0+ 1.040 0.8408 1.01p 1.0+9 1.019 1.04¢ 0.63; g3 1.0+ (|0.94

Table 24: Rank-wise comparison for all methods on CW10. We fine-tune a 12M DT on 10 tasks
individually and report the mean success rates/rewards (£ standard error) for every task.

= L} 0
2 z ? ) — I5) — 3
< 5 g & B ] g 3 ] %
Bl £ 3 E) 2 £ z = o z g
o1 g a o & = = ok z Z 5}
] E] k) 5 E = ] g El ° Z
& = o a & ] @ g
] o
Method Rank
FFT - | 0975003 0931003 1.0x00 0.6x005  0.7x012 1.0£00 0931003 1.0:00 0.57+007 1.0+0.0 | 0.87x0.03
LoRA 2 1.040.0 10400 1.0400 0.64005 0.5710.07 0971003 0934003 1.0100 0.37401  1.£0.0 | 0.8440.04
4 10400 0971003 1.0400 0471012 0.63401 0971003  1.0400  1.0400 0.231012  1.040.0 | 0.8340.05
8 1.0+0.0 0.9710.03 1.0x00 0431005 041000 0.9710.03 0.931003 1.0200 0.231012 1.010.0 | 0.7940.06
16 10100 0974003 1.0+00 0431003 0471003  1.0100 0974003 1.0100 0.4i009  1.040.0 | 0.8240.05
DoRA 2 1.0+0.0 1.010.0  1.0+00 0.5740.05  1.0400 1.040.0 1.040.0  1.0400 0.3340.11  1.010.0 | 0-89+0.04
4 1.040.0 1.0400  1.0400 0.61012  1.0400 1.040.0 1.0400  1.0400 0431012 1.040.0 | 0.940.04
8 1.0+0.0 1.0400  1.0400 0471012 0931005  1.0x00 1.0400  1.0x00 0.571015 1.0100 | 0.940.04
16 1.0+0.0 1.010.0 10100 0574012  1.0400 1.040.0 1.040.0  1.040.0 0.6740.15 1.010.0 | 0.9240.03
AdaLoRA 2 1.0t0.0 0974003 1.0+00 0.3710.05 0.3710.05 0931005 0974003 1.0100 0.1310.07 1.040.0 | 0.77+0.06
4 1.0400 0971003 1.0400 0371007  0.57401 0971003 094008  1.0400 0.1310.07  1.040.0 | 0.7940.06
8 1.0400 0971003 1.0400 031005 0571014 0931003 0.871007 1.0400  0.0400  1.0400 | 0.7610.06
16 10100 0974003 1.0+00 0.4i009  0.571012 0971003 0934005 1.0+00  0.0400  1.0x0.0 | 0.78+0.06
OLoRA 2 1.0t0.0 094005 1.0+00 0471003 0.331003 0971003 097003 1.0+00 0.271011 1.040.0 | 0.7940.05
4 1.0400  0.9+005 1.0400 0.4310.03 0.631002  1.0400 1.00.0  1.040.0 0.61012  1.040.0 | 0.86+0.04
8 1.0400 0971003 1.0400 0.57101  0.510.08 1.040.0 1.00.0 10100 0.53+014 1.040.0 | 0.86+0.04
16 10100 097+003 1.0100 041005 0.6310.03  1.0+0.0 1.00.0 1.040.0 0434005 1.010.0 | 0-8410.04
PiSSA 2 1.0t0.0 0974003 1.0+00 0431011 0.531007 0971003  0.900s  1.0+00 0.331017 1.040.0 | 0.8140.05
4 1.040.0 1.0400  1.0400 0371007 0.74005 0971003  1.000  1.0400 0.0710.05 1.040.0 | 0.8110.06
8 1.0400 0971003 1.0400 03400 0571003 0.9710.03 1.00.0 1.0£0.0  0.53101  1.0t0.0 | 0-8310.05
16 1.0400 0931003 1.0400 0331012 0471003  1.0400 097003 1.0400 0471011 1.0400 | 0.82+0.05
EVA 2 10100 0974003 1.0+00 0431007 0.771005 0971003 10100  1.0100 0.6310.07 1.040.0 | 0.8840.04
4 1.0400 0971003 1.0400 0431005 0471002 1.0400  0.971003 1.0400 0.2310.05 1.040.0 | 0.8140.05
8 1.0400 0971003 1.0400 0.6310.03 0.710.08 1.040.0 10100  1.0+00 0.2310.03 1.040.0 | 0.85+0.05
16 1.0400  0.9710.03 1.0400 0.5310.03 0.7710.07  1.0:0.0 1.040.0  1.0400  0.0400  1.040.0 | 0.83+0.06
EVA + DoRA 2 1.040.0 1.040.0  1.010.0 0.840.0s 0971003  1.010.0 1.040.0  1.0400 0434012 1.010.0 | 0.9240.03
4 1.040.0 1.0400  1.0400 084005 0931003  1.0400 1.0400  1.0400 0.631003 1.040.0 | 0.9440.02
8 1.0+0.0 10100 10100 0.631019 0.871007  1.010.0 10100  1.0+00 0.5710.03 1.040.0 | 0.9140.04
16 1.040.0 1.0400  1.0400 0.67102  1.0400 1.040.0 1.0400  1.0400 0541016 1.040.0 | 0.9210.04

