
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TIME, SPACE AND STREAMING EFFICIENT ALGO-
RITHM FOR HEAVY ATTENTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

A central problem related to transformers can be stated as follows: given two
n × d matrices Q and K, and a non-negative function f , define the matrix A as
follows: (1) apply the function f to each entry of the n × n matrix QKT , and
then (2) normalize each of the row sums of A to be equal to 1. The matrix A can
be computed in O(n2d) time assuming f can be applied to a number in constant
time, but the quadratic dependence on n is prohibitive in applications where it
corresponds to long context lengths. For a large class of functions f , we show
how to find all the “large attention scores”, i.e., entries of A which are at least a
positive value ε, in time with linear dependence on n (i.e., n · poly(d/ε)) for a
positive parameter ε > 0. Our class of functions include all functions f of the
form f(x) = |x|p, as explored recently in transformer models. Using recently
developed tools from randomized numerical linear algebra, we prove that for any
K, there is a “universal set” U ⊂ [n] of size independent of n, such that for any Q
and any row i, the large attention scoresAi,j in row i ofA all have j ∈ U . We also
find U in n ·poly(d/ε) time. Notably, we (1) make no assumptions on the data, (2)
our workspace does not grow with n, and (3) our algorithms can be computed in
streaming and parallel settings. We call the attention mechanism that uses only the
subset of keys in the universal set as LevAttention since our algorithm to identify
the universal set U is based on leverage scores. We empirically show the benefits
of our scheme for vision transformers, showing how to train new models that
use our universal set while training as well, showing that our model is able to
consistently select “important keys” during training.

1 INTRODUCTION

A transformer architecture is one of the most popular architectures for building foundation models,
with applications to natural language processing, computer vision, and many other modalities and
their combinations. It is well-known that exact computation of their attention layers naı̈vely requires
quadratic (in the context length) time, which poses a huge problem for scalability. A large body of
work has tried to improve the efficiency of computing attention layers under a variety of assump-
tions, including imposing sparsity constraints (Parmar et al., 2018; Child et al., 2019; Beltagy et al.,
2020; Kitaev et al., 2020; Tay et al., 2020), kernel methods (Bello et al., 2021; Choromanski et al.,
2021; Peng et al., 2021; Zheng et al., 2022), low rank assumptions (Wang et al., 2020; Xiong et al.,
2021; Ma et al., 2021), and assumptions of bounded entries or conditions on column or row norms
(Alman & Song, 2023; Han et al., 2024).

In each attention layer, one receives as input an n×d′ input matrixX , which may be the embedding
of the tokenization of the input, or an input from previous layers in the transformer. Here n is the
context length and d′ is the embedding dimension of each token, which is typically much smaller
than n. From X we multiply by three d′ × d learned matrices WQ, WK , and WV , and define the
query matrix Q = X ·WQ, the key matrix K = X ·WK , and the value matrix V = X ·WV .
One then outputs the attention matrix, which is defined to be D−1 · f(QKT ) · V , where D and
f(QKT ) are each n × n matrices defined as follows. For a non-negative function f , we apply f
entry-wise to the n × n matrix QKT to form f(QKT ). Then we let D be a diagonal matrix with
Di,i =

∑n
j=1 f(⟨Qi,Kj⟩), where Qi is the i-th row of Q and Kj is the j-th row of K, respectively.

Let A = D−1f(QKT ). Note that the entries of each row of A are non-negative and sum to 1,
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and each row of A · V can be viewed as a non-negative combination of the rows of V , where the
coefficients of the combination sum to 1.

