

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 METATT: A GLOBAL TENSOR-TRAIN ADAPTER FOR PARAMETER-EFFICIENT FINE-TUNING

Anonymous authors

Paper under double-blind review

ABSTRACT

We present MetaTT, a Tensor Train (TT) adapter framework for fine-tuning of pre-trained transformers. MetaTT enables flexible and parameter-efficient model adaptation by using a single shared TT to factorize transformer sub-modules. This factorization indexes key structural dimensions, including layer and matrix type, and can optionally incorporate heads and tasks. This design allows MetaTT’s parameter count to scale with the sum, rather than the product, of the modes, resulting in a substantially more compact adapter. Our benchmarks compare MetaTT with LoRA along with recent state-of-the-art matrix and tensor decomposition based fine-tuning methods. We observe that when tested on single-task standard language modeling benchmarks, MetaTT achieves competitive parameter efficiency to accuracy tradeoff. We further demonstrate that MetaTT performs competitively when compared to state-of-the-art methods on multi-task learning. Finally, we leverage the TT-ansatz to design a rank adaptive optimizer inspired by the DMRG method from many-body physics. Our results demonstrate that integrating this approach with AdamW enhances optimization performance for a specified target rank.

1 INTRODUCTION

The sheer size of today’s pre-trained models (e.g., LLaMA-3 Grattafiori et al. (2024), Gemini-1.5 Team et al. (2024), GPT-4o Hurst et al. (2024), Falcon-40B Almazrouei et al. (2023), Mistral-7B Jiang et al. (2023), BERT Devlin et al. (2019)) coupled with the rapid rise of adapting them for specific tasks has proven to be a catalyst for the research on parameter efficient fine-tuning (PEFT) methods. Since Aghajanyan et al. (2020) demonstrated that pre-trained language models can effectively learn on a given task even when subjected to a random projection onto a smaller subspace, starting from LoRA Hu et al. (2021), a flurry of works on PEFT have demonstrated significant parameter reduction for fine-tuning large models on simpler and often single tasks [rev](#): Karimi Mahabadi et al. (2021a); Zhang et al. (2023); Zi et al. (2023); Zhang & Pilanci (2024); Albert et al. (2025).

To push beyond local layer-wise parameter reduction, sharing low-rank adapters across transformer layers have shown great promise. VeRA Kopitzko et al. (2024) shares single pair of low-rank matrices across all layers and learns small scaling vectors; NOLA Koohpayegani et al. (2023) re-parameterizes low-rank matrices as linear combinations of random bases, decoupling parameter count from rank and architecture; and VB-LoRA Li et al. (2024) and Uni-LoRA Li et al. (2025) construct all adapters from a global vector bank, achieving extreme parameter efficiency.

Subsequently, a wider class of methods have started considering the weight matrices (individually or a combination of them) as higher order tensors and then designing decompositions. To this end, several lines of work have emerged, partly because it is not obvious which components of the model benefit from tensor decompositions, and partly because unlike matrices, it is not known how to decompose tensors optimally Kolda & Bader (2009). As a result it remains open, even empirically, to understand how tensor-based decompositions can further improve the balance between the number of trainable parameters and downstream task performance during fine-tuning.

Methods compressing per layer adapters via tensor decompositions include LoRETTA Yang et al. (2024), which at each layer replaces LoRA’s trainable matrices with a tensor train (TT) decomposition; TT-LoRA Anjum et al. (2024), which similarly first folds each trainable matrix into a tensor and then

054 factors them into TT decomposition. QuanTA Chen et al. (2024) and Quantum-PEFT Koike-Akino
 055 et al. (2025) further decompose adapters into tensor networks shaped as quantum circuits.
 056

057 A promising avenue is to exploit *both* shared adapters and tensor decompositions, which can a priori
 058 lead to higher compression rates compared to per-layer tensor decompositions, at higher expressibility
 059 compared to shared low-rank matrices. In FacT Jie & Deng (2023), the authors use 3D TT and Tucker
 060 decompositions to capture parameter sharing across layers in the context of vision transformers. This
 061 idea is extended in the context of LLMs in LoTR Bershatsky et al. (2024).

062 Finally, LoRTA Hounie et al. (2024) decomposes the various linear layers in a transformer using a CP-
 063 decomposition. CP decompositions for higher order tensors generally have unique decompositions
 064 Kolda & Bader (2009), and thus finding the right decomposition may seem to be harder during
 065 fine-tuning. Given the plethora of work on matrix and tensor decomposition based adapters we ask,

066 *Can we achieve further parameter efficiency when fine-tuning transformer models?*

067 **A global adapter via tensor trains:** Building on LoTR and FacT-TT, which stack and decompose
 068 all adapter layers into a single 3D TT, we further separate the layer and matrix type dimensions to
 069 form a 4D TT, enabling greater parameter reduction. Decomposing the multi-head self-attention
 070 (MHSA) output into head and number of heads yields a 5D tensor, as in LoRTA. Both 4D and
 071 5D TTs balance parameter efficiency and expressivity, unlike Tucker decomposition, which scales
 072 exponentially with dimensions, and is often more expressive than CP Khrulkov et al. (2017).
 073

074 In the context of adapter-based methods, single-task fine-tuning has been widely studied. Only
 075 recently the need for multi-task learning (MTL) has gained prominence. This is partly due to the size
 076 of the pre-trained models and partly due to the fact that often there are common modalities across
 077 datasets and tasks. Modifications to LoRA has been shown to work well for MTL, e.g., ensembling
 078 multiple LoRA adapters Wang et al. (2023), using a mixture of experts (MoE-LoRA) Liu et al. (2024),
 079 and sharing one parameter across multiple tasks (MTL-LoRA) Yang et al. (2025). We observe that
 080 a tensor based structure automatically extends to MTL and so given a tensor based adapter one
 081 can construct a unified adapter, which may lead to further parameter efficiency *rev: via parameter*
 082 *sharing across tasks, which has been shown to yield benefits in the setting of hypernetwork adapters*
 083 Karimi Mahabadi et al. (2021b).
 084

085 **Multi-task learning via tensor trains:** For MTL, the resultant tensor of the combined adapters of
 086 a pre-trained model, assuming task-specific adapters, has an extra dimension from labeling different
 087 tasks. As such, one can efficiently extend the family of TT adapters for MTL. Owing to the modular
 088 design of the TT-based adapter, we refer to this unified family of TTs as *MetaTT*.
 089

090 Since the construction of such *global* adapters can also be achieved efficiently by means of other
 091 tensor decompositions (such as CP), it becomes natural to ask,

092 *Do we achieve anything beyond parameter reduction when using MetaTT's architecture?*

093 To address this, we examine the unique optimization advantages offered by the TT structure.

094 **Rank adaptive training:** Unlike other tensor decompositions, TTs are equipped with powerful
 095 optimization routines that exploit the TT structure. Specifically, we apply a rank adaptive scheme
 096 inspired by the Density-Matrix Renormalization Group (DMRG) optimization Schollwöck (2011);
 097 Verstraete et al. (2023), a method widely used in the context of quantum many-body physics, to
 098 improve training in the presence of many TT cores and adaptively choose the TT ranks during
 099 fine-tuning. Such a method does not trivially extend beyond the TT architecture.
 100

102 2 META-ADAPTER WITH TENSOR NETWORKS

103 Tensor networks are mathematical structures that can represent high-dimensional tensors in a more
 104 manageable form. This is achieved by decomposing a large order tensor into a network of in-
 105 terconnected, generally lower-dimensional, tensors. This decomposition reduces the storage and
 106 computational requirements, making tensor networks suitable for applications involving big data.
 107

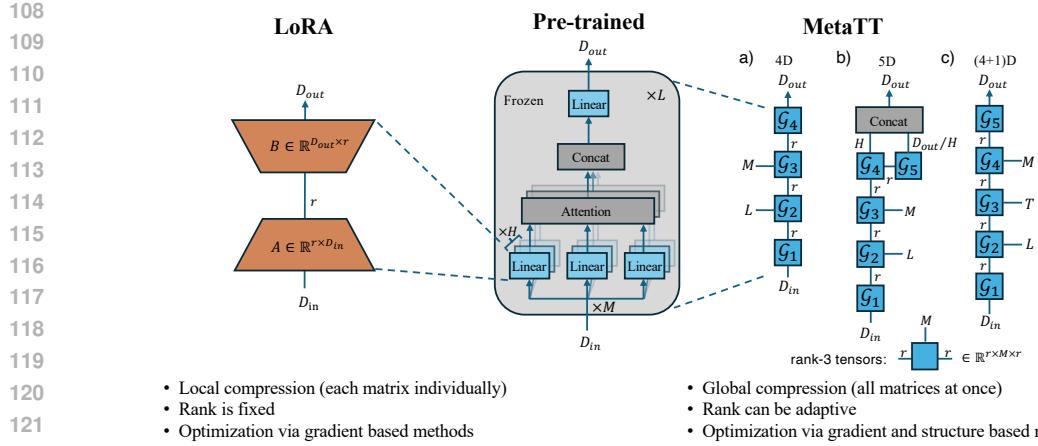


Figure 1: **Comparison between LoRA and MetaTT adapters.** rev: While LoRA parameterizes each weight matrix individually, MetaTT parameterizes all linear maps in the transformer architecture jointly as a TT (here shown only for a MHSA block). We propose two architectures for single-task fine-tuning: a) MetaTT-4D decomposes the entire set of linear maps into a TT of order 4 along the input/output dimensions (as in LoRA) as well as along the layer dimension, L , and the set of projection matrices, M . b) MetaTT-5D further decomposes the output dimension along the head dimension and number of heads. To capture task dependencies in multi-task learning, we extend MetaTT by adding an additional tensor core with mode dimension T corresponding to the number of tasks, resulting in c) MetaTT-(4+1)D. Unlike LoRA, TT ranks in MetaTT can adapt during fine-tuning, providing both parameter efficiency and optimization flexibility.

2.1 TENSOR-TRAIN DECOMPOSITION

Among the various types of tensor networks, tensor trains (TTs) offer a particularly efficient representation. A TT decomposes a tensor $\mathcal{G} \in \mathbb{R}^{n_1 \times \dots \times n_d}$ of order d into a set of rank-3 tensors as follows

$$\mathcal{G}[i_1, \dots, i_d] = \mathcal{G}_1[i_1]\mathcal{G}_2[i_2] \dots \mathcal{G}_d[i_d], \quad (1)$$

where $\mathcal{G}_k[i_k] \in \mathbb{R}^{r_{k-1} \times r_k}$, $i_k = 1, \dots, n_k$, are matrices, except the first and last, which are row and column vectors, respectively. It is also customary to see $\mathcal{G}_{k=2, \dots, d-1}$ as rank-3 tensors, also known as cores. The parameters r_i are known as TT-ranks. The complexity of the TT ansatz is $\mathcal{O}(dr^2n)$ with $r = \max_k r_k$, $n = \max_k n_k$. A TT therefore offers a controllable trade-off between expressivity (via r) and storage. In what follows, we assume the TT-ranks are all of equal value r .

2.2 TENSOR BASED ADAPTERS

LoRA type adapters inject a matrix $\Delta W \in \mathbb{R}^{D_{in} \times D_{out}}$ at every layer and a subset of projection matrices in the MHSA module. rev: The set of all such adapters can be viewed as a 4-dimensional tensor,

$$\Delta \mathcal{W}_{4D} = \{\{\Delta W_{l,m}\}_{l=1}^L\}_{m=1}^M \in \mathbb{R}^{D_{in} \times L \times M \times D_{out}}, \quad (2)$$

where L is the number of layers, and M is the number of projection matrices, which can be between 1 and 4 (corresponding to Q , K , V , and O matrices). One can choose to include the MLP matrices in this tensor after properly reshaping them. For instance in the BERT family of models, the two MLP matrices are of size $4D_{in} \times D_{out}$. However, including these MLP layers would increase M to potentially 12. This puts a significant computational overhead should we wish to construct a 3-dimensional tensor by stacking the L -dimension on top of M . In Jie & Deng (2023), the authors follow such an approach in the context of vision transformers to construct unified tensors to inject into the model.

Moreover, the output dimension in the MHSA is further split into H number of heads. Thus implicitly, such a neural architecture allows for the construction of even a 5-dimensional tensor,

$$\Delta \mathcal{W}_{5D} = \{\{\{\Delta W_{l,m,h}\}_{l=1}^L\}_{m=1}^M\}_{h=1}^H \in \mathbb{R}^{D_{in} \times L \times M \times H \times D_{out}/H}. \quad (3)$$

Tensors $\Delta \mathcal{W}_{4D}$ and $\Delta \mathcal{W}_{5D}$ potentially capture all adapters one could include for a transformer-like model. Furthermore, this idea extends beyond single transformer adapters. For instance, one could

162 include an extra dimension capturing task dependency in a MTL (MTL) setting, where different
 163 transformer adapters are used for different tasks
 164

$$\Delta\mathcal{W}_{6D} = \{\{\{\Delta W_{l,m,h,t}\}_{l=1}^L\}_{m=1}^M\}_{h=1}^H\}_{t=1}^T \in \mathbb{R}^{D_{\text{in}} \times L \times M \times H \times T \times D_{\text{out}}/H}, \quad (4)$$

166 where T represents the total number of tasks.
 167

168 2.3 METATT ADAPTER 169

170 Consider the TT decomposition of $\Delta\mathcal{W}_{4D}$, which we refer to as MetaTT-4D, shown pictorially in
 171 [Figure 1](#). For fixed layer l and m -th projection matrix, the TT decomposition results in a list of 4
 172 matrix multiplications of rank r (assuming for simplicity each bond has the same fixed rank). It is
 173 low-rank if $r \ll \min\{D_{\text{in}}, D_{\text{out}}\}$. In other words, for an input batch $X \in \mathbb{R}^{N \times D_{\text{in}}}$ and output batch
 174 $Y \in \mathbb{R}^{N \times D_{\text{out}}}$, for every layer l and m -th projection matrix we have:

$$\begin{aligned} Y &= X \cdot W_{l,m}^T + \alpha X \cdot \text{TT}(\Delta\mathcal{W}_{4D})_{l,m} \\ &= X \cdot W_{l,m}^T + \alpha X \cdot \mathcal{G}_1 \mathcal{G}_2[l] \mathcal{G}_3[m] \mathcal{G}_4, \end{aligned} \quad (5)$$

175 where $W_{l,m}^T$ is the transposed frozen linear layer (from the pre-trained model). While one can choose
 176 any permutations of the ordering of the TT cores, we present the arrangement that leads to the most
 177 compressed form. This entails assigning the input and output dimensions to each end of the TT since
 178 these are usually the largest dimensions in a transformer architecture. This is because they are only
 179 coupled by a single bond, thereby incurring an additive $O(D \times r)$ cost to the overall complexity
 180 while also being quadratic in r for the other dimensions, which are usually orders of magnitude less
 181 than the input and output dimensions.
 182

183 The extension to capture other dimensions for the 5D variation with mild modifications is straight-
 184 forward. One would need to concatenate the number of heads and the head dimension into the
 185 output dimension. This is shown in [Figure 1](#). Importantly, minimal reshaping is required throughout
 186 this process, as shown explicitly for MetaTT-4D in equation 5. This is in contrast to other tensor
 187 decompositions. The input data is processed in its original format and outputs dimensions are also
 188 consistent with the original model, facilitating the use of optimized matrix-vector GPU kernels and
 189 allowing for performance and scalability enhancement. While further compression can be achieved by
 190 further unrolling the input and output dimensions, it is crucial to avoid these, as they can complicate
 191 the decomposition and reduce computational efficiency [Monturiol et al. \(2025\)](#); [Lu et al. \(2025\)](#).
 192

193 **Complexity Analysis.** MetaTT-4D has $2Dr + (L + M)r^2$ parameters for $D = \max\{D_{\text{in}}, D_{\text{out}}\}$.
 194 Similarly, MetaTT-5D has $(D + D/H)r + (L + M + H)r^2$ parameters. This is substantially better
 195 than the LoRA adapter which requires at least $2LMDr$ parameters. Thus, by introducing a small
 196 series of $r \times r$ matrices we are able to significantly compress the tensor otherwise obtained by
 197 using LoRA. Note that for fixed TT-rank r , MetaTT-4D is more efficient than MetaTT-5D whenever
 198 $r > D/H(1 - 1/H)$.
 199

200 Training times of TT adapters are very competitive with LoRA. At each linear layer one performs
 201 $2(D \times r) + 2(r \times r)$ matrix multiplications, where the complexity is dominated by $(D \times r)$ since
 202 $D \gg r$. As such the total time required to train the adapter is very similar to that of a LoRA adapter.
 203 During inference, one can match the speeds of LoRA by adding a single pre-computation step where
 204 one can merge the middle tensor cores with \mathcal{G}_1 or \mathcal{G}_4 (for MetaTT-4D) once the adapters are trained.
 205

206 2.4 DMRG-INSPIRED SWEEP: A RANK ADAPTIVE TRAINING ALGORITHM 207

208 While the gold standard of training PEFT adapters has been gradient descent using optimizers like
 209 Adam [Kingma & Ba \(2014\)](#), these methods fail to take advantage of the tensor decomposition structure.
 210 For matrices and other small order tensor decompositions, Adam works remarkably well. However,
 211 for higher order tensor decompositions, e.g., tensor networks with many cores, training using gradient
 212 descent can be unstable [Barratt et al. \(2022\)](#). For instance, while MetaTT-5D can be more efficient
 213 than MetaTT-4D in terms of parameter count, training the latter can be more unstable. We propose
 214 the use of a rank adaptive scheme inspired by the DMRG method [Schollwöck \(2011\)](#); [Verstraete et al.](#)
 215 (2023), a variational algorithm widely used in quantum many-body physics to optimize TTs (also
 known as matrix product states in that context) representing quantum wavefunctions.

