
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

METATT: A GLOBAL TENSOR-TRAIN ADAPTER FOR
PARAMETER-EFFICIENT FINE-TUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

We present MetaTT, a Tensor Train (TT) adapter framework for fine-tuning of
pre-trained transformers. MetaTT enables flexible and parameter-efficient model
adaptation by using a single shared TT to factorize transformer sub-modules. This
factorization indexes key structural dimensions, including layer and matrix type,
and can optionally incorporate heads and tasks. This design allows MetaTT’s pa-
rameter count to scale with the sum, rather than the product, of the modes, resulting
in a substantially more compact adapter. Our benchmarks compare MetaTT with
LoRA along with recent state-of-the-art matrix and tensor decomposition based
fine-tuning methods. We observe that when tested on single-task standard language
modeling benchmarks, MetaTT achieves competitive parameter efficiency to accu-
racy tradeoff. We further demonstrate that MetaTT performs competitively when
compared to state-of-the-art methods on multi-task learning. Finally, we leverage
the TT-ansatz to design a rank adaptive optimizer inspired by the DMRG method
from many-body physics. Our results demonstrate that integrating this approach
with AdamW enhances optimization performance for a specified target rank.

1 INTRODUCTION

The sheer size of today’s pre-trained models (e.g., LLaMA-3 Grattafiori et al. (2024), Gemini-
1.5 Team et al. (2024), GPT-4o Hurst et al. (2024), Falcon-40B Almazrouei et al. (2023), Mistral-
7B Jiang et al. (2023), BERT Devlin et al. (2019)) coupled with the rapid rise of adapting them
for specific tasks has proven to be a catalyst for the research on parameter efficient fine-tuning
(PEFT) methods. Since Aghajanyan et al. (2020) demonstrated that pre-trained language models
can effectively learn on a given task even when subjected to a random projection onto a smaller
subspace, starting from LoRA Hu et al. (2021), a flurry of works on PEFT have demonstrated
significant parameter reduction for fine-tuning large models on simpler and often single tasks rev:
Karimi Mahabadi et al. (2021a); Zhang et al. (2023); Zi et al. (2023); Zhang & Pilanci (2024); Albert
et al. (2025).

To push beyond local layer-wise parameter reduction, sharing low-rank adapters across transformer
layers have shown great promise. VeRA Kopiczko et al. (2024) shares single pair of low-rank matrices
across all layers and learns small scaling vectors; NOLA Koohpayegani et al. (2023) re-parameterizes
low-rank matrices as linear combinations of random bases, decoupling parameter count from rank
and architecture; and VB-LoRA Li et al. (2024) and Uni-LoRA Li et al. (2025) construct all adapters
from a global vector bank, achieving extreme parameter efficiency.

Subsequently, a wider class of methods have started considering the weight matrices (individually or a
combination of them) as higher order tensors and then designing decompositions. To this end, several
lines of work have emerged, partly because it is not obvious which components of the model benefit
from tensor decompositions, and partly because unlike matrices, it is not known how to decompose
tensors optimally Kolda & Bader (2009). As a result it remains open, even empirically, to understand
how tensor-based decompositions can further improve the balance between the number of trainable
parameters and downstream task performance during fine-tuning.

Methods compressing per layer adapters via tensor decompositions include LoRETTA Yang et al.
(2024), which at each layer replaces LoRA’s trainable matrices with a tensor train (TT) decomposition;
TT-LoRA Anjum et al. (2024), which similarly first folds each trainable matrix into a tensor and then

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

factors them into TT decomposition. QuanTA Chen et al. (2024) and Quantum-PEFT Koike-Akino
et al. (2025) further decompose adapters into tensor networks shaped as quantum circuits.

A promising avenue is to exploit both shared adapters and tensor decompositions, which can a priori
lead to higher compression rates compared to per-layer tensor decompositions, at higher expressibility
compared to shared low-rank matrices. In FacT Jie & Deng (2023), the authors use 3D TT and Tucker
decompositions to capture parameter sharing across layers in the context of vision transformers. This
idea is extended in the context of LLMs in LoTR Bershatsky et al. (2024).

Finally, LoRTA Hounie et al. (2024) decomposes the various linear layers in a transformer using a CP-
decomposition. CP decompositions for higher order tensors generally have unique decompositions
Kolda & Bader (2009), and thus finding the right decomposition may seem to be harder during
fine-tuning. Given the plethora of work on matrix and tensor decomposition based adapters we ask,

Can we achieve further parameter efficiency when fine-tuning transformer models?

A global adapter via tensor trains: Building on LoTR and FacT-TT, which stack and decompose
all adapter layers into a single 3D TT, we further separate the layer and matrix type dimensions to
form a 4D TT, enabling greater parameter reduction. Decomposing the multi-head self-attention
(MHSA) output into head and number of heads yields a 5D tensor, as in LoRTA. Both 4D and
5D TTs balance parameter efficiency and expressivity, unlike Tucker decomposition, which scales
exponentially with dimensions, and is often more expressive than CP Khrulkov et al. (2017).

In the context of adapter-based methods, single-task fine-tuning has been widely studied. Only
recently the need for multi-task learning (MTL) has gained prominence. This is partly due to the size
of the pre-trained models and partly due to the fact that often there are common modalities across
datasets and tasks. Modifications to LoRA has been shown to work well for MTL, e.g., ensembling
multiple LoRA adapters Wang et al. (2023), using a mixture of experts (MoE-LoRA) Liu et al. (2024),
and sharing one parameter across multiple tasks (MTL-LoRA) Yang et al. (2025). We observe that
a tensor based structure automatically extends to MTL and so given a tensor based adapter one
can construct a unified adapter, which may lead to further parameter efficiency rev: via parameter
sharing across tasks, which has been shown to yield benefits in the setting of hypernetwork adapters
Karimi Mahabadi et al. (2021b).

Multi-task learning via tensor trains: For MTL, the resultant tensor of the combined adapters of
a pre-trained model, assuming task-specific adapters, has an extra dimension from labeling different
tasks. As such, one can efficiently extend the family of TT adapters for MTL. Owing to the modular
design of the TT-based adapter, we refer to this unified family of TTs as MetaTT.

Since the construction of such global adapters can also be achieved efficiently by means of other
tensor decompositions (such as CP), it becomes natural to ask,

Do we achieve anything beyond parameter reduction when using MetaTT’s architecture?

To address this, we examine the unique optimization advantages offered by the TT structure.

Rank adaptive training: Unlike other tensor decompositions, TTs are equipped with powerful
optimization routines that exploit the TT structure. Specifically, we apply a rank adaptive scheme
inspired by the Density-Matrix Renormalization Group (DMRG) optimization Schollwöck (2011);
Verstraete et al. (2023), a method widely used in the context of quantum many-body physics, to
improve training in the presence of many TT cores and adaptively choose the TT ranks during
fine-tuning. Such a method does not trivially extend beyond the TT architecture.

2 META-ADAPTER WITH TENSOR NETWORKS

Tensor networks are mathematical structures that can represent high-dimensional tensors in a more
manageable form. This is achieved by decomposing a large order tensor into a network of in-
terconnected, generally lower-dimensional, tensors. This decomposition reduces the storage and
computational requirements, making tensor networks suitable for applications involving big data.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

×𝐻

Linear Linear Linear

Attention

Concat

𝐷!"#

𝐷$%

×𝐿Frozen

𝐷&'	

𝐷!"#

𝐴 ∈ ℝ)×+!"

𝐵 ∈ ℝ+#$%×) ⁄𝐷!"# 𝐻

𝐷$%

𝐿

𝑀
𝐻

𝐿

𝑀

𝐷$%

×𝑀

4D

𝑀

𝑟𝑟 ∈ ℝ)×,×)rank-3 tensors:

𝐷!"#

Concat𝒢)

𝒢*

𝒢+

𝒢,

𝒢-

𝑟

𝑟

𝑟
𝒢)

𝒢*

𝒢+

𝒢,
𝑟

𝑟

𝑟 𝑟

5D

𝑟

LoRA MetaTTPre-trained

• Local compression (each matrix individually)
• Rank is fixed
• Optimization via gradient based methods

• Global compression (all matrices at once)
• Rank can be adaptive
• Optimization via gradient and structure based methods

Linear

𝐷$%

𝐿

𝑀

𝒢-

𝒢*

𝒢)

𝒢,

𝒢+ 𝑇

(4+1)D

𝑟

𝑟

𝑟

𝑟

𝐷!"# 𝐷!"#
a) b) c)

Figure 1: Comparison between LoRA and MetaTT adapters. rev: While LoRA parameterizes
each weight matrix individually, MetaTT parameterizes all linear maps in the transformer architecture
jointly as a TT (here shown only for a MHSA block). We propose two architectures for single-task
fine-tuning: a) MetaTT-4D decomposes the entire set of linear maps into a TT of order 4 along
the input/output dimensions (as in LoRA) as well as along the layer dimension, L, and the set of
projection matrices, M . b) MetaTT-5D further decomposes the output dimension along the head
dimension and number of heads. To capture task dependencies in multi-task learning, we extend
MetaTT by adding an additional tensor core with mode dimension T corresponding to the number of
tasks, resulting in c) MetaTT-(4+1)D. Unlike LoRA, TT ranks in MetaTT can adapt during fine-tuning,
providing both parameter efficiency and optimization flexibility.

2.1 TENSOR-TRAIN DECOMPOSITION

Among the various types of tensor networks, tensor trains (TTs) offer a particularly efficient rep-
resentation. A TT decomposes a tensor G ∈ Rn1×···×nd of order d into a set of rank-3 tensors as
follows

G[i1, · · · , id] = G1[i1]G2[i2] · · · Gd[id], (1)
where Gk[ik] ∈ Rrk−1×rk , ik = 1, · · · , nk, are matrices, except the first and last, which are row and
column vectors, respectively. It is also customary to see Gk=2,··· ,d−1 as rank-3 tensors, also known as
cores. The parameters ri are known as TT-ranks. The complexity of the TT ansatz is O(dr2n) with
r = maxk rk, n = maxk nk. A TT therefore offers a controllable trade-off between expressivity (via
r) and storage. In what follows, we assume the TT-ranks are all of equal value r.

2.2 TENSOR BASED ADAPTERS

LoRA type adapters inject a matrix ∆W ∈ RDin×Dout at every layer and a subset of projection
matrices in the MHSA module. rev: The set of all such adapters can be viewed as a 4-dimensional
tensor,

∆W4D = {{∆Wl,m}Ll=1}Mm=1 ∈ RDin×L×M×Dout , (2)
where L is the number of layers, and M is the number of projection matrices, which can be between
1 and 4 (corresponding to Q,K, V , and O matrices). One can choose to include the MLP matrices
in this tensor after properly reshaping them. For instance in the BERT family of models, the two
MLP matrices are of size 4Din ×Dout. However, including these MLP layers would increase M
to potentially 12. This puts a significant computational overhead should we wish to construct a
3-dimensional tensor by stacking the L-dimension on top of M . In Jie & Deng (2023), the authors
follow such an approach in the context of vision transformers to construct unified tensors to inject
into the model.

Moreover, the output dimension in the MHSA is further split into H number of heads. Thus implicitly,
such a neural architecture allows for the construction of even a 5-dimensional tensor,

∆W5D = {{{∆Wl,m,h}Ll=1}Mm=1}Hh=1 ∈ RDin×L×M×H×Dout/H . (3)

Tensors ∆W4D and ∆W5D potentially capture all adapters one could include for a transformer-like
model. Furthermore, this idea extends beyond single transformer adapters. For instance, one could

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

include an extra dimension capturing task dependency in a MTL (MTL) setting, where different
transformer adapters are used for different tasks

∆W6D = {{{{∆Wl,m,h,t}Ll=1}Mm=1}Hh=1}Tt=1 ∈ RDin×L×M×H×T×Dout/H , (4)

where T represents the total number of tasks.

2.3 METATT ADAPTER

Consider the TT decomposition of ∆W4D, which we refer to as MetaTT-4D, shown pictorially in
Figure 1. For fixed layer l and m-th projection matrix, the TT decomposition results in a list of 4
matrix multiplications of rank r (assuming for simplicity each bond has the same fixed rank). It is
low-rank if r ≪ min{Din, Dout}. In other words, for an input batch X ∈ RN×Din and output batch
Y ∈ RN×Dout , for every layer l and m-th projection matrix we have:

Y = X ·WT
l,m + αX · TT(∆W4D)l,m

= X ·WT
l,m + αX · G1G2[l]G3[m]G4,

(5)

where WT
l,m is the transposed frozen linear layer (from the pre-trained model). While one can choose

any permutations of the ordering of the TT cores, we present the arrangement that leads to the most
compressed form. This entails assigning the input and output dimensions to each end of the TT since
these are usually the largest dimensions in a transformer architecture. This is because they are only
coupled by a single bond, thereby incurring an additive O(D × r) cost to the overall complexity
while also being quadratic in r for the other dimensions, which are usually orders of magnitude less
than the input and output dimensions.

The extension to capture other dimensions for the 5D variation with mild modifications is straight-
forward. One would need to concatenate the number of heads and the head dimension into the
output dimension. This is shown in Figure 1. Importantly, minimal reshaping is required throughout
this process, as shown explicitly for MetaTT-4D in equation 5. This is in contrast to other tensor
decompositions. The input data is processed in its original format and outputs dimensions are also
consistent with the original model, facilitating the use of optimized matrix-vector GPU kernels and
allowing for performance and scalability enhancement. While further compression can be achieved by
further unrolling the input and output dimensions, it is crucial to avoid these, as they can complicate
the decomposition and reduce computational efficiency Monturiol et al. (2025); Lu et al. (2025).

Complexity Analysis. MetaTT-4D has 2Dr + (L+M)r2 parameters for D = max{Din, Dout}.
Similarly, MetaTT-5D has (D +D/H)r + (L+M +H)r2 parameters. This is substantially better
than the LoRA adapter which requires at least 2LMDr parameters. Thus, by introducing a small
series of r × r matrices we are able to significantly compress the tensor otherwise obtained by
using LoRA. Note that for fixed TT-rank r, MetaTT-4D is more efficient than MetaTT-5D whenever
r > D/H(1− 1/H).