correlated. In Figure 11 (right), we visualize the cosine similarities between the SVD components
for different batch sizes, namely 4, 8, 16, and 32 for Llama-2-7B on the MetaMathQA dataset. We
observe that the components correlate strongly and remain mostly invariant to the batch size. This
indicates that smaller batch sizes may be used for obtaining the initialization, which results in less
computational overhead. In the case of Llama-2-7B on MetaMathQA, this means that we can use a
batch size of 4 since it induces a computational overhead of around 100 seconds. Afterwards, we can
continue the fine-tuning process with a larger batch size.
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Figure 11: Time in seconds until convergence of incremental SVD components for different batch
sizes for Llama-2-7B on the MetaMathQA dataset. The dashed line indicates the total number of
components.

F.3 Convergence speed

The data-driven initialization of EVA relies on incremental SVD on minibatches of activations in
the initial training stage. In Figure 11, we show that this process converges for Llama-2-7B on
MetaMathQA for different minibatch sizes. Using a minibatch size of 4 the computation for EVA’s
initialization lasts for approximately 80 seconds, which corresponds to around 90 minibatches. For a
batch size of 32 the computation of the SVD components takes around 500 seconds.

F.4 Batch order invariance

In Figure 12 left, we additionally show that the main components obtained via SVD mostly remain
consistent across different batch orders for a batch size of 4, again for Llama-2-7B on MetaMathQA.
To this end, we plot the cosine similarity between components obtained via incremental SVD after
rank redistribution. These results indicate that these models exhibit certain activation patterns that
remain consistent across different batch orders, which leads to a robust initialization for EVA.

F.5 Excluding ignored tokens for SVD

For some datasets we notice that masking out tokens for the SVD computation which are ignored for
the loss calculation during fine-tunine can be advantageous. However, this can result in a significant
reduction of the effective batch size for SVD if the number of completion tokens is small. An example
where this is the case in our experiments is the common-sense reasoning tasks which have long
prompts, but completion tokens are only one word per sample. This setting can lead to cases where
SVD does not converge for lower batch sizes. We therefore do not mask out the prompt tokens in
our experiments. Another setting where masking ignored tokens can be advantageous is multi-turn
conversation where the model is only trained on the assistant tokens. To achieve the results in Table 13
we mask out user tokens together with the prompt for the SVD computation.

G Rank redistribution analysis

To illuminate the rank redistribution process, we visualize the resulting ranks for each weight matrix
after SVD for Llama-2-7B on the MetaMathQA dataset for different values of p. Setting p = 1
results in a uniform rank distribution as in standard LoRA. However, setting p > 1 alters the number
of ranks per weight matrix. In Figure 13 we visualize the number of ranks assigned to each weight
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Figure 12: Left: Average cosine similarity between SVD components across 10 random seeds for
permuting the batch order. The first 10 components remain mostly consistent across all permutations.
While the remaining components vary, they strongly correlate with each other. Right: Average
spectral norm of difference between weight matrices at initialization and after training for LoRA and
EVA applied to Llama-2-7B, Llama-3.1-8B, and Llama-3.1-70B. EVA’s initialization is closer to the

final adapter than LoRA’s.
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Figure 13: The resulting rank allocation per weight matrix in each layer for Llama-2-7B on the
MetaMathQA dataset with different values of p. The first row represents a uniform distribution
where each weight matrix receives the same rank 7 = 16. The most change occurs for p < 1.5. The
redistribution converges for larger values of p.