Instantiating the above framework with f(x) = ex/
√
d corresponds to taking a softmax of each row

of QKT /
√
d and then multiplying by V . In this case, by appropriately scaling the hard instance in

Alman & Song (2023), one can show that computing attention with high precision requires n2−o(1)
time under a standard complexity-theoretic assumption. In an attempt to bypass this hardness, recent
work has considered replacing f with other functions, such as f(x) = xp for a positive even integer
p. Indeed, both the PolySketchFormer (Kacham et al., 2024) as well as the work of Sarlós et al.
(2023) consider using TensorSketch to speed up the computation of an approximate attention matrix
for such functions f . Motivated by these works, we define the f -sensitivities σfi of an n× d matrix
K for i = 1, 2, . . . , n as follows:

σfi (K) = sup
y ̸=0

f(⟨Ki, y⟩)∑n
j=1 f(⟨Kj , y⟩)

.

When f(x) = x2, these are just the so-called leverage scores of the rows of matrix K, which are
well-studied in randomized numerical linear algebra (see, e.g., Mahoney et al. (2011); Woodruff
et al. (2014)). For general p, these are known as the ℓp-sensitivities, which are also well-studied
(see, e.g., Woodruff & Yasuda (2023); Padmanabhan et al. (2023)), and they can be bounded by
the so-called ℓp-Lewis weights of the matrix K (Cohen & Peng, 2015) (for background, see, e.g.,
Section 3.3 of Clarkson et al. (2019)). Many interesting properties of such scores are known. One
such property is the following. Let Ψf = supK

∑n
i=1 σ

f
i (K). When f(x) = |x|p for 1 ≤ p ≤ 2,

one has Ψf ≤ d, and when f(x) = |x|p for p ≥ 2, one has Ψf ≤ dp/2. These bounds do not depend
on the context length n.

Critical to our work will be the observation in practice that the matrix A is often well-approximated
by retaining only its large entries, i.e., preserving all entries above a certain threshold ε > 0 and
replacing the remaining entries with 0, or perhaps fitting a low rank approximation to the remaining
entries (Gupta et al., 2021; Wang et al., 2022). The entries of A are called the attention scores or
attention weights, and we will say a score is large if its value is at least ε.

1.1 OUR CONTRIBUTIONS

We outline our contributions below.

Existence of a Universal Set. We prove that for a large class of functions f , for any key matrix
K, there is a small “universal set” U ⊂ [n] = {1, 2, . . . , n} of size independent of n, such that for
any query matrix Q and any i ∈ {1, 2, . . . , n}, the large attention scores Ai,j in row i of A all have
j ∈ U . One of our results, which combines some ideas from Sections 2 and 3, is the following:

Theorem 1.1. Let f be a non-negative function and let Ψf = supK
∑n
i=1 σ

f
i (K). There is a subset

U ⊂ [n] of size Ψf/ε so that for any query matrix Q and i ∈ {1, 2, . . . , n}, if Ai,j ≥ ε, then j ∈ U .

We note that for f(x) = x2, the f -sensitivities are just the leverage scores of the matrix K, and
it is known that Ψf = d (see, e.g., Mahoney et al. (2011); Woodruff et al. (2014)). In this case,
by Theorem 1.1, we have |U | = d/ε. More generally, if f(x) = |x|p, we have Ψf ≤ d for
1 ≤ p ≤ 2 and Ψf ≤ dp/2 for p > 2 (see, e.g., Section 3.3 of Clarkson et al. (2019)), and so
|U | ≤ max(d, dp/2)/ε. Additional bounds are known for other functions f , e.g., from the work of
Musco et al. (2022). There, for example, if f(x) is the Huber function f(x) = x2 for |x| ≤ τ and
f(x) = |x| for larger |x|, then Ψ = O(d log n), or if f(x) is the Tukey function f(x) = x2 for
|x| ≤ τ , and f(x) = τ for larger |x|, then Ψ = O(d log n). Here τ > 0 is any specified threshold.