Training times of TT adapters are very competitive with LoRA. At each linear layer one performs
2(D × r) + 2(r × r) matrix multiplications, where the complexity is dominated by (D × r) since
D ≫ r. As such the total time required to train the adapter is very similar to that of a LoRA adapter.
During inference, one can match the speeds of LoRA by adding a single pre-computation step where
one can merge the middle tensor cores with G1 or G4 (for MetaTT-4D) once the adapters are trained.

2.4 DMRG-INSPIRED SWEEP: A RANK ADAPTIVE TRAINING ALGORITHM

While the gold standard of training PEFT adapters has been gradient descent using optimizers like
Adam Kingma & Ba (2014), these methods fail to take advantage of the tensor decomposition structure.
For matrices and other small order tensor decompositions, Adam works remarkably well. However,
for higher order tensor decompositions, e.g., tensor networks with many cores, training using gradient
descent can be unstable Barratt et al. (2022). For instance, while MetaTT-5D can be more efficient
than MetaTT-4D in terms of parameter count, training the latter can be more unstable. We propose
the use of a rank adaptive scheme inspired by the DMRG method Schollwöck (2011); Verstraete et al.
(2023), a variational algorithm widely used in quantum many-body physics to optimize TTs (also
known as matrix product states in that context) representing quantum wavefunctions.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Starting with a sufficiently high-rank TT, we train with Adam for a few epochs and then apply a
compression layer composed of a series of SVD decompositions on neighboring merged tensor
cores and keep only vectors corresponding to the largest r singular values. While we use full SVD
decomposition one can use approximate SVD Halko et al. (2011); Musco & Musco (2015); Tropp &
Webber (2023). Alternatively, more sophisticated importance scores can also be used to compute
low-rank approximations Cohen et al. (2017); Musco & Musco (2017); Zhang et al. (2023). We
successively compute these low-rank approximations until a desired rank is achieved. We state this
procedure in Algorithm 1 (this particular version of the algorithm is analogous to a TT-rounding
sweep but involving two sites as opposed to one). Note that since the ranks change after calling
DMRG, and thus the number of trainable weights, one must reinitialize Adam moments after each
truncation.

Algorithm 1 DMRG-inspired sweep

Input: MetaTT TTdD(∆W) with ranks r0, d represents number of TT cores, target ranks r, and
truncated SVD function tSVD.

1: for i = 1 to d− 1 do
2: M ← MERGE(Gi,Gi+1) ▷ Merge adjacent cores, reshape into matrix M
3: U, S, V T = tSVD(M ; r) ▷ Rank r approximation using SVD
4: Gi ← U ;Gi+1 ← SV T

5: end for
6: for i = d to 2 do
7: M ← MERGE(Gi−1,Gi) ▷ Merge adjacent cores, reshape into matrix M
8: U, S, V T = tSVD(M ; r) ▷ Rank r approximation using SVD
9: Gi−1 ← US;Gi ← V T

10: end for
Output: MetaTT with ranks r.

3 EXPERIMENTS

In this section, we perform three sets of experiments. In Section 3.1 we test the performance
of MetaTT in the context of single-task fine-tuning against state-of-the-art methods. Our focus
here is on commonsense reasoning tasks using the setup of Hu et al. (2023), and natural language
understanding Wang et al. (2018). In Section 3.2 we compare the performance of MetaTT when
adding an extra tensor for capturing task-specific knowledge in the context of MTL. Finally, in
Section 3.3 we demonstrate that optimizing MetaTT using a variant of AdamW alternating with
Algorithm 1 can further boost the performance of fine-tuning using MetaTT.

3.1 SINGLE-TASK FINE-TUNING

In this section we discuss the performance of various PEFT adapters along with MetaTT on single-task
fine-tuning.

Method Param×105 ARC-c ARC-e BoolQ HellaSwag OBQA PIQA SIQA WinoGrande Avg

L
la

m
a-

2-
7b

Zero Shot – 46.5 74.5 74.7 75.9 47.0 78.8 46.1 69.5 64.1
LoRA (r=8) 41.9 52.6 78.9 81.0 76.1 61.0 79.9 55.3 74.3 69.9
LoRA (r=16) 83.9 51.8 77.9 78.9 76.7 70.0 80.3 56.1 76.6 71.0
VeRA (r=1024) 3.27 48.3 76.9 74.7 76.2 52.2 78.5 47.8 70.0 65.6
LoTR (r=16) 1.47 51.6 80.6 78.5 75.8 60.4 79.8 53.5 71.1 68.9
MetaTT-4D (r=16) 1.40 50.9 79.2 77.2 75.6 63.4 79.5 51.0 71.4 68.5
MetaTT-4D (r=256) 43.2 53.7 78.1 77.3 76.3 68.0 80.0 55.5 75.9 70.6

L
la

m
a-

2-
13

b

Zero Shot – 48.9 77.6 71.0 79.4 49.4 80.3 47.2 72.1 65.7
LoRA (r=8) 65.5 57.3 81.6 82.4 78.8 62.0 81.3 53.8 76.2 71.7
LoRA (r=32) 262.1 57.6 80.2 84.4 78.9 60.0 81.7 57.2 79.6 72.5
VeRA (r=256) 4.3 53.2 79.8 80.3 77.8 57.4 80.8 49.6 74.4 69.2
LoTR (r=64) 9.83 55.2 80.4 82.9 78.9 56.8 81.2 53.8 74.7 70.5
MetaTT-4D (r=16) 1.75 55.0 80.6 83.4 79.2 55.2 81.1 54.5 75.1 70.5
MetaTT-4D (r=64) 8.3 56.7 81.3 84.4 78.5 65.6 80.1 54.2 75.1 72.0

Table 1: Comparison of fine-tuning Llama-2-7b and Llama-2-13b. We show in bold the two
best accuracies per task. We observe that MetaTT-4D trails very closely to LoRA while often
outperforming VeRA while using ≈ 30x and ≈ 3x less trainable parameters respectively. We
also observe that across both models, MetaTT and LoTR performs similarly, with slightly fewer
parameters.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Method Param
×103 Rank Metric (%)

CoLA MNLI MRPC QNLI QQP RTE SST2 STS-B

R
oB

E
R

Ta
ba

se

FT 125k – 61(1) 87.6 89.3(9) 92.6(1) 91.9 79(2) 94.1(1) 90.4(2)
LoRA 295 8 61.1(6) 87.3(2) 88(1) 91.3(2) 90.1(1) 73(2) 94.2(2) 90.7(2)
VeRA 43 1024 58(1) 81(3) 87.2(7) 89.6(4) 85.87(2) 73.4(9) 92.2(4) 88.7(4)
LoRETTAadp 57 64, 55 57.9(1) 84.6(0) 86.4(1) 92.0(0) 88.0(0) 70.3(2) 93.3(0) –(–)4

LoRTA 6.9 8 55.9(1) 84.1(0) 86.9(1) 91.1(1) 86.7(0) 70.2(1) 93.0(1) 86.6(0)
LoRTA 55 64 58.6(1) 86.1(0) 88.0(2) 92.2(0) 89.0(0) 75.0(2) 93.6(0) 89.3(0)

LoTR

74 32 60.5(?)1 85.2(6) 85.9(4) 90.0(1) 87.4(1) 66(4) 93.0(4) 88.8(4)
100 40 58(2) 85.2(2) 88(1) 92.5(3) 87.6(0) 53(14) 93.8(7) 89.8(5)
276 80 61(2) 84.6(1) 89.0(0) 92.1(5) 86.8(0) 71(3) 93.4(1) 90.9(2)
321 88 61.3(6) 84.7(0) 88.0(9) 92.0(4) 86.9(0) 67(13) 93.3(2) 91.0(1)

MetaTT-4D
13 8 58.8(5) 84.2(1) 87.6(2) 90.4(1) 86.9(1) 72.9(5) 92.0(1) 89.1(2)
45 24 59.7(7) 85.5(1) 88.6(4) 91.0(1) 87.8(1) 74.2(4) 92.3(2) 89.9(2)
156 64 61(1) 85.9(1) 88.9(3) 77(12)2 88.5(1) 77.5(7) 72(15)2 90.1(2)

MetaTT-5D 20 16 50(2) 84.0(1) 88.2(5) 89.7(1) 87.0(1) 73.6(8) 93.2(3) 88.6(3)
160 64 60.4(3) 85.8(1) 88.8(2) 91.3(2) 88.3(1) 74.8(8) 93.8(1) 89.5(4)

R
oB

E
R

Ta
la

rg
e

FT 355k - 68 90.2 91 94.7 92.2 87 96.4 92.4
LoRA 786 8 68.0(7)3 90.6(2) 84(5)3 94.8(3) 91.6(2) 87.0(8)3 95.7(2) 91.9(4)
VeRA 61 256 64(2) 88.8(2) 89.4(4) 93.1(2) 87.62(8) 83(1) 95.1(2) 91.5(1)
LoRETTAadp 133 61.0(1) 89.69(0) 88.1(1) 94.08(1) 89.6(0) 72.0(4) 95.5(0) –(–)4

LoRTA 9.1 8 58.9(1) 88.4(0) 87.3(1) 94.0(0) 88.1(1) 66.6(10) 95.3(0) 91.1(0)
LoTR 328 64 61.3(9) 90.3(0) 89.0(5) 94.8(1) 89.2(1) 84(2) 95.9(1) 91.6(1)

MetaTT-4D 39 16 62.8(5) 89.6(1) 88.6(3) 93.8(1) 88.5(1) 84.2(5) 95.2(2) 91.8(1)
92 32 64.0(1) 90.0(1) 90.1(3) 94.4(2) 76(9)2 84.8(6) 95.3(2) 92.2(1)

MetaTT-5D 78 32 63.2(5) 89.8(1) 89.6(1) 93.4(0) 88.7(1) 73(7) 94.6(0) 91.5(2)
242 64 64.9(2) 90.0(1) 90.0(4) 93.4(1) 89.1(1) 74(9) 95.2(1) 65(23)2

Table 2: Comparison of MetaTT-4D and MetaTT-5D against other PEFT techniques on
RoBERTabase and RoBERTalarge. Results for LoTR and LoRA are reported from Bershatsky
et al. (2024). For each dataset, we highlight the two best PEFT methods (FT is not considered for
this ranking and we only list it as a benchmark). For CoLA, the metric is Matthew’s correlation,
for STS-B it is the Spearman’s rank-correlation coefficient, and for all other datasets it is accuracy.
Observe that variants of MetaTT sometimes outperform or match the performance of LoRA for a
much lower parameter count (between 20x and 2x less parameters when compared to LoRA). Value
in parenthesis is a standard error rounded up to the last single significant digit.

Commonsense reasoning. We present results on the performance of MetaTT-4D against LoRA
and other parameter-sharing methods introduced earlier in the context of commonsense reasoning:
VeRA Kopiczko et al. (2024) and LoTR Bershatsky et al. (2024) in Table 1. We follow the same
setup from Hu et al. (2023) and first train on the Commonsense170k dataset, and assess results across
eight different downstream tasks. For fine-tuning, we utilize Llama-2 models Touvron et al. (2023)
with 7B and 13B parameters as our pre-trained models. We report best accuracy results for each of
the methods across two epochs (see Appendix D for more details on selection of hyper-parameters).
For comparison we also include LoRA r = 8 and MetaTT-4D with r = 16. Due to the computational
burden of the task and the models chosen, we report only single-shot results. Accuracies are evaluated
using the lm-evaluation-harness framework Gao et al. (2024).

We observe that MetaTT-4D closely trails LoRA in terms of average performance across almost
all the commonsense tasks for both Llama2-7b and Llama2-13b, while using significantly fewer
parameters: up to ≈ 30x fewer parameters as compared to LoRA with less than 1% drop in average
accuracy. For both Llama2-7b and Llama2-13b, MetaTT-4D performs very similarly to LoTR while
using fewer parameters and outperforms VeRA in almost all datasets while using≈ 3x fewer trainable
parameters.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Language understanding. We compare fine-tuning RoBERTa based models with MetaTT-4D and
MetaTT-5D against several baseline methods on GLUE Benchmark datasets - CoLA, MNLI, MRPC,
QNLI, QQP, RTE, SST2 and STS-B Wang et al. (2018) in Table 2. To isolate the performance of
the shared adapters we only fine-tune the encoder adapter weights for the attention modules and not
the classifier or regression heads for the corresponding downstream tasks. We defer the reader to
Appendix D for a detailed exposition on hyper-parameter tuning, adapter target modules, and the
final set of hyper-parameters used to produce Table 2.

Our results indicate that MetaTT is competitive with other state-of-the-art methods. It outperforms
LoRETTA and VeRA. We also observe that irrespective of the rank, LoTR, LoRTA, and variants
of MetaTT trail behind LoRA in accuracy across tasks, while using significantly fewer parameters.
Finally, we reiterate that the accuracies reported in Table 2 were achieved by only fine-tuning the
attention weights. We expect significant gains on top of these accuracies if the final classifier or
regression heads are also trained. Note, the under-performance VeRA is expected when compared
to higher order tensor decompositions, and is because the latter decompositions are able to affect a
much larger number of parameters of the baseline model, given we fix the total number of trainable
parameters. Among the LoRETTA variants, we find that the adapter-based method consistently
outperforms the version that reparameterizes the input model. Therefore, we chose to report only the
results for the adapter-based approach.

3.2 MULTI-TASK LEARNING

The modular architecture of TT based adapters allows for the inclusion of an extra tensor core capable
of capturing task dependent features by simply assigning a low-rank rank-3 tensor along the TT chain.
We explore this modification of the architecture by adding an extra core on MetaTT-4D placed at
the middle of the TT, so that the ordering becomes (D,L, T,M,D) where T is the number of tasks
on which the model is trained. We specifically choose this for symmetry of the tensor cores and not
necessarily any particular reason. We compare this adapter, henceforth named as MetaTT-(4+1)D,
against four baselines – a single LoRA adapter for all tasks and a MetaTT-4D adapter (which can be
seen as a MetaTT-(4+1)D with the task dependent core frozen and set to identity), MTL-LoRA, and
MoE-LoRA.