matrix for different values of p > 1 and in Figure 14 we visualize the corresponding deltas. Both
visualizations clearly illustrate that the greatest change occurs for values of p < 1.5. Setting p to
higher values results in less and less change. Interestingly, some ranks still change when going from
p = 2.5 to p = 3. Finally, we conduct a hyperparameter search in which we search over different
valuesof p € {1,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2, 2.5, 3}. We report the results in Figure 15.
We find that for Llama-2-7B on MetaMathQA a uniform distribution performs favorably. The second
best performance is shared by p = 1.5 and p = 2. Therefore, we always search for p =1 and p = 2
for all our remaining experiments when we apply EVA and select the best performing one.

H Supplementary Proofs

For convenience we first repeat both Theorem 3.1 and Theorem 3.2 and provide a proof afterwards.
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Figure 14: Deltas between rank distributions per weight matrix in each layer for Llama-2-7B on the
MetaMathQA dataset with different values of p. The first row represents a uniform distribution where
each weight matrix receives the same rank » = 16. The most change occurs in the range p € [1,1.5].
Larger values of p do not induce additional significant changes to the rank distribution.
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Figure 15: Accuracy for different values of p when fine-tuning Llama-2-7B on the MetaMathQA
dataset.
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Optimality of SVD-Based Initialization for Maximizing Explained Variance

Let X € R?*? pe a matrix of activation vectors obtained from a pretrained model, where b is the
number of samples and d is the feature dimension. Suppose we wish to adapt a weight matrix
W e Rkxd using a low-rank update of the form AW = BA, where B € RE*7 A e R™%4 and
r < min(k,d). Let X = UXV T be the singular value decomposition (SVD) of the activation
matrix with o3 > g9 > - -+ > 0 being the singular values of 3. Then the top 7 right singular vectors
V., € R4X" solve the following optimization problem:

V.. = arg max Tr(VIXTXV),
VERIXr VTV=]

and also minimize the Frobenius norm reconstruction error:

V., =ar min X — M|>.
T & MERP X4 rank(M)<r ” ”F

Hence, V.,. forms the optimal basis for capturing the maximum variance of activations under a rank-r
projection.

Proof.

First, we define the empirical covariance matrix of activations as

1
S=—X"X, ©)
n—1
with V being the eigenvectors of S. Projecting X onto a subspace spanned by the orthonormal basis
V € R%*" the total captured variance is

Vary(x) =Tr(V X TXV)=Te(V'SV). (10)

The trace is maximized when V' contains the eigenvectors corresponding to the top 7 eigenvalues
of S, which are the top right singular vectors of X. This is verified by the Eckart—Young—Mirsky
theorem (Eckart & Young, 1936). The best rank-r approximation to X in the Frobenius norm is
given by

X, =Y o], (11)
=1

with o1 > o9 > --- > 0, which uses the top r right singular vectors. Hence the Eckart-Young
theorem directly proves both reconstruction with respect to Frobenius norm, as well as maximizing
the trace operator.

Gradient Signal Amplification via EVA Initialization.

Let AW = BA be a low-rank adaptation to a pretrained weight matrix W € R¥*9, where
B e R¥*", A € R"™? and r < min(k,d). Let z € R? be the activation input to this layer. Assume
activations @ are drawn from a distribution with covariance matrix 3 = E[xza " |. Then initializing A
with the top right singular vectors of a sample activation matrix X € R**¢ maximizes the expected
squared gradient norm:

oL |?
o st Tr(ATZA).
[55].] ~marss
Proof.
Let us consider the forward pass
y=(W+ BA)x (12)
with loss function £(g, y) and target y. The gradient with respect to B is
L 0L . v 1.7
9B~ oy” gz (13)
The squared Frobenius norm of the gradient is
oL ||* T \WT AT T T QT
Bl = Tr(Axz(g g)xr A')=(9 g) Tr(Azz' A"). (14)
F
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Since B A is initialized to be BA = 0 at the beginning of fine-tuning and the gradient g is entirely
governed by the behavior of the pretrained model, we can make the assumption that the gradient is
statistically independent of the input (x L g) and

