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Abstract
Recent advances in retrieval-augmented genera-
tion (RAG) have initiated a new era in repository-
level code completion. However, the invariable
use of retrieval in existing methods exposes is-
sues in both efficiency and robustness, with a
large proportion of the retrieved contexts prov-
ing unhelpful or harmful to code language models
(code LMs). In this paper, we propose a selective
RAG framework to avoid retrieval when unneces-
sary. To power this framework, we design a self-
supervised learning approach to enable a code LM
to accurately self-evaluate whether retrieval can
improve its output quality and robustly leverage
the potentially noisy retrieved contexts. Using
this LM as both the selective RAG policy and the
generation model, our framework achieves state-
of-the-art repository-level code completion per-
formance on diverse benchmarks including Repo-
Eval, CrossCodeEval, and CrossCodeLongEval,
a new long-form code completion benchmark.
Meanwhile, our analyses show that selectively re-
trieving brings as much as 70% inference speedup
in the online serving setting without harming the
performance. We further demonstrate that our
framework is able to accommodate different gen-
eration models, retrievers, and programming lan-
guages. These advancements position our frame-
work as an important step towards more accurate
and efficient repository-level code completion.

1 Introduction

Automatic code completion has attracted long-lasting re-
search efforts due to its high practical value in improving
programmer productivity (Ye & Fischer, 2002; Hill & Ride-
out, 2004; Hellendoorn & Devanbu, 2017). One particularly
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challenging scenario is repository-level code completion,
where a system is required to complete lines, API invoca-
tions, or functions in a file from user repositories. For this
task, language models for code (code LMs) have emerged
as a promising solution due to their ability to leverage the
context of the current file to generate coherent code of flexi-
ble granularity (Tu et al., 2014; Svyatkovskiy et al., 2020;
Chen et al., 2021). However, these approaches fail to cap-
ture the holistic repository knowledge spanning beyond the
current file, such as user-defined APIs and inter-module
dependencies (Zan et al., 2022; Zhang et al., 2023; Ding
et al., 2023). Recently, the retrieval-augmented generation
(RAG) paradigm was proposed to bridge the gap: cross-file
contexts such as relevant code snippets or documentations
are retrieved and provided to code LMs as augmentations
to the current file. This approach has shown strong em-
pirical performance and was further advanced by recent
literature through designing better retrieval mechanisms for
prompting black-box code LMs (Lu et al., 2022; Shrivastava
et al., 2023b; Zhang et al., 2023) and adapting the LM to
better leverage structured retrieved contexts such as classes,
functions, or APIs (Ding et al., 2024; Zan et al., 2022).

Despite their encouraging performance, existing RAG-based
approaches largely ignore to address a critical question:

Should we always perform retrieval augmentation?

Our findings suggest that the answer is predominantly neg-
ative. First, in various code completion tasks, we discover
that up to 80% of the retrievals performed by a standard
RAG method do not enhance the performance of common
code LMs such as CodeGen (Nijkamp et al., 2023b) and
StarCoder (Li et al., 2023b), and many degrade the perfor-
mance by introducing irrelevant information (Section 5.1).
Second, always retrieving introduces notable inefficiencies.
For moderately sized repositories, sparse retrieval is already
as time consuming as code completion with a 3B code LM
(Section 5.3 and Section 6). This inefficiency is more pro-
nounced with dense retrieval, enterprise-scale repositories,
and iterative RAG methods such as Zhang et al. (2023).

In this paper, we challenge the assumption of always retriev-
ing by proposing a novel repository-level code completion
framework underpinned by a selective retrieval mechanism:
the system proactively abstains from performing unneces-
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import pandas as pd 
class TableManager: 
 def __init__(self, data)
  self.data = pd.DataFrame(data)
 … 
 def normalize_col(self, col): 
  """Normalize the values in col 
  to the range [0, 1]."""

<No Retrieval> <Retrieval Needed> 

return super().extract(
  ["calib_params“, "calib_mutable"], checkpoint_path, prefix, 
 **kwargs) 

Repoformer

Repoformer

Repoformer

from training.train_state_repository import TrainStateRepository 
from prob_model.posterior.posterior_mixin import CheckpointingMixin 
from typing import Path, Dict, Optional

class PosteriorStateRepository(TrainStateRepository, CheckpointingMixin):
 …
 def extract_calib_keys(self, checkpoint_path, prefix, **kwargs ) -> Dict: 

if col in self.data.columns: 
 min_val = self.data[col].min() 
 max_val = self.data[col].max() 
 if min_val != max_val: # avoid division by zero

 self.data[col] = (self.data[col] - min_val) 
       / (max_val - min_val) 

else: 
 raise ValueError(f"Column '{col}' does not exist") 

// prob_model/posterior/deep_ensemble/
// deep_ensemble_repositories.py
def extract_calib_keys(..) -> Dict: 
 return self.extract(
  ["calib_params", "calib_mutable"],
  0, checkpoint_path, prefix, 
  **kwargs) 

Model has low 
confidence

Model has high 
confidence

Figure 1. An overview of the proposed selective RAG framework. Given the current file context, the system first assesses whether retrieval
is required and triggers the retriever if the question can likely be benefited from retrieval (right), abstaining from retrieval otherwise (left).
Then, the code LM generates with optional retrieved contexts. With REPOFORMER, the two stages are streamlined via self-assessment.

sary or potentially detrimental retrievals (Figure 1 (a)). At
the core of our framework is REPOFORMER, an intelligent
code LM fine-tuned for robust code completion with self-
triggered retrieval augmentation. REPOFORMER reflects
three core principles:

1. Performance-oriented self-evaluation. After observ-
ing the current file, REPOFORMER explicitly expresses
the likelihood that its prediction quality could be im-
proved by cross-file retrieval. Our training strategy
enables the model to combine two factors in this deci-
sion: the code LM already knowing the answer without
retrieval (Kadavath et al., 2022) and the code comple-
tion question not depending on cross-file information
and thus retrieval is likely uninformative.

2. Robustness to retrieved contexts. REPOFORMER
learns to use the retrieved contexts to improve the qual-
ity of its output and avoid performance drops caused
by potentially noisy retrieved information.

3. Generalizability. The aforementioned two abilities
must generalize to any completion granularity, pro-
gramming language, and retriever choice. In addition,
REPOFORMER should be able to function as a plug-
and-play selective retrieval policy when other models
are employed as the generation model.

We posit that these abilities can be faithfully obtained by
learning from simulations of RAG. Specifically, we leverage
a large number of permissively licensed repositories, sample
diverse blanks to complete, and pair them with the retrieved
repository-level cross-file contexts. Then, for a given code
LM, the ground-truth label for selective retrieval is obtained

by contrasting the quality of its outputs with and without
retrieval augmentation. With this dataset, we design a self-
supervised objective to jointly train code LMs to accurately
self-evaluate the need for retrieval and robustly complete the
code with the optional retrieval augmentation (Section 3.3).

We perform comprehensive evaluations on a range of
repository-level code completion tasks from RepoEval
(Zhang et al., 2023), CrossCodeEval (Ding et al., 2023), and
CrossCodeLongEval a new large-scale benchmark focusing
on code chunk and function completion. Results show that
REPOFORMER achieves strong performance, outperform-
ing always retrieving with the same-sized StarCoderBase
by more than 3 absolute points for edit similarity across
multiple tasks. The 3B REPOFORMER performs on par with
always retrieving using the 16B StarCoder, and the 16B
REPOFORMER achieves state-of-the-art performance across
all the tasks (Section 5.2). Furthermore, our framework
allows for up to 70% inference speedup without harming ac-
curacy. We also establish that REPOFORMER can accelerate
RAG with larger black-box LMs as a plug-and-play selec-
tive RAG policy, improving the performance while reducing
the latency of line and API completion to 75% (Section 5.3).