In the context of MTL, we distinguish between the following two approaches:

• Sequential Learning. This approach involves first fine-tuning a model on a specific task,
transferring the adapter to a new task for further fine-tuning, and then transferring the
adapter back to the original task. The core idea is to leverage the features learned from
the second task to enhance performance on the first task. However, a significant challenge
with sequential learning is the risk of catastrophic forgetting or training interference, where
the model may lose previously acquired knowledge or experience negative interactions
between tasks, respectively. These issues has been extensively studied and documented in
the literature (see e.g., Zhang et al. (2024a)) and aligns with our observations.

• Joint Training. Alternatively, joint training aims to minimize a composite loss function that
aggregates losses from multiple tasks at each epoch, i.e., the model is trained with the loss
function L =

∑T
k=1 Lk, where Lk is the loss function for kth task.

Experimental Setup. Our experiments are again on fine-tuning RoBERTabase and RoBERTalarge
jointly on CoLA, MRPC, and RTE datasets from the GLUE benchmark datasets. A notable issue in

1The variance for this particular dataset and rank is not reported in Bershatsky et al. (2024).
2For specifically these runs, we found that the model does not train for values of alpha less than 1 (which

were the ideal values found in the hyper-parameter search). We believe this is partly due to the initialization of
tensor cores and partly because training tensor cores can be challenging (more on this later in Section 3.3). We
defer further exposition on this to Appendix D.

3In LoTR Bershatsky et al. (2024) these values of LoRA failed to train successfully. For better comparison
we re-run LoRA for these datasets using the same random seeds as for MetaTT. We found that on one run in
MRPC LoRA failed to train successfully as well.

4We were unable find the right set of hyper-parameters for STS-B when freezing the final regression layers.
5In LoRETTA Yang et al. (2024), the bottleneck size is set as 64 for RoBERTa models and the TT rank is set

as 5 for the adpater based method.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Model Method Param
×103 Rank Metric (%)

CoLA MRPC RTE Avg
LoRA 295 8 60.7(8) 86.5(2) 77.6(2) 74.9(2)
MTL-LoRA Yang et al. (2025) 296 4 53.0(1) 87.8(1) 71.6(2) 70.8(2)

RoBERTabase MoE-LoRA Liu et al. (2024) 307 8 60.1(1) 88.6(1) 82.8(3) 77.2(2)
MetaTT-4D 13.2 8 53.2(2) 85.9(4) 72(2) 70.3(8)
MetaTT-(4+1)D 13.4 8 54(1) 86.0(5) 71.5(5) 70.5(8)
LoRA 786 8 68(2) 89.3(6) 83.0(5) 80.0(3)
MTL-LoRA Yang et al. (2025) 789 4 58.8(1) 88.7(2) 82.1(2) 76.5(2)

RoBERTalarge MoE-LoRA Liu et al. (2024) 811 8 61.1(0) 89.9(1) 82.6(1) 77.8(1)
MetaTT-4D 18.0 8 59.5(5) 88.4(5) 81.1(8) 76.3(6)
MetaTT-(4+1)D 18.2 8 64.0(8) 89.0(6) 84.4(4) 79.2(4)

Table 3: Results of MTL setup. We observe that across both RoBERTabase and RoBERTalarge,
MetaTT-(4+1)D outperforms single MetaTT-4D adapters for almost all of the datasets, while using
about 200 more trainable parameters. For RoBERTabase MetaTT-(4+1)D performs comparably to
MTL-LoRA while using ≈ 22x less parameters, and for RoBERTalarge MetaTT-(4+1)D outperforms
both MTL-LoRA and MoE-LoRA on average, and is within 1% of average accuracy of LoRA, while
using ≈ 43x less parameters. We show in bold the two best accuracies per task.

joint training is the disparity in dataset sizes, such as approximately 8000 training samples in CoLA
compared to around 3000 in MRPC. To address this, we downsample each dataset to either the size
of each dataset or a maximum of 5000 samples per dataset, whichever is smaller. This forms the
training set. For the evaluation set, we retain either 500 samples or the full size of the validation/test
set, whichever is smaller. For each trial, we first compute the mean performance across the three
datasets at every epoch (yielding 20 points per trial) and then select the best mean among those 20
epochs. Finally, we report the average of these best means over 3 independent trials.

Empirical results and observations. The results from our experiments on MTL for 3 tasks are
shown in Table 3. We first observe that a single LoRA adapter can work remarkably well across
different datasets and pre-trained models. This had already been documented in (Yang et al., 2025,
Table 1). For fine-tuning RoBERTabase, we also observe that MoE-LoRA performs well across
different datasets. While MetaTT-(4+1)D and MTL-LoRA perform similarly, MetaTT-(4+1)D uses
about 13.4k parameters (an ≈ 22x parameter reduction when compared to other baseline methods).
However, when we look at the performance on RoBERTalarge, we observe that MetaTT-(4+1)D
performs within 1% of LoRA, and outperforms both MoE-LoRA and MTL-LoRA, while requiring
about 18.2k trainable parameters (an ≈ 43x parameter reduction when compared to other baseline
methods). Furthermore, we observe that in case of RoBERTabase, MetaTT-4D performs very similar
to MetaTT-(4+1) while using about 200 less parameters, and in case of RoBERTalarge, MetaTT-4D
performs very similar to MoE-LoRA and MTL-LoRA while using about 200 less parameters than
MetaTT-(4+1)D (and using ≈ 43x less trainable parameters when compared to other methods).
We defer further experiments and a discussion of how MetaTT-(4+1)D captures task dependent
information for MTL to Appendix B.

3.3 RANK ADAPTIVE FINE-TUNING VIA DMRG-INSPIRED SWEEP

Empirical evaluations. We present comparisons of training RoBERTabase and RoBERTalarge using
AdamW Loshchilov & Hutter (2017) and interdispersing DMRG-inspired sweeps as in Algorithm 1
on the MRPC and RTE dataset in Figure 2. For AdamW Loshchilov & Hutter (2017) we fine-tune
on fixed ranks {4, 6, 8} for a given learning rate. We observe that one can adaptively change the
ranks in the training phase without any major performance degradation. For RoBERTabase, we show
that using AdamW together with DMRG-inspired sweeps we achieve higher accuracy at rank r = 4
when compared to the accuracy achieved by AdamW and r = 4. We also show that the performance
improvement with Algorithm 1 when fine-tuning RoBERTalarge is even more significant (see Table 4).
For both models, one can observe that the accuracy reduces significantly when truncated SVD is
applied, followed by a rapid climb, with deeper gorges as we go to smaller ranks. Each DMRG
sweep is applied right after each training epoch, before the evaluation on the validation dataset. Thus,
it removes a significant amount of information, across all bonds of the TT, and so performance
degradation is expected, before AdamW is able to readjust to its new weight space at the next epoch.
This problem is exacerbated when DMRG is applied to smaller ranks, as the relative change in ranks

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

r : 10 → 8
r : 8 → 6

r : 6 → 4
r : 10 → 8

r : 8 → 6
r : 6 → 4

Figure 2: Comparison of AdamW and AdamW+Algorithm 1 sweeps applied at certain epochs.
Results are shown for MetaTT-5D on MRPC and RTE for RoBERTabase and RoBERTalarge. In Adam
we fix the rank throughout. For AdamW+Algorithm 1 we start with a r = 10 TT and progressively
decrease ranks until we reach r = 4 as indicated by arrows on the plots for the base model, with the
same schedule followed by the large counterparts. Error bars in both panels correspond to standard
errors. The learning rate used across all the optimizers is 5e− 4 with 0 weight decay.

(current rank divided by target rank) substantially increase as we go from higher ranks to lower ranks.
We defer further discussions on the experiments with DMRG to the Appendix C.

Model AdamW AdamW + DMRG
Base, MRPC 0.839 0.852
Large, MRPC 0.854 0.887
Base, RTE 0.652 0.658
Large, RTE 0.640 0.701

Table 4: Comparison of the average of per-trial maximum accuracies (computed over 20 epochs),
for 10 trials (RoBERTabase) and 4 trials (RoBERTalarge), between AdamW and AdamW + DMRG
optimizers at target rank r = 4.

4 CONCLUSIONS

In this work, we have introduced MetaTT, a novel approach to parameter-efficient fine-tuning of
large language models using TT decompositions. By leveraging the TT architecture, MetaTT
achieves significant reductions in the number of trainable parameters while maintaining competitive
performance compared to state-of-the-art methods. Our empirical evaluations demonstrate that
MetaTT can achieve significant parameter reduction with similar accuracy on standard language
modeling benchmarks when compared to these methods.

The TT representation provides a compact and globally shared core, allowing for efficient parameter
sharing across all components of a transformer network. Unlike methods that compress each weight
matrix in isolation, MetaTT factorizes all linear sub-modules into a single shared TT, capturing
structural axes such as layer, matrix-type, and optionally heads and tasks. This global compression
leads to higher compression rates and improved scalability, making MetaTT a promising solution for
fine-tuning large models. However, for single task learning, we observe that MetaTT often performs
similar to other tensor based decompositions (including other variants of the TT decomposition).

To differentiate beyond single task fine-tuning, we observe that tensor based adapters can be easily
extended to perform joint-MTL. Notably, we demonstrate that extending a simple modification to the
architecture for single task learning, one can use MetaTT for joint-MTL. This is because the modular
architecture of MetaTT enables extension to shared adapters across multiple tasks or expert partitions,
without the need to redesign the core tensor. This had remained unexplored prior to our work. We
further hypothesize that similar extensions could be applied to other tensor-based architectures as
well. Furthermore, the TT ansatz benefits from mature optimization routines, such as DMRG-style
alternating minimization, which simplifies rank tuning. This allows MetaTT to adaptively choose TT
ranks, further enhancing its efficiency and performance.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Our results suggest that assuming low-rankness in the manifold of shared parameters is a viable
strategy for parameter-efficient fine-tuning. The TT decomposition captures this manifold effec-
tively, providing a robust framework for reducing computational overhead while preserving model
performance. Future work may explore other tensor networks that better capture parameter sharing,
including quantum-circuit inspired tensor network that may lift the low-rankness description while
maintaining efficient parameter count.

While our focus here has been on fine-tuning, we anticipate MetaTT to find extensions to other
contexts including the design of new foundation models with shared parameters and for model
compression. Moreover, DMRG-inspired techniques can offer a principled way to compress TTs
during training. Finding applications where compression during training phase or alternative DMRG-
inspired techniques extending beyond those discussed in this work, presents an exciting avenue.

5 REPRODUCIBILITY STATEMENT

We provide all the codes and pseudocodes required for verifying experiments with MetaTT in
Appendix E. Furthermore, the grids for hyper-parameter search and the final set of hyper-parameters
required to reproduce the results of Table 1, Table 2, and Table 3 are reported in Appendix D and
Appendix B. The experimental details for DMRG based experiments are reported in Section 3.3.

REFERENCES

Armen Aghajanyan, Luke Zettlemoyer, and Sonal Gupta. Intrinsic dimensionality explains the
effectiveness of language model fine-tuning. arXiv preprint arXiv:2012.13255, 2020.

Paul Albert, Frederic Z Zhang, Hemanth Saratchandran, Cristian Rodriguez-Opazo, Anton van den
Hengel, and Ehsan Abbasnejad. Randlora: Full-rank parameter-efficient fine-tuning of large
models. arXiv preprint arXiv:2502.00987, 2025.

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Alshamsi, Alessandro Cappelli, Ruxandra Cojo-
caru, Mérouane Debbah, Étienne Goffinet, Daniel Hesslow, Julien Launay, Quentin Malartic, et al.
The falcon series of open language models. arXiv preprint arXiv:2311.16867, 2023.

Afia Anjum, Maksim E Eren, Ismael Boureima, Boian Alexandrov, and Manish Bhattarai. Tensor
train low-rank approximation (TT-LoRA): Democratizing ai with accelerated llms. arXiv preprint
arXiv:2408.01008, 2024.

Fergus Barratt, James Dborin, and Lewis Wright. Improvements to gradient descent methods for
quantum tensor network machine learning. arXiv preprint arXiv:2203.03366, 2022.

Daniel Bershatsky, Daria Cherniuk, Talgat Daulbaev, Aleksandr Mikhalev, and Ivan Oseledets. LoTR:
Low tensor rank weight adaptation. arXiv preprint arXiv:2402.01376, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 2020.

Kerim Büyükakyüz. Olora: Orthonormal low-rank adaptation of large language models. arXiv
preprint arXiv:2406.01775, 2024.

Zhuo Chen, Rumen Dangovski, Charlotte Loh, Owen Dugan, Di Luo, and Marin Soljačić. QuanTA:
Efficient high-rank fine-tuning of llms with quantum-informed tensor adaptation. arXiv preprint
arXiv:2406.00132, 2024.

Michael B Cohen, Cameron Musco, and Christopher Musco. Input sparsity time low-rank approxima-
tion via ridge leverage score sampling. In Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, 2017.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), 2019.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model evaluation
harness, 07 2024. URL https://zenodo.org/records/12608602.

Timur Garipov, Dmitry Podoprikhin, Alexander Novikov, and Dmitry Vetrov. Ultimate tensorization:
compressing convolutional and fc layers alike. arXiv preprint arXiv:1611.03214, 2016.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding structure with randomness:
Probabilistic algorithms for constructing approximate matrix decompositions. SIAM review, 2011.

Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and Sai Qian Zhang. Parameter-efficient fine-tuning
for large models: A comprehensive survey. arXiv preprint arXiv:2403.14608, 2024.