Starting with a sufficiently high-rank TT, we train with Adam for a few epochs and then apply a compression layer composed of a series of SVD decompositions on neighboring merged tensor cores and keep only vectors corresponding to the largest r singular values. While we use full SVD decomposition one can use approximate SVD Halko et al. (2011); Musco & Musco (2015); Tropp & Webber (2023). Alternatively, more sophisticated importance scores can also be used to compute low-rank approximations Cohen et al. (2017); Musco & Musco (2017); Zhang et al. (2023). We successively compute these low-rank approximations until a desired rank is achieved. We state this procedure in [Algorithm 1](#) (this particular version of the algorithm is analogous to a TT-rounding sweep but involving two sites as opposed to one). Note that since the ranks change after calling DMRG, and thus the number of trainable weights, one must reinitialize Adam moments after each truncation.

Algorithm 1 DMRG-inspired sweep

Input: MetaTT $\text{TT}_{\text{dD}}(\Delta\mathcal{W})$ with ranks r_0 , d represents number of TT cores, target ranks r , and truncated SVD function tSVD .

```

1: for  $i = 1$  to  $d - 1$  do
2:    $M \leftarrow \text{MERGE}(\mathcal{G}_i, \mathcal{G}_{i+1})$                                  $\triangleright$  Merge adjacent cores, reshape into matrix  $M$ 
3:    $U, S, V^T = \text{tSVD}(M; r)$                                           $\triangleright$  Rank  $r$  approximation using SVD
4:    $\mathcal{G}_i \leftarrow U; \mathcal{G}_{i+1} \leftarrow SV^T$ 
5: end for
6: for  $i = d$  to  $2$  do
7:    $M \leftarrow \text{MERGE}(\mathcal{G}_{i-1}, \mathcal{G}_i)$                                  $\triangleright$  Merge adjacent cores, reshape into matrix  $M$ 
8:    $U, S, V^T = \text{tSVD}(M; r)$                                           $\triangleright$  Rank  $r$  approximation using SVD
9:    $\mathcal{G}_{i-1} \leftarrow US; \mathcal{G}_i \leftarrow V^T$ 
10: end for

```

Output: MetaTT with ranks r .

3 EXPERIMENTS

In this section, we perform three sets of experiments. In [Section 3.1](#) we test the performance of MetaTT in the context of single-task fine-tuning against state-of-the-art methods. Our focus here is on commonsense reasoning tasks using the setup of Hu et al. (2023), and natural language understanding Wang et al. (2018). In [Section 3.2](#) we compare the performance of MetaTT when adding an extra tensor for capturing task-specific knowledge in the context of MTL. Finally, in [Section 3.3](#) we demonstrate that optimizing MetaTT using a variant of AdamW alternating with [Algorithm 1](#) can further boost the performance of fine-tuning using MetaTT.

3.1 SINGLE-TASK FINE-TUNING

In this section we discuss the performance of various PEFT adapters along with MetaTT on single-task fine-tuning.

	Method	Param $\times 10^5$	ARC-c	ARC-e	BoolQ	HellaSwag	OBQA	PIQA	SIQA	WinoGrande	Avg
Llama-2-7b	Zero Shot	—	46.5	74.5	74.7	75.9	47.0	78.8	46.1	69.5	64.1
	LoRA (r=8)	41.9	52.6	78.9	81.0	76.1	61.0	79.9	55.3	74.3	69.9
	LoRA (r=16)	83.9	51.8	77.9	78.9	76.7	70.0	80.3	56.1	76.6	71.0
	VeRA (r=1024)	3.27	48.3	76.9	74.7	76.2	52.2	78.5	47.8	70.0	65.6
	LoTR (r=16)	1.47	51.6	80.6	78.5	75.8	60.4	79.8	53.5	71.1	68.9
	MetaTT-4D (r=16)	1.40	50.9	79.2	77.2	75.6	63.4	79.5	51.0	71.4	68.5
Llama-2-13b	MetaTT-4D (r=256)	43.2	53.7	78.1	77.3	76.3	68.0	80.0	55.5	75.9	70.6
	Zero Shot	—	48.9	77.6	71.0	79.4	49.4	80.3	47.2	72.1	65.7
	LoRA (r=8)	65.5	57.3	81.6	82.4	78.8	62.0	81.3	53.8	76.2	71.7
	LoRA (r=32)	262.1	57.6	80.2	84.4	78.9	60.0	81.7	57.2	79.6	72.5
	VeRA (r=256)	4.3	53.2	79.8	80.3	77.8	57.4	80.8	49.6	74.4	69.2
	LoTR (r=64)	9.83	55.2	80.4	82.9	78.9	56.8	81.2	53.8	74.7	70.5
Llama-2-13b	MetaTT-4D (r=16)	1.75	55.0	80.6	83.4	79.2	55.2	81.1	54.5	75.1	70.5
	MetaTT-4D (r=64)	8.3	56.7	81.3	84.4	78.5	65.6	80.1	54.2	75.1	72.0

Table 1: Comparison of fine-tuning Llama-2-7b and Llama-2-13b. We show in bold the two best accuracies per task. We observe that MetaTT-4D trails very closely to LoRA while often outperforming VeRA while using $\approx 30x$ and $\approx 3x$ less trainable parameters respectively. We also observe that across both models, MetaTT and LoTR performs similarly, with slightly fewer parameters.

	Method	Param $\times 10^3$	Rank	Metric (%)							
				CoLA	MNLI	MRPC	QNLI	QQP	RTE	SST2	STS-B
RoBERT _{base}	FT	125k	–	61(1)	87.6	89.3(9)	92.6(1)	91.9	79(2)	94.1(1)	90.4(2)
	LoRA	295	8	61.1(6)	87.3(2)	88(1)	91.3(2)	90.1(1)	73(2)	94.2(2)	90.7(2)
	VeRA	43	1024	58(1)	81(3)	87.2(7)	89.6(4)	85.87(2)	73.4(9)	92.2(4)	88.7(4)
	LoRETTA _{adp}	57	64, 5 ⁵	57.9(1)	84.6(0)	86.4(1)	92.0(0)	88.0(0)	70.3(2)	93.3(0)	–(–) ⁴
	LoRTA	6.9	8	55.9(1)	84.1(0)	86.9(1)	91.1(1)	86.7(0)	70.2(1)	93.0(1)	86.6(0)
	LoRTA	55	64	58.6(1)	86.1(0)	88.0(2)	92.2(0)	89.0(0)	75.0(2)	93.6(0)	89.3(0)
	LoTR	74	32	60.5(?) ¹	85.2(6)	85.9(4)	90.0(1)	87.4(1)	66(4)	93.0(4)	88.8(4)
		100	40	58(2)	85.2(2)	88(1)	92.5(3)	87.6(0)	53(14)	93.8(7)	89.8(5)
		276	80	61(2)	84.6(1)	89.0(0)	92.1(5)	86.8(0)	71(3)	93.4(1)	90.9(2)
	MetaTT-4D	321	88	61.3(6)	84.7(0)	88.0(9)	92.0(4)	86.9(0)	67(13)	93.3(2)	91.0(1)
		13	8	58.8(5)	84.2(1)	87.6(2)	90.4(1)	86.9(1)	72.9(5)	92.0(1)	89.1(2)
		45	24	59.7(7)	85.5(1)	88.6(4)	91.0(1)	87.8(1)	74.2(4)	92.3(2)	89.9(2)
		156	64	61(1)	85.9(1)	88.9(3)	77(12) ²	88.5(1)	77.5(7)	72(15) ²	90.1(2)
RoBERT _{large}	MetaTT-5D	20	16	50(2)	84.0(1)	88.2(5)	89.7(1)	87.0(1)	73.6(8)	93.2(3)	88.6(3)
	FT	355k	–	68	90.2	91	94.7	92.2	87	96.4	92.4
	LoRA	786	8	68.0(7) ³	90.6(2)	84(5) ³	94.8(3)	91.6(2)	87.0(8) ³	95.7(2)	91.9(4)
	VeRA	61	256	64(2)	88.8(2)	89.4(4)	93.1(2)	87.62(8)	83(1)	95.1(2)	91.5(1)
	LoRETTA _{adp}	133	–	61.0(1)	89.69(0)	88.1(1)	94.08(1)	89.6(0)	72.0(4)	95.5(0)	–(–) ⁴
	LoRTA	9.1	8	58.9(1)	88.4(0)	87.3(1)	94.0(0)	88.1(1)	66.6(10)	95.3(0)	91.1(0)
	LoTR	328	64	61.3(9)	90.3(0)	89.0(5)	94.8(1)	89.2(1)	84(2)	95.9(1)	91.6(1)
	MetaTT-4D	39	16	62.8(5)	89.6(1)	88.6(3)	93.8(1)	88.5(1)	84.2(5)	95.2(2)	91.8(1)
	MetaTT-5D	92	32	64.0(1)	90.0(1)	90.1(3)	94.4(2)	76(9) ²	84.8(6)	95.3(2)	92.2(1)

Table 2: **Comparison of MetaTT-4D and MetaTT-5D against other PEFT techniques on RoBERT_{base} and RoBERT_{large}.** Results for LoTR and LoRA are reported from Bershatsky et al. (2024). For each dataset, we highlight the two best PEFT methods (FT is not considered for this ranking and we only list it as a benchmark). For CoLA, the metric is Matthew’s correlation, for STS-B it is the Spearman’s rank-correlation coefficient, and for all other datasets it is accuracy. Observe that variants of MetaTT sometimes outperform or match the performance of LoRA for a much lower parameter count (between 20x and 2x less parameters when compared to LoRA). Value in parenthesis is a standard error rounded up to the last single significant digit.

Commonsense reasoning. We present results on the performance of MetaTT-4D against LoRA and other parameter-sharing methods introduced earlier in the context of commonsense reasoning: VeRA Kopiczko et al. (2024) and LoTR Bershatsky et al. (2024) in Table 1. We follow the same setup from Hu et al. (2023) and first train on the Commonsense170k dataset, and assess results across eight different downstream tasks. For fine-tuning, we utilize Llama-2 models Touvron et al. (2023) with 7B and 13B parameters as our pre-trained models. We report best accuracy results for each of the methods across two epochs (see Appendix D for more details on selection of hyper-parameters). For comparison we also include LoRA $r = 8$ and MetaTT-4D with $r = 16$. Due to the computational burden of the task and the models chosen, we report only single-shot results. Accuracies are evaluated using the lm-evaluation-harness framework Gao et al. (2024).

We observe that MetaTT-4D closely trails LoRA in terms of average performance across almost all the commonsense tasks for both Llama2-7b and Llama2-13b, while using significantly fewer parameters: up to ≈ 30 x fewer parameters as compared to LoRA with less than 1% drop in average accuracy. For both Llama2-7b and Llama2-13b, MetaTT-4D performs very similarly to LoTR while using fewer parameters and outperforms VeRA in almost all datasets while using ≈ 3 x fewer trainable parameters.

324 **Language understanding.** We compare fine-tuning RoBERTa based models with MetaTT-4D and
 325 MetaTT-5D against several baseline methods on GLUE Benchmark datasets - CoLA, MNLI, MRPC,
 326 QNLI, QQP, RTE, SST2 and STS-B Wang et al. (2018) in [Table 2](#). To isolate the performance of
 327 the shared adapters we only fine-tune the encoder adapter weights for the attention modules and not
 328 the classifier or regression heads for the corresponding downstream tasks. We defer the reader to
 329 [Appendix D](#) for a detailed exposition on hyper-parameter tuning, adapter target modules, and the
 330 final set of hyper-parameters used to produce [Table 2](#).

331 Our results indicate that MetaTT is competitive with other state-of-the-art methods. It outperforms
 332 LoRETTA and VeRA. We also observe that irrespective of the rank, LoTR, LoRTA, and variants
 333 of MetaTT trail behind LoRA in accuracy across tasks, while using significantly fewer parameters.
 334 Finally, we reiterate that the accuracies reported in [Table 2](#) were achieved by only fine-tuning the
 335 attention weights. We expect significant gains on top of these accuracies if the final classifier or
 336 regression heads are also trained. Note, the under-performance VeRA is expected when compared
 337 to higher order tensor decompositions, and is because the latter decompositions are able to affect a
 338 much larger number of parameters of the baseline model, given we fix the total number of trainable
 339 parameters. Among the LoRETTA variants, we find that the adapter-based method consistently
 340 outperforms the version that reparameterizes the input model. Therefore, we chose to report only the
 341 results for the adapter-based approach.

342 3.2 MULTI-TASK LEARNING

344 The modular architecture of TT based adapters allows for the inclusion of an extra tensor core capable
 345 of capturing task dependent features by simply assigning a low-rank rank-3 tensor along the TT chain.
 346 We explore this modification of the architecture by adding an extra core on MetaTT-4D placed at
 347 the middle of the TT, so that the ordering becomes (D, L, T, M, D) where T is the number of tasks
 348 on which the model is trained. We specifically choose this for symmetry of the tensor cores and not
 349 necessarily any particular reason. We compare this adapter, henceforth named as MetaTT-(4+1)D,
 350 against four baselines – a single LoRA adapter for all tasks and a MetaTT-4D adapter (which can be
 351 seen as a MetaTT-(4+1)D with the task dependent core frozen and set to identity), MTL-LoRA, and
 352 MoE-LoRA.

353 In the context of MTL, we distinguish between the following two approaches:

- 355 • **Sequential Learning.** This approach involves first fine-tuning a model on a specific task,
 356 transferring the adapter to a new task for further fine-tuning, and then transferring the
 357 adapter back to the original task. The core idea is to leverage the features learned from
 358 the second task to enhance performance on the first task. However, a significant challenge
 359 with sequential learning is the risk of catastrophic forgetting or training interference, where
 360 the model may lose previously acquired knowledge or experience negative interactions
 361 between tasks, respectively. These issues has been extensively studied and documented in
 362 the literature (see e.g., Zhang et al. (2024a)) and aligns with our observations.
- 363 • **Joint Training.** Alternatively, joint training aims to minimize a composite loss function that
 364 aggregates losses from multiple tasks at each epoch, i.e., the model is trained with the loss
 365 function $\mathcal{L} = \sum_{k=1}^T \mathcal{L}_k$, where \mathcal{L}_k is the loss function for k^{th} task.

366 **Experimental Setup.** Our experiments are again on fine-tuning RoBERTa_{base} and RoBERTa_{large}
 367 jointly on CoLA, MRPC, and RTE datasets from the GLUE benchmark datasets. A notable issue in

369 ¹The variance for this particular dataset and rank is not reported in Bershatsky et al. (2024).

370 ²For specifically these runs, we found that the model does not train for values of alpha less than 1 (which
 371 were the ideal values found in the hyper-parameter search). We believe this is partly due to the initialization of
 372 tensor cores and partly because training tensor cores can be challenging (more on this later in [Section 3.3](#)). We
 373 defer further exposition on this to [Appendix D](#).

374 ³In LoTR Bershatsky et al. (2024) these values of LoRA failed to train successfully. For better comparison
 375 we re-run LoRA for these datasets using the same random seeds as for MetaTT. We found that on one run in
 376 MRPC LoRA failed to train successfully as well.

377 ⁴We were unable find the right set of hyper-parameters for STS-B when freezing the final regression layers.

378 ⁵In LoRETTA Yang et al. (2024), the bottleneck size is set as 64 for RoBERTa models and the TT rank is set
 379 as 5 for the adpater based method.

Model	Method	Param $\times 10^3$	Rank	Metric (%)		
				CoLA	MRPC	RTE
RoBERTa _{base}	LoRA	295	8	60.7(8)	86.5(2)	77.6(2)
	MTL-LoRA Yang et al. (2025)	296	4	53.0(1)	87.8(1)	71.6(2)
	MoE-LoRA Liu et al. (2024)	307	8	60.1(1)	88.6(1)	82.8(3)
	MetaTT-4D	13.2	8	53.2(2)	85.9(4)	72(2)
	MetaTT-(4+1)D	13.4	8	54(1)	86.0(5)	71.5(5)
RoBERTa _{large}	LoRA	786	8	68(2)	89.3(6)	83.0(5)
	MTL-LoRA Yang et al. (2025)	789	4	58.8(1)	88.7(2)	82.1(2)
	MoE-LoRA Liu et al. (2024)	811	8	61.1(0)	89.9(1)	82.6(1)
	MetaTT-4D	18.0	8	59.5(5)	88.4(5)	81.1(8)
	MetaTT-(4+1)D	18.2	8	64.0(8)	89.0(6)	84.4(4)

Table 3: **Results of MTL setup.** We observe that across both RoBERTa_{base} and RoBERTa_{large}, MetaTT-(4+1)D outperforms single MetaTT-4D adapters for almost all of the datasets, while using about 200 more trainable parameters. For RoBERTa_{base} MetaTT-(4+1)D performs comparably to MTL-LoRA while using $\approx 22x$ less parameters, and for RoBERTa_{large} MetaTT-(4+1)D outperforms both MTL-LoRA and MoE-LoRA on average, and is within 1% of average accuracy of LoRA, while using $\approx 43x$ less parameters. We show in bold the two best accuracies per task.

joint training is the disparity in dataset sizes, such as approximately 8000 training samples in CoLA compared to around 3000 in MRPC. To address this, we downsample each dataset to either the size of each dataset or a maximum of 5000 samples per dataset, whichever is smaller. This forms the training set. For the evaluation set, we retain either 500 samples or the full size of the validation/test set, whichever is smaller. For each trial, we first compute the mean performance across the three datasets at every epoch (yielding 20 points per trial) and then select the best mean among those 20 epochs. Finally, we report the average of these best means over 3 independent trials.

Empirical results and observations. The results from our experiments on MTL for 3 tasks are shown in Table 3. We first observe that a single LoRA adapter can work remarkably well across different datasets and pre-trained models. This had already been documented in (Yang et al., 2025, Table 1). For fine-tuning RoBERTa_{base}, we also observe that MoE-LoRA performs well across different datasets. While MetaTT-(4+1)D and MTL-LoRA perform similarly, MetaTT-(4+1)D uses about 13.4k parameters (an $\approx 22x$ parameter reduction when compared to other baseline methods). However, when we look at the performance on RoBERTa_{large}, we observe that MetaTT-(4+1)D performs within 1% of LoRA, and outperforms both MoE-LoRA and MTL-LoRA, while requiring about 18.2k trainable parameters (an $\approx 43x$ parameter reduction when compared to other baseline methods). Furthermore, we observe that in case of RoBERTa_{base}, MetaTT-4D performs very similar to MetaTT-(4+1) while using about 200 less parameters, and in case of RoBERTa_{large}, MetaTT-4D performs very similar to MoE-LoRA and MTL-LoRA while using about 200 less parameters than MetaTT-(4+1)D (and using $\approx 43x$ less trainable parameters when compared to other methods). We defer further experiments and a discussion of how MetaTT-(4+1)D captures task dependent information for MTL to Appendix B.