Finally, in Section 6, we provide comprehensive analyses on
REPOFORMER’s generalization ability. We show that RE-
POFORMER makes precise retrieval abstention decisions, is
robust to retrieved contexts, and performs well when tested
in other languages or with other retrievers. To facilitate
future research on repository-level code completion, we will
release our implementation and the CrossCodeLongEval
benchmark at https://repoformer.github.io/.
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2 Related Work

Repository-level Code Completion Accurately complet-
ing the code in repositories has been a challenging research
problem due to cross-file dependency patterns caused by
modular design (Parnas, 1972; Tu et al., 2014). Early works
propose application-specific training methods for n-gram
LMs (Tu et al., 2014), RNNs (Hellendoorn & Devanbu,
2017; Wang et al., 2021), and Transformers (Svyatkovskiy
et al., 2020) to leverage structured knowledge beyond cur-
rent file’s context. Recent studies investigate fine-tuning
powerful pre-trained code LMs (Chen et al., 2021; Nijkamp
et al., 2023b; Li et al., 2023b) to better leverage retrieved
knowledge provided in context such as code and documenta-
tion snippets (Zan et al., 2022; Ding et al., 2024; Shrivastava
et al., 2023a). Concurrently, other studies show that black-
box code LMs can already take advantage of in-context
knowledge, depending on how well the knowledge is re-
trieved and formatted (Lu et al., 2022; Zhou et al., 2023;
Shrivastava et al., 2023b; Zhang et al., 2023). This approach
does not require one to train the LM and thus promises
better generalization. Orthogonal to these studies, this pa-
per identifies and addresses the robustness and efficiency
issues caused by invariably performing the retrieval aug-
mentation. Our solution takes the form of selective retrieval
augmentation through self-assessment.

Adaptive RAG This paper is consistent with the recent
trend of making the RAG paradigm active and adaptive. A
core question is finding an effective policy to decide when
to retrieve. He et al. (2021) propose to learn to adjust the
importance weight of retrieval based on language modeling
performance. Drozdov et al. (2022) proposes to upweight
the retrieved information when the retrieval has high quality.
Li et al. (2023a) and Jiang et al. (2023) suggest that retrieval
should be performed only when LMs have a high predictive
uncertainty. Mallen et al. (2023) discover that retrieval can
be avoided for popular facts. Concurrent to this work, two
new studies approach adaptive RAG from a learning per-
spective. SKR (Wang et al., 2023) collects instances where
retrieval is not helpful for black-box LMs and proposes sev-
eral methods to predict these instances. Self-RAG (Asai
et al., 2024) utilizes GPT-4 (OpenAI, 2023) as a knowl-
edge engine to distill a smaller LM to evaluate whether
answering a question can be benefited from retrieval. In
comparison, this paper highlights the importance of under-
standing whether an LM knows the answer (Kadavath et al.,
2022) in forming the retrieval policy. We introduce a simple
yet effective scheme to fine-tune a code LM for faithful self-
evaluation without extra modules (SKR), knowledge store
(SKR), or labels generated by an oracle LM (Self-RAG).
We show that our approach leads to no performance harms
(Section 5.2), substantial speedup (Section 5.3), and a high
decision accuracy (Section 6).

3 Approach

In this section, we first briefly formulate the repository-level
code completion task and the considered RAG setup. Then,
we illustrate the details of the proposed framework.

3.1 Background

Problem Formulation We denote each repository-level
code completion task as (Xl, Xr, Y, F ). Y is the ground
truth completion that needs to be generated. In this paper,
Y always contains one or more consecutive lines of code.
Xl and Xr are the code to the left/right of Y in the same
file. We will use the left/right context to refer to them. F is
the set of other files in the repository. A code completion
system utilizes Xl, Xr, and F to generate a hypothesis Ŷ .

Retrieval-Augmented Generation We follow the RG-
1 formulation in Zhang et al. (2023) to execute RAG for
code completion in four stages: indexing, query formation,
retrieval, and generation. We consider two components:

• An in-repository retrieverR that queries F with in-
formation from Xl and Xr and returns relevant cross-
file contexts CC. CC consists of k code chunks
cc1, cc2, ..., cck, each of which contains consecutive
lines of code extracted from a file in F . We mainly use
Jaccard similarity (Jaccard, 1912) asR due to its speed
and strong performance (Zhang et al., 2023).

• A code LM M that leverages Xl, Xr, and CC to
output Ŷ . The inclusion of Xr and CC is optional.
In this paper, we always directly provide Xr in the
prompt in addition to Xl (Shrivastava et al., 2023b; Pei
et al., 2023). We provide empirical support for this
design in Appendix B.

Full documentation of the RAG stages and their hyperpa-
rameters are provided in Appendix A for further reference.

3.2 Self-selective RAG for Code Completion

Central to our framework is the idea of selective RAG, where
the system decides whether the LM’s generation could ben-
efit from retrieved contexts and abstains from retrieval aug-
mentation when it is deemed unnecessary (Figure 1).

For this selective decision, two traditional heuristics are rel-
evant: (1) performing a trial retrieval and only augmenting
the high-relevance contexts (e.g., Drozdov et al. (2022))
or (2) performing a trial generation and conducting RAG
only when the model’s uncertainty is high (e.g., Jiang et al.
(2023)). For repository-level code completion, these strate-
gies are informative to some extent: in line completion and
API completion from RepoEval, both heuristics can main-
tain the same level of performance with only 50% retrieval
budget. However, we find that they fail to generalize well to
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all tasks and still incur a high latency cost as they need to
conduct retrieval to make the decisions (Appendix C).

Instead, our framework adopts a self-selective RAG formu-
lation. After observing Xl and Xr, the LM directly self-
triggers cross-file retrieval by generating a special token
<cc> or abstains from retrieval via an empty token ϕ1.
This approach is inspired by the explorations in Kadavath
et al. (2022), which show that an LM can be trained to pre-
dict whether it knows the answer or not without retrieval.
Beyond this self-knowledge, our model also combines the
question’s characteristics (i.e., whether retrieving cross-file
information can likely help or not) in its judgment, as we
will discuss in the next section. Finally, after the optional
retrieval, the LM proceeds with the code completion with
Xl, Xr, combined with CC if retrieval is triggered.

Implementation-wise, self-selective RAG’s inference is con-
veniently modeled as an extension to fill-in-the-middle
(Bavarian et al., 2022), with the entire process executed in a
single left-to-right pass (Figure 2). One advantage of this de-
sign is the flexibility. The LM possesses the ability for RAG
and fill-in-the-middle, and can seamlessly self-switch be-
tween the two when encountering different questions. Users
can also easily adjust the ratio between the two through the
retrieval threshold. Another advantage is its efficiency. The
selective decision overhead is only a single forward pass, a
significant save compared to making the retrieval decision
via trial generation or trial retrieval. When the LM abstains
from retrieval, it can directly proceed with generation and
the retrieval overhead is completely avoided.

3.3 Self-supervised Multi-task Learning

To power self-selective RAG, the LM needs two crucial
abilities: accurate self-assessment and robustness to the
retrieved context. We design a contrastive data labeling
scheme to mine self-supervision from public repositories,
followed by fine-tuning with a novel multi-task objective.

Data construction We leverage large-scale permissively
licensed repositories from the Stack (Kocetkov et al., 2022)
and create the fine-tuning data via a three-step procedure:

1. Sample target lines Y that are either (1) random code
chunks of varied lengths or (2) function bodies.

2. Retrieve CC using the current file. We include Y in
the query for 50% of the data2.

3. Label whether extending the current file with CC can

1In practice, instead of greedily decoding <cc>, we check
whether its probability exceeds a certain threshold.