Ignacio Hounie, Charilaos Kanatsoulis, Arnuv Tandon, and Alejandro Ribeiro. Lorta: Low rank
tensor adaptation of large language models. arXiv preprint arXiv:2410.04060, 2024.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
Poria, and Roy Ka-Wei Lee. Llm-adapters: An adapter family for parameter-efficient fine-tuning
of large language models. arXiv preprint arXiv:2304.01933, 2023.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https://arxiv.
org/abs/2310.06825.

Shibo Jie and Zhi-Hong Deng. FacT: Factor-tuning for lightweight adaptation on vision transformer.
In Proceedings of the AAAI conference on artificial intelligence, 2023.

Rabeeh Karimi Mahabadi, James Henderson, and Sebastian Ruder. Compacter: Efficient low-rank
hypercomplex adapter layers. Advances in neural information processing systems, 34:1022–1035,
2021a.

Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa Dehghani, and James Henderson. Parameter-
efficient multi-task fine-tuning for transformers via shared hypernetworks. arXiv preprint
arXiv:2106.04489, 2021b.

Muhammad Uzair Khattak, Syed Talal Wasim, Muzammal Naseer, Salman Khan, Ming-Hsuan
Yang, and Fahad Shahbaz Khan. Self-regulating prompts: Foundational model adaptation without
forgetting. In Proceedings of the IEEE/CVF international conference on computer vision, 2023.

Valentin Khrulkov, Alexander Novikov, and Ivan Oseledets. Expressive power of recurrent neural
networks. arXiv preprint arXiv:1711.00811, 2017.

Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi, Lu Yang, and Dongjun Shin. Com-
pression of deep convolutional neural networks for fast and low power mobile applications. arXiv
preprint arXiv:1511.06530, 2015.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

11

https://zenodo.org/records/12608602
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Toshiaki Koike-Akino, Francesco Tonin, Yongtao Wu, Frank Zhengqing Wu, Leyla Naz Cando-
gan, and Volkan Cevher. Quantum-peft: Ultra parameter-efficient fine-tuning. arXiv preprint
arXiv:2503.05431, 2025.

Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM review, 2009.

Soroush Abbasi Koohpayegani, KL Navaneet, Parsa Nooralinejad, Soheil Kolouri, and Hamed
Pirsiavash. NOLA: Compressing LoRA using linear combination of random basis. arXiv preprint
arXiv:2310.02556, 2023.

Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M Asano. VeRA: Vector-based random matrix
adaptation. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=NjNfLdxr3A.

Kalimuthu Krishnamoorthy. Handbook of statistical distributions with applications. Chapman and
Hall/CRC, 2006.

Quentin Lhoest, Albert Villanova del Moral, Yacine Jernite, Abhishek Thakur, Patrick von Platen,
Suraj Patil, Julien Chaumond, Mariama Drame, Julien Plu, Lewis Tunstall, Joe Davison, Mario
Šaško, Gunjan Chhablani, Bhavitvya Malik, Simon Brandeis, Teven Le Scao, Victor Sanh, Canwen
Xu, Nicolas Patry, Angelina McMillan-Major, Philipp Schmid, Sylvain Gugger, Clément Delangue,
Théo Matussière, Lysandre Debut, Stas Bekman, Pierric Cistac, Thibault Goehringer, Victor
Mustar, François Lagunas, Alexander Rush, and Thomas Wolf. Datasets: A community library
for natural language processing. In Proceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing: System Demonstrations, pp. 175–184, Online and Punta Cana,
Dominican Republic, nov 2021. Association for Computational Linguistics. URL https://
aclanthology.org/2021.emnlp-demo.21.

Kaiyang Li, Shaobo Han, Qing Su, Wei Li, Zhipeng Cai, and Shihao Ji. Uni-lora: One vector is all
you need. arXiv preprint arXiv:2506.00799, 2025.

Yang Li, Shaobo Han, and Shihao Ji. Vb-lora: Extreme parameter efficient fine-tuning with vector
banks. Advances in Neural Information Processing Systems, 2024.

Qidong Liu, Xian Wu, Xiangyu Zhao, Yuanshao Zhu, Derong Xu, Feng Tian, and Yefeng Zheng.
When MoE meets LLMs: Parameter efficient fine-tuning for multi-task medical applications. In
Proceedings of the 47th International ACM SIGIR Conference on Research and Development in
Information Retrieval, 2024.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Jinming Lu, Jiayi Tian, Hai Li, Ian Young, and Zheng Zhang. Fetta: Flexible and efficient hardware
accelerator for tensorized neural network training. arXiv preprint arXiv:2504.06474, 2025.

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, Sayak Paul, and Benjamin
Bossan. Peft: State-of-the-art parameter-efficient fine-tuning methods. https://github.
com/huggingface/peft, 2022.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: Principal singular values and singular vectors
adaptation of large language models. Advances in Neural Information Processing Systems, 37:
121038–121072, 2024.

José Ramón Pareja Monturiol, Alejandro Pozas-Kerstjens, and David Pérez-Garcı́a. Tensorization of
neural networks for improved privacy and interpretability. arXiv preprint arXiv:2501.06300, 2025.

Cameron Musco and Christopher Musco. Randomized block krylov methods for stronger and faster
approximate singular value decomposition. Advances in neural information processing systems,
2015.

Cameron Musco and Christopher Musco. Recursive sampling for the nystrom method. Advances in
neural information processing systems, 2017.

12

https://openreview.net/forum?id=NjNfLdxr3A
https://aclanthology.org/2021.emnlp-demo.21
https://aclanthology.org/2021.emnlp-demo.21
https://github.com/huggingface/peft
https://github.com/huggingface/peft

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Alexander Novikov, Dmitrii Podoprikhin, Anton Osokin, and Dmitry P Vetrov. Tensorizing neural
networks. Advances in neural information processing systems, 2015.

Alexander Novikov, Mikhail Trofimov, and Ivan Oseledets. Exponential machines. arXiv preprint
arXiv:1605.03795, 2016.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Bharat Runwal, Tejaswini Pedapati, and Pin-Yu Chen. From peft to deft: Parameter efficient
finetuning for reducing activation density in transformers. In Proceedings of the AAAI Conference
on Artificial Intelligence, 2025.

Ulrich Schollwöck. The density-matrix renormalization group in the age of matrix product states.
Annals of physics, 2011.

Edwin Stoudenmire and David J Schwab. Supervised learning with tensor networks. Advances in
neural information processing systems, 29, 2016.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett
Tanzer, Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal
understanding across millions of tokens of context. arXiv preprint arXiv:2403.05530, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Joel A Tropp and Robert J Webber. Randomized algorithms for low-rank matrix approximation:
Design, analysis, and applications. arXiv preprint arXiv:2306.12418, 2023.

Frank Verstraete, Tomotoshi Nishino, Ulrich Schollwöck, Mari Carmen Bañuls, Garnet K Chan, and
Miles E Stoudenmire. Density matrix renormalization group, 30 years on. Nature Reviews Physics,
2023.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

Yiming Wang, Yu Lin, Xiaodong Zeng, and Guannan Zhang. Multilora: Democratizing lora for
better multi-task learning. arXiv preprint arXiv:2311.11501, 2023.

Martin Wistuba, Prabhu Teja Sivaprasad, Lukas Balles, and Giovanni Zappella. Choice of peft tech-
nique in continual learning: Prompt tuning is not all you need. arXiv preprint arXiv:2406.03216,
2024.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Lan-
guage Processing: System Demonstrations, Online, October 2020. Association for Computational
Linguistics. URL https://www.aclweb.org/anthology/2020.emnlp-demos.6.

Yaming Yang, Dilxat Muhtar, Yelong Shen, Yuefeng Zhan, Jianfeng Liu, Yujing Wang, Hao Sun,
Weiwei Deng, Feng Sun, Qi Zhang, et al. Mtl-lora: Low-rank adaptation for multi-task learning.
In Proceedings of the AAAI Conference on Artificial Intelligence, 2025.

13

https://www.aclweb.org/anthology/2020.emnlp-demos.6

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yifan Yang, Jiajun Zhou, Ngai Wong, and Zheng Zhang. LoRETTA: Low-rank economic tensor-
train adaptation for ultra-low-parameter fine-tuning of large language models. arXiv preprint
arXiv:2402.11417, 2024.

Miao Yin, Huy Phan, Xiao Zang, Siyu Liao, and Bo Yuan. Batude: Budget-aware neural network
compression based on tucker decomposition. In Proceedings of the AAAI Conference on Artificial
Intelligence, 2022.

Maxime Zanella and Ismail Ben Ayed. Low-rank few-shot adaptation of vision-language models. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024.

Fangzhao Zhang and Mert Pilanci. Riemannian preconditioned lora for fine-tuning foundation models.
arXiv preprint arXiv:2402.02347, 2024.

Gengwei Zhang, Liyuan Wang, Guoliang Kang, Ling Chen, and Yunchao Wei. Slca++: Unleash
the power of sequential fine-tuning for continual learning with pre-training. arXiv preprint
arXiv:2408.08295, 2024a.

Ji Zhang, Shihan Wu, Lianli Gao, Heng Tao Shen, and Jingkuan Song. DePT: Decoupled prompt
tuning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2024b.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He, Yu Cheng,
Weizhu Chen, and Tuo Zhao. Adalora: Adaptive budget allocation for parameter-efficient fine-
tuning. arXiv preprint arXiv:2303.10512, 2023.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Conditional prompt learning for
vision-language models. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2022a.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-
language models. International Journal of Computer Vision, 2022b.

Bojia Zi, Xianbiao Qi, Lingzhi Wang, Jianan Wang, Kam-Fai Wong, and Lei Zhang. Delta-lora: Fine-
tuning high-rank parameters with the delta of low-rank matrices. arXiv preprint arXiv:2309.02411,
2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A OTHER RELATED WORKS

In this section, we explore various works that are pertinent to our study.

Alternatives to tuning weights for PEFT. Among the relevant works, we briefly highlight research
that investigates alternatives to tuning transformer weights for adapting to new tasks and/or datasets.
Notably, few-shots in-context learning methods have been demonstrated to perform less effectively
than PEFT methods Brown et al. (2020); Runwal et al. (2025). Alternative approaches, such as
prompt tuning, aim to isolate and preserve the shared knowledge subspaces Zhang et al. (2024b);
Khattak et al. (2023), while also learning context vector representations for prompts Zhou et al.
(2022b;a); Zhang et al. (2024b). While these works significantly reduce the amount of learnable
parameters, additional processing of input data can increase inference latency. Moreover, prompt
tuning is often limiting beyond the realms of few-shots learning Han et al. (2024); Wistuba et al.
(2024) and can be outperformed by appropriate low-rank fine-tuning in presence of more data Zanella
& Ben Ayed (2024). As such similar to prior work Albert et al. (2025) on this area of parameter
efficient fine-tuning, we compare our work to algorithms for weight tuning only.

Tensor networks in machine learning. Early work on tensor networks were standalone models for
supervised learning Novikov et al. (2016); Stoudenmire & Schwab (2016). Parallel to this, research
exploited them for weight compression in convolution neural networks (CNNs) and recurrent neural
networks (RNNs) Novikov et al. (2015); Garipov et al. (2016); Kim et al. (2015); Yin et al. (2022).
These techniques have motivated much of the work around tensor networks for fine-tuning. We
remark that while tensor networks can significantly compress individual neural-network (NN) layers,
they present notable drawbacks in terms of computational efficiency and latency on GPUs due to the
need to manage tensor contraction and reshaping Monturiol et al. (2025); Lu et al. (2025).

B FURTHER EXPERIMENTS ON MTL USING METATT-(4+1)D

In this section we provide further evidence that the task-related tensor cores in MetaTT-(4+1)D used
in Section 3.2 play a significant role. For any given layer index l, matrix-type index m, and task index
t, a given input batched vector gets updated as

X ← X ·WT
l,t,m + αX · G1G2[l]G3[t]G4[m]G5. (6)

To show the impact of the inclusion of task-dependent TT cores, in Figure 3 we plot heatmaps of
the gradients across each tensor in the TT. Since the boundary cores G1, G5 are much larger than
the rest of the cores, we normalize the gradients across each TT core by the number of non-zero
elements as follows – ||∇G ||F /

√
|G| where ∥ · ∥F is the Frobenius norm and |G| is the number of

non-zero elements of the tensor G. For tensors G2 and G4 we plot the average gradients across all
layers and matrix-types, respectively. We observe that indeed the tensor G3 is acquiring significant
gradient updates, especially for RoBERTalarge. Moreover, for certain epochs, we find that G3 in fact
acquires the largest gradients across all tensors. Interestingly, we find that the task core with label 2
in Figure 3 corresponding to CoLA receives the largest gradient update. This is expected since CoLA
is the hardest task among the chosen sets of tasks. Similar to Section 3.2, the rank chosen in these
experiments is 8 across all bonds. Other relevant hyper-parameters used are: batch size = 16, α = 2,
learning rate = 5e− 4. Also similar to Section 3.2, we down-sample each dataset so as to contain a
maximum of 5K training samples and 500 evaluation samples. Furthermore, we perform gradient
clipping with a maximum gradient value of 3.0.

We compliment plots of gradients with the downstream task performance per epoch on each of
the plots. While it is generally hard to make direct comparisons between gradients observed and
downstream task performance, in Figure 3 we observe that for both RoBERTabase and RoBERTalarge
and the RTE dataset, the gradients observed at each epoch at tensor core G3[1] correlate with the
downstream task performance of the model.