3.3 RANK ADAPTIVE FINE-TUNING VIA DMRG-INSPIRED SWEEP

Empirical evaluations. We present comparisons of training RoBERTa_{base} and RoBERTa_{large} using AdamW Loshchilov & Hutter (2017) and interdispersing DMRG-inspired sweeps as in Algorithm 1 on the MRPC and RTE dataset in Figure 2. For AdamW Loshchilov & Hutter (2017) we fine-tune on fixed ranks $\{4, 6, 8\}$ for a given learning rate. We observe that one can adaptively change the ranks in the training phase without any major performance degradation. For RoBERTa_{base}, we show that using AdamW together with DMRG-inspired sweeps we achieve higher accuracy at rank $r = 4$ when compared to the accuracy achieved by AdamW and $r = 4$. We also show that the performance improvement with Algorithm 1 when fine-tuning RoBERTa_{large} is even more significant (see Table 4). For both models, one can observe that the accuracy reduces significantly when truncated SVD is applied, followed by a rapid climb, with deeper gorges as we go to smaller ranks. Each DMRG sweep is applied right after each training epoch, before the evaluation on the validation dataset. Thus, it removes a significant amount of information, across all bonds of the TT, and so performance degradation is expected, before AdamW is able to readjust to its new weight space at the next epoch. This problem is exacerbated when DMRG is applied to smaller ranks, as the relative change in ranks

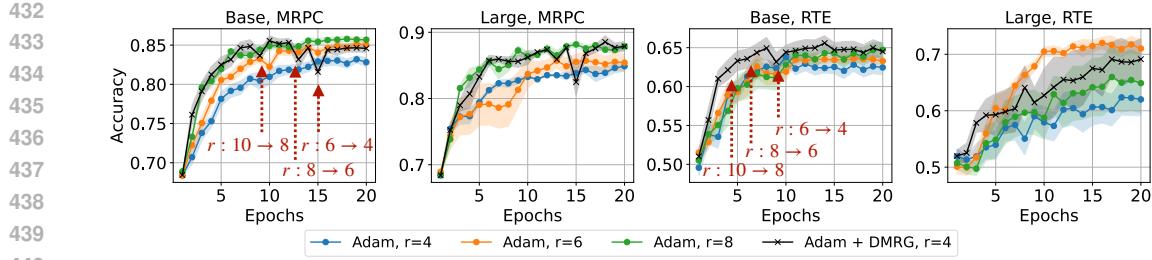


Figure 2: **Comparison of AdamW and AdamW+Algorithm 1 sweeps applied at certain epochs.** Results are shown for MetaTT-5D on MRPC and RTE for $\text{RoBERTa}_{\text{base}}$ and $\text{RoBERTa}_{\text{large}}$. In Adam we fix the rank throughout. For AdamW+Algorithm 1 we start with a $r = 10$ TT and progressively decrease ranks until we reach $r = 4$ as indicated by arrows on the plots for the base model, with the same schedule followed by the large counterparts. Error bars in both panels correspond to standard errors. The learning rate used across all the optimizers is $5e-4$ with 0 weight decay.

(current rank divided by target rank) substantially increase as we go from higher ranks to lower ranks. We defer further discussions on the experiments with DMRG to the [Appendix C](#).

Model	AdamW	AdamW + DMRG
Base, MRPC	0.839	0.852
Large, MRPC	0.854	0.887
Base, RTE	0.652	0.658
Large, RTE	0.640	0.701

Table 4: Comparison of the average of per-trial maximum accuracies (computed over 20 epochs), for 10 trials ($\text{RoBERTa}_{\text{base}}$) and 4 trials ($\text{RoBERTa}_{\text{large}}$), between AdamW and AdamW + DMRG optimizers at target rank $r = 4$.

4 CONCLUSIONS

In this work, we have introduced MetaTT, a novel approach to parameter-efficient fine-tuning of large language models using TT decompositions. By leveraging the TT architecture, MetaTT achieves significant reductions in the number of trainable parameters while maintaining competitive performance compared to state-of-the-art methods. Our empirical evaluations demonstrate that MetaTT can achieve significant parameter reduction with similar accuracy on standard language modeling benchmarks when compared to these methods.

The TT representation provides a compact and globally shared core, allowing for efficient parameter sharing across all components of a transformer network. Unlike methods that compress each weight matrix in isolation, MetaTT factorizes all linear sub-modules into a single shared TT, capturing structural axes such as layer, matrix-type, and optionally heads and tasks. This global compression leads to higher compression rates and improved scalability, making MetaTT a promising solution for fine-tuning large models. However, for single task learning, we observe that MetaTT often performs similar to other tensor based decompositions (including other variants of the TT decomposition).

To differentiate beyond single task fine-tuning, we observe that tensor based adapters can be easily extended to perform joint-MTL. Notably, we demonstrate that extending a simple modification to the architecture for single task learning, one can use MetaTT for joint-MTL. This is because the modular architecture of MetaTT enables extension to shared adapters across multiple tasks or expert partitions, without the need to redesign the core tensor. This had remained unexplored prior to our work. We further hypothesize that similar extensions could be applied to other tensor-based architectures as well. Furthermore, the TT ansatz benefits from mature optimization routines, such as DMRG-style alternating minimization, which simplifies rank tuning. This allows MetaTT to adaptively choose TT ranks, further enhancing its efficiency and performance.

486 Our results suggest that assuming low-rankness in the manifold of shared parameters is a viable
 487 strategy for parameter-efficient fine-tuning. The TT decomposition captures this manifold effec-
 488 tively, providing a robust framework for reducing computational overhead while preserving model
 489 performance. Future work may explore other tensor networks that better capture parameter sharing,
 490 including quantum-circuit inspired tensor network that may lift the low-rankness description while
 491 maintaining efficient parameter count.

492 While our focus here has been on fine-tuning, we anticipate MetaTT to find extensions to other
 493 contexts including the design of new foundation models with shared parameters and for model
 494 compression. Moreover, DMRG-inspired techniques can offer a principled way to compress TTs
 495 during training. Finding applications where compression during training phase or alternative DMRG-
 496 inspired techniques extending beyond those discussed in this work, presents an exciting avenue.
 497

498 5 REPRODUCIBILITY STATEMENT

500 We provide all the codes and pseudocodes required for verifying experiments with MetaTT in
 501 [Appendix E](#). Furthermore, the grids for hyper-parameter search and the final set of hyper-parameters
 502 required to reproduce the results of [Table 1](#), [Table 2](#), and [Table 3](#) are reported in [Appendix D](#) and
 503 [Appendix B](#). The experimental details for DMRG based experiments are reported in [Section 3.3](#).
 504

505 6 REFERENCES

507 Armen Aghajanyan, Luke Zettlemoyer, and Sonal Gupta. Intrinsic dimensionality explains the
 508 effectiveness of language model fine-tuning. *arXiv preprint arXiv:2012.13255*, 2020.

509 Paul Albert, Frederic Z Zhang, Hemanth Saratchandran, Cristian Rodriguez-Opazo, Anton van den
 510 Hengel, and Ehsan Abbasnejad. Rndlora: Full-rank parameter-efficient fine-tuning of large
 511 models. *arXiv preprint arXiv:2502.00987*, 2025.

513 Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Alshamsi, Alessandro Cappelli, Ruxandra Cojo-
 514 caru, Mérourane Debbah, Étienne Goffinet, Daniel Hesslow, Julien Launay, Quentin Malartic, et al.
 515 The falcon series of open language models. *arXiv preprint arXiv:2311.16867*, 2023.

516 Afia Anjum, Maksim E Eren, Ismael Boureima, Boian Alexandrov, and Manish Bhattarai. Tensor
 517 train low-rank approximation (TT-LoRA): Democratizing ai with accelerated llms. *arXiv preprint
 518 arXiv:2408.01008*, 2024.

519 Fergus Barratt, James Dborin, and Lewis Wright. Improvements to gradient descent methods for
 520 quantum tensor network machine learning. *arXiv preprint arXiv:2203.03366*, 2022.

522 Daniel Bershtsky, Daria Cherniuk, Talgat Daulbaev, Aleksandr Mikhalev, and Ivan Oseledets. LoTR:
 523 Low tensor rank weight adaptation. *arXiv preprint arXiv:2402.01376*, 2024.

524 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
 525 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
 526 few-shot learners. *Advances in neural information processing systems*, 2020.

528 Kerim Büyükköyüz. Olora: Orthonormal low-rank adaptation of large language models. *arXiv
 529 preprint arXiv:2406.01775*, 2024.

530 Zhuo Chen, Rumen Dangovski, Charlotte Loh, Owen Dugan, Di Luo, and Marin Soljačić. QuanTA:
 531 Efficient high-rank fine-tuning of llms with quantum-informed tensor adaptation. *arXiv preprint
 532 arXiv:2406.00132*, 2024.

533 Michael B Cohen, Cameron Musco, and Christopher Musco. Input sparsity time low-rank approxima-
 534 tion via ridge leverage score sampling. In *Proceedings of the Twenty-Eighth Annual ACM-SIAM
 535 Symposium on Discrete Algorithms*, 2017.

537 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
 538 bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of
 539 the North American chapter of the association for computational linguistics: human language
 technologies, volume 1 (long and short papers)*, 2019.

540 Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
 541 Laurence Golding, Jeffrey Hsu, Alain Le Noac'h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
 542 Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
 543 Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model evaluation
 544 harness, 07 2024. URL <https://zenodo.org/records/12608602>.

545 Timur Garipov, Dmitry Podoprikin, Alexander Novikov, and Dmitry Vetrov. Ultimate tensorization:
 546 compressing convolutional and fc layers alike. *arXiv preprint arXiv:1611.03214*, 2016.

547

548 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 549 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
 550 models. *arXiv preprint arXiv:2407.21783*, 2024.

551 Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding structure with randomness:
 552 Probabilistic algorithms for constructing approximate matrix decompositions. *SIAM review*, 2011.

553

554 Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and Sai Qian Zhang. Parameter-efficient fine-tuning
 555 for large models: A comprehensive survey. *arXiv preprint arXiv:2403.14608*, 2024.

556 Ignacio Hounie, Charilaos Kanatsoulis, Arnuv Tandon, and Alejandro Ribeiro. Lorta: Low rank
 557 tensor adaptation of large language models. *arXiv preprint arXiv:2410.04060*, 2024.

558

559 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 560 and Weizhu Chen. LoRA: Low-rank adaptation of large language models. *arXiv preprint
 561 arXiv:2106.09685*, 2021.

562 Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
 563 Poria, and Roy Ka-Wei Lee. Llm-adapters: An adapter family for parameter-efficient fine-tuning
 564 of large language models. *arXiv preprint arXiv:2304.01933*, 2023.

565

566 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 567 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint
 568 arXiv:2410.21276*, 2024.

569 Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
 570 Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
 571 Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
 572 Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL <https://arxiv.org/abs/2310.06825>.

573

574 Shibo Jie and Zhi-Hong Deng. FacT: Factor-tuning for lightweight adaptation on vision transformer.
 575 In *Proceedings of the AAAI conference on artificial intelligence*, 2023.

576

577 Rabeeh Karimi Mahabadi, James Henderson, and Sebastian Ruder. Compacter: Efficient low-rank
 578 hypercomplex adapter layers. *Advances in neural information processing systems*, 34:1022–1035,
 579 2021a.

580 Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa Dehghani, and James Henderson. Parameter-
 581 efficient multi-task fine-tuning for transformers via shared hypernetworks. *arXiv preprint
 582 arXiv:2106.04489*, 2021b.

583

584 Muhammad Uzair Khattak, Syed Talal Wasim, Muzammal Naseer, Salman Khan, Ming-Hsuan
 585 Yang, and Fahad Shahbaz Khan. Self-regulating prompts: Foundational model adaptation without
 586 forgetting. In *Proceedings of the IEEE/CVF international conference on computer vision*, 2023.

587

588 Valentin Khrulkov, Alexander Novikov, and Ivan Oseledets. Expressive power of recurrent neural
 589 networks. *arXiv preprint arXiv:1711.00811*, 2017.

590

591 Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi, Lu Yang, and Dongjun Shin. Com-
 592 pression of deep convolutional neural networks for fast and low power mobile applications. *arXiv
 593 preprint arXiv:1511.06530*, 2015.

594

595 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint
 596 arXiv:1412.6980*, 2014.

594 Toshiaki Koike-Akino, Francesco Tonin, Yongtao Wu, Frank Zhengqing Wu, Leyla Naz Cando-
 595 gan, and Volkan Cevher. Quantum-peft: Ultra parameter-efficient fine-tuning. *arXiv preprint*
 596 *arXiv:2503.05431*, 2025.

597

598 Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. *SIAM review*, 2009.

599

600 Soroush Abbasi Koohpayegani, KL Navaneet, Parsa Nooralinejad, Soheil Kolouri, and Hamed
 601 Pirsavash. NOLA: Compressing LoRA using linear combination of random basis. *arXiv preprint*
 602 *arXiv:2310.02556*, 2023.

603

604 Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M Asano. VeRA: Vector-based random matrix
 605 adaptation. In *The Twelfth International Conference on Learning Representations*, 2024. URL
<https://openreview.net/forum?id=NjNfLdxr3A>.

606

607 Kalimuthu Krishnamoorthy. *Handbook of statistical distributions with applications*. Chapman and
 608 Hall/CRC, 2006.

609

610 Quentin Lhoest, Albert Villanova del Moral, Yacine Jernite, Abhishek Thakur, Patrick von Platen,
 611 Suraj Patil, Julien Chaumond, Mariama Drame, Julien Plu, Lewis Tunstall, Joe Davison, Mario
 612 Šaško, Gunjan Chhablani, Bhavitya Malik, Simon Brandeis, Teven Le Scao, Victor Sanh, Canwen
 613 Xu, Nicolas Patry, Angelina McMillan-Major, Philipp Schmid, Sylvain Gugger, Clément Delangue,
 614 Théo Matussière, Lysandre Debut, Stas Bekman, Pierrick Cistac, Thibault Goehringer, Victor
 615 Mustar, François Lagunas, Alexander Rush, and Thomas Wolf. Datasets: A community library
 616 for natural language processing. In *Proceedings of the 2021 Conference on Empirical Methods*
 617 *in Natural Language Processing: System Demonstrations*, pp. 175–184, Online and Punta Cana,
 618 Dominican Republic, nov 2021. Association for Computational Linguistics. URL <https://aclanthology.org/2021.emnlp-demo.21>.

619

620 Kaiyang Li, Shaobo Han, Qing Su, Wei Li, Zhipeng Cai, and Shihao Ji. Uni-lora: One vector is all
 621 you need. *arXiv preprint arXiv:2506.00799*, 2025.

622

623 Yang Li, Shaobo Han, and Shihao Ji. Vb-lora: Extreme parameter efficient fine-tuning with vector
 624 banks. *Advances in Neural Information Processing Systems*, 2024.

625

626 Qidong Liu, Xian Wu, Xiangyu Zhao, Yuanshao Zhu, Derong Xu, Feng Tian, and Yefeng Zheng.
 627 When MoE meets LLMs: Parameter efficient fine-tuning for multi-task medical applications. In
 628 *Proceedings of the 47th International ACM SIGIR Conference on Research and Development in*
 629 *Information Retrieval*, 2024.

630

631 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint*
 632 *arXiv:1711.05101*, 2017.

633

634 Jinming Lu, Jiayi Tian, Hai Li, Ian Young, and Zheng Zhang. Fetta: Flexible and efficient hardware
 635 accelerator for tensorized neural network training. *arXiv preprint arXiv:2504.06474*, 2025.

636

637 Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, Sayak Paul, and Benjamin
 638 Bossan. Peft: State-of-the-art parameter-efficient fine-tuning methods. <https://github.com/huggingface/peft>, 2022.

639

640 Fanxu Meng, Zhaojun Wang, and Muhan Zhang. Pissa: Principal singular values and singular vectors
 641 adaptation of large language models. *Advances in Neural Information Processing Systems*, 37:
 642 121038–121072, 2024.

643

644 José Ramón Pareja Monturiol, Alejandro Pozas-Kerstjens, and David Pérez-García. Tensorization of
 645 neural networks for improved privacy and interpretability. *arXiv preprint arXiv:2501.06300*, 2025.

646

647 Cameron Musco and Christopher Musco. Randomized block krylov methods for stronger and faster
 648 approximate singular value decomposition. *Advances in neural information processing systems*,
 649 2015.

650

651 Cameron Musco and Christopher Musco. Recursive sampling for the nyström method. *Advances in*
 652 *neural information processing systems*, 2017.

648 Alexander Novikov, Dmitrii Podoprikin, Anton Osokin, and Dmitry P Vetrov. Tensorizing neural
 649 networks. *Advances in neural information processing systems*, 2015.

650

651 Alexander Novikov, Mikhail Trofimov, and Ivan Oseledets. Exponential machines. *arXiv preprint*
 652 *arXiv:1605.03795*, 2016.

653 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 654 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
 655 high-performance deep learning library. *Advances in neural information processing systems*, 32,
 656 2019.

657

658 Bharat Runwal, Tejaswini Pedapati, and Pin-Yu Chen. From peft to deft: Parameter efficient
 659 finetuning for reducing activation density in transformers. In *Proceedings of the AAAI Conference*
 660 *on Artificial Intelligence*, 2025.

661 Ulrich Schollwöck. The density-matrix renormalization group in the age of matrix product states.
 662 *Annals of physics*, 2011.

663

664 Edwin Stoudenmire and David J Schwab. Supervised learning with tensor networks. *Advances in*
 665 *neural information processing systems*, 29, 2016.