2The main goal of the design is to align better with both non-
iterative and iterative RAG use cases. During testing, a user may
retrieve with both the in-file context and Y ′, a model’s draft pre-
diction, which results in a CC distribution close to that with Y in
the query (Zhang et al., 2023).

(a) Fill-in-the-middle

(b) Self-selective RAG

fim_p

eof

left cxt right cxt

cross file cxt

𝜙

completion

<CC> fim_m

fim_s fim_m

completion

fim_p left cxt right cxtfim_s

fim_m completion

Figure 2. A comparison between fill-in-the-middle and self-
selective RAG. We mark the end of the current file with a new
token <eof>, which triggers the LM’s self-evaluation. → de-
notes the invocation of the LM. We color current-file context,
retrieved contexts, and LM-generated parts in blue, green, and red
respectively. fim p, fim s, and fim m refer to the special tokens
for fill-in-the-middle: fim prefix, fim suffix, and fim middle.
These tokens are already learned during the pre-training.

improve a code LMM’s code completion quality by
more than a threshold T , measured by Edit Similarity
(ES, definition in Section 4.1) against Y .

The full algorithms are presented in Appendix D. After
running the algorithm, we obtain the fine-tuning instances,
each in the form (Xl, Xr, Y, CC, label).

Verbalization Each instance is verbalized into a sequence
for fine-tuning. If label is false, only Xl and Xr are pro-
vided preceding Y . Otherwise, we additionally provide
CC after the special token <cc>. The two verbalizations
correspond to the two branches in Figure 2 (b).

Training Objective We introduce two losses, Leval for
self-assessment and Lgen for code generation.

1. Leval: a cross-entropy loss on predicting <cc> imme-
diately following <eof>.

Leval = − log pM(<cc>|Xl, Xr) (1)

2. Lgen: a cross-entropy loss on the tokens following
<fim middle>. Depending on label, Lgen represents
either code completion with only in-file information or
retrieval-augmented code completion.

Lgen =

{
− log pM(Y |Xl, Xr, CC), if label
− log pM(Y |Xl, Xr), otherwise

(2)

The final training objective is λLeval + Lgen, a weighted
combination of the two losses. We do not supervise the
model on predicting the other tokens in Xl, Xr, CC, or the
special tokens for fill-in-the-middle. Teacher forcing is used
just as in normal causal language model training.
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4 Experimental Setup

4.1 REPOFORMER Implementation Details

Training Data We sample Python repositories from the
Stack (Kocetkov et al., 2022). Basic filtering are applied to
retain 18k repositories that have (1) at least five Python files,
(2) at least three imports per file, and (3) at least two local
imports per file. These criteria ensure the existence of local
dependencies where RAG could be helpful. We useM =
StarCoderBase-1B and T = 0 to label 240k chunk and 120k
function completion instances. We reserve 500 repositories
for validation and use the rest for training.

Training We fine-tune the 1B, 3B, 7B, and 16B variants
of StarCoderBase with λ = 1.0, maximum sequence length
2048, learning rate 2e-5, batch size 512, 50 warmup steps,
and a linear learning rate decay. The models are trained
for 2 epochs, which approximately takes 8, 12, 20, and
50 hours for the 1B/3B/7B/16B models respectively with
8 Nvidia A100 GPUs (40G memory). Our implementa-
tion is based on Jain et al. (2023)3. We will call our mod-
els REPOFORMER-1B/3B/7B/16B. We have also applied
the same method to train a multilingual version of REPO-
FORMER on a mixture of Python, Java, C#, and Typescript
repositories. As we focus on the methodological discussion
in the main text, we refer interested readers to Appendix E.2
for the detailed experiment setup and results.

Hyperparameter optimization We conduct a grid search
with StarCoderBase-1B on the following search space:
learning rate {1e-5, 2e-5, 5e-5}, λ {0.2, 1.0, 2.0, 5.0}, train-
ing epochs {1, 2, 5}, and warmup steps {50, 100}. The best
hyperparameters are selected based on the code completion
performance on the validation dataset.

4.2 Evaluation Setup

Evaluation Datasets We evaluate on RepoEval (Zhang
et al., 2023), which consists of line, API, and function com-
pletion tasks created from 32 Python repositories. To in-
vestigate the generalization to other languages, we also
evaluated the original CrossCodeEval (Ding et al., 2023),
which features line completion instances covering four lan-
guages: Python, Java, C#, and TypeScript (Appendix E.2).
Observing that RepoEval has a limited repositrory coverage
and that CrossCodeEval has a limited task coverage, we
additionally leverage 1500 raw Python repositories from
CrossCodeEval to create a new chunk and function comple-
tion benchmark, which we call CrossCodeLongEval. We
detail the dataset creation process and basic statistics in Ap-
pendix D. For the rest of this paper, we will use CCEval
to refer to both CrossCodeEval and CrossCodeLongEval
interchangeably, and use the specific language and task (line,

3https://github.com/amazon-science/ContraCLM

chunk, or function completion) to differentiate them.

Evaluation Metrics We evaluate Ŷ with both reference-
based and execution-based evaluation. For reference-based
evaluation, exact match (EM) and edit similarity (ES) are
reported. Following Zhang et al. (2023), ES is defined as

ES(Ŷ , Y ) =
1− Lev(Ŷ , Y )

max(|Ŷ |, |Y |)
, (3)

where Lev is the Levenshtein distance (Levenshtein et al.,
1966). We report ES×100 in all the tables following Zhang
et al. (2023) for better readability. For execution-based
evaluation, we report the unit test pass rate (UT). Ŷ is said
to pass the unit tests if replacing Y with Ŷ does not cause
any unit test to fail. We implement simple post-processing
procedures to handle common cases such as excessive lines
in model’s outputs, which are documented in Appendix A.

Models We experiment on two families of strong code
LMs. CodeGen-Mono (Nijkamp et al., 2023b) is pretrained
sequentially in natural language, multilingual code, and a
Python corpus. StarCoder and StarCoderBase (Li et al.,
2023b) are trained with fill-in-the-middle ability on a large
corpus of multilingual code, GitHub issues, Git commits,
and Jupyter notebooks. StarCoder is obtained by training
StarCoderBase on an additional Python corpus.

5 Results

5.1 Is retrieval always helpful?

As a proof of concept, we first show that on a range of
repository-level code completion tasks, the retrieved con-
texts often fail to improve code LMs’ generation quality.

In Table 1 and Figure 3, we evaluate four code LMs on
function completion and API completion from RepoEval.
For each model, we report the instance-level performance
change from code completion only using Xl and Xr to
retrieval-augmented code completion with Xl, Xr, and CC
(detailed prompts in Appendix A).

The results reveal an intriguing pattern: for repository-level
code completion, the help from cross retrieval is often sparse.
Specifically, retrieval improves LMs’ performance on only
20% or fewer instances. For more than 60% of the instances,
retrieval augmentation does not affect the performance at
all4. Finally, another 20% retrievals actually harm the perfor-
mance, almost as often as the first case. The observed trends
are consistent for both API and function completion and
hold for both small-sized (1B and 2B) and moderate-to-large
(around 16B) code LMs. The generality of this observation
is further confirmed by an analysis of REPOFORMER’s train-

4Upon a manual inspection, we find that most of the outputs in
this category are also not changed by retrieval at all.
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Figure 3. The performance gain on RepoEval API completion from retrieved cross-file contexts. Each bucket contains values ranging from
label-10 to label+10 except for the central bucket, which corresponds to exactly 0. The retrieved contexts only improve the performance
in about 20% of instances. The trend is consistent across all the evaluated LM families and sizes.