We give an outline of the proof of Theorem 1.1 here. If Ai,j is a large attention score, then Ai,j =
f(⟨Qi,Kj⟩)∑
ℓ f(⟨Qi,Kℓ)

≥ ε. It follows that supy
f(⟨y,Kj⟩)∑
ℓ f(⟨y,Kℓ⟩) > ε and so σfi (K) ≥ ε. If we define U to be the

set of i for which σfi (K) ≥ ε, then i ∈ U and we have |U | · ε ≤ Ψf (K), and so |U | ≤ Ψf (K)/ε.

We stress that our set U does not depend on any particular query or query matrix Q, i.e., for any
possible future query q, any large attention scores it participates in necessarily involve keys in U .
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Fast Algorithm for Finding U . There are very efficient algorithms for computing the set U for
many interesting functions f . For example, when f(x) = x2, these are the large leverage scores and
a simple way of computing them is by computing a QR-decomposition of the matrix K and finding
all rows with squared norm at least ε. This takes O(nd2) time and has the advantage of comput-
ing the leverage scores exactly, resulting in the smallest possible set U . There are also sketching
techniques for more quickly finding the large leverage scores (Drineas et al., 2012; Clarkson &
Woodruff, 2013) in time nnz(K) + poly(d/ε), up to logarithmic factors, where nnz denotes the
number of non-zero entries of K. Similarly, for f(x) = |x|p one can use the nnz(K) + poly(d/ε)
time algorithm for finding ℓp-Lewis weights in Cohen & Peng (2015), and the fact that a scaling of
these weights bounds the f -sensitivities (see, e.g., Section 3.3 of Clarkson et al. (2019)).

Time and Memory-Efficient Algorithm for Finding Large Attentions Given U . We do not make
any assumptions on the data and our theorem holds for any query matrix Q, and thus given any
potentially new query q, one only needs to search in the set U for the set of large attention scores
involving q. Thus, instead of naı̈vely spendingO(nd) time to walk through each possible key to find
the large attention scores, one only needs to spendO(Φfd/ε) time, assuming that f can be evaluated
in constant time. Notice that our time per query does not grow with the context length n. Further, as
we only store the keys in the set U , our workspace also does not grow with the context length.

We also show how, for f(x) = xp for even integers p it is possible to spend at most n · poly(d) time
preprocessing K so that from U and K, given a query q, one can output the exact value of all large
attention scores involving q in poly(d/ε) time. Note that this is not as trivial as simply computing
⟨q,Ki⟩p for each Ki ∈ U , since we also would like to compute the exact normalization factor in the
attention matrix, and do not want to spend n time to do so. For p = 2 this amounts to computing
∥Kq∥22, but by computing the SVD of K in a preprocessing step, this quantity can be computed in
only O(d2) time. For even integers p > 2, we can reduce to the case of p = 2 by using Khatri-Rao
products on the rows of K, as well as Khatri-Rao products of the query with itself. One can further
speed up these computations by approximating the heavy attention values using sketching.

Extension to Streaming Environments. It is also possible to compute the set U in a streaming
environment. We illustrate the idea for f(x) = x2, though using the tensor trick discussed above,
it also applies to f(x) = xp for any even integer p. The simplest algorithm is a two-pass algorithm
over K, where we maintain the d × d matrix KTK by summing n outer products as we read each
of the n keys. Then, in a second pass, the i-th leverage score is KT

i (K
TK)−1Ki, and we simply let

U be the set of keys for which the leverage score is at least ε. The total memory is only O(d2/ε).

More interestingly, one can compute U in a single pass over K by again maintaining KTK but also
storing all keys whose online leverage score Cohen et al. (2016a) is at least ε. It is known that the
online leverage scores are at least the leverage scores and sum to O(d log κOL), where κOL is the
online condition number, which can be bounded by nO(d) assuming the entries of K have O(log n)
bits of precision. In this case, at the end of the stream, one simply evaluates KT

j (K
TK)−1Kj for

each key Kj that was stored because it had a large online leverage score. The total memory is
poly(d/ε) and the algorithm is a single pass algorithm.