Cov(z,g) =E[xg'] — E[z] -E[g'] = 0. (15)
Hence, by taking the expectation over & ~ D with E[zz "] = X we obtain
6|2 2
OB ||
Again, the trace is maximized when the rows of A are aligned with the top eigenvectors of X, that is,

the principal directions of the activations, as proven by the Eckart-Young theorem Eckart & Young
(1936).

x Tr(AXAT). (16)

Algorithm 2 Incremental SVD algorithm from Ross et al. (2008)

Input: Sequence of data batches { A°, ..., AT}, truncated SVD SVD(-), orthogonalization function
orth(+), running variance update function young_cramer_update(-, -)

b 2 0)2

1 mY %Zf:o A, 00« Zi:“%‘%’m) > initialize incremental mean/variance
2: UpZoV ' «+ SVD(A° —a?) > Perform initial SVD on A to get initial components
3: foriinl,..., T do o

4: a’i. — % > AL 5, Ml mt+ % > compute mean vectors
5. o'« young_cramer_update(ai~!, A?) > Update running variance
6 Al {Ai —a';4/ b(gitl) (m' — ai)} > concatenate mean correction factor
7. A"« orth(A’ — U, U | AY) > Obtain orthogonal component to U

. . A

88 R= [ 2’0_1 U’iigfl } > Define matrix R
9: UXVT + SVD(R) > Perform SVD on R
10: U, « [Ui—ﬁ A’} U, 2« X > Update SVD components
11: end for

I Ablation Studies

Finally, we conduct ablation studies on EVA to investigate important factors that contribute to its
performance. Specifically, we investigate the impact of scale and direction. To this end, we use the
VTAB-1K dataset because it comprises a diverse set of tasks and allows for a systematic investigation
on in-domain (natural) and out-of-distribution (specialized and structured) data. We report results for
our ablation studies in Table 25 and explain the different settings in the following paragraphs.

Effect of scale. To investigate the effect of scale on initialization, we add a setting that uses whitening
(EVA-whiten). Whitening scales the initialization by the reciprocal of their eigenvalues, which alters
scale, but preserves directions. We found that whitening can significantly improve performance in
structured (out-of-distribution) tasks, even leading to a slightly higher average score than EVA. This
indicates that scale is especially important for structured data. However, EVA-whiten experiences a
slight performance drop in natural and specialized tasks.

Effect of directions. To address the importance of the directions of the components, we randomly
permute its rows (EVA-perm). This preserves scale while corrupting directions and the /2 norm of A.
Additionally, we add a setting where we randomly rotate A (EVA-rot), which preserves the £ norm
but alters directions. We find that altering directions leads to a drop in performance on structured
tasks, while changing the ¢5 norm leads to a drop on natural tasks. Both EVA-perm and EVA-rot lead
to worse average performance across all tasks compared to EVA.

Effect of rank redistribution. We conduct an experiment in which we randomly initialize A
after performing rank redistribution (LoRA redist). This setting gives insights on the effect of the
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redistribution and whether its benefits are bound to EVA. Redistribution has a positive effect on LoRA
on natural tasks, but a negative effect on both structured and specialized tasks. This illustrates that
rank redistribution is most beneficial in combination with EVA’s initialization of A.

Generally, we can say that EVA performs partic-

ularly well on natural images and whitening can  Table 25: Group-wise averages for DINOv2-g/14

enhance its performance on out-of-distribution  gplation studies on the VTAB-1K benchmark.
images. The decisive factor with respect to this

improvement seems to be a controlled change Method Nat. Spec. Struct. All
in the scale of initialization induced by the sin-

gular values. Therefore, by changing the scale LoRA ) 832 [188.8 69.0" 78.4
in a controlled manner, we can make EVA more LoRA—rqdlst 87.3 88.0 68.2 79.4
compatible for different kinds of data. The re- ~ EVA-whiten [87.5° 87.5 [769.177 79.8

sults for EVA-perm confirm that the scale is the EVA-rot 87.7 88.0 682 9.6
decisive factor for initialization. EVA-perm 874 878 683 795
EVA 87.7 879 68.6 | 79.7