Model Size Performance (UT) UT Change
Xl + Xr Xl + Xr + CC ↓ = ↑

CodeGen-Mono 16B 23.74 24.18 23 407 25
CodeGen-Mono 2B 30.55 32.51 18 400 37

StarCoder 16B 34.73 42.86 16 386 53
StarCoderBase 1B 22.20 25.71 16 407 32

Table 1. The performance change on RepoEval function comple-
tion exhibited by four models from retrieved cross-file contexts.
For the majority of the instances, RAG does not improve the perfor-
mance. “↑”, “=”, “↓” denote the counts for performance increase,
no performance change, and performance drop.

ing data, where we find that retrieval improves the perfor-
mance for only fewer than 30% instances (Appendix D).
Together, these findings highlight the suboptimality of the
always retrieving and augmenting the cross-file contexts and
thus motivate our selective retrieval proposal.

5.2 REPOFORMER achieves strong code completion
performance via selective RAG

Next, we evaluate the code completion performance of RE-
POFORMER. We compare the following three settings5. For
the first two baselines, we use the state-of-the-art single-
iteration prompting pipeline (Zhang et al. (2023), detailed in
Appendix A). We use StarCoder models due to their strong
performance among the open-source code LMs.

1. No Retrieval. This baseline only provides Xl and Xr

to the model in the prompt.
2. Always Retrieving. This baseline always augments

Xl and Xr with the retrieved CC.
3. Selective Retrieval. We provide REPOFORMER with

Xl and Xr in the prompt, optionally augmented with
CC based on two selective RAG policies:

• Greedy Selection. Retrieval is performed if
<cc> is the most likely token following <eof>.

• Threshold Selection. If the probability of <cc>

5We do not consider iterative retrieval because we find that
single-iteration RAG already achieves the majority of the perfor-
mance gains from multi-iteration RAG.

following <eof> is greater than a threshold T ,
retrieval augmentation is performed6.

The results are summarized in Table 2. Compared to no
retrieval and always retrieving with StarCoderBase of the
same size, REPOFORMER’s selective retrieval strategy ex-
hibits strong performance improvements across all the tasks
and both lexical-based and execution-based metrics. Via the
threshold selection strategy, REPOFORMER-3B can outper-
form StarCoderBase-7B on most of the tasks and metrics
except EM for API completion, even outperforming the 5x
larger StarCoder in terms of ES for API and chunk comple-
tion. Finally, The REPOFORMER-16B model outperforms
the strongest StarCoder baseline by 3%, averaged across all
tasks, setting up the new start-of-the-art for repository-level
code completion. We also experimentally confirm that the
performance improvement from our framework can gener-
alize to three languages beyond Python (Appendix E.2) as
well as dense retrieval instead of Jaccard similarity (Ap-
pendix E.3). In later sections, we demonstrate that the ob-
served success is due to both the ability to accurately abstain
from retrieval and the improved robustness to retrieval.

In terms of code completion accuracy, the threshold selec-
tion strategy outperforms the greedy selection strategy on all
the tasks. In the next section, we show that the two strategies
represent different ways to achieve a good balance between
accuracy and inference budget.

5.3 REPOFORMER improves inference efficiency

We illustrate the benefits of REPOFORMER for saving the
inference latency in a realistic “online serving” setting.

Latency Model We assume that indexing has already been
done for the working repository. Given a code completion
request containing the current file (Xl, Xr), the system
issues three processes at the same time:

6We find that T = 0.15 for function completion and T = 0.2
for the other tasks generally work well. These two thresholds are
always used unless otherwise stated.
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RepoEval CrossCodeLongEval
(Line) (API) (Function) (Chunk) (Function)Size Model RAG Policy

EM ES EM ES UT ES EM ES ES

1B
STARCODERBASE

No 43.44 67.77 37.81 66.54 22.20 47.65 31.08 60.09 47.49
Always 51.19 72.30 43.94 69.17 25.71 55.64 37.22 63.73 50.50

REPOFORMER
SelectiveG 51.90 74.50 43.50 71.00 24.00 53.10 38.52 68.08 52.09
SelectiveT 54.40 76.00 46.10 72.70 28.79 57.30 41.92 69.97 53.71

3B
STARCODERBASE

No 49.00 72.12 40.44 69.02 24.84 51.22 36.14 64.65 49.88
Always 56.69 76.68 47.00 72.62 29.67 57.68 42.26 67.74 53.39

REPOFORMER
SelectiveG 56.30 77.60 46.10 73.60 28.57 54.70 42.06 70.70 54.47
SelectiveT 59.63 79.02 49.31 74.96 32.96 60.56 46.66 72.23 56.24

7B
STARCODERBASE

No 51.88 74.03 43.31 70.79 25.49 52.28 38.88 66.61 52.45
Always 59.44 78.15 49.56 73.65 31.43 58.51 44.44 69.53 55.41

REPOFORMER
SelectiveG 56.00 76.63 48.06 75.03 30.77 55.27 43.80 72.46 56.14
SelectiveT 59.63 78.63 50.87 76.89 35.16 60.64 46.88 74.20 57.18

16B
STARCODER

No 55.25 76.07 44.50 71.00 34.73 53.60 42.58 69.40 54.20
Always 61.25 79.24 51.12 74.50 42.86 60.96 47.90 71.90 58.06

REPOFORMER
SelectiveG 58.13 78.81 48.69 76.23 42.42 58.42 45.00 73.36 57.71
SelectiveT 61.75 80.34 51.88 77.93 44.18 62.58 49.18 75.50 58.93

Table 2. Experiment results on RepoEval and CrossCodeLongEval. The best performance among each model size is boldfaced. We use
SelectiveG and SelectiveT to denote the greedy selection and the threshold selection strategy for selective retrieval. REPOFORMER greatly
outperforms STARCODERBASE of the same size while consuming a smaller retrieval budget. Among the two selective policies, threshold
selection enables the best selective RAG performance.

• P1: make a retrieval decision using REPOFORMER.
• P2: use a code LMM to generate Ŷ without CC.
• P3: retrieve CC and generate Ŷ with CC usingM.

Depending on the result of P1, the system waits for either P2

or P3 and ignores the other process. IfM is REPOFORMER,
P1 can be merged with P2 by forcing M to generate a
hypothesis without CC after collecting the retrieval deci-
sion. We consider three latency terms: (1) Td, time required
for the retrieval decision, (2) Tr, the retrieval latency, and
(3) Tg, the generation latency. Then, the latency for P1,
P2, and P3 are Td, Tg, and Tr + Tg. WhenM is REPO-
FORMER or a model larger than REPOFORMER, we have
Td < Tg < Tr + Tg. Therefore, the latency of the entire
system is Tg or Tr + Tg depending on P1. Using this la-
tency model, we benchmark the latency of various selective
retrieval settings on RepoEval with the vllm library (Kwon
et al., 2023) on a single Nvidia A100 GPU (80G).

First, we considerM = REPOFORMER and present the re-
sults in Table 3. Line and API completion are presented
to cover short and moderate target lengths7. Both selective
strategies significantly improve the latency, with a different
trade-off: threshold selection results in improvements for
both accuracy and latency compared to always retrieving,
while using greedy selection results in a larger latency gain
with a minor performance degradation (around 1.0 ES). It is

7We omit the function completion results as RepoEval uses very
small repositories for function completion for easier unit testing.