666

667 Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett
 668 Tanzer, Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal
 669 understanding across millions of tokens of context. *arXiv preprint arXiv:2403.05530*, 2024.

670 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
 671 Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
 672 and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

673

674 Joel A Tropp and Robert J Webber. Randomized algorithms for low-rank matrix approximation:
 675 Design, analysis, and applications. *arXiv preprint arXiv:2306.12418*, 2023.

676

677 Frank Verstraete, Tomotoshi Nishino, Ulrich Schollwöck, Mari Carmen Bañuls, Garnet K Chan, and
 678 Miles E Stoudenmire. Density matrix renormalization group, 30 years on. *Nature Reviews Physics*,
 2023.

679

680 Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
 681 GLUE: A multi-task benchmark and analysis platform for natural language understanding. *arXiv*
 682 *preprint arXiv:1804.07461*, 2018.

683

684 Yiming Wang, Yu Lin, Xiaodong Zeng, and Guannan Zhang. Multilora: Democratizing lora for
 685 better multi-task learning. *arXiv preprint arXiv:2311.11501*, 2023.

686

687 Martin Wistuba, Prabhu Teja Sivaprasad, Lukas Balles, and Giovanni Zappella. Choice of peft tech-
 688 nique in continual learning: Prompt tuning is not all you need. *arXiv preprint arXiv:2406.03216*,
 2024.

689

690 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
 691 Pierrick Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
 692 State-of-the-art natural language processing. *arXiv preprint arXiv:1910.03771*, 2019.

693

694 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
 695 Pierrick Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
 696 von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
 697 Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural
 698 language processing. In *Proceedings of the 2020 Conference on Empirical Methods in Natural Lan-*
 699 *guage Processing: System Demonstrations*, Online, October 2020. Association for Computational
 Linguistics. URL <https://www.aclweb.org/anthology/2020.emnlp-demos.6>.

700

701 Yaming Yang, Dilxat Muhtar, Yelong Shen, Yuefeng Zhan, Jianfeng Liu, Yujing Wang, Hao Sun,
 Weiwei Deng, Feng Sun, Qi Zhang, et al. Mtl-lora: Low-rank adaptation for multi-task learning.
 In *Proceedings of the AAAI Conference on Artificial Intelligence*, 2025.

702 Yifan Yang, Jiajun Zhou, Ngai Wong, and Zheng Zhang. LoRETTA: Low-rank economic tensor-
 703 train adaptation for ultra-low-parameter fine-tuning of large language models. *arXiv preprint*
 704 *arXiv:2402.11417*, 2024.

705 Miao Yin, Huy Phan, Xiao Zang, Siyu Liao, and Bo Yuan. Batude: Budget-aware neural network
 706 compression based on tucker decomposition. In *Proceedings of the AAAI Conference on Artificial*
 707 *Intelligence*, 2022.

708 Maxime Zanella and Ismail Ben Ayed. Low-rank few-shot adaptation of vision-language models. In
 709 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2024.

710 Fangzhao Zhang and Mert Pilanci. Riemannian preconditioned lora for fine-tuning foundation models.
 711 *arXiv preprint arXiv:2402.02347*, 2024.

712 Gengwei Zhang, Liyuan Wang, Guoliang Kang, Ling Chen, and Yunchao Wei. Slca++: Unleash
 713 the power of sequential fine-tuning for continual learning with pre-training. *arXiv preprint*
 714 *arXiv:2408.08295*, 2024a.

715 Ji Zhang, Shihan Wu, Lianli Gao, Heng Tao Shen, and Jingkuan Song. DePT: Decoupled prompt
 716 tuning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 717 2024b.

718 Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He, Yu Cheng,
 719 Weizhu Chen, and Tuo Zhao. Adalora: Adaptive budget allocation for parameter-efficient fine-
 720 tuning. *arXiv preprint arXiv:2303.10512*, 2023.

721 Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Conditional prompt learning for
 722 vision-language models. In *Proceedings of the IEEE/CVF conference on computer vision and*
 723 *pattern recognition*, 2022a.

724 Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-
 725 language models. *International Journal of Computer Vision*, 2022b.

726 Bojia Zi, Xianbiao Qi, Lingzhi Wang, Jianan Wang, Kam-Fai Wong, and Lei Zhang. Delta-lora: Fine-
 727 tuning high-rank parameters with the delta of low-rank matrices. *arXiv preprint arXiv:2309.02411*,
 728 2023.

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A OTHER RELATED WORKS**
757758 In this section, we explore various works that are pertinent to our study.
759760 **Alternatives to tuning weights for PEFT.** Among the relevant works, we briefly highlight research
761 that investigates alternatives to tuning transformer weights for adapting to new tasks and/or datasets.
762 Notably, few-shots in-context learning methods have been demonstrated to perform less effectively
763 than PEFT methods Brown et al. (2020); Runwal et al. (2025). Alternative approaches, such as
764 prompt tuning, aim to isolate and preserve the shared knowledge subspaces Zhang et al. (2024b);
765 Khattak et al. (2023), while also learning context vector representations for prompts Zhou et al.
766 (2022b;a); Zhang et al. (2024b). While these works significantly reduce the amount of learnable
767 parameters, additional processing of input data can increase inference latency. Moreover, prompt
768 tuning is often limiting beyond the realms of few-shots learning Han et al. (2024); Wistuba et al.
769 (2024) and can be outperformed by appropriate low-rank fine-tuning in presence of more data Zanella
770 & Ben Ayed (2024). As such similar to prior work Albert et al. (2025) on this area of parameter
771 efficient fine-tuning, we compare our work to algorithms for weight tuning only.
772773 **Tensor networks in machine learning.** Early work on tensor networks were standalone models for
774 supervised learning Novikov et al. (2016); Stoudenmire & Schwab (2016). Parallel to this, research
775 exploited them for weight compression in convolution neural networks (CNNs) and recurrent neural
776 networks (RNNs) Novikov et al. (2015); Garipov et al. (2016); Kim et al. (2015); Yin et al. (2022).
777 These techniques have motivated much of the work around tensor networks for fine-tuning. We
778 remark that while tensor networks can significantly compress individual neural-network (NN) layers,
779 they present notable drawbacks in terms of computational efficiency and latency on GPUs due to the
780 need to manage tensor contraction and reshaping Monturiol et al. (2025); Lu et al. (2025).781 **B FURTHER EXPERIMENTS ON MTL USING METATT-(4+1)D**
782783 In this section we provide further evidence that the task-related tensor cores in MetaTT-(4+1)D used
784 in [Section 3.2](#) play a significant role. For any given layer index l , matrix-type index m , and task index
785 t , a given input batched vector gets updated as

786
$$X \leftarrow X \cdot W_{l,t,m}^T + \alpha X \cdot \mathcal{G}_1 \mathcal{G}_2[l] \mathcal{G}_3[t] \mathcal{G}_4[m] \mathcal{G}_5. \quad (6)$$

787 To show the impact of the inclusion of task-dependent TT cores, in [Figure 3](#) we plot heatmaps of
788 the gradients across each tensor in the TT. Since the boundary cores $\mathcal{G}_1, \mathcal{G}_5$ are much larger than
789 the rest of the cores, we normalize the gradients across each TT core by the number of non-zero
790 elements as follows – $\|\nabla \mathcal{G}\|_F / \sqrt{|\mathcal{G}|}$ where $\|\cdot\|_F$ is the Frobenius norm and $|\mathcal{G}|$ is the number of
791 non-zero elements of the tensor \mathcal{G} . For tensors \mathcal{G}_2 and \mathcal{G}_4 we plot the average gradients across all
792 layers and matrix-types, respectively. We observe that indeed the tensor \mathcal{G}_3 is acquiring significant
793 gradient updates, especially for RoBERTa_{large}. Moreover, for certain epochs, we find that \mathcal{G}_3 in fact
794 acquires the largest gradients across all tensors. Interestingly, we find that the task core with label 2
795 in [Figure 3](#) corresponding to CoLA receives the largest gradient update. This is expected since CoLA
796 is the hardest task among the chosen sets of tasks. Similar to [Section 3.2](#), the rank chosen in these
797 experiments is 8 across all bonds. Other relevant hyper-parameters used are: batch size = 16, $\alpha = 2$,
798 learning rate = $5e - 4$. Also similar to [Section 3.2](#), we down-sample each dataset so as to contain a
799 maximum of 5K training samples and 500 evaluation samples. Furthermore, we perform gradient
800 clipping with a maximum gradient value of 3.0.801 We compliment plots of gradients with the downstream task performance per epoch on each of
802 the plots. While it is generally hard to make direct comparisons between gradients observed and
803 downstream task performance, in [Figure 3](#) we observe that for both RoBERTa_{base} and RoBERTa_{large}
804 and the RTE dataset, the gradients observed at each epoch at tensor core $\mathcal{G}_3[1]$ correlate with the
805 downstream task performance of the model.806 **C FURTHER DETAILS ON THE EXPERIMENTS WITH DMRG**
807808 The results of [Section 3.3](#) show that, for a given target rank ($r = 4$ for both MRPC and RTE datasets),
809 interspersing DMRG-inspired sweeps to progressively bring down the TT ranks from a high enough

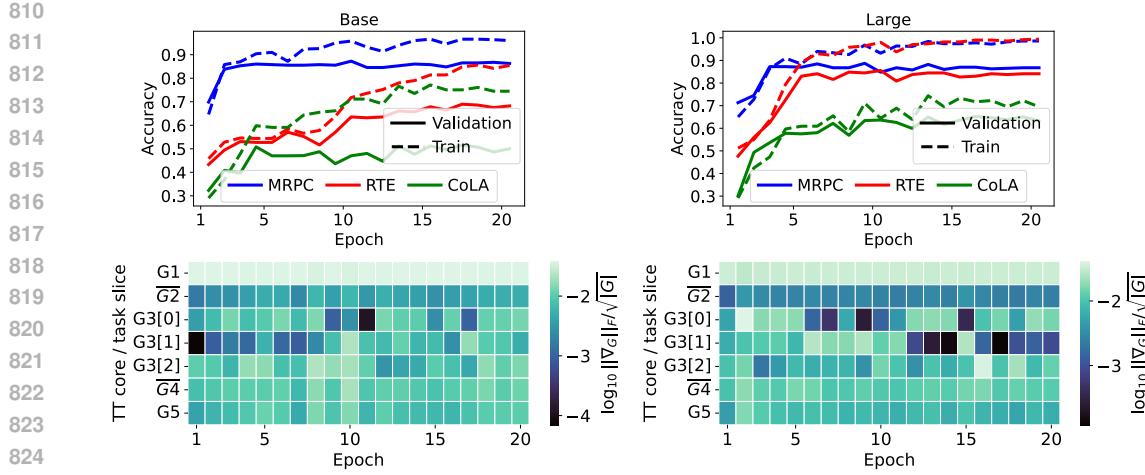


Figure 3: **Influence of task-dependent TT core in MTL.** (Left): (Top): Accuracy of MetaTT-(4+1)D as a function of epochs for RoBERTa_{base} for a single training realization (in the case of CoLA we compute Matthew’s correlation instead). (Bottom): Corresponding normalized gradients across all tensors as a function of epochs (see [Appendix B](#)). Task labels correspond to 0: MRPC, 1: RTE, 2: CoLA. (Right): Same as in left but for RoBERTa_{large} as pretrained model.

rank ($r = 10$ in this case) leads to higher accuracies than training via AdamW with that fixed target rank. Interestingly, the rank schedule philosophy used here in DMRG is the mirror image of the one commonly used in many-body physics: there, one starts with small ranks and progressively increments these so as to capture more precisely the target *ground state* (see [Schollwöck \(2011\)](#) and references therein). Instead, in ML settings such as ours, the TT rank serves as a regularizer; pruning redundant directions after the optimiser has identified them improves generalization and reduces memory, whereas too high rank risks overfitting.

The choice of rank schedule was done heuristically, with the only consideration in mind that the ranks should be reduced slowly so that the model can adapt to the new weight space more efficiently. We see two potential extensions that find such rank schedules in more principled ways and that we leave open for future work.

First, for our experiments we used the magnitude of the singular values across TT bonds as diagnostic to shrink the ranks (even if they all remained high relative to each other). One improvement could come in the form of considering other *importance scores* that take into account the sensitivity of those singular values to the loss function. This would necessitate freezing all TT cores not involved in the SVD process. An approach similar in spirit was done in the context of LoRA type adapters in AdaLoRA [Zhang et al. \(2023\)](#). We remark here that one advantage of performing rank adaptive schemes based on SVDs in MetaTT over LoRA type adapters is that a much smaller fraction of SVDs are needed in MetaTT than in LoRA. This series of SVDs at the end of certain epochs result in a small overhead. This is in contrast to performing SVDs on all LoRA type adapters across the transformer architecture. It is for this reason that the orthogonality condition on the isometry factors stemming from SVDs are enforced through regularizers in AdaLoRA [Zhang et al. \(2023\)](#).

A second approach, which follows the original DMRG algorithm closer in spirit is to use powerful local optimizers to minimize directly the loss function with respect to each merged tensor at each step of the DMRG-inspired sweep in [Algorithm 1](#). This would not only enable rank adaptation across each TT bond, but also directly optimize the loss function which may result in a powerful optimizer.

D EXPERIMENTAL DETAILS

In this section we include experimental details not covered in the previous sections.

864 D.1 METHODOLOGY FOR HYPER-PARAMETER SEARCH
865

866 During hyper-parameter tuning, we conducted a manual grid search without fixing random seeds, as
867 the goal was to identify promising regions in the search space rather than produce final reportable
868 results. The details of the grid search are given in [Appendix D](#). For the final evaluation, we selected
869 the best-performing configurations and ran them across three different, fixed random seeds (see
870 [Appendix D](#) for the final set of hyper-parameters used) to ensure stability and reproducibility. This
871 allowed us to balance exploration efficiency with reliable performance reporting. Generally, we follow
872 Bershatsky et al. (2024) for hyper-parameter tuning. For very large datasets (≥ 500 k data-points, e.g.,
873 MNLI and QQP), we do the hyper-parameter tuning for only 1 epoch (for example MNLI which has
874 ≈ 390 k entries). For smaller datasets (e.g., CoLA and MRPC), we train for 20 epochs.
875

876 **Seeds.** We run 3 trials for most of our experiments unless the datasets are huge, in which case we
877 run only 2 trials. All experiments with RoBERTa_{base} use the following seeds {33305628, 2025, 42},
878 and the experiments with RoBERTa_{large} use the following seeds {56346, 2025, 42}.
879

880 D.2 CHOICE OF PROJECTION MATRICES
881

882 All experimental results in the main text were obtained by adapting Q, V matrices, as these were
883 the ones used in LoTR Bershatsky et al. (2024), LoRA (Hu et al., 2021, Tables 2, 3), and VeRA
884 Kopiczko et al. (2024). Just like several other PEFT adapters, MetaTT allows for fine-tuning any
885 arbitrary subset of attention and projection matrices in a transformer architecture, including the
886 MLP matrices (upon a proper reshaping). Since the number of projection matrices to be adapted M
887 (per layer) factorizes separately from other variables in MetaTT (including number of layers and
888 input/output dimensions), higher compression rates can be achieved by considering this quantity
889 larger. In line with previous works, we found that capturing Q, K, V matrices at once did not improve
890 over capturing only Q, V matrices. We leave for future work a detailed study of the role of MLP
891 layers and output projection matrices O .
892

893 D.3 IMPLEMENTATION ENVIRONMENT
894

895 **Implementation details for MetaTT variants and other baselines.** To construct our training
896 and benchmarking suite, we employed a range of technologies. HuggingFace provides a wrapper,
897 known as HuggingFace Transformers Wolf et al. (2019), which extends existing deep learning
898 libraries like PyTorch Paszke et al. (2019) with additional NLP functionalities. This library offers a
899 unified interface for tasks such as input tokenization, model configuration, inference pipelines, and
900 output decoding. We utilized HuggingFace’s Transformers and PEFT Mangrulkar et al. (2022) to
901 facilitate the design and training of our adapters, specifically taking advantage of the *Trainer* and
902 *TrainingArguments* features available within the library.
903

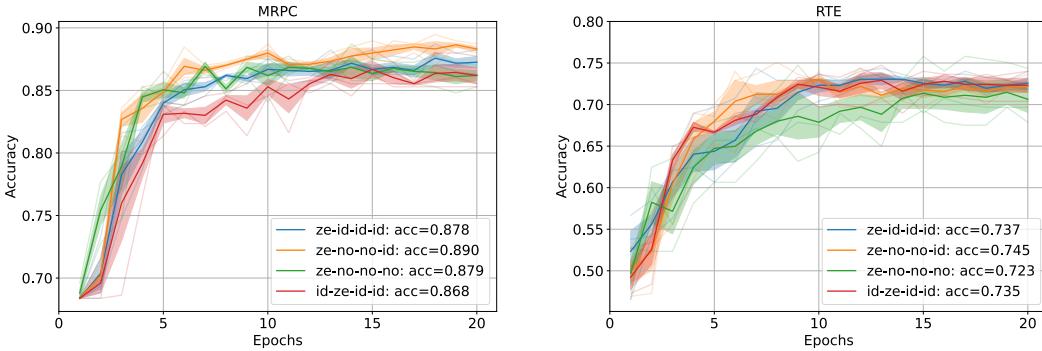
904 **Implementation details for DMRG-inspired sweep.** Similar to the single task and multi-task
905 learning, we leverage HuggingFace’s transformers library Wolf et al. (2020) to load the models and
906 HuggingFace datasets Lhoest et al. (2021) to load the datasets. However, we do not leverage the
907 *Trainer* here and instead fall back to custom PyTorch training loops as we wish to have more precise
908 control over the training loop (this is because we are changing the model itself during the run). Doing
909 this using a custom PyTorch loop is much cleaner than using *TrainerCallbacks*.
910

911 **Machine configuration and coding environment.** We run our benchmarks on a machine with the
912 following configuration: dual Intel Xeon Platinum 8275CL CPUs with 96 cores, 192 threads, and 1.1
913 TB of RAM and 8 A100 GPUs with 40GB memory each (an AWS P5 instance). At any given point
914 on any GPU, only 1 model is being trained against one dataset.
915

916 D.4 METATT
917

918 **Initialization.** An important component for running MetaTT successfully is the initialization
919 strategy. There is freedom in choosing how to initialize each core, as long as the TT contraction
920 $\mathcal{G}[i_1, \dots, i_d] = 0$ along each slice. This is required to guarantee $\Delta W_{l,m} = 0$ everywhere at the
921 beginning Hu et al. (2021). The majority of our experiments from the main text initialized the first
922

918 core \mathcal{G}_1 to zero, and the rest to the identity along each slice. I.e., $\mathcal{G}_i[j]_{k,l} = \delta_{k,l}$. This choice was done
 919 for simplicity and ease of reproducibility of results, and found to work well across all datasets that
 920 we experimented with. In Figure 4, we compare this scheme against other initialization strategies on
 921 MRPC and RTE. Note that further improvements on the numbers quoted in Table 2 can be achieved
 922 by optimizing initialization choices, as shown in Figure 4.