J Further Discussions

Alternative  data-driven initialization

schemes. We investigated alternative data-

driven initialization schemes such as Kernel-PCA (Schoélkopf et al., 1997) or Linear Discriminant
Analysis (Fisher, 1936, LDA). Kernel-PCA can account for non-linearities in the data but scales with
the number of datapoints, which is impractical. For LDA, we observed convergence instabilities
during incremental updates. In our setting we deal with sequences, therefore the number of datapoints
grows fast, making Kernel-PCA impractical. LDA projects the data onto a subspace that maximizes
linear separability between classes. Such an initialization scheme may be particularly interesting for
classification tasks like GLUE or VTAB-1K.

Additional latency of SVD. EVA leads to performance improvements over LoRA, but introduces
additional latency at the beginning of training to compute the initialization. In Figure 5 (left) we
demonstrate that this process constitutes merely 0.2% of the actual training time for Llama-2-7B
on MetaMathQA. In addition, in Appendix F we show that this process is largely invariant to the
batch size and order, meaning smaller batch sizes may be used, resulting in additional speedup. Since
the SVD computation does not require backpropagation and storing of optimizer states, there is no
memory overhead.

How to initialize B? We follow Hu et al. (2022) and initialize B = 0. All other initialization
methods initialize B ## 0, which requires altering the pre-trained model weights. In our experiments,
EVA usually outperformed CorDA and LoRA-GA, even though they are both data-driven and
leverage similar information. Therefore, setting B = 0 could also be a driving factor for improved
performance. We leave this investigation to future work. Finally, restoring the base model after
fine-tuning requires computing the delta of the weights before and after training for B # 0. In
contrast, EVA and LoRA can fully restore the base model’s weights by simply unloading the adapter
weights.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All claims made in the abstract and introduction are methodically detailed in
Section 3 (Method) and empirically supported across diverse domains (language, vision,
RL) in Section 4 (Experiments). Additional results can be found in the appendices.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section 5 (Discussion and Limitations) explicitly discusses several limitations.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: Theorem 3.1 (Section 3.2) and Theorem 3.2 (Section 3.3) clearly lay out their
assumptions regarding activation matrices, weight matrices, low-rank updates, and activation
distributions within their respective statements. Proofs for these theorems are included in
Appending H

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper specifies datasets, models, and the core mechanisms of its proposed
EVA method, including crucial parameters for SVD initialization (e.g. 7) and adaptive
rank redistribution (p). Standard training hyperparameters such as learning rates etc. are
also outlined for each experimental domain. Further detailed configurations essential for
reproducing EVA’s claimed performance, efficiency, and faster convergence are outlined in
the appendices.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the source code along with the submission (see Appendix A) to
ensure reproducibility. In addition, we will integrate EVA into the widely used PEFT library.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper outlines the experimental setup clearly in the main text, covering
models, datasets, core parameters, and evaluation metrics. For full reproducibility we
provide detailed configurations for each experiment in the appendices.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All experiments are conducted over multiple seeds. We report mean and
standard deviation for each experiment.
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« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: For all experiments we provide information about the number of gpus, type of
GPU used as well as estimated execution time.

Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conforms to the NeurIPS Code of Ethics. The paper transparently
presents the EVA methodology using public datasets and models, aiming for reproducible
science and contributing positively through more efficient model fine-tuning.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
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11.

12.

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses societal impacts by emphasizing positive contributions,
such as making foundation model fine-tuning more efficient and reducing computational
resource requirements. These improvements inherently address the negative societal and
environmental concerns tied to the high operational costs and energy consumption of large-
scale Al. By presenting solutions that enhance accessibility and sustainability, the work
contributes to a more responsible Al development landscape.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

¢ If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We do not release any pre-trained models.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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13.

14.

15.

Answer: [Yes]
Justification: [NA]
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: [NA|
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We did not conduct crowdsourcing or experiments with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects
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16.

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We did not conduct crowdsourcing experiments.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: [NA]
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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