RAG Policy API Completion Line Completion
ES %RAG SU ES %RAG SU

Always 72.02 100% 0% 75.91 100% 0%
SelectiveG 71.04 18% 69% 74.50 19% 61%1B
SelectiveT 72.72 61% 28% 76.00 62% 27%

Always 74.66 100% 0% 78.68 100% 0%
SelectiveG 73.60 19% 46% 77.60 20% 43%3B
SelectiveT 74.96 78% 17% 79.02 74% 16%

Table 3. RAG latency of REPOFORMER with two self-selective
RAG paradigms. %RAG = ratio of instances where RAG is
performed. SU = Speedup compared to always retrieving (the
higher, the better). Compared to the always retrieving baseline,
the threshold selection strategy consistently demonstrates gains in
both accuracy and latency. The greedy selection strategy shows
much larger latency gains with a small performance degradation.

worth mentioning that the latency improvement from selec-
tive RAG could be further enhanced with a more advanced
retrieval setup. For instance, conducting dense retrieval on
large repositories often consumes more than 80% of the
entire RAG pipeline’s latency. Then, a 20% RAG policy
could translate into more than 70% speedup. We empirically
verify this statement in Appendix E.3.

Next, we consider using diverse larger LMs as M in
the code completion framework and using selectionT with
REPOFORMER-1B as a plug-and-play selective RAG pol-
icy to decide whether retrieval should be performed. We
experiment on a diverse set of LMs: StarCoderBase, Code

7
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Model RAG Policy API Completion Line Completion
ES SU ES SU

Always Retrieving 73.65 0% 78.15 0%SCB-7B REPOFORMER-1B 74.10 24% 78.31 25%
Always Retrieving 74.50 0% 79.24 0%SCB-16B REPOFORMER-1B 74.84 24% 79.48 24%
Always Retrieving 63.07 0% 68.42 0%CG25-7B REPOFORMER-1B 63.37 20% 68.86 29%
Always Retrieving 58.75 0% 59.99 0%CL-7B REPOFORMER-1B 58.91 25% 60.47 28%
Always Retrieving 61.08 0% 61.58 0%CL-16B REPOFORMER-1B 62.10 32% 62.45 30%
Always Retrieving 63.38 0% 61.76 0%CHATGPT REPOFORMER-1B 64.01 28% 61.92 18%

Table 4. Accuracy and latency of larger code LMs as the genera-
tion model and with REPOFORMER-1B as the policy model for
selective RAG. SCB = StarCoderBase, CG25 = CodeGen25, CL
= Code Llama. SU = Speedup compared to Always Retrieving (the
higher, the better). Compared to the Always Retrieving baseline,
REPOFORMER’s selective decisions improve both the accuracy
and latency of these larger LMs.

Llama (Roziere et al., 2023)8, CodeGen25 (Nijkamp et al.,
2023a), and ChatGPT9. As shown in Table 4, the selective
predictions from REPOFORMER-1B successfully reduce
the inference latency with different larger LMs by approxi-
mately 25% while improving their accuracy. Collectively,
the findings indicate that REPOFORMER has acquired ro-
bust selective retrieval capabilities that could generalize to
diverse types of code LMs.

6 Analysis

In this section, we present further analyses and ablation
studies on REPOFORMER-1B.

Is REPOFORMER sensitive to threshold settings? In
Figure 4, we present the code completion accuracy and la-
tency of REPOFORMER as a function of the threshold. As
the threshold increases, the model’s code completion per-
formance first increases due to avoiding potentially harmful
retrievals. At threshold 0.4, the model still maintains similar
performance compared to always retrieving, with latency re-
duced by 50%. This result demonstrates that REPOFORMER
can accommodate various threshold settings and provide a
good accuracy-latency trade-off. We provide the visualiza-
tion for other tasks in Appendix E.4.

Does REPOFORMER make accurate and calibrated se-
lective retrieval decisions? In Figure 5, we evaluate the
precision of retrieval abstention decisions made by REPO-
FORMER’s threshold selection strategy. We find that the
abstentions are accurate for over 80% instances across all

8We accessed the model through Amazon SageMaker (https:
//docs.aws.amazon.com/sagemaker/).

9We use gpt-3.5-turbo-0613 via the OpenAI API.
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Figure 4. The accuracy and latency change with different threshold
settings. Selective Retrieval with REPOFORMER achieves better
accuracy and better latency than always retrieving. In addition,
this behavior is relatively insensitive to the threshold.

0.0 0.2 0.4 0.6 0.8 1.0
Proportion

Line (RepoEval)

API (RepoEval)

Function (RepoEval)

Chunk (CCEval)

Function (CCEval)

Repoformer-1B Retrieval Abstentions

Correct without RAG
Incorrect, RAG does not help

Incorrect, RAG helps

Figure 5. An analysis of the instances where REPOFORMER-1B
abstains from retrieval. We divide the instances into (1) the model
answering correctly without retrieval (dark blue), the model mak-
ing a mistake that cannot be improved by retrieval (light blue),
and the model achieving better performance when retrieval is per-
formed (red). The precision of abstention is over 0.8 on all tasks
except for Function (RepoEval), which has a precision of 0.78.

the tasks: when REPOFORMER abstains from retrieval, its
code completion prediction either is already correct with-
out retrieval or cannot be improved by retrieval. We also
evaluate the calibration of the selective decisions and find
REPOFORMER generally making near-calibrated predictions
for line and API completion while the calibration is sub-
optimal for function completion with UT employed as the
metric (Appendix E.1). We hypothesize that this could be
caused by using ES to create the training signal and encour-
age future work to devise methods for labeling the quality
of function completion more effectively.

Is REPOFORMER robust to retrieval? In Figure 6, we
show the performance change caused by CC on the in-
stances where REPOFORMER requests for retrieval. Com-
pared to STARCODERBASE, REPOFORMER exhibits more
and greater performance gains upon observing CC. The
number of performance decreases is also significantly re-
duced, indicating an improved robustness to the potentially
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Figure 6. The performance change on RepoEval from retrieved
cross-file context for the instances where REPOFORMER self-
selects retrieval. Compared to StarCoderBase, REPOFORMER

is better at leveraging CC to improve the generation quality.

irrelevant retrieval contexts. In Table 8 in the appendix, we
further study the effect of using dense retrieval. Although
dense retrieval returns an arguably different context dis-
tribution compared to sparse retrieval, REPOFORMER still
exhibits strong improvements in both quality and latency.

Ablation Study We study several alternative designs:

• (A1) Combining Leval and Lgen as a single cross-
entropy loss. In general, this down-weights Leval.

• (A2) Removing the self-evaluation loss Leval.
• (A3) Further removing all the CC from A2. This

amounts to only training on fill-in-the-middle.
• (A4) Placing <cc> and CC after <fim middle> and

marking its end with a new token <cc end>. A4
mainly studies whether it is more beneficial to train the
LM to treat CC as context fetched during fill-in-middle
generation instead of part of the input context.

We fine-tune StarCoderBase-1B with the same setup as
REPOFORMER and present the results on CCEval in Ta-
ble 5. Although A1 has slightly better RAG performance,
it fails to make meaningful selective decisions due to Leval

being outweighed by Lgen in long sequences: the probabil-
ity of <cc> is almost always 1. For A2, we find it only
slightly outperforms REPOFORMER, suggesting learning
Leval does not harm the RAG ability a lot while bringing
in the strong selective retrieval ability, which in turn boosts
both accuracy and latency. A3 has the same performance
for in-file completion as REPOFORMER, but exhibits worse
RAG performance, indicating the necessity of training with
CC. Finally, A4 achieves reasonable chunk completion per-
formance but performs much worse in function completion.