924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936 **Figure 4: TT initialization performance.** Shown are the accuracies in MRPC (left) and RTE (right)
 937 when training MetaTT-4D on RoBERTa_{base} with different initialization strategies along with
 938 mean of best accuracies over 20 epochs across 3 different trials shown in the legend. Each pair of
 939 letters correspond to a different initialization strategy: ‘ze’ sets a given core to zero, ‘id’ sets each
 940 matrix slice of a core to the identity matrix and ‘no’ to a normal distribution with mean = 0 and
 941 standard deviation = 0.2. The order of pairs of letters follows the order of how each of the cores
 942 are initialized in MetaTT-4D. We choose the sequence ze-id-id-id (blue line) since it generally
 943 performs well on average across multiple datasets.
 944

945 **Hyper-parameters for MetaTT results of Table 2.** In Table 5 and Table 6 we list the exhaustive
 946 set of hyper-parameters required to replicate the results in Table 2 for MetaTT-4D and MetaTT-5D
 947 respectively. For final evaluations, we run multiple trials across all the datasets for each transformer
 948 (for 20 epochs). For CoLA, MRPC, RTE and STS-B, we do 3 trials. For MNLI, QNLI, QQP and
 949 SST2, we run 2 trials due to their large cardinality.

950 Model	951 Rank	952 Params	953 CoLA	954 MNLI	955 MRPC	956 QNLI	957 QQP	958 RTE	959 SST2	960 STS-B
RoBERTa _{base}	4	α	4	4	0.5	4	4	4	0.5	4
		LR	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
		Batch	8	8	8	8	16	16	8	8
	24	α	4	4	4	0.5	0.5	0.5	4	0.5
		LR	0.0005	0.001	0.0005	0.001	0.001	0.001	0.0005	0.001
		Batch	8	32	16	16	32	16	32	16
	64	α	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
		LR	0.001	0.0005	0.0005	0.001	0.001	0.0005	0.001	0.0005
		Batch	32	8	32	16	32	8	8	8
RoBERTa _{large}	16	α	0.5	0.5	0.5	0.5	0.5	0.5	4	0.5
		LR	0.001	0.001	0.0005	0.001	0.001	0.0005	0.001	0.001
		Batch	8	32	32	32	16	8	16	32
	32	α	4	0.5	0.5	0.5	0.5	0.5	4	0.5
		LR	0.0005	0.001	0.001	0.001	0.0005	0.0005	0.0005	0.001
		Batch	32	16	32	32	8	32	32	16

961 Table 5: **Hyper-parameters for RoBERTa for MetaTT-4D.** We list here the hyper-parameters that
 962 can be used to replicate the results for MetaTT-4D reported in Table 2.

963
 964
 965 **Hyper-parameter search grid.** We also list the hyper-parameter grids we used to search for the
 966 set of hyper-parameters we reported for fine-tuning RoBERTa using MetaTT-4D and MetaTT-5D on
 967 GLUE benchmark datasets, in Table 5 and Table 6, in Table 7. Across both models and methods, we
 968 use 0.0 as weight decay, warmup ratio of 0.06, and set the sequence length at 256.

Model	Rank	Params	CoLA	MNLI	MRPC	QNLI	QQP	RTE	SST2	STS-B
RoBERTa _{base}	16	α	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
		LR	0.0005	0.001	0.001	0.001	0.001	0.001	0.0005	0.001
		Batch	32	16	8	8	8	8	16	8
	64	α	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
		LR	0.0005	0.0005	0.001	0.001	0.0005	0.0005	0.001	0.001
		Batch	32	8	16	16	16	32	16	8
RoBERTa _{large}	32	α	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
		LR	0.001	0.001	0.0005	0.001	0.001	0.0005	0.0005	0.001
		Batch	32	8	32	32	16	8	8	16
	64	α	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
		LR	0.0005	0.001	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005
		Batch	16	32	16	16	16	16	16	8

Table 6: **Hyper-parameters for RoBERTa for MetaTT-5D.** We list here the hyper-parameters that can be used to replicate the results for MetaTT-5D reported in Table 2.

Hyper-parameter	MetaTT-4D	MetaTT-5D
	Values	Values
Rank (r)	4, 8, 16, 24, 32, 48, 64	Base – {16, 24, 32, 48, 64}. Large – {32, 64, 96}
Alpha (α)	0.5, 4	0.5, 4
Learning Rate (η)	$1 \times 10^{-3}, 5 \times 10^{-4}$	$1 \times 10^{-3}, 5 \times 10^{-4}$
Batch Size	8, 16, 32	8, 16, 32

Table 7: Hyper-parameter grid used for RoBERTa_{base} and RoBERTa_{large} on GLUE benchmark datasets to fine-tune with MetaTT-4D and MetaTT-5D PEFT adapters.

Hyper-parameter search for Llama. Since fine-tuning on Llama models is computationally more demanding, we restrict the search of hyper-parameters over coarser grids in conjunction with some heuristics. Precisely, we perform a heuristic search over the grid spanned by the TT-ranks $r \in \{8, 16, 32, 64, 128, 256\}$, alpha values $\alpha \in \{1.0, 2.0, 3.0\}$, learning rates $\eta \in \{1e-4, 2e-4, 5e-4\}$, and over two epochs. All Llama results were obtained by initializing the two middle cores as Gaussians with std= 0.2 and mean 0, and the right core being set to identity (the left core being set to zero). For MetaTT and other baselines we use AdamW as optimizer along with a linear scheduler, a warmup ratio of 0.06, and effective batch size of 32.

Hyper-parameters for MTL. We used a fixed learning rate of $5e-4$, and a weight decay schedule of 0.0 for LoRA and the variants of MetaTT.

D.5 BASELINES

Several of the baselines reported in Table 2 had extensively reported the set of hyper-parameters used to benchmark against LoRA: VeRA (Kopitzko et al., 2024, Tables 8, 9), LoRETTA (Yang et al., 2024, Tables 12, 13), LoRTA (Hounie et al., 2024, Tables 11, 12), LoTR (Bershatsky et al., 2024, §D), MTL-LoRA and MoE-LoRA (Yang et al., 2025, Table 7)). However, except for LoTR and LoRTA, all other methods report accuracy after fine-tuning the weights of both the classifier head and the shared parameters. However, allowing the whole classifier head to be trainable significantly blows up the total number of trainable parameters (e.g., adds about 400K parameters for RoBERTa_{base} in case of VeRA with sequence length of 1024), effectively hiding the sole impact of the shareable hyper-parameters. As such we re-run the benchmarking by freezing the classifier heads. We believe that this is necessary for a fair comparison. We also report the new set of hyper-parameters for replicating these results in the following subsections.

D.5.1 LoRA HU ET AL. (2021)

The reported results for fine-tuning Llama-2 models with LoRA were obtained through hyper-parameter tuning over a grid with ranks $r \in 8, 16, 32, 64$, alpha $\alpha = 2r$, and learning rates $\eta \in$

1026 1e-1, 1e-2, 1e-5. The values presented correspond to the best performance achieved on this grid
 1027 search over 2 epochs.

1028 For RoBERTa, we directly report the results from Bershatsky et al. (2024).

1030 1031 D.5.2 VeRA KOPICZKO ET AL. (2024)

1032 For each of the GLUE benchmark datasets we use weight decay 0.0 and warmup ratio 0.06. Furthermore, to be consistent with our other experiments, for RoBERTa_{base} and RoBERTa_{large}, we use
 1033 a sequence length of 256. We tried different batch sizes from the set $\{4, 8, 16, 32\}$ out of which 32
 1034 consistently worked well across all of the datasets. The best performing learning rates for both the
 1035 models and corresponding datasets are reported in Table 8. To find these learning rates, we searched
 1036 in the range $[0.0001, 0.1]$ across all datasets. Finally, consistent with the experiments in Kopiczko
 1037 et al. (2024), we set VeRA rank for RoBERTa_{base} as 1024, and for RoBERTa_{large} as 256.

Model	CoLA	MNLI	MRPC	QNLI	QQP	RTE	SST2	STS-B
RoBERTa _{base}	0.005	0.0008	0.01	0.015	0.025	0.004	0.01	0.003
RoBERTa _{large}	0.009	0.01	0.004	0.006	0.01	0.005	0.01	0.003

1043 Table 8: **Learning rates for VeRA experiments.** Since we only train the attention layers and keep
 1044 the classifier weights frozen, we report the learning rates to fine-tune RoBERTa_{base} and RoBERTa_{large}
 1045 on the GLUE benchmark datasets.

1046 For Llama experiments we perform a coarser grid search given runs are substantially more expensive.
 1047 For each of the two models we searched over the grid formed by ranks $r \in \{256, 1024\}$ and learning
 1048 rates $\eta \in \{2e-4, 5e-4\}$. We picked the best out of these parameters over the span of two epochs.

1049 Other than rank and learning rate, for both RoBERTa and Llama experiments we use the default set
 1050 of hyper-parameters from HuggingFace’s implementation of VeRA.

1051 1053 D.5.3 LoRETTA YANG ET AL. (2024)

1054 Similar to the original paper, for LoRETTA_{adp} we tried on two batch sizes 16, 32 and found 32 to
 1055 work best in all tasks of the GLUE suite. The bottleneck dimension was set at 64. Adapter dropout
 1056 was set to 0, and the scaling parameter (α) was set at 1.0. Weight decay was set to 0.01 and sequence
 1057 length was set at 256 for both the methods. Furthermore, among 2, 5, 10, 20 tensor ranks, 5 had the
 1058 right balance of parameters and performance across GLUE tasks for both the methods. The learning
 1059 rates used across the tasks, method, and the models are reported in Table 9. Each of the dataset was
 1060 trained on 20 epochs, except MNLI and QQP which were trained for 10 epochs.

LoRETTA _{adp}								
Model	CoLA	MNLI	MRPC	QNLI	QQP	RTE	SST2	STS-B
RoBERTa _{Base}	1e-3	4e-4	8e-4	2e-3	3e-3	2e-3	3e-4	-(-)

LoRETTA _{rep}								
Model	CoLA	MNLI	MRPC	QNLI	QQP	RTE	SST2	STS-B
RoBERTa _{Base}	5e-4	1e-4	7e-4	1e-3	-(-)	4e-4	3e-4	-(-)

1061 Table 9: **Learning rates for LoRETTA_{adp} experiments.** Since we only train the attention layers
 1062 and keep the classifier weights frozen, we report the learning rates to fine-tune RoBERTa_{Base} and
 1063 RoBERTa_{Large} on the GLUE benchmark datasets.

1064 1066 D.5.4 LoTR BERSHATSKY ET AL. (2024)

1067 For RoBERTa experiments we directly quote the results of LoTR from the original work. For Llama
 1068 models we search exhaustively over the grid spanned by the learning rates $\eta \in \{2e-4, 5e-4\}$ and
 1069 ranks $r \in \{16, 64\}$. The choice of scaling factor α is set to 2.0 and we initialize the cores analogously
 1070 to MetaTT: middle core drawn from a Gaussian with std= 0.2 and mean 0, and right core (output
 1071 dimension leg) set to identity. We report the best accuracy on this grid over two epochs.

1080 D.5.5 LoRTA HOUNIE ET AL. (2024)
1081

1082 We chose to rerun GLUE experiments for LoRTA since in (Hounie et al., 2024, Table 2) only
1083 the best results are reported. For completeness, we restate the hyperparameter grids used to report
1084 results in Hounie et al. (2024) for GLUE baselines in [Table 10](#). We train the models on the 3
1085 seeds mentioned at the beginning of this section. For COLA, MRPC, STS-B, and RTE tasks we
1086 fine-tune RoBERTa based models for 20 epochs, and for MNLI, SST2, QNLI, and QQP tasks we
1087 fine-tune RoBERTa based models for 10 epochs. Similar to other experiments we set sequence
1088 length at 256. Weight decay is set at 0.0 for fine-tuning both models. The learning rate grid
1089 is $[5e-4, 1e-3, 2e-3, 3e-3, 4e-3, 5e-3, 6e-3, 7e-3, 1e-2, 1.5e-2, 2e-2]$ for
1090 $\text{RoBERTa}_{\text{base}}$, and $[1e-3, 5e-3, 7e-3, 8e-3, 9e-3, 1e-2, 2e-2]$ for $\text{RoBERTa}_{\text{large}}$. The final
1091 learning rates used are reported in [Table 11](#).

Hyper-parameter	$\text{RoBERTa}_{\text{base}}$	$\text{RoBERTa}_{\text{large}}$
α	$[0.5, 1.0, 2.0, 8.0]$	$[0.5, 1.0, 2.0, 8.0]$
Scheduler	Linear	Linear
Optimizer	AdamW	AdamW
Batch size	$[32, 64]$	$[32, 64]$
Warmup ratio	0.06	0.06

1092 Table 10: **Hyper-parameter configurations for $\text{RoBERTa}_{\text{base}}$ and $\text{RoBERTa}_{\text{large}}$ for LoRTA.** We
1093 restate and update some of the hyper-parameters from Hounie et al. (2024) for completeness.
1094

Model	COLA	MNLI	MRPC	QNLI	QQP	RTE	SST2	STS-B
$\text{RoBERTa}_{\text{base}}$	$1e-2$	$1e-2$	$1e-2$	$1e-2$	$1.5e-2$	$1e-2$	$4e-3$	$4e-3$
$\text{RoBERTa}_{\text{large}}$	$1e-2$	$1e-2$	$1e-2$	$1e-2$	$8e-3$	$2e-2$	$1e-2$	$2e-2$

1095 Table 11: **Final learning rates used for fine-tuning $\text{RoBERTa}_{\text{base}}$ and $\text{RoBERTa}_{\text{large}}$ using LoRTA.**
1096 We state the final learning rates used to fine-tune RoBERTa based pre-trained models on the GLUE
1097 tasks.

1100 D.5.6 MoE-LoRA LIU ET AL. (2024) AND MTL-LoRA YANG ET AL. (2025)

1101 The codebase for MTL-LoRA¹ had implementation only for Llama based models. As such we
1102 adapted this codebase for experimenting MTL on RoBERTa based models for fine-tuning on some of
1103 the GLUE tasks. For both MoE-LoRA and MTL-LoRA, and both RoBERTa based models, we train
1104 for 20 epochs. The number of experts were set to 4 for MoE-LoRA (used a grid of $[4, 8]$, 4 worked
1105 reliably well), and rank r of LoRA was set to 4 (grid used was $[4, 8]$, 4 gave the best balance between
1106 number of trainable parameters and performance) for both methods. We set a batch size of 32 across
1107 both methods and the learning rate grid used was $[1e-4, 2e-4, 3e-4, 5e-4, 7e-4, 9e-4, 1e-3]$
1108 for both the methods. The final learning rates used are reported in [Table 12](#).

Model	MoE-LoRA	MTL-LoRA
$\text{RoBERTa}_{\text{base}}$	$7e-4$	$5e-4$
$\text{RoBERTa}_{\text{large}}$	$9e-4$	$5e-4$

1109 Table 12: **Final learning rates for MTL experiments using methods from Liu et al. (2024); Yang
1110 et al. (2025).** In this table we report the final learning rates used to generate the baseline results in
1111 [Table 3](#) using MoE-LoRA and MTL-LoRA.

1112 E METATT ADAPTER IMPLEMENTATION

1113 In this section, we give an example of one of the MetaTT adapters (MetaTT-4D) using pseudo-code
1114 written in python.

1115 ¹<https://github.com/pUmpKin-Co/MTL-LoRA>

1134 **Configuration.** We start by stating the configuration class of MetaTT-4D in [Algorithm 2](#). The
 1135 different inputs to the class function are – `rank`: a 1×3 array (e.g., [8, 8, 8]) corresponding to the
 1136 different ranks of the tensor-train, `alpha`: scaling factor for the adapter, `target_modules`: type
 1137 of matrices to be fine-tuned using the algorithm, and `use_bias`: flag to choose whether to add bias
 1138 as a parameter.

1139

Algorithm 2 MetaTT-4D configuration class file

```
1140
1141     class MetaTT4DConfig:
1142         def __init__(self, ranks, alpha=1.0, target_modules=["query", "key", "value"],
1143             use_bias=False):
1144             self.ranks = ranks
1145             self.alpha = alpha # scaling factor for the adapter
1146             self.target_modules = target_modules
1147             self.use_bias = use_bias
```

1148

1149

1150 **Adapter.** We then list an example of an adapter for MetaTT-4D in [Algorithm 3](#). In the attached
 1151 pseudo-code, the \mathcal{G}_1 core is initialized to zero, the \mathcal{G}_2 , \mathcal{G}_3 , \mathcal{G}_4 cores are initialized as the identity
 1152 matrix. One of the cores is generally set to 0-tensor so that output of the corresponding adapter is
 1153 zero at the beginning of the training similar to [Hu et al. \(2021\)](#).