C FURTHER DETAILS ON THE EXPERIMENTS WITH DMRG

The results of Section 3.3 show that, for a given target rank (r = 4 for both MRPC and RTE datasets),
interspersing DMRG-inspired sweeps to progressively bring down the TT ranks from a high enough

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 3: Influence of task-dependent TT core in MTL. (Left): (Top): Accuracy of MetaTT-(4+1)D
as a function of epochs for RoBERTabase for a single training realization (in the case of CoLA we
compute Matthew’s correlation instead). (Bottom): Corresponding normalized gradients across all
tensors as a function of epochs (see Appendix B). Task labels correspond to 0: MRPC, 1: RTE, 2:
CoLA. (Right): Same as in left but for RoBERTalarge as pretrained model.

rank (r = 10 in this case) leads to higher accuracies than training via AdamW with that fixed target
rank. Interestingly, the rank schedule philosophy used here in DMRG is the mirror image of the
one commonly used in many-body physics: there, one starts with small ranks and progressively
increments these so as to capture more precisely the target ground state (see Schollwöck (2011) and
references therein). Instead, in ML settings such as ours, the TT rank serves as a regularizer; pruning
redundant directions after the optimiser has identified them improves generalization and reduces
memory, whereas too high rank risks overfitting.

The choice of rank schedule was done heuristically, with the only consideration in mind that the ranks
should be reduced slowly so that the model can adapt to the new weight space more efficiently. We
see two potential extensions that find such rank schedules in more principled ways and that we leave
open for future work.

First, for our experiments we used the magnitude of the singular values across TT bonds as diagnostic
to shrink the ranks (even if they all remained high relative to each other). One improvement could
come in the form of considering other importance scores that take into account the sensitivity of
those singular values to the loss function. This would necessitate freezing all TT cores not involved
in the SVD process. An approach similar in spirit was done in the context of LoRA type adapters
in AdaLoRA Zhang et al. (2023). We remark here that one advantage of performing rank adaptive
schemes based on SVDs in MetaTT over LoRA type adapters is that a much smaller fraction of
SVDs are needed in MetaTT than in LoRA. This series of SVDs at the end of certain epochs result
in a small overhead. This is in contrast to performing SVDs on all LoRA type adapters across the
transformer architecture. It is for this reason that the orthogonality condition on the isometry factors
stemming from SVDs are enforced through regularizers in AdaLoRA Zhang et al. (2023).

A second approach, which follows the original DMRG algorithm closer in spirit is to use powerful
local optimizers to minimize directly the loss function with respect to each merged tensor at each
step of the DMRG-inspired sweep in Algorithm 1. This would not only enable rank adaptation across
each TT bond, but also directly optimize the loss function which may result in a powerful optimizer.

D EXPERIMENTAL DETAILS

In this section we include experimental details not covered in the previous sections.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D.1 METHODOLOGY FOR HYPER-PARAMETER SEARCH

During hyper-parameter tuning, we conducted a manual grid search without fixing random seeds, as
the goal was to identify promising regions in the search space rather than produce final reportable
results. The details of the grid search are given in Appendix D. For the final evaluation, we selected
the best-performing configurations and ran them across three different, fixed random seeds (see
Appendix D for the final set of hyper-parameters used) to ensure stability and reproducibility. This
allowed us to balance exploration efficiency with reliable performance reporting. Generally, we follow
Bershatsky et al. (2024) for hyper-parameter tuning. For very large datasets (≥ 500k data-points, e.g.,
MNLI and QQP), we do the hyper-parameter tuning for only 1 epoch (for example MNLI which has
≈ 390k entries). For smaller datasets (e.g., CoLA and MRPC), we train for 20 epochs.

Seeds. We run 3 trials for most of our experiments unless the datasets are huge, in which case we
run only 2 trails. All experiments with RoBERTabase use the following seeds {33305628, 2025, 42},
and the experiments with RoBERTalarge use the following seeds {56346, 2025, 42}.

D.2 CHOICE OF PROJECTION MATRICES

All experimental results in the main text were obtained by adapting Q,V matrices, as these were
the ones used in LoTR Bershatsky et al. (2024), LoRA (Hu et al., 2021, Tables 2, 3), and VeRA
Kopiczko et al. (2024). Just like several other PEFT adapters, MetaTT allows for fine-tuning any
arbitrary subset of attention and projection matrices in a transformer architecture, including the
MLP matrices (upon a proper reshaping). Since the number of projection matrices to be adapted M
(per layer) factorizes separately from other variables in MetaTT (including number of layers and
input/output dimensions), higher compression rates can be achieved by considering this quantity
larger. In line with previous works, we found that capturing Q,K, V matrices at once did not improve
over capturing only Q,V matrices. We leave for future work a detailed study of the role of MLP
layers and output projection matrices O.

D.3 IMPLEMENTATION ENVIRONMENT

Implementation details for MetaTT variants and other baselines. To construct our training
and benchmarking suite, we employed a range of technologies. HuggingFace provides a wrapper,
known as HuggingFace Transformers Wolf et al. (2019), which extends existing deep learning
libraries like PyTorch Paszke et al. (2019) with additional NLP functionalities. This library offers a
unified interface for tasks such as input tokenization, model configuration, inference pipelines, and
output decoding. We utilized HuggingFace’s Transformers and PEFT Mangrulkar et al. (2022) to
facilitate the design and training of our adapters, specifically taking advantage of the Trainer and
TrainingArguments features available within the library.

Implementation details for DMRG-inspired sweep. Similar to the single task and multi-task
learning, we leverage HuggingFace’s transformers library Wolf et al. (2020) to load the models and
HuggingFace datasets Lhoest et al. (2021) to load the datasets. However, we do not leverage the
Trainer here and instead fall back to custom PyTorch training loops as we wish to have more precise
control over the training loop (this is because we are changing the model itself during the run). Doing
this using a custom PyTorch loop is much cleaner than using TrainerCallbacks.

Machine configuration and coding environment. We run our benchmarks on a machine with the
following configuration: dual Intel Xeon Platinum 8275CL CPUs with 96 cores, 192 threads, and 1.1
TB of RAM and 8 A100 GPUs with 40GB memory each (an AWS P5 instance). At any given point
on any GPU, only 1 model is being trained against one dataset.

D.4 METATT

Initialization. An important component for running MetaTT successfully is the initialization
strategy. There is freedom in choosing how to initialize each core, as long as the TT contraction
G[i1, · · · , id] = 0 along each slice. This is required to guarantee ∆Wl,m = 0 everywhere at the
beginning Hu et al. (2021). The majority of our experiments from the main text initialized the first

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

core G1 to zero, and the rest to the identity along each slice. I.e., Gi[j]k,l = δk,l. This choice was done
for simplicity and ease of reproducibility of results, and found to work well across all datasets that
we experimented with. In Figure 4, we compare this scheme against other initialization strategies on
MRPC and RTE. Note that further improvements on the numbers quoted in Table 2 can be achieved
by optimizing initialization choices, as shown in Figure 4.

Figure 4: TT initialization performance. Shown are the accuracies in MRPC (left) and RTE
(right) when training MetaTT-4D on RoBERTabase with different initialization strategies along with
mean of best accuracies over 20 epochs across 3 different trials shown in the legend. Each pair of
letters correspond to a different initialization strategy: ‘ze’ sets a given core to zero, ‘id’ sets each
matrix slice of a core to the identity matrix and ‘no’ to a normal distribution with mean = 0 and
standard deviation = 0.2. The order of pairs of letters follows the order of how each of the cores
are initialized in MetaTT-4D. We choose the sequence ze-id-id-id (blue line) since it generally
performs well on average across multiple datasets.

Hyper-parameters for MetaTT results of Table 2. In Table 5 and Table 6 we list the exhaustive
set of hyper-parameters required to replicate the results in Table 2 for MetaTT-4D and MetaTT-5D
respectively. For final evaluations, we run multiple trials across all the datasets for each transformer
(for 20 epochs). For CoLA, MRPC, RTE and STS-B, we do 3 trials. For MLNI, QNLI, QQP and
SST2, we run 2 trials due to their large cardinality.

Model Rank Params CoLA MNLI MRPC QNLI QQP RTE SST2 STS-B

R
oB

E
R

Ta
B

as
e

4
α 4 4 0.5 4 4 4 0.5 4
LR 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Batch 8 8 8 8 16 16 8 8

24
α 4 4 4 0.5 0.5 0.5 4 0.5
LR 0.0005 0.001 0.0005 0.001 0.001 0.001 0.0005 0.001
Batch 8 32 16 16 32 16 32 16

64
α 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
LR 0.001 0.0005 0.0005 0.001 0.001 0.0005 0.001 0.0005
Batch 32 8 32 16 32 8 8 8

R
oB

E
R

Ta
L

ar
ge

16
α 0.5 0.5 0.5 0.5 0.5 0.5 4 0.5
LR 0.001 0.001 0.0005 0.001 0.001 0.0005 0.001 0.001
Batch 8 32 32 32 16 8 16 32

32
α 4 0.5 0.5 0.5 0.5 0.5 4 0.5
LR 0.0005 0.001 0.001 0.001 0.0005 0.0005 0.0005 0.001
Batch 32 16 32 32 8 32 32 16

Table 5: Hyper-parameters for RoBERTa for MetaTT-4D. We list here the hyper-parameters that
can be used to replicate the results for MetaTT-4D reported in Table 2.

Hyper-parameter search grid. We also list the hyper-parameter grids we used to search for the
set of hyper-parameters we reported for fine-tuning RoBERTa using MetaTT-4D and MetaTT-5D on
GLUE benchmark datasets, in Table 5 and Table 6, in Table 7. Across both models and methods, we
use 0.0 as weight decay, warmup ratio of 0.06, and set the sequence length at 256.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Model Rank Params CoLA MNLI MRPC QNLI QQP RTE SST2 STS-B

R
oB

E
R

Ta
B

as
e

16
α 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
LR 0.0005 0.001 0.001 0.001 0.001 0.001 0.0005 0.001
Batch 32 16 8 8 8 8 16 8

64
α 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
LR 0.0005 0.0005 0.001 0.001 0.0005 0.0005 0.001 0.001
Batch 32 8 16 16 16 32 16 8

R
oB

E
R

Ta
L

ar
ge

32
α 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
LR 0.001 0.001 0.0005 0.001 0.001 0.0005 0.0005 0.001
Batch 32 8 32 32 16 8 8 16

64
α 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
LR 0.0005 0.001 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
Batch 16 32 16 16 16 16 16 8

Table 6: Hyper-parameters for RoBERTa for MetaTT-5D. We list here the hyper-parameters that
can be used to replicate the results for MetaTT-5D reported in Table 2.

MetaTT-4D MetaTT-5D
Hyper-parameter Values Values

Rank (r) 4, 8, 16, 24, 32, 48, 64 Base – {16, 24, 32, 48, 64}. Large – {32, 64, 96}
Alpha (α) 0.5, 4 0.5, 4

Learning Rate (η) 1× 10−3, 5× 10−4 1× 10−3, 5× 10−4

Batch Size 8, 16, 32 8, 16, 32

Table 7: Hyper-parameter grid used for RoBERTabase and RoBERTalarge on GLUE benchmark datasets
to fine-tune with MetaTT-4D and MetaTT-5D PEFT adapters.

Hyper-parameter search for Llama. Since fine-tuning on Llama models is computationally
more demanding, we restrict the search of hyper-parameters over coarser grids in conjunction with
some heuristics. Precisely, we perform a heuristic search over the grid spanned by the TT-ranks r ∈
{8, 16, 32, 64, 128, 256}, alpha values α ∈ {1.0, 2.0, 3.0}, learning rates η ∈ {1e−4, 2e−4, 5e−4},
and over two epochs. All Llama results were obtained by initializing the two middle cores as
Gaussians with std= 0.2 and mean 0, and the right core being set to identity (the left core being set to
zero). For MetaTT and other baselines we use AdamW as optimizer along with a linear scheduler, a
warmup ratio of 0.06, and effective batch size of 32.

Hyper-parameters for MTL. We used a fixed learning rate of 5e− 4, and a weight decay schedule
of 0.0 for LoRA and the variants of MetaTT.

D.5 BASELINES

Several of the baselines reported in Table 2 had extensively reported the set of hyper-parameters used
to benchmark against LoRA: VeRA (Kopiczko et al., 2024, Tables 8, 9), LoRETTA (Yang et al., 2024,
Tables 12, 13), LoRTA (Hounie et al., 2024, Tables 11, 12), LoTR (Bershatsky et al., 2024, §D),
MTL-LoRA and MoE-LoRA (Yang et al., 2025, Table 7)). However, except for LoTR and LoRTA,
all other methods report accuracy after fine-tuning the weights of both the classifier head and the
shared parameters. However, allowing the whole classifier head to be trainable significantly blows
up the total number of trainable parameters (e.g., adds about 400K parameters for RoBERTabase in
case of VeRA with sequence length of 1024), effectively hiding the sole impact of the shareable
hyper-parameters. As such we re-run the benchmarking by freezing the classifier heads. We believe
that this is necessary for a fair comparison. We also report the new set of hyper-parameters for
replicating these results in the following subsections.

D.5.1 LORA HU ET AL. (2021)

The reported results for fine-tuning Llama-2 models with LoRA were obtained through hyper-
parameter tuning over a grid with ranks r ∈ 8, 16, 32, 64, alpha α = 2r, and learning rates η ∈

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

1e-1, 1e-2, 1e-5. The values presented correspond to the best performance achieved on this grid
search over 2 epochs.

For RoBERTa, we directly report the results from Bershatsky et al. (2024).

D.5.2 VERA KOPICZKO ET AL. (2024)

For each of the GLUE benchmark datasets we use weight decay 0.0 and warmup ratio 0.06. Fur-
thermore, to be consistent with our other experiments, for RoBERTabase and RoBERTalarge, we use
a sequence length of 256. We tried different batch sizes from the set {4, 8, 16, 32} out of which 32
consistently worked well across all of the datasets. The best performing learning rates for both the
models and corresponding datasets are reported in Table 8. To find these learning rates, we searched
in the range [0.0001, 0.1] across all datasets. Finally, consistent with the experiments in Kopiczko
et al. (2024), we set VeRA rank for RoBERTabase as 1024, and for RoBERTalarge as 256.