Model RAG Policy Chunk Completion Function Completion
T %RAG ES T %RAG ES

SC No - 0% 60.09 - 0% 47.49
Always - 100% 63.73 - 100% 50.50

RF
No - 0% 66.22 - 0% 49.77

SelectiveT 0.20 75% 69.97 0.15 76% 53.71
Always - 100% 69.95 - 100% 53.56

A1
No - 0% 66.14 - 0% 49.25

SelectiveT 0.99 100% 70.21 0.99 100% 53.93
Always - 100% 70.21 - 100% 53.93

A2 No - 0% 66.49 - 0% 49.02
Always - 100% 70.45 - 100% 53.90

A3 No - 0% 66.25 - 0% 49.01
Always - 100% 68.85 - 100% 52.12

A4
No - 0% 64.96 - 0% 25.44

SelectiveT 0.10 86% 69.35 0.10 83% 26.50
Always - 100% 69.19 - 100% 26.35

Table 5. Ablation study results. We report the performance on two
tasks from the CCEval dataset. SC = StarCoderBase-1B. RF =
REPOFORMER-1B. T = threshold for the SelectiveT policy. We
found T = 0.10 works better for A4 and thus applied it to all the
A4 results. %RAG = ratio of instances where RAG is performed.

We hypothesize that placing CC within the infilling part is
detrimental due to breaking the fill-in-the-middle semantics
learned in StarCoder pre-training.

7 Conclusion

In this paper, we challenge the common assumption of al-
ways performing retrieval for RAG-based repository-level
code completion. In response, we propose a selective re-
trieval augmentation framework powered by REPOFORMER,
a code LM that identifies whether cross-file context is nec-
essary, and self-triggers retrieval. Extensive evaluations
demonstrate our approach’s effectiveness in enhancing ac-
curacy while significantly reducing latency, showcasing its
potential in practical coding environments.

Discussion Building upon REPOFORMER, future research
may consider several important directions:

1. Further speeding up large LMs. Beyond as a selec-
tive retrieval policy, REPOFORMER has the potential
to serve as an effective plug-in draft model in settings
such as speculative decoding (Chen et al., 2023).

2. More effective function completion. To enable a
good scalability, we used lexical similarity as the sig-
nal for training label creation. Although this heuristics
enables improvements in function completion evalua-
tion, designing a more accurate and scalable labeling
approach is an important future direction.

3. Personalized retrieval. We apply a uniform selective
policy across repositories. However, certain reposito-
ries could be inherently more RAG-friendly by exhibit-
ing a higher level of duplication (Zhang et al., 2023).
Adapting the selective RAG paradigm towards accurate
personalized policies is an important direction.
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A Detailed RAG Execution Setup

Below, we describe the four steps we follow for executing RAG as well as the related hyperparameters.

1. Indexing. All files in F are divided into fix-sized code chunks with a sliding window. We set the chunk size to 20 for
line, API, and chunk completion and set 50 for function completion. We use half of the chunk size as the stride size.
Despite the duplication caused by the overlap between adjacent chunks, this design improves retrieval accuracy with
tolerable cost, as the number of files is limited in a repository compared to large open-domain code corpora.

2. Query Formation. A query is constructed based on Xl. We always use a fixed number of lines at the end of Xl (i.e.,
immediately preceding Y ) as the query. The query contains the same number of lines as the chunks in the index.

3. Retrieval. A similarity function f is used to compare the query with every chunk and identify k most similar code
chunks. We use k = 10 and Jaccard similarity (Jaccard, 1912) for f for the main results. Fragment alignment (Lu
et al., 2022) is then applied: for each of the k most similar code chunks, the chunk immediately following is included
in CC instead of the original chunk. We explored other choices mentioned in Figure 8 such as cosine similarity with
UniXCoder (Guo et al., 2022) or CodeBLEU (Ren et al., 2020), but find them failing to outperform Jaccard similarity.

4. Generation. CC is concatenated with the in-file context as a prompt forM. The prompt is provided below.

Prompt Recent literature demonstrates the effectiveness of directly providing the retrieved information as part of the
context of LMs (Ram et al., 2023; Shi et al., 2023). Following these studies, we directly concatenate the in-file context with
CC to provide it to the model (Figure 1). To prompt CodeGen-Mono, we use the following input ordering:

[Right Context] [Cross-file Context] [Left Context]

To prompt StarCoder, we use the following fill-in-the-middle-prompt:
<fim prefix> [Left Context] <fim suffix> [Right Context] [Cross-file Context] <fim middle>

For the cross-file contexts, we add a # symbol to present them as comments and add the following line before each cci:

# the below code fragment can be found in: [file path]

After concatenating the verbalized cci together, we add another line to the start of the CC:

# Here are some relevant code fragments from other files of the repo:

For the in-file completion baselines such as in Section 5.1 and Appendix B, our prompts are exactly the previous prompts
with the [Cross-file Context] part removed.

Decoding and Post-processing For all the experiments, we follow previous work and use greedy search (Zhang et al.,
2023; Ding et al., 2023). We left-truncate the left context to 1024 tokens, right-truncate the right context to 512 tokens,
and right-truncate the cross-file context to 512 tokens. The max generation length is set to 50 tokens for line, API, and
chunk completion, and 256 tokens for function completion. We perform task-specific post-processing on the model’s raw
predictions. For line, API, and chunk completion, we truncate the prediction to having the same number of lines as in Y .
For function completion, we first add a placeholder pass function body and use tree-sitter10 to determine the position of the
function in the file. Then, we concatenate the Xl and Ŷ , parse the string again with tree-sitter, and extract the function body
as the final Ŷ if the string can be parsed. Otherwise, we directly return the raw Ŷ without post-processing.

B Why infilling?

As part of the in-file context, Xr contains rich information about how the future execution relies on the code to complete.
Right contexts are also shown useful for tasks such as function call argument completion (Pei et al., 2023). However,
previous literature such as Zhang et al. (2023) suggests splitting Xr and retrieving code chunks from it. With code LMs
trained on fill-in-the-middle such as StarCoder, we argue that directly providing Xr in the prompt is more preferable.

To illustrate, we investigate the effect of directly providing Xr in the prompt for CodeGen-Mono 16B and StarCoder on
current-file code completion and retrieval-augmented code completion. Figure 7 presents the performance on RepoEval

10https://tree-sitter.github.io/tree-sitter/
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with different types of contexts provided in the prompt. Whether cross-file contexts are present or not, providing right
contexts can greatly improve the code completion performance. The gain is consistent for both API and function completion.
Compared to CodeGen, StarCoder can better leverage the right context to generate more accurate code. Overall, we observe
that leveraging the entire right context to perform infilling represents a much stronger baseline. Therefore, in this paper we
have exclusively focused on the infilling setting with the StarCoder family.
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Figure 7. A comparison between four prompting strategies for RepoEval by combining left context (L), right context (R), and cross-file
contexts (CC). Leveraging right contexts to build infilling-style prompt generally improves the performance regardless whether CC is
present or not. StarCoder exhibits larger gains from right contexts, potentially due to its fill-in-the-middle pre-training.

C Trial Retrieval and Trial Generation

In this section, we present a detailed evaluation of two selective RAG strategies: trial retrieval and trial generation.

C.1 Trial Retrieval

To gauge the relevance of retrieved context, using the similarity scores from the retrievers is a natural option. In this section,
we investigate trial retrieval as a baseline for informing the decisions for selective RAG. We apply three off-the-shelf
retrievers on RepoEval. For each retriever, we score each of the instances with the similarity between the top-1 retrieved
code chunk and the query. The score is compared to a threshold decide whether the prompt should feature CC or not. If
score is higher than the threshold, we use top-10 code chunks retrieved by the same retriever as the cross-file context. We
consider the following three retrievers:

• jaccard: the Jaccard index (Jaccard, 1912).

• weighted ngram: the weighted n-gram matching term introduced in the CodeBLEU metric (Ren et al., 2020).

• unixcoder: the cosine similarity of UniXcoder embedding (Guo et al., 2022).