1154

1155

Algorithm 3 MetaTT-4D adapter

```
1156
1157     class MetaTT4DAdapter(nn.Module):
1158         def __init__(self, hidden_dim: int, num_layers: int, tt_config: MetaTT4DConfig):
1159             super().__init__()
1160             self.hidden_dim = hidden_dim
1161             self.num_layers = num_layers
1162             self.tt_config = tt_config
1163             self.num_projs = len(tt_config.target_modules)

1164             # initialize the tensor cores
1165             self.G1 = Parameter(torch.empty(self.hidden_dim, \
1166                 tt_config.ranks[0]), requires_grad=True)

1167             self.G2 = ParameterList[nn.init.eye_](Parameter(torch.zeros\
1168                 (self.tt_config.ranks[0], self.tt_config.ranks[1]), \
1169                 requires_grad=True)) for _ in range(self.num_layers)

1170             self.G3 = ParameterList[nn.init.eye_](Parameter(torch.empty\
1171                 (self.tt_config.ranks[1], self.tt_config.ranks[2]), \
1172                 requires_grad=True)) for _ in range(self.num_projs)

1173             self.G4 = Parameter(torch.empty(tt_config.ranks[2], \
1174                 self.hidden_dim), requires_grad=True)

1175             nn.init.zeros_(self.G1)
1176             nn.init.eye_(self.G4)
```

1174

1175

1176

1177 **Linear adapter and forward function.** [Algorithm 3](#) can be used to create a linear adapter and
 1178 the corresponding forward function as shown in [Algorithm 4](#). The inputs to this adapter are –
 1179 `original_layer`: the layers of the pre-trained model, `tt_config`: the corresponding initialized
 1180 MetaTT configuration class, `M1`, `M2`, `M3`, `M4`: the tensor core slices along each of the four
 1181 dimensions (corresponding to matrices). During the forward pass, the input batch is first passed
 1182 through the original layer that is frozen. This batch is also multiplied by `M1` trough `M4`, and scaled by
 1183 α . Note that this order of matrix multiplication will be optimal if the rank is smaller than the batch
 1184 size. The outputs of the original and the adapter are then added and returned.

1185

1186

1187

1188 **PEFT model.** Finally, the pseudo-code for developing our model with PEFT philosophy so that
 1189 it can be used as a drop-in within any model quickly is given in [Algorithm 5](#). The inputs to this
 1190 algorithm is just the pre-trained model and the configuration class for MetaTT. [Algorithm 5](#) uses
 1191 the cores initialized in [Algorithm 3](#) to set up the trainable layer using [Algorithm 4](#). Finally, these

1188
1189**Algorithm 4** MetaTT-4D linear adapter

```

1190     class MetaTT4DLinearAdapter(nn.Module):
1191         def __init__(self, original_layer: nn.Module, tt_config: MetaTT4DConfig, M1, M2,
1192                      M3, M4):
1193             super().__init__()
1194             # set requires_grad to False for original weights
1195             self.original_layer = original_layer.\n                requires_grad_(False)
1196             self.tt_config = tt_config
1197             self.M1 = M1
1198             self.M2 = M2
1199             self.M3 = M3
1200             self.M4 = M4
1201
1202             def forward(self, X: torch.Tensor) -> torch.Tensor:
1203                 original_output = self.original_layer(X)
1204                 return original_output + self.tt_config.alpha * (((X @ self.M1) @ self.M2) @
1205                     self.M3) @ self.M4

```

1202
1203
1204

layers are set-up such that one can dynamically update them during runtime. Once all the layers are initialized correctly, the model is assigned to the corresponding training device and returned.

1208

Algorithm 5 MetaTT-4D PEFT model for RoBERTa

```

1209
1210     def get_meta_tt_4d_model(model, config):
1211         # set pre-trained model weights to be non-trainable
1212         for param in model.parameters():
1213             param.requires_grad = False
1214         # grab device ID from model
1215         device = model.device
1216
1217         num_layers = model.config.num_hidden_layers
1218         hidden_dim = model.config.hidden_size
1219
1220         # initialize the MetaTT adapter
1221         meta_tt_adapter = MetaTT4DAdapter(hidden_dim, num_layers,\n                                             config)
1222
1223         # go through each layer and corresponding projection
1224         # matrices of the roberta model
1225         for layer_idx, layer in \
1226             enumerate(model.roberta.encoder.layer):
1227             for proj_idx, proj_matrix in \
1228                 enumerate(config.target_modules):
1229                 if proj_matrix in ("query", "key", "value"):
1230                     original_layer = layer.attention.self
1231                     original_matrix = getattr(original_layer,\n                                         proj_matrix)
1232                 elif proj_matrix == "dense":
1233                     original_layer = layer.attention.output
1234                     original_matrix = getattr(original_layer,\n                                         proj_matrix)
1235                 else:
1236                     raise ValueError(f"\n                         \"Unexpected proj_matrix value: {proj_matrix}\"")
1237
1238                 # set-up the MetaTT layer
1239                 meta_tt_layer = MetaTT4DLinearAdapter(\n                     original_matrix, config,
1240                     meta_tt_adapter.G1,
1241                     meta_tt_adapter.G2[layer_idx],
1242                     meta_tt_adapter.G3[proj_idx],
1243                     meta_tt_adapter.G4)
1244
1245                 setattr(original_layer, proj_matrix, meta_tt_layer)
1246
1247             return model.to(device)

```

1240

1241

1242 **F LIMITATIONS AND BROADER IMPACTS**

1244 **Limitations.** MetaTT is sensitive to parameter initialization. We have observed that for certain
 1245 choice of hyper-parameters MetaTT would fail to train. This sensitivity to initialization is more
 1246 prevalent in the 5D version than in the 4D. Finding better initialization heuristics would improve the
 1247 robustness of MetaTT. We also observe that when compared to MetaTT-4D, MetaTT-5D is more
 1248 sensitive to worsening performance during training when optimized using standard SGD algorithms.
 1249

1250 **Broader Impacts.** The development of a reparameterization adapter using tensor trains and DMRG-
 1251 inspired techniques offers significant potential in advancing compressed adapter fine-tuning as well
 1252 as model training. By leveraging these methods, models can be compressed as they are being trained,
 1253 significantly reducing the final parameter count while maintaining high accuracy. This leads to
 1254 ultra-compressed models while training, and compressed adapters while fine-tuning. The ability to
 1255 compress models as they are training ensures that the compression does not compromise the model’s
 1256 performance, as there are opportunities for correction during the training process itself.
 1257

1258 Further, our work opens up new possibilities for deploying advanced scalable models in resource-
 1259 constrained settings – where our techniques could allow for maintaining a high accuracy during
 1260 training as opposed to approaches where a model is compressed post-training.

1261 **G REBUTTAL APPENDIX: ADDITIONAL EXPERIMENTS ON MTL**

1263 We add additional experiments for MTL in this section (and will collate and combine with [Section 3.2](#)
 1264 and [Appendix B](#) for the final release).

1265 We fine-tune RoBERTa_{base} and RoBERTa_{large} jointly on CoLA, MRPC, RTE, and QNLI (MTL
 1266 for 4 tasks) datasets from the GLUE benchmark datasets. In [Table 13](#) we show the results of our
 1267 experiments on MTL for 4 tasks. We observe similar patterns when compared to the results for MTL
 1268 3 tasks (fine-tune RoBERTa_{base} and RoBERTa_{large} jointly on CoLA, MRPC, and RTE). LoRA again
 1269 works remarkably well across different datasets and pre-trained models. MoE-LoRA outperforms
 1270 methods other than LoRA across different tasks for RoBERTa_{base}, and MetaTT-(4+1)D outperforms
 1271 methods other than LoRA across all tasks when RoBERTa_{large} is fine-tuned. However, we observe
 1272 that on average MetaTT-4D marginally outperforms MetaTT-(4+1)D when RoBERTa_{base} is fine-tuned
 1273 and is about 1% worse when RoBERTa_{large} is fine-tuned. We note that fine-tuning both models over
 1274 these 4 tasks only incurs less than 1% extra parameters compared to the 3 tasks considered in the
 1275 main text.

Model	Method	Param × 10 ³	Rank	CoLA	MRPC	Metric (%) RTE	QNLI	Avg
RoBERTa _{base}	LoRA	295	8	58.6(9)	87.1(5)	75(1)	88.0(5)	77.3(3)
	MTL-LoRA Yang et al. (2025)	296	4	51.5(1)	87(1)	76.4(2)	87.6(5)	75.6(5)
	MoE-LoRA Liu et al. (2024)	309	8	54.5(3)	87.4(8)	75.6(9)	88.2(3)	76.4(6)
	MetaTT-4D	13.2	8	53.8(5)	84.8(3)	75(2)	85.9(8)	74.8(7)
	MetaTT-(4+1)D	13.5	8	54(1)	87.3(9)	70(2)	85.8(4)	74.5(4)
RoBERTa _{large}	LoRA	786	8	65(1)	89(1)	80.8(8)	92.9(4)	81.7(5)
	MTL-LoRA Yang et al. (2025)	789	4	60(1)	88.6(8)	82(1)	90.2(3)	80.4(9)
	MoE-LoRA Liu et al. (2024)	814	8	63(2)	89(2)	83(2)	90.2(1)	81(1)
	MetaTT-4D	18.0	8	59(1)	88.2(5)	82.4(4)	90.3(5)	80.0(5)
	MetaTT-(4+1)D	18.3	8	63(1)	87.6(8)	83.4(9)	91.1(2)	81.2(5)

1286 **Table 13: Results of MTL with 4 tasks.** We observe that unlike results in [Table 3](#) MetaTT-(4+1)D
 1287 outperforms MetaTT-4D only when using RoBERTa_{large}. However, across both models, MetaTT-
 1288 (4+1)D uses about only 300 more trainable parameters. For RoBERTa_{base} MetaTT-(4+1)D performs
 1289 within 1% of MTL-LoRA while using $\approx 22x$ less parameters, and for RoBERTa_{large} MetaTT-(4+1)D
 1290 outperforms both MTL-LoRA and MoE-LoRA on average, and is within 0.5% of average accuracy
 1291 of LoRA, while using $\approx 43x$ less parameters. We show in bold the two best accuracies per task.
 1292

1293 Similar to [Appendix B](#) we also plot the heatmaps of the gradients across each tensor in the TT
 1294 [Figure 5](#). We observe that across tensor slices which correspond to the specific tasks, MetaTT-(4+1)
 1295 acquires large gradients in label 3 for CoLA (similar to what we saw in [Appendix B](#)). We also
 1296 complement plots of the gradients with downstream task performance per epoch.

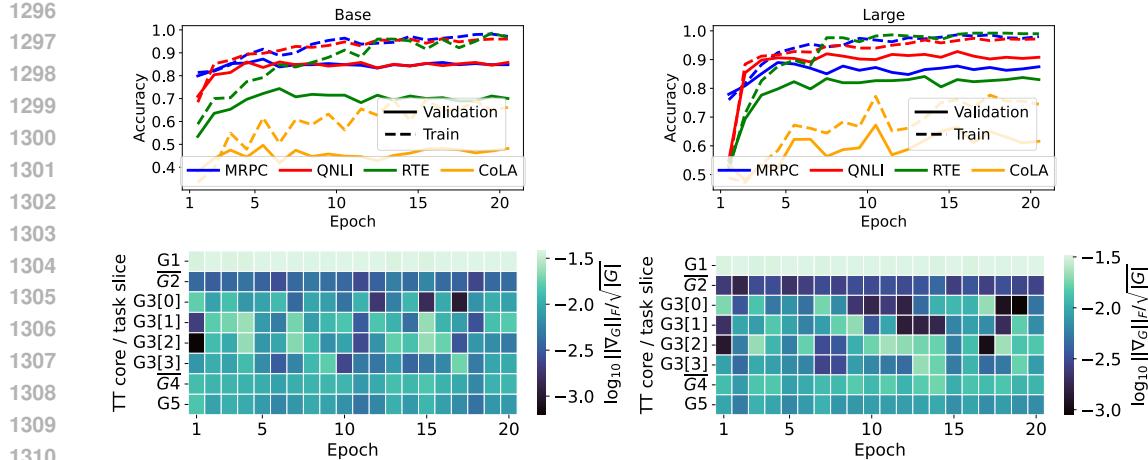


Figure 5: **Influence of task-dependent TT core in MTL.** (Left): (Top): accuracy of MetaTT-(4+1)D as a function of epochs for RoBERTa_{Base} for a single training realization (in the case of CoLA we compute Matthew’s correlation instead). (Bottom): Corresponding normalized gradients across all tensors as a function of epochs (see Appendix B). Task labels correspond to 0: MRPC, 1: QNLI, 2: RTE, 3: CoLA. (Right): Same as in left but for RoBERTa_{Large} as pretrained model.

H REBUTTAL APPENDIX: STABILITY ANALYSIS

We compare stability of the performance of LoRA, VeRA, MetaTT4D, and MetaTT5D for fine-tuning RoBERTa_{base} and RoBERTa_{large} on the validation data of CoLA, MRPC and RTE. We study the stability of these adapters when ranks and learning rates are varied while keeping other hyper-parameters constant.

H.1 STABILITY DURING TRAINING USING THE BEST SET OF HYPERPARAMETERS

Fixed hyper-parameters. For these experiments, we fix the random seeds to $\{1, 2, 3, 4, 5, 6, 7, 8\}$ across all algorithms and models. The hyper-parameters used for LoRA is reported in Table 14. Note, Bershatsky et al. (2024) which was used to report LoRA values in Table 2 only provided the range of hyper-parameter values swept, and not the final set of hyper-parameters, and so we ran our own search on a wider set of seeds. The hyper-parameters for other methods are consistent with the best set of hyper-parameters reported in Appendix D

Model	Task	Rank	α	Learning Rate	Batch Size
RoBERTa _{base}	CoLA	4	8.0	$5e-4$	16
	MRPC	32	64.0	$2e-4$	8
	RTE	8	16.0	$2e-4$	16
RoBERTa _{large}	CoLA	64	128.0	$2e-4$	16
	MRPC	32	64.0	$2e-4$	8
	RTE	8	16.0	$2e-4$	16

Table 14: Best hyperparameters for each model and task combination for LoRA.

Stability score. To quantify stability of each adapters on the best corresponding set of hyper-parameters, we report margin of error (also known as the half-width of the 95% confidence interval) Krishnamoorthy (2006) defined as

$$\text{Margin of error} \approx 1.96 \frac{\sigma}{\sqrt{n}}, \quad (7)$$

where 1.96 is the critical value expressed as a z -score and corresponds to 95% confidence level, assuming that the data is normally distributed. Note, the margin of error reported here is at most a factor of 2 worse than the standard error.

1350
 1351 **Observations.** In [Figure 6](#) we plot the evaluation accuracy as we increase epochs during training.
 1352 We observe that all methods demonstrate similar variance, across seeds and epochs. To measure
 1353 the stability of the performance of the final model, we measure corresponding stability scores and
 1354 report them in [Table 15](#). We observe that between models, tasks and adapters, the half width of the
 1355 95% confidence interval does not vary by much. As a result, we can conclude that for the set of
 1356 hyper-parameters that yield the highest evaluation accuracies across methods, the stability during
 1357 training across adapter variants remains relatively similar.

Model	Task	LoRA	VeRA	MetaTT-4D	MetaTT-5D
RoBERTa _{base}	CoLA	0.009	0.012	0.012	0.011
	MRPC	0.006	0.006	0.006	0.006
	RTE	0.007	0.016	0.011	0.010
RoBERTa _{large}	CoLA	0.007	0.013	0.154	0.010
	MRPC	0.004	0.007	0.006	0.065
	RTE	0.011	0.008	0.010	0.093

1365 **Table 15: Margin of error across seeds.** We report the half-width of the 95% confidence interval
 1366 for finetuning RoBERTa_{base} and RoBERTa_{large} using LoRA, VeRA, MetaTT-4D, and MetaTT-5D
 1367 adapters. The lowest two values in each row are shown in bold.

1370 H.2 STABILITY ACROSS LEARNING-RATES

1371 We also plot the performance of each of the adapters when the learning rate is varied while other
 1372 hyper-parameters are kept constant in [Figure 7](#) and [Figure 8](#) (we choose the best reported hyper-
 1373 parameters for these sweeps in [Appendix D](#)). We observe that when finetuning RoBERTa_{base} and
 1374 RoBERTa_{large} on MRPC and RTE, the decay in performance after attaining the best rate is similar in
 1375 LoRA and VeRA, and MetaTT-4D also performs similar to these adapters (approximately similar
 1376 slope of the mean). For fine-tuning on CoLA, MetaTT-4D and LoRA behave similarly (with larger
 1377 variance in case of MetaTT-4D), and MetaTT-5D and VeRA behave similarly. One must note that the
 1378 α is varied for LoRA (as $2 \times$ rank) and VeRA doesn't depend on α , which makes this comparison
 1379 harder for both variants of MetaTT. We observe similar trends across tasks for RoBERTa_{large} for
 1380 LoRA and MetaTT-4D. However, unlike RoBERTa_{base}, MetaTT-5D performs similar to LoRA and
 1381 MetaTT-5D and not VeRA.

1383 H.3 STABILITY ACROSS RANKS

1384 We also plot the performance of each of the adapters when the rank is varied while other hyper-
 1385 parameters are kept constant in [Figure 9](#) and [Figure 10](#) (similar to [Appendix H.2](#)). Again note that
 1386 the parameter α was chosen as $2 \times$ rank for LoRA, and for MetaTT variants were kept as fixed
 1387 as reported in [Appendix D](#). We first observe that across tasks and models sizes, LoRA and VeRA
 1388 performs similarly across ranks. This is somewhat expected as we vary both rank and α (implicitly
 1389 for VeRA and explicitly for LoRA). However, MetaTT-4D somewhat performs worse at higher ranks
 1390 when both models are fine-tuned with CoLA and somewhat maintains performance on other tasks.
 1391 However, MetaTT-5D's performance improves with ranks across models and ranks even with fixed α .