Extension to Distributed Environments. It is possible to find U in a distributed environment,
where the keys are distributed across multiple servers. In this case if server i holds an ni × d matrix
Ki, so that K = [K1;K2; . . . ,Ks] if there are s servers, then the i-th server can communicate
(Ki)TKi to the first server for each i, and the first server can add these up to compute KTK and
send KTK to each server. Then the i-th server can send a set U i of keys Kj that it holds for which
KT
j (K

TK)−1Kj ≥ ε. Then U = ∪jUj . Although our discussion has focused on f(x) = x2,
similar ideas exist for f(x) = xp for any p, as well as the functions studied in Musco et al. (2022).

Planted Model. Finally, we formulate a planted model of keys and queries, where each query is
a noisy linear combination of a small subset of keys. We show that in this model, we can find all
keys relevant to a given query in sublinear time. We give deterministic conditions under which this
is possible, and describe a natural stochastic setting where these conditions are realized.

Experiments. We perform experiments on pretrained ViT models to empirically understand the
structure of the attention matrices that arise for typical inputs to a model. Our experiments suggest
that for many attention heads, a small subset of universal keys along with a set of local tokens capture
a large fraction of attention weight for a large number of tokens. This motivates the identification
problem that we study in this paper.
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We then evaluate the effectiveness of leverage score selection for the downstream task of image
classification using the pretrained softmax model. In this experiment, at each attention head, we
compute a subset of keys with the largest leverage scores and make the queries attend only to that
subset of keys. We observe that while the accuracy of the model drops compared to the full attention
model, the model still maintains non-trivial accuracy and that leverage score selection obtains better
accuracy compared to e.g., row norm based selection, showing that leverage score based selection
does compute a subset of important keys.

We also trained multiple ViT models from scratch using the leverage score based attention mecha-
nism and observe that the model quality improves significantly compared to doing inference on the
softmax pretrained models using the leverage score mechanism. Across all the models, we observe
that the model quality achieves >90% accuracy of the full softmax attention while selecting the top
32 keys (out of 197 keys for L/16 and S/16 models and out of 785 keys for the L/8 model) using
the leverage score mechanism at each attention head. On the negative side, we observe that models
trained from scratch using squared row norm selection or even “random key selection”, where we
select a set of random key positions for each attention head and each query attends to only keys
in those positions throughout the training/inference process, attains similar accuracies. However,
unlike leverage score sampling, these latter methods do not have the “universality” property as dis-
cussed in the introduction for a relaxed definition of the attention mechanism. We leave it as an open
question how to make effective use of leverage score information to train better models.

Notation: For a matrix B, we use nnz(B) to denote the number of non-zero entries of B. We let ω
be the exponent of matrix multiplication, so that multiplying two d× d matrices takes dω time.

2 CONNECTION TO LEVERAGE SCORES

We define the Generalized Attention Problem (GAP): let n, and D ≥ d be positive integers. Con-
sider two known maps: ψ, ϕ : Rd → RD. We assume that ϕ and ψ are computable in time O(D).
We are given matricesQ andK, whereQ is n×d andK is n×d. GAP is the problem of computing
the n× n matrix A defined by Aij =

⟨ψ(Qi),ϕ(Kj)⟩2∑n
ℓ=1⟨ψ(Qi),ϕ(Kℓ)⟩2 , where Kj denotes the j-th row of K.

Remark 2.1. One special case is the SoftMax operation. In this case the value D is infinite, but
Softmax can be approximated with finite D, see, e.g., Choromanski et al. (2021). Note that ϕ = ψ
in approximations to Softmax. Another set of interesting special cases occurs when ϕ and ψ are
polynomial maps, as in Sarlós et al. (2023); Kacham et al. (2024).

GAP requires Ω(n2) time to write down the entries of A. We show how to improve this by finding
only the large entries of A, i.e., those that are at least ε.