Figure 8 presents the selective RAG performance of StarCoder under different budgets.We observe that the retrievers’ simi-
larity scores serve as a promising signal for deciding whether the retrieved information can improve the RAG performance.
For most retrievers and tasks, the performance of full retrieval could be reached with at most 60% retrieval budget. This
trend also aligns with the remark in Zhang et al. (2023) on the correlation between in-repository duplication and the gain
from CC. However, it is worth noting that this strategy brings no latency gain as it still implements always retrieving. In
addition, the knowledge of whether the LM could be benefited by the retrieved context is not leveraged.

C.2 Trial Generation

Next, we evaluate two uncertainty-based selective RAG strategies that have been explored by previous works.

15



REPOFORMER: Selective Retrieval for Repository-Level Code Completion

0.0 0.2 0.4 0.6 0.8 1.0

Retrieval budget

0.76

0.77

0.78

0.79

0.80

Ov
er

al
l p

er
fo

rm
an

ce
 (e

s)
Line Completion

0.0 0.2 0.4 0.6 0.8 1.0

Retrieval budget

0.71

0.72

0.73

0.74

0.75

Ov
er

al
l p

er
fo

rm
an

ce
 (e

s)

API Completion

0.0 0.2 0.4 0.6 0.8 1.0

Retrieval budget

0.36

0.38

0.40

0.42

Ov
er

al
l p

er
fo

rm
an

ce
 (u

t)

Function Completion

jaccard weighted_ngram unixcoder

Figure 8. A comparison of the effectiveness of different similarity functions for selective RAG with StarCoder 16B. We plot the retrieval
budget in the x-axis, which is the percentage of instances to perform retrieval. We report score on the entire testing dataset for each budget.
Specifically, the retriever’s similarity score is used select a subset to perform retrieval, and for the other instances in-file completion is
performed without retrieval. In most of the cases, 40% retrieval can be saved without sacrificing the code completion performance.
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Figure 9. A comparison of the effectiveness of two uncertainty metrics for selective RAG with StarCoder 16B. We plot the retrieval budget
in the x-axis and report score on the entire testing dataset for each budget. We observe that the uncertainty-based metrics fail for long
sequence generation such as function completion. Token uncertainty outperforms entropy for line completion while entropy is slightly
better for API completion. Overall, we find that uncertainty-based selective RAG is not as effective as retriever-based (Figure 8).

• entropy: the sequence-level entropy as used in Li et al. (2023a). We estimate the entropy by performing vanilla
sampling for 20 times without any temperature scaling or distribution truncation.

• token uncertainty: the probability of the most unlikely token in the sequence decoded with greedy search, as used in
Jiang et al. (2023). This metric can be seen as the lower bound of the per-token maximum probability.

Figure 9 presents the selective RAG performance of StarCoder under different budgets, similar to the previous evaluation
setting. We find that the selective RAG performance of uncertainty-based metrics is inconsistent across sequence lengths.
As the length of Ŷ increases (from line to API, and form API to function), the effectiveness of uncertainty-based metrics
drops significantly. In addition, the selective performance cannot outperform the methods based on trial retrieval.

D Data Creation for REPOFORMER Training and CrossCodeLongEval

We present the full self-supervised data creation algorithm in Algorithm 1 (for chunk completion data) and Algorithm 2 (for
function completion data). Rfiltered stands for the remaining repositories after applying the filtering criteria in Section 3.3.
In the next section, we present further analyses on the training data distribution.
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Algorithm 1 REPOFORMER Training Data Creation (Chunk Completion)

Input: Filtered set of repositories Rfiltered, language modelM, label threshold T
Output: chunk completion training dataset D
D ← ∅
for each r ∈ Rfiltered do
Dr ← ∅
Craw ← Break r into non-overlapping chunks of 10 lines each
Cr ← Cluster Craw with KMeans using TF-IDF features, with the constraint |Cr| = 0.2|Craw|
for each c ∈ Cr do
k ∼ Poisson(λ = 3)
s← Randomly sample a chunk from c
Y ← Randomly cut a sub-chunk from s that spans k consecutive lines
Xl, Xr ← Recover the in-file left context and right context corresponding to Y
if rand(0, 1) > 0.5 then
Q ← Concatenate(last 5k lines of Xl, Y , first 5k lines of Xr) // query formation

else
Q ← Concatenate(last 5k lines of Xl, first 5k lines of Xr)

end if
CC ← Retrieve top-3 cross-file contexts from r using Q via jaccard similarity, each of length 10k
Ŷbase ←M(Xl, Xr)
ŶRAG ←M(Xl, Xr, CC)
label← ES(ŶRAG, Y )− ES(Ŷbase, Y ) > T // boolean value
Append (Xl, Xr, Y, CC, label) to Dr

end for
D ← D ∪Dr

end for

Algorithm 2 REPOFORMER Training Data Creation (Function Completion)

Input: Filtered set of repositories Rfiltered, language modelM, label threshold T
Output: function completion training dataset D
D ← ∅
for each r ∈ Rfiltered do
Dr ← ∅
Craw ← Gather all the functions between 3 and 30 lines
Cr ← Cluster Craw with KMeans using TF-IDF features, with the constraint |Cr| = 0.2|Craw|
for each c ∈ Cr do
s← Randomly sample a function from c
Y ← Cut only the body part of the function
Xl, Xr ← Recover the in-file left context and right context corresponding to Y
if rand(0, 1) > 0.5 then
Q ← Concatenate(last 20 lines of Xl, Y , first 20 lines of Xr)

else
Q ← Concatenate(last 20 lines of Xl, first 20 lines of Xr)

end if
CC ← Retrieve top-3 cross-file contexts from r using Q via jaccard similarity, each of length 10k
Ŷbase ←M(Xl, Xr)
ŶRAG ←M(Xl, Xr, CC)
label← ES(ŶRAG, Y )− ES(Ŷbase, Y ) > T // boolean value
Append (Xl, Xr, Y, CC, label) to Dr

end for
D ← D ∪Dr

end for
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Training Data Analysis For the 240k chunk completion and 120k function completion instances, we plot the performance
change after providing CC in Figure 10. In total, 30.18% chunk completion instances and 35.16% function completion
instances are labeled with positive (i.e., retrieval should be triggered). The average length of Y is 3.53 lines for chunk
completion and 11.77 lines for function completion.
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Figure 10. The performance gain on REPOFORMER training data exhibited by StarCoderBase-1B from retrieved cross-file context. The
sign of the performance change is used to generate the label for REPOFORMER training. Each (start, end) bucket contains values ranging
from start to end except for the central bucket, which corresponds to exactly 0.

CrossCodeLongEval Construction One drawback of RepoEval is its limited repository coverage. To verify the perfor-
mance on diverse repositories, we collect and curate a new evaluation dataset for repository-level code completion.

• Repository collection. We first solicited 1744 raw Python repositories from the authors of CrossCodeEval (Ding et al.,
2023). These repositories were created between 2023-03-05 to 2023-06-15 and collected on 2023-09-01. They have
been ensured to not overlap with the Stack (Kocetkov et al., 2022).

• Target line sampling. We avoided using the CrossCodeEval benchmark as the original benchmark explicit removed
the instances where StarCoderBase-1B can correctly answer without the retrieved context. To simulate a more natural
distribution of code completion, we sample new blanks from the raw repositories. Specifically, we run Algorithm 1 and
Algorithm 2 to gather chunk completion and function completion instances.

• Data analysis In Table 6, we present the basic statistics of RepoEval and CrossCodeLongEval.