1394 H.4 DIFFERENT INITIALIZATIONS OF LORA

1395 Finally, we also plot the evaluation accuracy during training for several initializations of LoRA.
 1396 Specifically, we compare the following initializations for LoRA – 1) Gaussian, 2) Pissa, and 3)
 1397 OLoRA. We run 8 independent trials with the hyper-parameters in [Table 17](#) and finetune RoBERTa_{base}
 1398 on MRPC and RTE tasks. We plot these results in [Figure 11](#). We compare the validation accuracy
 1399 across training epochs similar to [Figure 4](#). We observe that across both MRPC and RTE, LoRA
 1400 performs similarly when initialized with either Gaussian, Pissa Meng et al. (2024)(matrices initialized
 1401 as singular vectors of the pre-trained weights), and OLoRA Büyükköyüz (2024) (base weights are
 1402 translated with their QR decomposition). Although not as close the performance of these variants,
 1403 we tested on different initializations of MetaTT-4D in [Appendix D](#), and observed that the models

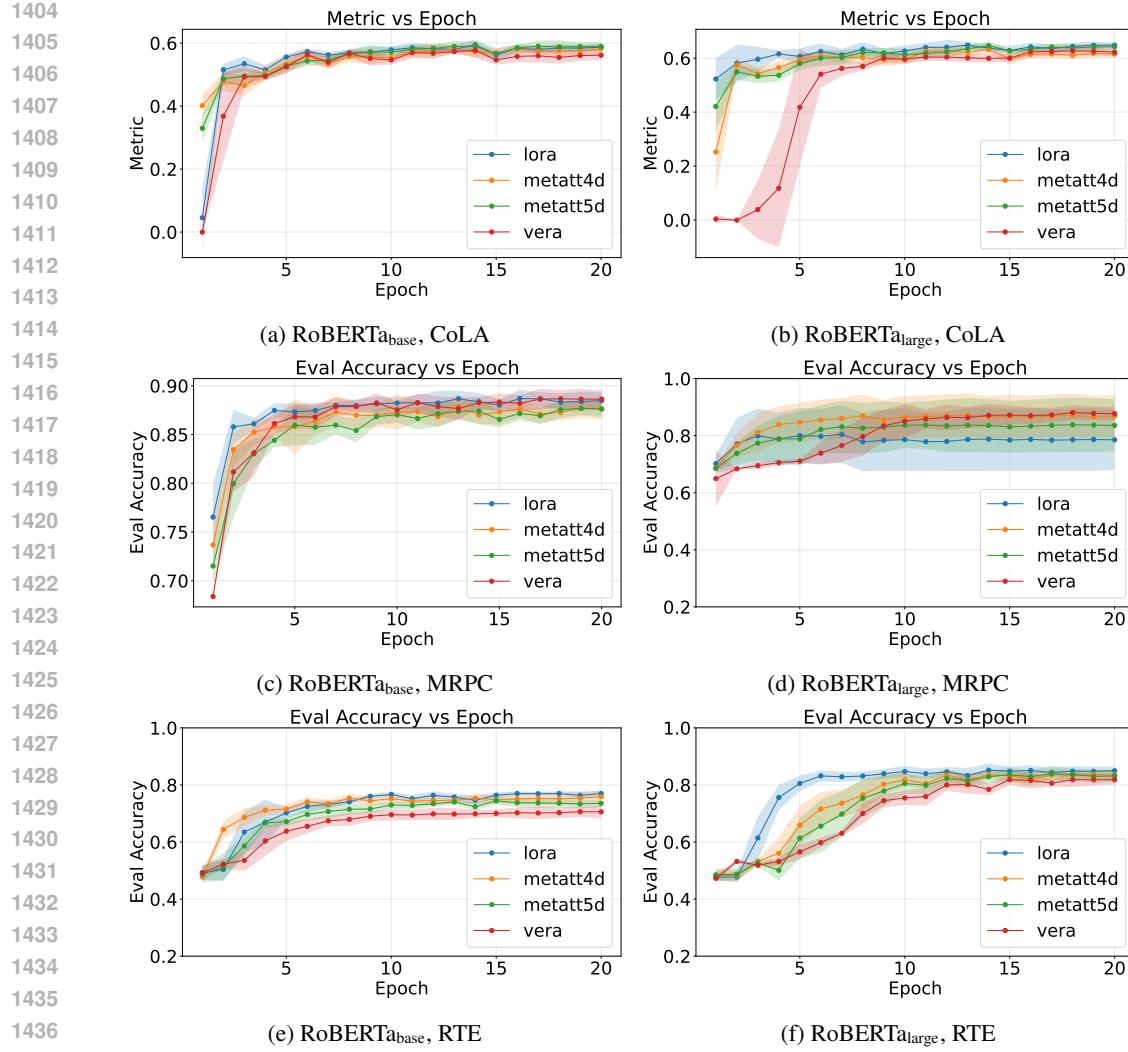


Figure 6: **Variance during training.** Here we plot the evaluation accuracy (Matthew’s correlation coefficient for CoLA) as we train the respective model on specific finetuning tasks using LoRA, VeRA, MetaTT-4D, and MetaTT-5D adapters. We observe that on average the variance across LoRA, MetaTT-4D, and MetaTT-5D are approximately similar, except for RoBERTa_{base} on CoLA where MetaTT-5D demonstrates significantly greater variance in training across seeds.

performed similarly across training epochs. However, tricks like the use of singular vectors of the pre-trained model to initialize adapter weights do not necessarily translate to the TT architecture.

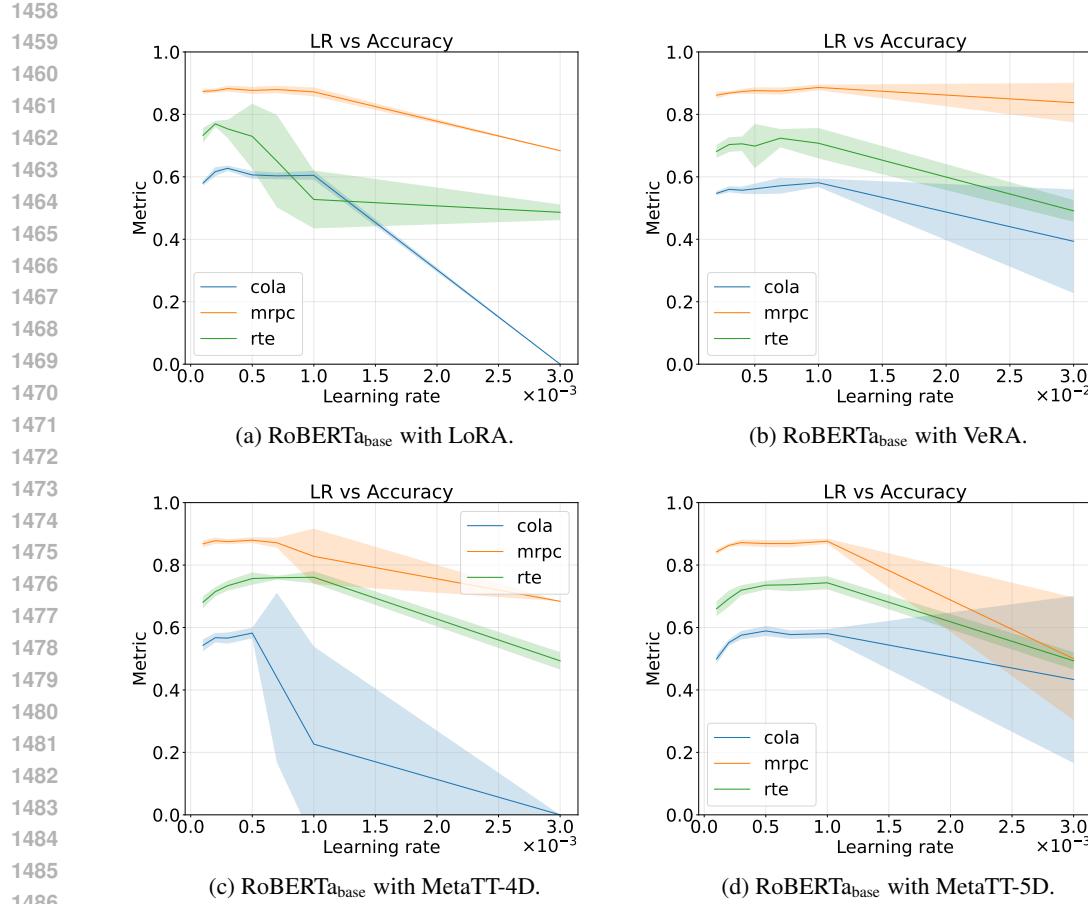


Figure 7: **Learning rate vs accuracy.** We plot final accuracy of RoBERTa_{base} when trained with specific adapters on specific glue tasks. We observe that in general variants of MetaTT decays somewhat at a similar rate when compared to LoRA and VeRA. This is inspite of the fact that for LoRA and VeRA the parameter α are tied to the ranks and so varied across runs (or in case of VeRA already absorbed in the learning parameters), while α remains an independent parameter for variants of MetaTT and was treated asfixed across learning rates.

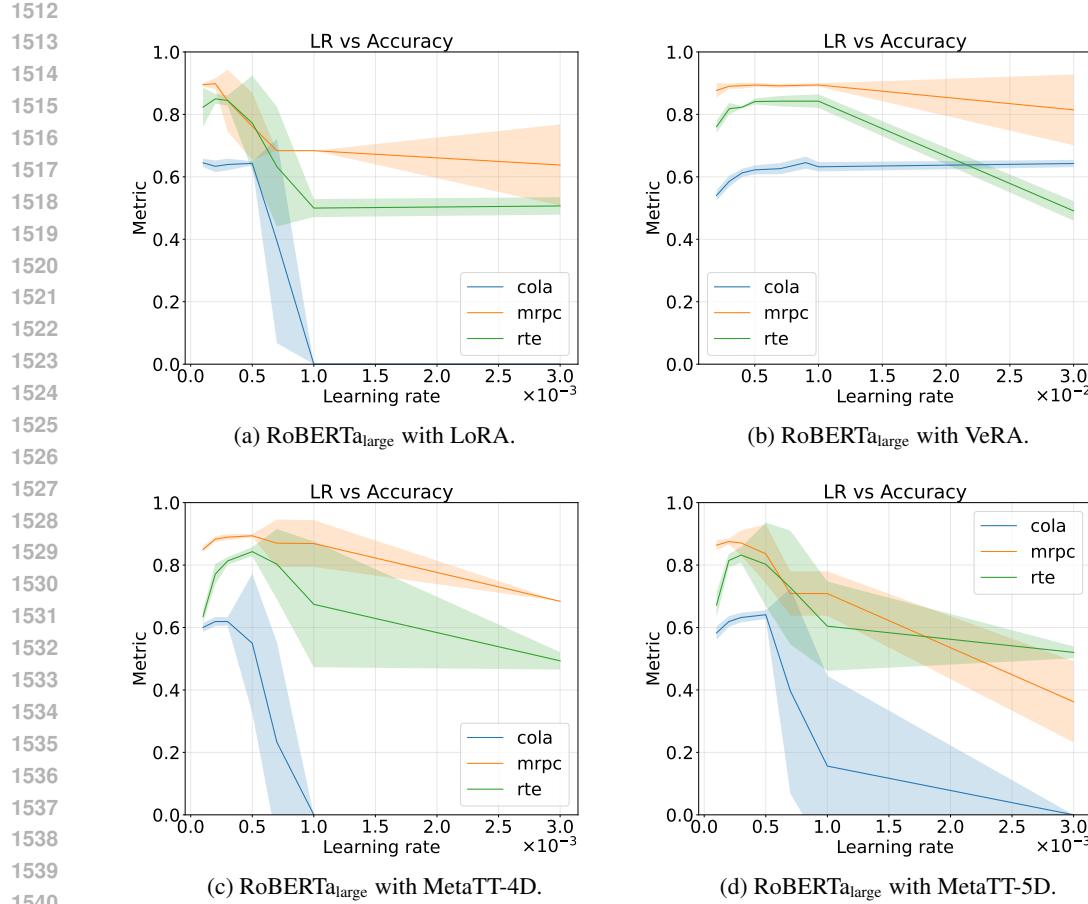


Figure 8: **Learning rate vs accuracy.** We plot final accuracy of RoBERTa_{large} when trained with specific adapters on specific glue tasks. We observe that for MRPC the rate of performance decay for VeRA is better than other methods, and for RTE the rate of performance decay for MetaTT-5D is better than other methods.

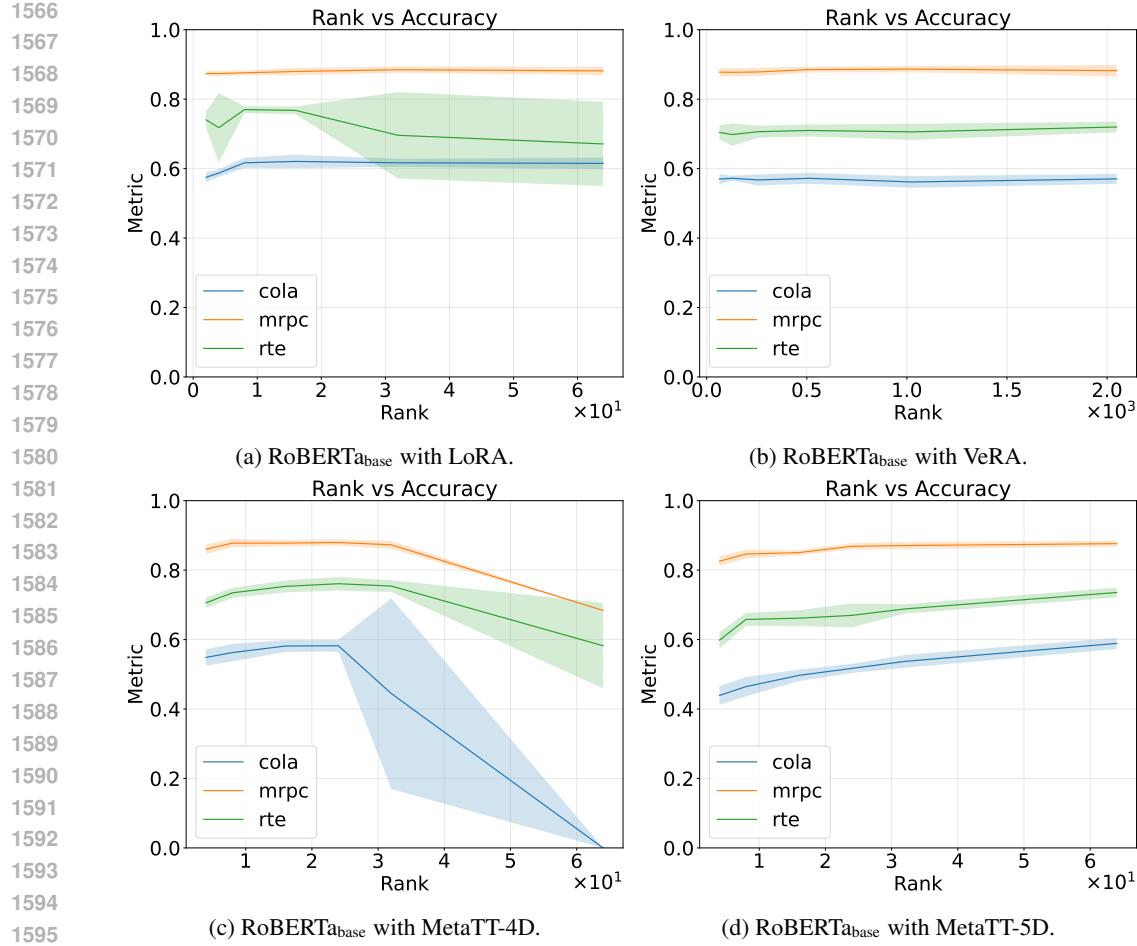


Figure 9: **Rank vs accuracy.** We plot final accuracy of RoBERTa_{base} when trained with specific adapters on specific glue tasks when keeping other hyper-parameters fixed and varying ranks. We observe that both LoRA and VeRA maintains performance (hinting a little at model capacity). MetaTT-4D’s performance gets somewhat worse at higher rank, hinting at the requirement to find the right pair of ranks and α , while MetaTT-5D starts worse and keeps improving across ranks.

1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

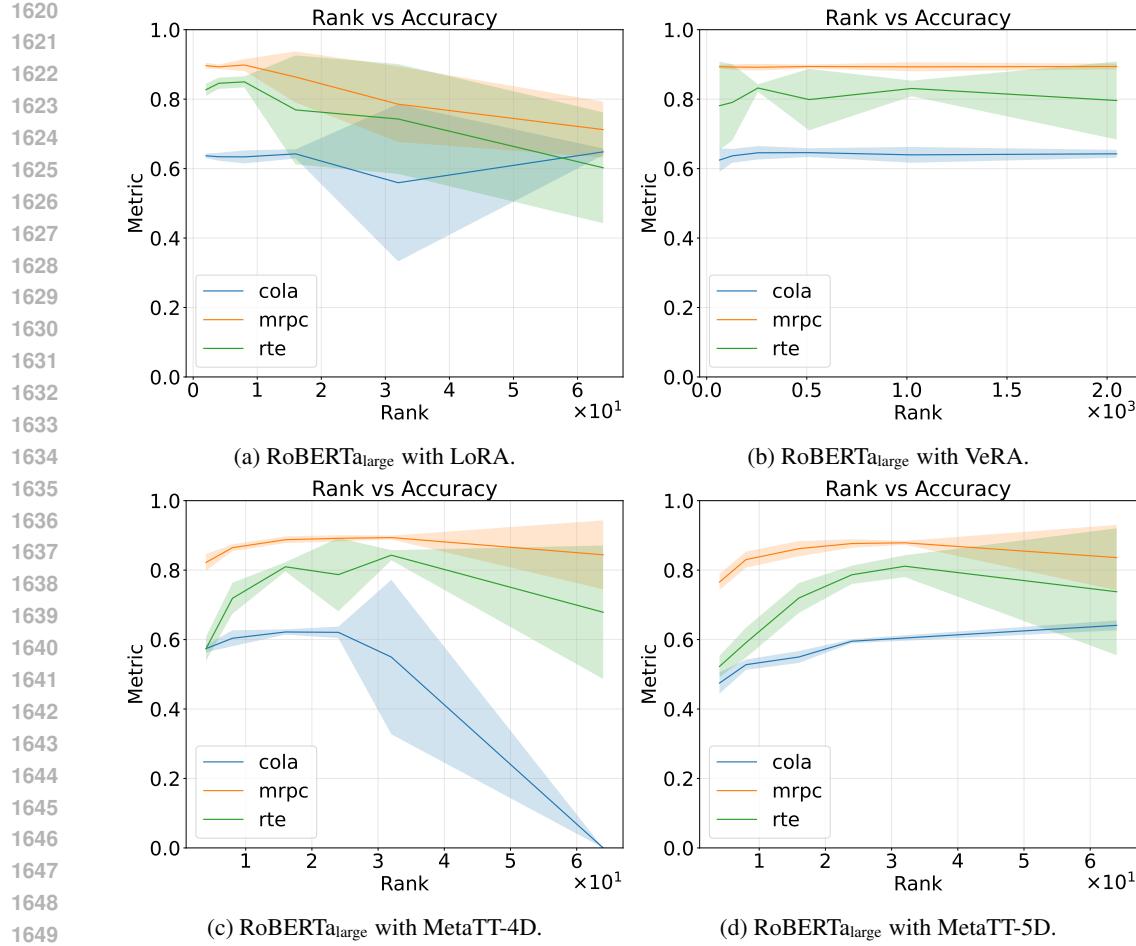


Figure 10: **Rank vs accuracy.** We plot final accuracy of RoBERTa_{large} when trained with specific adapters on specific glue tasks when keeping other hyper-parameters fixed and varying ranks. We observe that similar to Figure 9, LoRA and VeRA maintains performance across ranks. MetaTT-4D gets worse on CoLA while almost maintaining performance on MRPC and RTE, while MetaTT-5D starts worse but improves as we increase ranks.