Model CoLA MNLI MRPC QNLI QQP RTE SST2 STS-B
RoBERTabase 0.005 0.0008 0.01 0.015 0.025 0.004 0.01 0.003
RoBERTalarge 0.009 0.01 0.004 0.006 0.01 0.005 0.01 0.003

Table 8: Learning rates for VeRA experiments. Since we only train the attention layers and keep
the classifier weights frozen, we report the learning rates to fine-tune RoBERTabase and RoBERTalarge
on the GLUE benchmark datasets.

For Llama experiments we perform a coarser grid search given runs are substantially more expensive.
For each of the two models we searched over the grid formed by ranks r ∈ {256, 1024} and learning
rates η ∈ {2e− 4, 5e− 4}. We picked the best out of these parameters over the span of two epochs.

Other than rank and learning rate, for both RoBERTa and Llama experiments we use the default set
of hyper-parameters from HuggingFace’s implementation of VeRA.

D.5.3 LORETTA YANG ET AL. (2024)

Similar to the original paper, for LoRETTAadp we tried on two batch sizes 16, 32 and found 32 to
work best in all tasks of the GLUE suite. The bottleneck dimension was set at 64. Adapter dropout
was set to 0, and the scaling parameter (α) was set at 1.0. Weight decay was set to 0.01 and sequence
length was set at 256 for both the methods. Furthermore, among 2, 5, 10, 20 tensor ranks, 5 had the
right balance of parameters and performance across GLUE tasks for both the methods. The learning
rates used across the tasks, method, and the models are reported in Table 9. Each of the dataset was
trained on 20 epochs, except MNLI and QQP which were trained for 10 epochs.

LoRETTAadp

Model CoLA MNLI MRPC QNLI QQP RTE SST2 STS-B
RoBERTaBase 1e− 3 4e− 4 8e− 4 2e− 3 3e− 3 2e− 3 3e− 4 –(–)

LoRETTArep

Model CoLA MNLI MRPC QNLI QQP RTE SST2 STS-B
RoBERTaBase 5e− 4 1e− 4 7e− 4 1e− 3 –(–) 4e− 4 3e− 4 –(–)

Table 9: Learning rates for LoRETTAadp experiments. Since we only train the attention layers
and keep the classifier weights frozen, we report the learning rates to fine-tune RoBERTaBase and
RoBERTaLarge on the GLUE benchmark datasets.

D.5.4 LOTR BERSHATSKY ET AL. (2024)

For RoBERTa experiments we directly quote the results of LoTR from the original work. For Llama
models we search exhaustively over the grid spanned by the learning rates η ∈ {2e− 4, 5e− 4} and
ranks r ∈ {16, 64}. The choice of scaling factor α is set to 2.0 and we initialize the cores analogously
to MetaTT: middle core drawn from a Gaussian with std= 0.2 and mean 0, and right core (output
dimension leg) set to identity. We report the best accuracy on this grid over two epochs.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

D.5.5 LORTA HOUNIE ET AL. (2024)

We chose to rerun GLUE experiments for LoRTA since in (Hounie et al., 2024, Table 2) only
the best results are reported. For completeness, we restate the hyperparamter grids used to report
results in Hounie et al. (2024) for GLUE baselines in Table 10. We train the models on the 3
seeds mentioned at the beginning of this section. For COLA, MRPC, STS-B, and RTE tasks we
fine-tune RoBERTa based models for 20 epochs, and for MNLI, SST2, QNLI, and QQP tasks we
fine-tune RoBERTa based models for 10 epochs. Similar to other experiments we set sequence
length at 256. Weight decay is set at 0.0 for fine-tuning both models. The learning rate grid
is [5e − 4, 1e − 3, 2e − 3, 3e − 3, 4e − 3, 5e − 3, 6e − 3, 7e − 3, 1e − 2, 1.5e − 2, 2e − 2] for
RoBERTabase, and [1e− 3, 5e− 3, 7e− 3, 8e− 3, 9e− 3, 1e− 2, 2e− 2] for RoBERTalarge. The final
learning rates used are reported in Table 11.

Hyper-parameter RoBERTabase RoBERTalarge
α [0.5, 1.0, 2.0, 8.0] [0.5, 1.0, 2.0, 8.0]

Scheduler Linear Linear
Optimizer AdamW AdamW
Batch size [32, 64] [32, 64]

Warmup ratio 0.06 0.06

Table 10: Hyper-parameter configurations for RoBERTabase and RoBERTalarge for LoRTA. We
restate and update some of the hyper-parameters from Hounie et al. (2024) for completeness.

Model COLA MNLI MRPC QNLI QQP RTE SST2 STS-B
RoBERTabase 1e− 2 1e− 2 1e− 2 1e− 2 1.5e− 2 1e− 2 4e− 3 4e− 3
RoBERTalarge 1e− 2 1e− 2 1e− 2 1e− 2 8e− 3 2e− 2 1e− 2 2e− 2

Table 11: Final learning rates used for fine-tuning RoBERTabase and RoBERTalarge using LoRTA.
We state the final learning rates used to fine-tune RoBERTa based pre-trained models on the GLUE
tasks.

D.5.6 MOE-LORA LIU ET AL. (2024) AND MTL-LORA YANG ET AL. (2025)

The codebase for MTL-LoRA1 had implementation only for Llama based models. As such we
adapted this codebase for experimenting MTL on RoBERTa based models for fine-tuning on some of
the GLUE tasks. For both MoE-LoRA and MTL-LoRA, and both RoBERTa based models, we train
for 20 epochs. The number of experts were set to 4 for MoE-LoRA (used a grid of [4, 8], 4 worked
reliably well), and rank r of LoRA was set to 4 (grid used was [4, 8], 4 gave the best balance between
number of trainable parameters and performance) for both methods. We set a batch size of 32 across
both methods and the learning rate grid used was [1e−4, 2e−4, 3e−4, 5e−4, 7e−4, 9e−4, 1e−3]
for both the methods. The final learning rates used are reported in Table 12.

Model MoE-LoRA MTL-LoRA
RoBERTabase 7e− 4 5e− 4
RoBERTalarge 9e− 4 5e− 4

Table 12: Final learning rates for MTL experiments using methods from Liu et al. (2024); Yang
et al. (2025). In this table we report the final learning rates used to generate the baseline results in
Table 3 using MoE-LoRA and MTL-LoRA.

E METATT ADAPTER IMPLEMENTATION

In this section, we give an example of one of the MetaTT adapters (MetaTT-4D) using pseudo-code
written in python.

1https://github.com/pUmpKin-Co/MTL-LoRA

21

https://github.com/pUmpKin-Co/MTL-LoRA

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Configuration. We start by stating the configuration class of MetaTT-4D in Algorithm 2. The
different inputs to the class function are – rank: a 1× 3 array (e.g., [8, 8, 8]) corresponding to the
different ranks of the tensor-train, alpha: scaling factor for the adapter, target modules: type
of matrices to be fine-tuned using the algorithm, and use bias: flag to choose whether to add bias
as a parameter.

Algorithm 2 MetaTT-4D configuration class file

class MetaTT4DConfig:
def __init__(self, ranks, alpha=1.0, target_modules=["query", "key", "value"],

use_bias=False):
self.ranks = ranks
self.alpha = alpha # scaling factor for the adapter
self.target_modules = target_modules
self.use_bias = use_bias

Adapter. We then list an example of an adapter for MetaTT-4D in Algorithm 3. In the attached
pseudo-code, the G1 core is initialized to zero, the G2, G3, G4 cores are initialized as the identity
matrix. One of the cores is generally set to 0-tensor so that output of the corresponding adapter is
zero at the beginning of the training similar to Hu et al. (2021).

Algorithm 3 MetaTT-4D adapter

class MetaTT4DAdapter(nn.Module):
def __init__(self, hidden_dim: int, num_layers: int, tt_config: MetaTT4DConfig):

super().__init__()
self.hidden_dim = hidden_dim
self.num_layers = num_layers
self.tt_config = tt_config
self.num_projs = len(tt_config.target_modules)

initialize the tensor cores
self.G1 = Parameter(torch.empty(self.hidden_dim, \

tt_config.ranks[0]), requires_grad=True)

self.G2 = ParameterList[nn.init.eye_(Parameter(torch.zeros\
(self.tt_config.ranks[0], self.tt_config.ranks[1]),\
requires_grad=True)) for _ in range(self.num_layers)]

self.G3 = ParameterList[nn.init.eye_(Parameter(torch.empty\
(self.tt_config.ranks[1], self.tt_config.ranks[2]),\
requires_grad=True)) for _ in range(self.num_projs)]

self.G4 = Parameter(torch.empty(tt_config.ranks[2],\
self.hidden_dim), requires_grad=True)

nn.init.zeros_(self.G1)
nn.init.eye_(self.G4)

Linear adapter and forward function. Algorithm 3 can be used to create a linear adapter and
the corresponding forward function as shown in Algorithm 4. The inputs to this adapter are –
original layer: the layers of the pre-trained model, tt config: the corresponding initialized
MetaTT configuration class, M1, M2, M3, M4: the tensor core slices along each of the four
dimensions (corresponding to matrices). During the forward pass, the input batch is first passed
through the original layer that is frozen. This batch is also multiplied by M1 trough M4, and scaled by
α. Note that this order of matrix multiplication will be optimal if the rank is smaller than the batch
size. The outputs of the original and the adapter are then added and returned.

PEFT model. Finally, the pseudo-code for developing our model with PEFT philosophy so that
it can be used as a drop-in within any model quickly is given in Algorithm 5. The inputs to this
algorithm is just the pre-trained model and the configuration class for MetaTT. Algorithm 5 uses
the cores initialized in Algorithm 3 to set up the trainable layer using Algorithm 4. Finally, these

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Algorithm 4 MetaTT-4D linear adapter

class MetaTT4DLinearAdapter(nn.Module):
def __init__(self, original_layer: nn.Module, tt_config: MetaTT4DConfig, M1, M2,

M3, M4):
super().__init__()
set requires_grad to False for original weights
self.original_layer = original_layer.\

requires_grad_(False)
self.tt_config = tt_config
self.M1 = M1
self.M2 = M2
self.M3 = M3
self.M4 = M4

def forward(self, X: torch.tensor) -> torch.Tensor:
original_output = self.original_layer(X)
return original_output + self.tt_config.alpha * (((X @ self.M1) @ self.M_2) @

self.M3) @ self.M4

layers are set-up such that one can dynamically update them during runtime. Once all the layers are
initialized correctly, the model is assigned to the corresponding training device and returned.

Algorithm 5 MetaTT-4D PEFT model for RoBERTa

def get_meta_tt_4d_model(model, config):
set pre-trained model weights to be non-trainable
for param in model.parameters():

param.requires_grad = False
grab device ID from model
device = model.device

num_layers = model.config.num_hidden_layers
hidden_dim = model.config.hidden_size

initialize the MetaTT adapter
meta_tt_adapter = MetaTT4DAdapter(hidden_dim, num_layers,\

config)

go through each layer and corresponding projection
matrices of the roberta model
for layer_idx, layer in \

enumerate(model.roberta.encoder.layer):
for proj_idx, proj_matrix in \

enumerate(config.target_modules):
if proj_matrix in ("query", "key", "value"):

original_layer = layer.attention.self
original_matrix = getattr(original_layer,\

proj_matrix)
elif proj_matrix == "dense":

original_layer = layer.attention.output
original_matrix = getattr(original_layer,\

proj_matrix)
else:

raise ValueError(f\
"Unexpected proj_matrix value: {proj_matrix}")

set-up the MetaTT layer
meta_tt_layer = MetaTT4DLinearAdapter(\

original_matrix, config,
meta_tt_adapter.G1,
meta_tt_adapter.G2[layer_idx],
meta_tt_adapter.G3[proj_idx],
meta_tt_adapter.G4)

setattr(original_layer, proj_matrix, meta_tt_layer)

return model.to(device)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

F LIMITATIONS AND BROADER IMPACTS

Limitations. MetaTT is sensitive to parameter initialization. We have observed that for certain
choice of hyper-parameters MetaTT would fail to train. This sensitivity to initialization is more
prevalent in the 5D version than in the 4D. Finding better initialization heuristics would improve the
robustness of MetaTT. We also observe that when compared to MetaTT-4D, MetaTT-5D is more
sensitive to worsening performance during training when optimized using standard SGD algorithms.

Broader Impacts. The development of a reparameterization adapter using tensor trains and DMRG-
inspired techniques offers significant potential in advancing compressed adapter fine-tuning as well
as model training. By leveraging these methods, models can be compressed as they are being trained,
significantly reducing the final parameter count while maintaining high accuracy. This leads to
ultra-compressed models while training, and compressed adapters while fine-tuning. The ability to
compress models as they are training ensures that the compression does not compromise the model’s
performance, as there are opportunities for correction during the training process itself.

Further, our work opens up new possibilities for deploying advanced scalable models in resource-
constrained settings – where our techniques could allow for maintaining a high accuracy during
training as opposed to approaches where a model is compressed post-training.

G REBUTTAL APPENDIX: ADDITIONAL EXPERIMENTS ON MTL

We add additional experiments for MTL in this section (and will collate and combine with Section 3.2
and Appendix B for the final release).

We fine-tune RoBERTabase and RoBERTalarge jointly on CoLA, MRPC, RTE, and QNLI (MTL
for 4 tasks) datasets from the GLUE benchmark datasets. In Table 13 we show the results of our
experiments on MTL for 4 tasks. We observe similar patterns when compared to the results for MTL
3 tasks (fine-tune RoBERTabase and RoBERTalarge jointly on CoLA, MRPC, and RTE). LoRA again
works remarkably well across different datasets and pre-trained models. MoE-LoRA outperforms
methods other than LoRA across different tasks for RoBERTabase, and MetaTT-(4+1)D outperforms
methods other than LoRA across all tasks when RoBERTalarge is fine-tuned. However, we observe
that on average MetaTT-4D marginally outperforms MetaTT-(4+1)D when RoBERTabase is fine-tuned
and is about 1% worse when RoBERTalarge is fine-tuned. We note that fine-tuning both models over
these 4 tasks only incurs less than 1% extra parameters compared to the 3 tasks considered in the
main text.