RepoEval CrossCodeLongEval
Line API Function Chunk Function

# repositories 16 16 16 944 1460
# instances 1600 1600 455 5000 5000
|Xl|line 30.7 30.8 31.1 24.7 31.7
|Xl|token 796.3 890.7 761.1 661.9 672.1
|Xr|line 15.1 13.9 16.2 12.9 14.4
|Xr|token 449.9 430.4 412.4 404.2 371.3
|Y |line 1.0 2.1 7.8 1.47 9.5
|Y |token 12.0 25.4 97.8 19.2 111.2

Table 6. Descriptive statistics of RepoEval and CrossCodeLongEval. For |Y |, |Xl|, and |Xr|, we report both the number of lines as well
as the number of tokens (using the StarCoder tokenizer) in the groundtruth, left context, and the right context.
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E Extended Analyses

E.1 Calibration of REPOFORMER’s Selective Retrieval Prediction

We evaluate the calibration of REPOFORMER-1B’s selective decisions. Figure 11 plots the probability of <cc> against the
probability of the model’s performance could be improved by the CC, measured by comparing the prediction with and
without CC. When ES is used as the evaluation metric, REPOFORMER-1B generally makes near-calibrated predictions for
Line and API Completion. However, when it comes to longer-formed function completion, especially when UT is employed
as the metric, REPOFORMER-1B’s predictions are not calibrated. One possible reason is the use of ES as the training signal.
We encourage future work to devise methods for effectively labeling the correctness of function completion. In addition,
future work should consider training REPOFORMER to perform multiple self-assessments for long-form generations.
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Figure 11. The calibration of selective retrieval predictions. REPOFORMER makes generally calibrated predictions when ES is used as the
metric and the generation is of moderate lengths. The prediction is not calibrated for function completion when the metric is UT.

E.2 CrossCodeEval and Multilingual REPOFORMER

This section provides additional results on the 4-language original CrossCodeEval test set (Ding et al., 2023). We choose
to not present the results in the main text as the data creation process of CrossCodeEval explicitly selected the instances
where cross-file information is generally required, thus making the contributions from selective retrieval incomplete. On this
dataset, we evaluate StarCoder, REPOFORMER-1B/3B/7B trained on Python and REPOFORMER-M trained on multilingual
repository-level code completion. Despite the setup difference, we are still able to observe substantial performance gains.

Multilingual REPOFORMER We experimented with applying the REPOFORMER training scheme to multiple languages.
Specifically, we collect public Python, Java, C#, and TypeScript repositories from the Stack (Kocetkov et al., 2022) that
contain at least 20 files and 20,000 lines of code. We do not apply the local import criteria due to implementation difficulties.
Then, we follow the algorithm described in Appendix D to create 90k chunk completion and 30k function completion
instances per language. Using this dataset, we fine-tune StarCoderBase following the setup described in Section 4.1 (same
infrastructure and hyperparameters). We call this model REPOFORMER-M.

Evaluation Results We present the results on CrossCodeEval in Table 7 and summarize the observations below:

• Strong cross-lingual transfer. REPOFORMER trained on Python data achieves strong performance across multiple
languages, including three languages it is not fine-tuned on. The result highlights the generalizability of the learned
self-evaluation and robust code completion abilities.

• Multi-lingual REPOFORMER. REPOFORMER-M outperforms the same-sized STARCODERBASE by a large margin.
For the 1B, 7B, REPOFORMER-M outperforms REPOFORMER by a small margin. For 3B, the two models give similar
performance. This is reasonable as the two models are learned on similar sized training data.
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Model RAG Policy Python Java C# TypeScript
Code ES ID F1 Code ES ID F1 Code ES ID F1 Code ES ID F1

STARCODERBASE-1B No 68.83 58.18 73.60 63.69 79.30 66.40 67.09 60.15
Always 71.57 62.42 74.54 65.83 79.04 66.82 67.66 60.60

REPOFORMER-1B SelectiveT 71.29 62.81 75.12 67.16 83.08 74.24 69.90 64.07
REPOFORMER-M-1B SelectiveT 71.55 62.89 75.92 67.86 84.44 76.00 70.07 64.41

STARCODERBASE-3B No 71.07 61.63 76.10 67.56 81.46 69.95 70.56 64.83
Always 73.65 65.93 77.52 70.15 81.75 71.26 70.91 65.09

REPOFORMER-3B SelectiveT 74.57 66.86 78.40 71.26 85.92 78.62 73.70 68.66
REPOFORMER-M-3B SelectiveT 73.80 66.72 77.68 71.01 85.31 77.70 72.51 67.06

STARCODERBASE-7B No 72.47 63.76 77.21 68.97 83.06 72.06 72.34 67.06
Always 75.02 67.69 77.70 70.57 83.64 74.39 73.01 67.56

REPOFORMER-7B SelectiveT 75.34 68.27 78.90 72.35 83.80 76.88 73.59 69.10
REPOFORMER-M-7B SelectiveT 75.35 67.88 79.11 72.82 86.53 79.77 74.60 70.01

Table 7. Evaluation results on CrossCodeEval. We report edit similarity for code matching as well as the F1 score for identifier matching.
The best scores across all models are boldfaced.

E.3 REPOFORMER’s Robustness to the Retriever Choice

In this section, we investigate the performance of REPOFORMER with the cosine similarity of UniXcoder embedding (Guo
et al., 2022) as the retriever instead of Jaccard similarity. As shown in Table 8, we are able to observe similar patterns
compared to Table 3: selective retrieval is able to improve both the accuracy and the latency of the entire RAG system. In
addition, as retrieval consumes a larger proportion of latency than when sparse retriever is used, selective retrieval brings
more substantial performance gains, with threshold selection bringing more than 70% speedup.

Model RAG Policy API Completion Line Completion
ES %RAG SU ES %RAG SU

Always 71.69 100% 0% 75.25 100% 0%
SelectiveG 70.82 18% 71% 73.70 19% 71%REPOFORMER-1B
SelectiveT 72.39 61% 33% 75.65 62% 33%

Always 74.48 100% 0% 78.24 100% 0%
SelectiveG 73.26 19% 65% 76.74 20% 66%REPOFORMER-3B
SelectiveT 74.69 78% 21% 78.63 74% 31%

Table 8. RAG performance of REPOFORMER with two self-selective RAG paradigms and dense retrieval used instead of Jaccard similarity.
%RAG = ratio of instances where RAG is performed. SU = Speedup compared to always retrieving. Compared to the always retrieving
baseline, the SelectiveT strategy consistently demonstrates gains in both accuracy and latency. The SelectiveG strategy shows much larger
latency gains with a small performance degradation. Compared to sparse retrieval, we observe more substantial latency gains.

E.4 Full Latency-Accuracy Visualizations

In this section, we present the latency-accuracy trade-off plots for REPOFORMER-1B, REPOFORMER-3B,
STARCODERBASE-7B, and STARCODER on the three tasks from RepoEval. We use self-selective RAG for the RE-
POFORMER models and for STARCODER, we use REPOFORMER-1B to make the selective RAG decisions. The results
are presented in Figure 12 to Figure 15. Overall, we observe that no matter for self-selective RAG or making selective
predictions for a larger model, REPOFORMER is able to improve the accuracy and latency at the same time. The improvement
is more apparent in the line and API completion tasks. For function completion, as discussed in the main text, RepoEval
uses very small repositories to enable easy unit testing. As a result, the retrieval overhead is low in general and thus does not
significantly affect the latency of the entire RAG system.
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Figure 12. Latency-accuracy trade-off of self-selective RAG for REPOFORMER-1B.
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Figure 13. Latency-accuracy trade-off of self-selective RAG for REPOFORMER-3B.
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Figure 14. Latency-accuracy trade-off of selective RAG for STARCODERBASE-7B. REPOFORMER-1B is used for the selective decisions.
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Figure 15. Latency-accuracy trade-off of selective RAG for STARCODER. REPOFORMER-1B is used for the selective decisions.
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