Theorem 2.1. There is a deterministic algorithm A that finds a subset U of rows ofK (i.e., U ⊆ [n])
satisfying: |U | ≤ D

ε and ∀Qn×d,∀i ∈ {1, 2, . . . , n} : {j : Aij ≥ ε} ⊆ U.

We show that it suffices to prove this for the special case D = d and ϕ, ψ are the identity maps.

Lemma 2.2. Without loss of generality, we can assume in Theorem 1 that D = d and ϕ, ψ are both
the identity map (i.e., ϕ(x) = ψ(x) = x).

Proof. The proof follows from a kernel-type construction. FromK, define an n×D matrix K̂ given
by K̂j = ϕ(Kj). For any n×dmatrixQ, define an n×D matrix Q̃ by Q̃j = ψ(Qj). Further, define

an n × n matrix Â by: Âij =
⟨Q̃i,K̂j⟩2∑n
ℓ=1⟨Q̃i,K̂ℓ⟩2

. It is easy to see that Â = A. Assuming that Theorem

2.1 holds when D = d and ϕ, ψ are both the identity map, we can find a Û with {j : Âij ≥ ε} ⊆ Û .
Since Â = A, we get that {j : Aij ≥ ε} ⊆ Û , proving the lemma.

Restricting to the case when D = d and ϕ(x) = ψ(x) = x, we formally define the set LA for large
attentions scores: LA(K, ε, v) = {j : ⟨Kj , v⟩2 ≥ ε

∑n
ℓ=1⟨Kℓ, v⟩2} for v ∈ Rd. Let U(K, ε) =⋃

v∈Rd\{0} LA(K, ε, v). The following is a simple characterization of U(K, ε).

Theorem 2.3. U(K, ε) is the set of rows j ofK with leverage score at least ε. Also, |U(K, ε)| ≤ d
ε .
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Proof. Observe that j ∈ U(k, ε) if and only if there is a non-zero vector v for which ⟨Kj ,v⟩2∑m
ℓ=1⟨Kℓ,v⟩2 ≥

ε, which means that the the j-th f -sensitivity σfj (K) ≥ ε. Conversely, if σfj (K) ≥ ε, then there

exists a non-zero vector v for which ⟨Kj ,v⟩2∑m
ℓ=1⟨Kℓ,v⟩2 ≥ ε, and so j ∈ U(K, ε). It is a well-known fact

that for f(x) = x2 that σfj (K) is precisely the j-th leverage score of the matrix K, see, e.g., the
solution to problem 2.2 in HW. Note also that j ∈ U(K, ε) =⇒ τ(K, j) ≥ ε =⇒ LS(K, j) ≥ ε.
As the sum of leverage scores is equal to d (see, e.g., Foster (1953)), we have |U(K, ε)| ≤ d

ε .

Thus, to compute LA, we simply need to compute the rows j of K with leverage score at least ε.
Theorem 2.1 now follows from Lemma 2.2 and Theorem 2.3.

Streaming Algorithms. The j-th leverage score of K is equal to KT
j (K

TK)−1Kj (see, e.g.,
Mahoney et al. (2011); Woodruff et al. (2014)), and so a simple 2-pass streaming algorithm using
O(d2) memory would be to maintain KTK as a sum of n outer products in a first pass over the keys
of K, and then to compute KT

j (K
TK)−1Kj exactly in the second pass over keys Kj , and store

those Kj for which this quantity is at least ε. This simple 2-pass streaming algorithm uses O(d2)
words of memory and can be implemented in O(nd2 + dω) time.