Model Method Param
×103 Rank Metric (%)

CoLA MRPC RTE QNLI Avg
LoRA 295 8 58.6(9) 87.1(5) 75(1) 88.0(5) 77.3(3)
MTL-LoRA Yang et al. (2025) 296 4 51.5(1) 87(1) 76.4(2) 87.6(5) 75.6(5)

RoBERTabase MoE-LoRA Liu et al. (2024) 309 8 54.5(3) 87.4(8) 75.6(9) 88.2(3) 76.4(6)
MetaTT-4D 13.2 8 53.8(5) 84.8(3) 75(2) 85.9(8) 74.8(7)
MetaTT-(4+1)D 13.5 8 54(1) 87.3(9) 70(2) 85.8(4) 74.5(4)
LoRA 786 8 65(1) 89(1) 80.8(8) 92.9(4) 81.7(5)
MTL-LoRA Yang et al. (2025) 789 4 60(1) 88.6(8) 82(1) 90.2(3) 80.4(9)

RoBERTalarge MoE-LoRA Liu et al. (2024) 814 8 63(2) 89(2) 83(2) 90.2(1) 81(1)
MetaTT-4D 18.0 8 59(1) 88.2(5) 82.4(4) 90.3(5) 80.0(5)
MetaTT-(4+1)D 18.3 8 63(1) 87.6(8) 83.4(9) 91.1(2) 81.2(5)

Table 13: Results of MTL with 4 tasks. We observe that unlike results in Table 3 MetaTT-(4+1)D
outperforms MetaTT-4D only when using RoBERTalarge. However, across both models, MetaTT-
(4+1)D uses about only 300 more trainable parameters. For RoBERTabase MetaTT-(4+1)D performs
within 1% of MTL-LoRA while using ≈ 22x less parameters, and for RoBERTalarge MetaTT-(4+1)D
outperforms both MTL-LoRA and MoE-LoRA on average, and is within 0.5% of average accuracy
of LoRA, while using ≈ 43x less parameters. We show in bold the two best accuracies per task.

Similar to Appendix B we also plot the heatmaps of the gradients across each tensor in the TT
Figure 5. We observe that across tensor slices which correspond to the specific tasks, MetaTT-(4+1)
acquires large gradients in label 3 for CoLA (similar to what we saw in Appendix B). We also
complement plots of the gradients with downstream task performance per epoch.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 5: Influence of task-dependent TT core in MTL. (Left): (Top): accuracy of MetaTT-(4+1)D
as a function of epochs for RoBERTaBase for a single training realization (in the case of CoLA we
compute Matthew’s correlation instead). (Bottom): Corresponding normalized gradients across all
tensors as a function of epochs (see Appendix B). Task labels correspond to 0: MRPC, 1: QNLI, 2:
RTE, 3: CoLA. (Right): Same as in left but for RoBERTaLarge as pretrained model.

H REBUTTAL APPENDIX: STABILITY ANALYSIS

We compare stability of the performance of LoRA, VeRA, MetaTT4D, and MetaTT5D for fine-
tuning RoBERTabase and RoBERTalarge on the validation data of CoLA, MRPC and RTE. We study
the stability of these adapters when ranks and learning rates are varied while keeping other hyper-
parameters constant.

H.1 STABILITY DURING TRAINING USING THE BEST SET OF HYPERPARAMETERS

Fixed hyper-parameters. For these experiments, we fix the random seeds to {1, 2, 3, 4, 5, 6, 7, 8}
across all algorithms and models. The hyper-parameters used for LoRA is reported in Table 14. Note,
Bershatsky et al. (2024) which was used to report LoRA values in Table 2 only provided the range
of hyper-parameter values swept, and not the final set of hyper-parameters, and so we ran our own
search on a wider set of seeds. The hyper-parameters for other methods are consistent with the best
set of hyper-parameters reported in Appendix D

Model Task Rank α Learning Rate Batch Size
CoLA 4 8.0 5e− 4 16

RoBERTabase MRPC 32 64.0 2e−4 8
RTE 8 16.0 2e−4 16
CoLA 64 128.0 2e− 4 16

RoBERTalarge MRPC 32 64.0 2e−4 8
RTE 8 16.0 2e−4 16

Table 14: Best hyperparameters for each model and task combination for LoRA.

Stability score. To quantify stability of each adapters on the best corresponding set of hyper-
parameters, we report margin of error (also known as the half-width of the 95% confidence interval)
Krishnamoorthy (2006) defined as

Margin of error ≈ 1.96
σ√
n
, (7)

where 1.96 is the critical value expressed as a z-score and corresponds to 95% confidence level,
assuming that the data is normally distributed. Note, the margin of error reported here is at most a
factor of 2 worse than the standard error.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Observations. In Figure 6 we plot the evaluation accuracy as we increase epochs during training.
We observe that all methods demonstrate similar variance, across seeds and epochs. To measure
the stability of the performance of the final model, we measure corresponding stability scores and
report them in Table 15. We observe that between models, tasks and adapters, the half width of the
95% confidence interval does not vary by much. As a result, we can conclude that for the set of
hyper-parameters that yield the highest evaluation accuracies across methods, the stability during
training across adapter variants remains relatively similar.

Model Task LoRA VeRA MetaTT-4D MetaTT-5D
CoLA 0.009 0.012 0.012 0.011

RoBERTabase MRPC 0.006 0.006 0.006 0.006
RTE 0.007 0.016 0.011 0.010
CoLA 0.007 0.013 0.154 0.010

RoBERTalarge MRPC 0.004 0.007 0.006 0.065
RTE 0.011 0.008 0.010 0.093

Table 15: Margin of error across seeds. We report the half-width of the 95% confidence interval
for finetuning RoBERTabase and RoBERTalarge using LoRA, VeRA, MetaTT-4D, and MetaTT-5D
adapters. The lowest two values in each row are shown in bold.

H.2 STABILITY ACROSS LEARNING-RATES

We also plot the performance of each of the adapters when the learning rate is varied while other
hyper-parameters are kept constant in Figure 7 and Figure 8 (we choose the best reported hyper-
parameters for these sweeps in Appendix D). We observe that when finetuning RoBERTabase and
RoBERTalarge on MRPC and RTE, the decay in performance after attaining the best rate is similar in
LoRA and VeRA, and MetaTT-4D also performs similar to these adapters (approximately similar
slope of the mean). For fine-tuning on CoLA, MetaTT-4D and LoRA behave similarly (with larger
variance in case of MetaTT-4D), and MetaTT-5D and VeRA behave similarly. One must note that the
α is varied for LoRA (as 2× rank) and VeRA doesn’t depend on α, which makes this comparison
harder for both variants of MetaTT. We observe similar trends across tasks for RoBERTalarge for
LoRA and MetaTT-4D. However, unlike RoBERTabase, MetaTT-5D performs similar to LoRA and
MetaTT-5D and not VeRA.

H.3 STABILITY ACROSS RANKS

We also plot the performance of each of the adapters when the rank is varied while other hyper-
parameters are kept constant in Figure 9 and Figure 10 (similar to Appendix H.2). Again note that
the parameter α was chosen as 2 × rank for LoRA, and for MetaTT variants were kept as fixed
as reported in Appendix D. We first observe that across tasks and models sizes, LoRA and VeRA
performs similarly across ranks. This is somewhat expected as we vary both rank and α (implicitly
for VeRA and explicitly for LoRA). However, MetaTT-4D somewhat performs worse at higher ranks
when both models are fine-tuned with CoLA and somewhat maintains performance on other tasks.
However, MetaTT-5D’s performance improves with ranks across models and ranks even with fixed α.

H.4 DIFFERENT INITIALIZATIONS OF LORA

Finally, we also plot the evaluation accuracy during training for several initializations of LoRA.
Specifically, we compare the following initializations for LoRA – 1) Gaussian, 2) Pissa, and 3)
OLoRA. We run 8 independent trials with the hyper-parameters in Table 17 and finetune RoBERTabase
on MRPC and RTE tasks. We plot these results in Figure 11 We compare the validation accuracy
across training epochs similar to Figure 4. We observe that across both MRPC and RTE, LoRA
performs similarly when initialized with either Gaussian, Pissa Meng et al. (2024)(matrices initialized
as singular vectors of the pre-trained weights), and OLoRA Büyükakyüz (2024) (base weights are
translated with their QR decomposition). Although not as close the performance of these variants,
we tested on different initializations of MetaTT-4D in Appendix D, and observed that the models

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

5 10 15 20
Epoch

0.0

0.2

0.4

0.6

M
et

ric

Metric vs Epoch

lora
metatt4d
metatt5d
vera

(a) RoBERTabase, CoLA

5 10 15 20
Epoch

0.0

0.2

0.4

0.6

M
et

ric

Metric vs Epoch

lora
metatt4d
metatt5d
vera

(b) RoBERTalarge, CoLA

5 10 15 20
Epoch

0.70

0.75

0.80

0.85

0.90

Ev
al

 A
cc

ur
ac

y

Eval Accuracy vs Epoch

lora
metatt4d
metatt5d
vera

(c) RoBERTabase, MRPC

5 10 15 20
Epoch

0.2

0.4

0.6

0.8

1.0

Ev
al

 A
cc

ur
ac

y

Eval Accuracy vs Epoch

lora
metatt4d
metatt5d
vera

(d) RoBERTalarge, MRPC

5 10 15 20
Epoch

0.2

0.4

0.6

0.8

1.0

Ev
al

 A
cc

ur
ac

y

Eval Accuracy vs Epoch

lora
metatt4d
metatt5d
vera

(e) RoBERTabase, RTE

5 10 15 20
Epoch

0.2

0.4

0.6

0.8

1.0

Ev
al

 A
cc

ur
ac

y

Eval Accuracy vs Epoch

lora
metatt4d
metatt5d
vera

(f) RoBERTalarge, RTE

Figure 6: Variance during training. Here we plot the evaluation accuracy (Matthew’s correlation
coefficient for CoLA) as we train the respective model on specific finetuning tasks using LoRA,
VeRA, MetaTT-4D, and MetaTT-5D adapters. We observe that on average the variance across LoRA,
MetaTT-4D, and MetaTT-5D are approximately similar,except for RoBERTabase on CoLA where
MetaTT-5D demonstrates significantly greater variance in training across seeds.

performed similarly across training epochs. However, tricks like the use of singular vectors of the
pre-trained model to initialize adapter weights do not necessarily translate to the TT architecture.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Learning rate ×10 3

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric

LR vs Accuracy

cola
mrpc
rte

(a) RoBERTabase with LoRA.

0.5 1.0 1.5 2.0 2.5 3.0
Learning rate ×10 2

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric

LR vs Accuracy

cola
mrpc
rte

(b) RoBERTabase with VeRA.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Learning rate ×10 3

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric

LR vs Accuracy
cola
mrpc
rte

(c) RoBERTabase with MetaTT-4D.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Learning rate ×10 3

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric

LR vs Accuracy

cola
mrpc
rte

(d) RoBERTabase with MetaTT-5D.

Figure 7: Learning rate vs accuracy. We plot final accuracy of RoBERTabase when trained with
specific adapters on specific glue tasks. We observe that in general variants of MetaTT decays
somewhat at a similar rate when compared to LoRA and VeRA. This is inspite of the fact that for
LoRA and VeRA the parameter α are tied to the ranks and so varied across runs (or in case of VeRA
already absorbed in the learning parameters), while α remains an independent parameter for variants
of MetaTT and was treated asfixed across learning rates.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Learning rate ×10 3

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric

LR vs Accuracy

cola
mrpc
rte

(a) RoBERTalarge with LoRA.

0.5 1.0 1.5 2.0 2.5 3.0
Learning rate ×10 2

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric

LR vs Accuracy

cola
mrpc
rte

(b) RoBERTalarge with VeRA.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Learning rate ×10 3

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric

LR vs Accuracy

cola
mrpc
rte

(c) RoBERTalarge with MetaTT-4D.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Learning rate ×10 3

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric

LR vs Accuracy
cola
mrpc
rte

(d) RoBERTalarge with MetaTT-5D.

Figure 8: Learning rate vs accuracy. We plot final accuracy of RoBERTalarge when trained with
specific adapters on specific glue tasks. We observe that for MRPC the rate of performance decay for
VeRA is better than other methods, and for RTE the rate of performance decay for MetaTT-5D is
better than other methods.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6
Rank ×101

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric

Rank vs Accuracy

cola
mrpc
rte

(a) RoBERTabase with LoRA.

0.0 0.5 1.0 1.5 2.0
Rank ×103

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric

Rank vs Accuracy

cola
mrpc
rte

(b) RoBERTabase with VeRA.

1 2 3 4 5 6
Rank ×101

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric

Rank vs Accuracy

cola
mrpc
rte

(c) RoBERTabase with MetaTT-4D.

1 2 3 4 5 6
Rank ×101

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric

Rank vs Accuracy

cola
mrpc
rte

(d) RoBERTabase with MetaTT-5D.

Figure 9: Rank vs accuracy. We plot final accuracy of RoBERTabase when trained with specific
adapters on specific glue tasks when keeping other hyper-parameters fixed and varying ranks. We
observe that both LoRA and VeRA maintains performance (hinting a little at model capacity).
MetaTT-4D’s performance gets somewhat worse at higher rank, hinting at the requirement to find the
right pair of ranks and α, while MetaTT-5D starts worse and keeps improving across ranks.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6
Rank ×101

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric

Rank vs Accuracy

cola
mrpc
rte

(a) RoBERTalarge with LoRA.

0.0 0.5 1.0 1.5 2.0
Rank ×103

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric

Rank vs Accuracy

cola
mrpc
rte

(b) RoBERTalarge with VeRA.

1 2 3 4 5 6
Rank ×101

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric

Rank vs Accuracy

cola
mrpc
rte

(c) RoBERTalarge with MetaTT-4D.

1 2 3 4 5 6
Rank ×101

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric

Rank vs Accuracy

cola
mrpc
rte

(d) RoBERTalarge with MetaTT-5D.