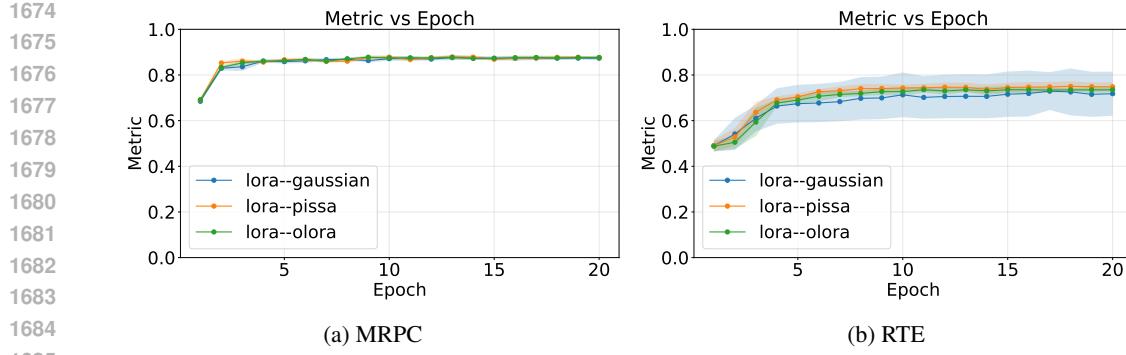


Figure 11: **LoRA using different initializations.** We plot the validation accuracy across training epochs using different initializations for LoRA on RoBERTa_{base}. We observe that on average these initializations work similar to each other.

I REBUTTAL APPENDIX: ADALORA VS. METATT WITH DMRG-INSPIRED SWEEPS

I.1 COMPARING ADALORA WITH LORA AND RELATING TO THE IMPROVEMENTS VIA DMRG

In this section we compare the performance of AdaLoRA Zhang et al. (2023) with LoRA. We want to specifically understand the capacity of a model trained on AdaLoRA for a fixed target rank to improve upon the performance of the LoRA with same rank. To establish fair comparison to LoRA we fix a target rank of 4 and report the results in Table 16. We report the mean and standard deviation of runs corresponding to seeds [33305628, 2025, 42] for RoBERTa_{base} and [56346, 2025, 42] for RoBERTa_{large}. The best set of hyper-parameters found for AdaLoRA and LoRA for these experiments are reported in Table 17. In Figure 12 we also plot the validation accuracy during training RoBERTa_{base} using both LoRA and AdaLoRA on three GLUE tasks. As with other experiments reported in our work, we again freeze the classifier and observe that AdaLoRA fails catastrophically for RTE. Moreover, in the cases where on average it outperforms LoRA, the variance of the resulting model is often higher. The fixed settings used for AdaLoRA were – 1) warmup steps was set at 200, number of steps for final finetuning was set at 1000, time interval between budget allocations was set at 10, hyperparameter for EMA sensitivity smoothing was 0.85 and for uncertainty quantification was 0.85 (used in the original paper), and total training steps was set at 2000. For $\alpha = 16$ and batch size 32, we searched for best learning rates in range $[1e-4, 1e-3]$ and report the corresponding best set of hyper-parameters.

Model	Dataset	LoRA	AdaLoRA
RoBERTa _{base}	CoLA	60.8(5)	56.0(4)
	MRPC	87(1)	87.5(4)
	RTE	75(2)	52(2)
RoBERTa _{large}	CoLA	63.6(4)	64.4(9)
	MRPC	89(1)	90.3(4)
	RTE	85(2)	56(4)

Table 16: **LoRA vs AdaLoRA.** We report the mean accuracy achieved when the target rank for LoRA and AdaLoRA is 4 while fine-tuning RoBERTa_{base} and RoBERTa_{large} in some GLUE tasks.

I.2 COMPARISON OF ADALORA VS. DMRG

In Figure 13, we compare MetaTT-4D adapters (with and without DMRG-inspired sweeps) against LoRA and AdaLoRA adapters. Experiments are conducted on Commonsense15k, a downsampled version of Commonsense170k from Hu et al. (2023), using Llama-2-7b as the base model.

For MetaTT, we employ the following rank schedule $r(i) = r_f + (r_0 - r_f)[1 - (i/N)^\gamma]$, where $N = 5$, $i = 1, \dots, 5$, $\gamma = 2$, initial rank $r_0 = 40$, and final rank $r_f = 20$. This schedule is motivated

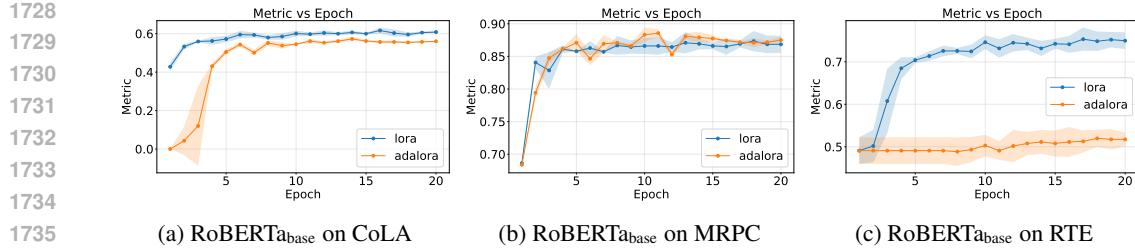


Figure 12: **Comparison of LoRA and AdaLoRA during training.** We plot here the validation accuracy achieved using RoBERTa_{base} on CoLA (Matthew’s correlation coefficient), MRPC (evaluation accuracy), and RTE (evaluation accuracy) when trained using LoRA with rank 4 and AdaLoRA with initial rank 8 and final rank 4.

Model	LoRA parameters	CoLA	MRPC	RTE	AdaLoRA parameters	CoLA	MRPC	RTE
RoBERTa _{base}	Rank	4	4	4	Init & target ranks	[8, 4]	[8, 4]	[8, 4]
	α	8.0	8.0	8.0	α	16.0	16.0	16.0
	Learning rate	5e - 4	2e - 4	2e - 4	Learning rate	2e - 4	1e - 3	2e - 4
	Batch	16	8	16	Batch	8	8	8
RoBERTa _{large}	Rank	4	4	4	Init & target ranks	[8, 4]	[8, 4]	[8, 4]
	α	8.0	8.0	8.0	α	16.0	16.0	16.0
	Learning rate	2e - 4	2e - 4	2e - 4	Learning rate	2e - 4	4e - 4	2e - 4
	Batch	16	8	16	Batch	8	8	16

Table 17: **LoRA and AdaLoRA hyper-parameters used for fine-tuning.** Here we report the best set of hyper-parameters for LoRA and AdaLoRA found after performing hyper-parameter optimization when target rank for both methods is 4.

by empirical observations that larger rank reductions are more effective at later training steps, after the initial rapid learning phase. This approach closely resembles the cubic schedule used by AdaLoRA Zhang et al. (2023).

We implement AdaLoRA using its HuggingFace implementation with the following parameters: target_r=8, init_r=16, tinit=84, tfinal=39, deltaT=84, beta1=0.85, beta2=0.85, orth_reg_weight=0.1.

Our results show that MetaTT-4D with DMRG-inspired sweeps not only outperforms the counterpart trained simply via AdamW, for a target rank of $r = 20$, but also other variants with larger ranks, and more importantly LoRA and AdaLoRA adapters. We find that MetaTT-4D achieves accuracies comparable with LoRA with rank $r = 16$, but with $\approx 47x$ fewer parameters.

In Table 18 we compare times taken for each of the runs on a single A100 GPU. We observe a slight overhead of running MetaTT with DMRG-inspired sweeps. This is mostly a result of a temporary increase in evaluation time immediately following each DMRG update. This artifact arises from PyTorch’s need to recompile the computational graph and reinitialize CUDA kernels after the adapter tensor shapes are modified, rather than from the algorithmic complexity of the DMRG procedure itself. This motivates to apply fewer such DMRG steps (3-5 in our experiments).

	LoRA ($r = 16$)	AdaLoRA ($r : 16 \rightarrow 8$)	MetaTT-4D ($r = 40$)	MetaTT-4D + DMRG ($r : 40 \rightarrow 20$)
Time (s)	1725	1760	1680	1920

Table 18: **Training times for LoRA and MetaTT based adapters.** End-to-end training times for a single realization used in Fig. 13.

I.3 COMPLEXITY ANALYSIS OF SVD-BASED RANK ADAPTATION: LoRA VS. METATT

A key motivation behind the development of AdaLoRA is the computational expense associated with performing SVDs on all weight matrices to dynamically truncate LoRA ranks during training. This process quickly becomes prohibitive for large models, as the cost of SVD scales cubically with the hidden dimension. To mitigate this, AdaLoRA instead employs a pruning strategy, zeroing

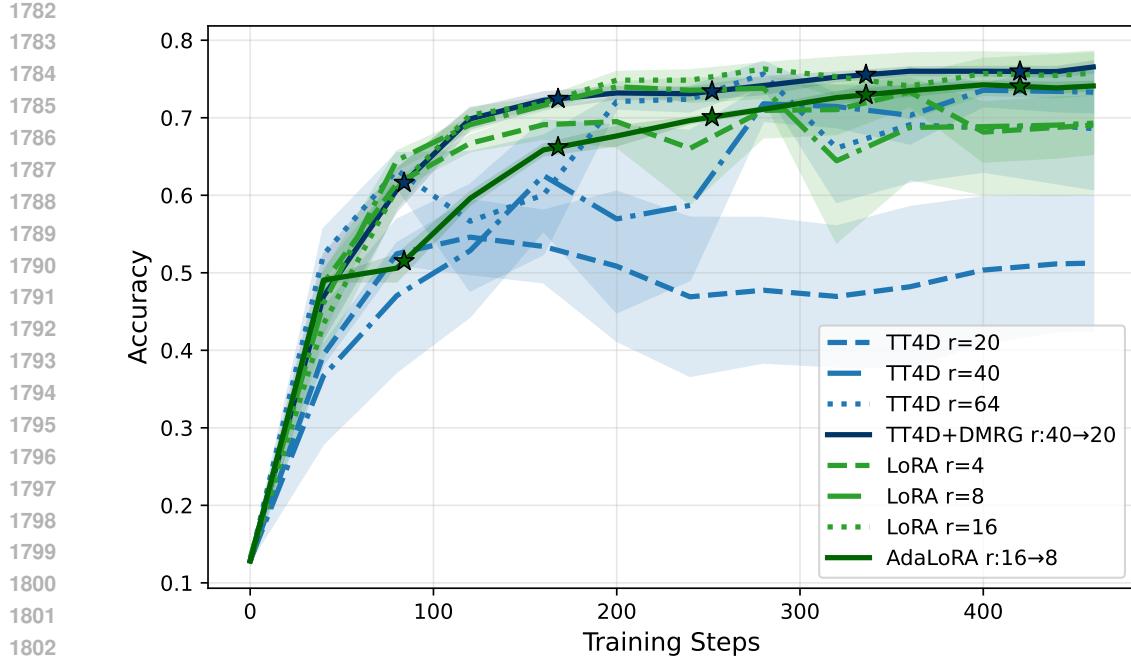


Figure 13: **Comparison of LoRA and AdaLoRA vs. MetaTT-4D and MetaTT-4D with DMRG-style sweeps.** Fine-tuning is performed on Commonsense15k (downsampled from Commonsense170k) with Llama-2-7b as the base model, for one epoch. Results show means and relative errors over 5 independent runs for each method. Star symbols indicate steps at which DMRG/AdaLoRA updates are applied. For MetaTT, $\alpha = 1.0$ (fixed); for LoRA, $\alpha = 2r$; for AdaLoRA, $\alpha = 32$ (twice the initial rank). Hyper-parameter tuning was performed over learning rates $[2e-4, 5e-4]$ for all adapters. See main text for details on the rank schedules used for MetaTT+DMRG and AdaLoRA.

out entries deemed irrelevant according to a score that serves as a proxy for singular values. In contrast, our DMRG-inspired algorithm for MetaTT adapters enables SVD-controlled truncations to be performed efficiently. The TT structure of MetaTT allows for global compression and facilitates rank adaptation via SVD sweeps over a much smaller set of tensor cores, rather than all individual weight matrices. This approach not only reduces computational overhead but also allows for dynamic reduction of matrix sizes during training, which is better exploited by GPUs compared to the sparse matrix operations required by AdaLoRA. To explicitly quantify the computational benefits of our rank-adaptive scheme over the alternative of performing SVDs on all weight matrices, we present a complexity analysis. The cost of performing a single series of SVDs for LoRA adapters is given by

$$O(LMD^3), \quad (\text{LoRA-SVD}) \quad (8)$$

where L is the number of layers, M is the number of matrices adapted per layer, and D is the hidden dimension. In contrast, a single DMRG-style sweep (Algorithm 1) with initial TT-rank r incurs a cost for MetaTT-4D of

$$O(2DLr \min(D, Lr)) + O(2LMr^2 \min(Lr, Mr)) + O(2DMr \min(D, Mr)). \quad (\text{MetaTT-SVD}) \quad (9)$$

Assuming constant factors of $O(1)$ in (8)–(9), the ratio of the LoRA-SVD cost to the MetaTT-SVD cost for the models considered in this work is summarized in Table 19 for various TT-ranks r

As shown in Table 19, the computational savings achieved by MetaTT are substantial, especially for moderate TT-ranks. For example, at $r = 16$, the MetaTT approach is over two orders of magnitude more efficient than LoRA-SVD for all models considered. This efficiency gain enables practical rank-adaptive training via SVD sweeps, which would otherwise be a computational overhead for large-scale models using conventional LoRA adapters.

1836	TT-rank r	RoBERTa _{Base}	RoBERTa _{Large}	Llama-2-7b	Llama-2-13b
1837	16	186	169	2039	2553
1838	64	11	16	127	159
1839	256	2	3	16	20

1840
1841 Table 19: **Complexity of LoRA-SVD vs. MetaTT-SVD.** We show the ratio of LoRA-SVD to
1842 MetaTT-SVD complexity as the ratio of Eqs. (8) to (9) with an O(1) constant, for various TT-ranks r
1843 and models.

1844

1845 J REBUTTAL APPENDIX: COMPARISON OF ACTUAL RUNTIMES ACROSS 1846 ADAPTERS

1847

1848 In Table 20 we compare the world clock runtimes of LoRA, VeRA, MetaTT-4D and MetaTT-5D
1849 for both forward pass and one gradient step in RoBERTa_{base} and RoBERTa_{large}. For this we use a 1
1850 A100 GPU node, which has 55 Intel Xeon Platinum CPUs, and 500 GBs RAM. We take a random
1851 sample of 5 batches and make forward and backward passes. We this 5 times and report the mean
1852 and standard deviation. For RoBERTa_{base} and RoBERTa_{large}, we observe that LoRA and MetaTT-4D
1853 are the two of the fastest adapters in real world clock time. Note, the ranks chosen here are the ranks
1854 that were used to report results in Table 2.

1856 Model	1857 Adapter	1858 Rank	1859 Batch	1860 Forward pass (secs)	1861 Backward pass (secs)
1857 RoBERTa _{base}	LoRA	8	64	0.1859(1)	0.2014(1)
	VeRA	1024	64	0.2539(0)	0.2718(1)
	MetaTT-4D	24 × 3	64	0.1866(1)	0.2031(0)
	MetaTT-5D	64 × 4	64	0.1921(1)	0.2146(1)
1861 RoBERTa _{large}	LoRA	8	64	0.62(2)	0.6575(1)
	VeRA	256	64	0.6465(2)	0.7035(3)
	MetaTT-4D	32 × 3	64	0.6087(0)	0.6612(1)
	MetaTT-5D	64 × 4	64	0.63(1)	0.6917(2)

1865 Table 20: **World clock runtime comparison of different PEFT adapters.** We report the average
1866 time required to make 5 batches pass through the model and corresponding adapter and then compute
1867 gradients, 5 independent trials. We observe that in general LoRA and MetaTT-4D are the fastest
1868 among the other methods reported here for their respective best performing ranks. We note that even
1869 for similar number of trainable parameters in VeRA, the matrix-vector-vector-matrix operation is
1870 significantly larger than the matrix-matrix operations in LoRA and variants of MetaTT, leading to
1871 gains in the forward and backward pass across batch and trials.

1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889