One can obtain a 1-pass algorithm to compute the rows j of K with leverage score at least ε with
only slightly more memory. The idea is to store the set S of rows Kj with online leverage score
Cohen et al. (2016a) at least ε in the first pass, and to also store KTK. The j-th online leverage
score is equal to KT

j ((K
j−1)T (Kj−1))−1Kj , where Kj−1 denotes the prefix of the first j−1 rows

of K. The j-th online leverage score is at least the j-th leverage score since sensitivities cannot
increase as more rows are added to K, but more interestingly, Theorem 2.2 of Cohen et al. (2016a)
shows that the sum of online leverage scores is bounded by O(d log κOL), where κOL is the online
condition number, see Lemma 3.3 of Woodruff & Yasuda (2022). It is well-known for matrices with
integer entries bounded by poly(n), which is an assumption often used to obtain meaningful memory
bounds in a data stream, that the online condition number is at most nO(d) (see, e.g., Lemma 4.1 of
Clarkson & Woodruff (2009) which lower bounds the minimum non-zero singular value of an n× d
such matrix by n−O(d)), and thus the number of rows stored will be at most O(d2 log n), and so the
memory is bounded by O(d3 log n) words. One can also maintain KTK in the stream as before. At
the end of the stream, for each row Kj stored which had online leverage score at least ε, one can
compute its exact leverage score KT

j (K
TK)−1Kj at the end of the stream in order to exactly find

LA. Overall this is a 1-pass algorithm with memory poly(d log n) words.

Finding all Heavy Attentions for a Query. Given a query q, for f(x) = x2 we can compute all
large attention score values it participates in exactly because we can first preprocess K in O(nd2)
time to compute its singular value decomposition (SVD) K = U ′ΣV T . Then, given a query q, we
can compute ⟨q,Ki⟩2 for each Ki ∈ U in |U | · d = O(d2/ε) time, and we can also compute the
normalization ∥Kq∥22 = ∥ΣV T q∥22 inO(d2) time since ΣV T is a d×dmatrix. Thus, after an initial
preprocessing of n · poly(d/ε) time, we can compute all large attention score values involving a
query exactly and in only poly(d/ε) time. Note that if one would like to instead approximate the
large attention values up to a 1+ε factor, instead of computing the SVD ofK, one can use a random
sketching matrix S so that ∥SKq∥22 = (1 ± ε)∥Kq∥22. If one uses the Subsampled Randomized
Hadamard Transform for example, then this improves the O(nd2) time required to compute the
SVD of K to only nd · poly(log n/ε) time and incurring 1/poly(n) failure probability, e.g., using
the analysis of Cohen et al. (2016b). It is also possible to use CountSketch in O(nd+ poly(d)) time
with a 1/poly(d) failure probability Clarkson & Woodruff (2013).

This section was for f(x) = x2, while the next section handles f(x) = |x|p for any p ≥ 1.

3 ATTENTION SCORES USING f(x) = |x|p

We next consider f -sensitivities for f(x) = |x|p.
Theorem 3.1. Let K be an n× d matrix. Let p ∈ [1,∞) and let f(x) = |x|p. There exists a set S
of rows of K containing all f -sensitivities at least ε with the following properties:

1. For 1 ≤ p ≤ 2, |S| = O(d/ε).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

2. For p > 2, |S| = O(dp/2/ε).

Moreover, S can be computed in (nnz(K) + poly(d/ε)poly(log n) time.

Proof. Fix p ≥ 1 and let f(x) = |x|p. Let τi denote the ℓp-Lewis weights of K (Cohen & Peng,
2015). These can all be computed up to a constant factor in total time (nnz(K) + dω)poly(log n)
time (Cohen & Peng, 2015).

For 1 ≤ p ≤ 2, it is known that τi upper bounds the i-th f -sensitivity σfi . For p > 2, it is known
that dp/2−1τi upper bounds the i-th f -sensitivity. The ℓp-Lewis weights sum to at most d. For an
exposition of these statements, see e.g., Section 3.3 of Clarkson et al. (2019) and references therein.