Figure 10: Rank vs accuracy. We plot final accuracy of RoBERTalarge when trained with specific
adapters on specific glue tasks when keeping other hyper-parameters fixed and varying ranks. We
observe that similar to Figure 9, LoRA and VeRA maintains performance across ranks. MetaTT-4D
gets worse on CoLA while almost maintaining performance on MRPC and RTE, while MetaTT-5D
starts worse but improves as we increase ranks.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

5 10 15 20
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric

Metric vs Epoch

lora--gaussian
lora--pissa
lora--olora

(a) MRPC

5 10 15 20
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric

Metric vs Epoch

lora--gaussian
lora--pissa
lora--olora

(b) RTE

Figure 11: LoRA using different initializations. We plot the validation accuracy across training
epochs using different initializations for LoRA on RoBERTaBase. We observe that on average these
initializations work similar to each other.

I REBUTTAL APPENDIX: ADALORA VS. METATT WITH DMRG-INSPIRED
SWEEPS

I.1 COMPARING ADALORA WITH LORA AND RELATING TO THE IMPROVEMENTS VIA DMRG

In this section we compare the performance of AdaLoRA Zhang et al. (2023) with LoRA. We
want to specifically understand the capacity of a model trained on AdaLoRA for a fixed target rank
to improve upon the performance of the LoRA with same rank. To establish fair comparison to
LoRA we fix a target rank of 4 and report the results in Table 16. We report the mean and standard
deviation of runs corresponding to seeds [33305628, 2025, 42] for RoBERTabase and [56346, 2025, 42]
for RoBERTalarge. The best set of hyper-parameters found for AdaLoRA and LoRA for these
experiments are reported in Table 17. In Figure 12 we also plot the validation accuracy during training
RoBERTabase using both LoRA and AdaLoRA on three GLUE tasks. As with other experiments
reported in our work, we again freeze the classifier and observe that AdaLoRA fails catastrophically
for RTE. Moreover, in the cases where on average it outperforms LoRA, the variance of the resulting
model is often higher. The fixed settings used for AdaLoRA were – 1) warmup steps was set at 200,
number of steps for final finetuning was set at 1000, time interval between budget allocations was set
at 10, hyperparameter for EMA sensitivity smoothing was 0.85 and for uncertainty quantification
was 0.85 (used in the original paper), and total training steps was set at 2000. For α = 16 and batch
size 32, we searched for best learning rates in range [1e− 4, 1e− 3] and report the corresponding
best set of hyper-parameters.

Model Dataset LoRA AdaLoRA
CoLA 60.8(5) 56.0(4)

RoBERTabase MRPC 87(1) 87.5(4)
RTE 75(2) 52(2)
CoLA 63.6(4) 64.4(9)

RoBERTalarge MRPC 89(1) 90.3(4)
RTE 85(2) 56(4)

Table 16: LoRA vs AdaLoRA. We report the mean accuracy achieved when the target rank for LoRA
and AdaLoRA is 4 while fine-tuning RoBERTabase and RoBERTalarge in some GLUE tasks.

I.2 COMPARISON OF ADALORA VS. DMRG

In Figure 13, we compare MetaTT-4D adapters (with and without DMRG-inspired sweeps) against
LoRA and AdaLoRA adapters. Experiments are conducted on Commonsense15k, a downsampled
version of Commonsense170k from Hu et al. (2023), using Llama-2-7b as the base model.

For MetaTT, we employ the following rank schedule r(i) = rf + (r0 − rf) [1− (i/N)γ], where
N = 5, i = 1, . . . , 5, γ = 2, initial rank r0 = 40, and final rank rf = 20. This schedule is motivated

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

5 10 15 20
Epoch

0.0

0.2

0.4

0.6

M
et

ric

Metric vs Epoch

lora
adalora

(a) RoBERTabase on CoLA

5 10 15 20
Epoch

0.70

0.75

0.80

0.85

0.90

M
et

ric

Metric vs Epoch

lora
adalora

(b) RoBERTabase on MRPC

5 10 15 20
Epoch

0.5

0.6

0.7

M
et

ric

Metric vs Epoch

lora
adalora

(c) RoBERTabase on RTE

Figure 12: Comparison of LoRA and AdaLoRA during training. We plot here the validation accu-
racy achieved using RoBERTabase on CoLA (Matthew’s correlation coefficient), MRPC (evaluation
accuracy), and RTE (evaluation accuracy) when trained using LoRA with rank 4 and AdaLoRA with
initial rank 8 and final rank 4.

Model LoRA parameters CoLA MRPC RTE AdaLoRA parameters CoLA MRPC RTE
Rank 4 4 4 Init & target ranks [8, 4] [8, 4] [8, 4]

RoBERTabase α 8.0 8.0 8.0 α 16.0 16.0 16.0
Learning rate 5e− 4 2e− 4 2e− 4 Learning rate 2e− 4 1e− 3 2e− 4
Batch 16 8 16 Batch 8 8 8
Rank 4 4 4 Init & target ranks [8, 4] [8, 4] [8, 4]

RoBERTalarge α 8.0 8.0 8.0 α 16.0 16.0 16.0
Learning rate 2e− 4 2e− 4 2e− 4 Learning rate 2e− 4 4e− 4 2e− 4
Batch 16 8 16 Batch 8 8 16

Table 17: LoRA and AdaLoRA hyper-parameters used for fine-tuning. Here we report the best set
of hyper-parameters for LoRA and AdaLoRA found after performing hyper-parameter optimization
when target rank for both methods is 4.

by empirical observations that larger rank reductions are more effective at later training steps, after the
initial rapid learning phase. This approach closely resembles the cubic schedule used by AdaLoRA
Zhang et al. (2023).

We implement AdaLoRA using its HuggingFace implementation with the following parameters:
target r=8, init r=16, tinit=84, tfinal=39, deltaT=84, beta1=0.85, beta2=0.85,
orth reg weight=0.1.

Our results show that MetaTT-4D with DMRG-inspired sweeps not only outperforms the counterpart
trained simply via AdamW, for a target rank of r = 20, but also other variants with larger ranks,
and more importantly LoRA and AdaLoRA adapters. We find that MetaTT-4D achieves accuracies
comparable with LoRA with rank r = 16, but with ≈ 47x fewer parameters.

In Table 18 we compare times taken for each of the runs on a single A100 GPU. We observe a slight
overhead of running MetaTT with DMRG-inspired sweeps. This is mostly a result of a temporary
increase in evaluation time immediately following each DMRG update. This artifact arises from
PyTorch’s need to recompile the computational graph and reinitialize CUDA kernels after the adapter
tensor shapes are modified, rather than from the algorithmic complexity of the DMRG procedure
itself. This motivates to apply fewer such DMRG steps (3-5 in our experiments).

LoRA (r = 16) AdaLoRA (r : 16→ 8) MetaTT-4D (r = 40) MetaTT-4D + DMRG (r : 40→ 20)
Time (s) 1725 1760 1680 1920

Table 18: Training times for LoRA and MetaTT based adapters. End-to-end training times for a
single realization used in Fig. 13.

I.3 COMPLEXITY ANALYSIS OF SVD-BASED RANK ADAPTATION: LORA VS. METATT

A key motivation behind the development of AdaLoRA is the computational expense associated
with performing SVDs on all weight matrices to dynamically truncate LoRA ranks during training.
This process quickly becomes prohibitive for large models, as the cost of SVD scales cubically
with the hidden dimension. To mitigate this, AdaLoRA instead employs a pruning strategy, zeroing

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

0 100 200 300 400
Training Steps

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

TT4D r=20
TT4D r=40
TT4D r=64
TT4D+DMRG r:40 20
LoRA r=4
LoRA r=8
LoRA r=16
AdaLoRA r:16 8

Figure 13: Comparison of LoRA and AdaLoRA vs. MetaTT-4D and MetaTT-4D with DMRG-
style sweeps. Fine-tuning is performed on Commonsense15k (downsampled from Common-
sense170k) with Llama-2-7b as the base model, for one epoch. Results show means and relative errors
over 5 independent runs for each method. Star symbols indicate steps at which DMRG/AdaLoRA
updates are applied. For MetaTT, α = 1.0 (fixed); for LoRA, α = 2r; for AdaLoRA, α = 32 (twice
the initial rank). Hyper-parameter tuning was performed over learning rates [2e−4, 5e−4] for all
adapters. See main text for details on the rank schedules used for MetaTT+DMRG and AdaLoRA.

out entries deemed irrelevant according to a score that serves as a proxy for singular values. In
contrast, our DMRG-inspired algorithm for MetaTT adapters enables SVD-controlled truncations to
be performed efficiently. The TT structure of MetaTT allows for global compression and facilitates
rank adaptation via SVD sweeps over a much smaller set of tensor cores, rather than all individual
weight matrices. This approach not only reduces computational overhead but also allows for dynamic
reduction of matrix sizes during training, which is better exploited by GPUs compared to the sparse
matrix operations required by AdaLoRA. To explicitly quantify the computational benefits of our
rank-adaptive scheme over the alternative of performing SVDs on all weight matrices, we present a
complexity analysis. The cost of performing a single series of SVDs for LoRA adapters is given by

O(LMD3), (LoRA-SVD) (8)

where L is the number of layers, M is the number of matrices adapted per layer, and D is the hidden
dimension. In contrast, a single DMRG-style sweep (Algorithm 1) with initial TT-rank r incurs a
cost for MetaTT-4D of

O(2DLrmin(D,Lr)) +O(2LMr2 min(Lr,Mr)) +O(2DMrmin(D,Mr)). (MetaTT-SVD)
(9)

Assuming constant factors of O(1) in (8)–(9), the ratio of the LoRA-SVD cost to the MetaTT-SVD
cost for the models considered in this work is summarized in Table 19 for various TT-ranks r

As shown in Table 19, the computational savings achieved by MetaTT are substantial, especially for
moderate TT-ranks. For example, at r = 16, the MetaTT approach is over two orders of magnitude
more efficient than LoRA-SVD for all models considered. This efficiency gain enables practical
rank-adaptive training via SVD sweeps, which would otherwise be a computational overhead for
large-scale models using conventional LoRA adapters.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

TT-rank r RoBERTaBase RoBERTaLarge Llama-2-7b Llama-2-13b
16 186 169 2039 2553
64 11 16 127 159

256 2 3 16 20

Table 19: Complexity of LoRA-SVD vs. MetaTT-SVD. We show the ratio of LoRA-SVD to
MetaTT-SVD complexity as the ratio of Eqs. (8) to (9) with an O(1) constant, for various TT-ranks r
and models.

J REBUTTAL APPENDIX: COMPARISON OF ACTUAL RUNTIMES ACROSS
ADAPTERS

In Table 20 we compare the world clock runtimes of LoRA, VeRA, MetaTT-4D and MetaTT-5D
for both forward pass and one gradient step in RoBERTabase and RoBERTalarge. For this we use a 1
A100 GPU node, which has 55 Intel Xeon Platinum CPUs, and 500 GBs RAM. We take a random
sample of 5 batches and make forward and backward passes. We this 5 times and report the mean
and standard deviation. For RoBERTabase and RoBERTalarge, we observe that LoRA and MetaTT-4D
are the two of the fastest adapters in real world clock time. Note, the ranks chosen here are the ranks
that were used to report results in Table 2.

Model Adapter Rank Batch Forward pass (secs) Backward pass (secs)
LoRA 8 64 0.1859(1) 0.2014(1)

RoBERTabase VeRA 1024 64 0.2539(0) 0.2718(1)
MetaTT-4D 24× 3 64 0.1866(1) 0.2031(0)
MetaTT-5D 64× 4 64 0.1921(1) 0.2146(1)
LoRA 8 64 0.62(2) 0.6575(1)

RoBERTalarge VeRA 256 64 0.6465(2) 0.7035(3)
MetaTT-4D 32× 3 64 0.6087(0) 0.6612(1)
MetaTT-5D 64× 4 64 0.63(1) 0.6917(2)

Table 20: World clock runtime comparison of different PEFT adapters. We report the average
time required to make 5 batches pass through the model and corresponding adapter and then compute
gradients, 5 independent trials. We observe that in general LoRA and MetaTT-4D are the fastest
among the other methods reported here for their respective best performing ranks. We note that even
for similar number of trainable parameters in VeRA, the matrix-vector-vector-matrix operation is
significantly larger than the matrix-matrix operations in LoRA and variants of MetaTT, leading to
gains in the forward and backward pass across batch and trials.

35

	Introduction
	Meta-Adapter with Tensor Networks
	Tensor-Train Decomposition
	Tensor Based Adapters
	MetaTT Adapter
	DMRG-Inspired Sweep: A Rank Adaptive Training Algorithm

	Experiments
	Single-Task Fine-Tuning
	Multi-Task Learning
	Rank Adaptive Fine-tuning via DMRG-inspired Sweep

	Conclusions
	Reproducibility Statement
	Other Related Works
	Further Experiments on MTL using MetaTT-(4+1)D
	Further Details on the Experiments with DMRG
	Experimental Details
	Methodology for Hyper-parameter Search
	Choice of Projection Matrices
	Implementation Environment
	MetaTT
	Baselines
	LoRA
	VeRA
	LoRETTA
	LoTR
	LoRTA
	MoE-LoRA and MTL-LoRA

	MetaTT Adapter Implementation
	Limitations and broader impacts
	Rebuttal appendix: Additional experiments on MTL
	Rebuttal appendix: Stability analysis
	Stability during training using the best set of hyperparameters
	Stability across learning-rates
	Stability across ranks
	Different initializations of LoRA

	Rebuttal appendix: AdaLoRA vs. MetaTT with DMRG-inspired sweeps
	Comparing AdaLoRA with LoRA and relating to the improvements via DMRG
	Comparison of AdaLoRA vs. DMRG
	Complexity Analysis of SVD-based Rank Adaptation: LoRA vs. MetaTT

	Rebuttal appendix: Comparison of actual runtimes across adapters