Therefore, for 1 ≤ p ≤ 2, the set S of all rows i with τi ≥ ε satisfies the desired properties. For
p > 2, the set S of all rows i with dp/2−1τi ≥ ε satisfies the desired properties. By approximating
the τi up to a factor of 2 and including all iwhose approximate τi is at least ε/2 for 1 ≤ p ≤ 2, while
including all i whose approximate τi is at least ε/(2dp/2−1) for p ≥ 2, we will include all rows i
whose f -sensitivity is at least ε. Further, if the approximate τi is at least ε/2, then the actual τi is at
least ε/4, and so we have |S| = O(d/ε) for 1 ≤ p ≤ 2 while |S| = O(dp/2/ε) for p > 2.

We next show how to efficiently approximate the normalization term for all 1 ≤ p <∞, in order to
approximate all heavy attentions for a given query q by using the set U . We will later show how to
compute the normalization term exactly for p an even integer.

Theorem 3.2. Let Q be an n × d matrix and K be an n × d matrix. For 1 ≤ p < ∞ and any
j ∈ {1, . . . , n}, the normalization term

∑n
i=1 |⟨Qj ,Ki⟩|p can be estimated efficiently. Specifically,

there exists a sampling and rescaling matrix S with the following properties:

1. For 1 ≤ p ≤ 2, S has dpolylog(d/ε)/ε2 columns,

2. For p > 2, S has dp/2polylog/ε2 columns,

3. With failure probability 1
poly(d) , simultaneously for all x ∈ Rd, ∥xKTS∥pp = (1 ±

ε)||xKT ||pp.

S can be computed in (nnz(K) + poly(d/ε))poly(log n) time, and after this one-time computation,
∥xKTS∥pp can be computed in poly(d/ε) time.

Proof. The normalization term can be written as ∥QjKT ∥pp. We can obtain the matrix S by Lewis
weight sampling on B. This is a well-known technique for constructing subspace embeddings that
preserve ℓp norms simultaneously for all x Cohen & Peng (2015). Specifically, by Woodruff &
Yasuda (2022), there exists an algorithm that computes a sampling and rescaling matrix S with the
stated number of columns such that for all x ∈ Rd, ∥xKTS∥pp = (1 ± ε)∥xKT ∥pp. The time to
compute S is O(nnz(K)+ poly(d/ε))poly(log n). Once S is computed, we can efficiently estimate
the normalization term for any j as ∥QjKTS∥pp. Since S has poly(d/ε) columns, computing this
term takes poly(d/ε) time.

Finding all Heavy Attentions Exactly for a Query q. Although the above procedure allows for
quickly estimating the normalization term up to a (1 + ε)-factor, one may be interested in the exact
value of the attention score if the model is sensitive to slight perturbations. One can also do this with
a slightly larger time complexity for even integers p > 2, as the idea for p = 2 for computing heavy
attention scores exactly extends to f(x) = xp for even integers p using a tensor trick. Indeed, we
can form the n× dp/2 matrix K ′ by taking the Khatri-Rao product of each row of K with itself p/2
times. Then we compute the SVD K ′ = U ′ΣV T . Given a query q, we can again compute ⟨q,Ki⟩p
for each Ki ∈ U in |U | · d = O(dp/2+1/ε) time, and now we can also compute the normalization∑
j⟨Kj , q⟩p = ∥K ′q′∥22 = ∥ΣV T q′∥22, where q′ is the Khatri-Rao product of q with itself p/2

times. Thus, for constant even integers p, after an initial preprocessing of n ·poly(d/ε) time, we can
compute all large attentions for any particular q exactly in only poly(d/ε) time.
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Remark 3.1. The choice of p in the definition of f -sensitivity can significantly impact the identifi-
cation of large attention scores. Consider the following examples:

Case p > 2: Suppose one entry in a row of the attention matrix is n1/p, while all other entries are
Θ(1). This entry is a large attention with constant ε for f(x) = |x|p, but it is not a large attention
score for f(x) = x2 unless ε is inverse polynomial in n.

Case p < 2: Suppose one entry in a row is ε, another entry is 1, and the remaining entries are
close to 0. The entry with value ε is a large attention score for f(x) = x2 with value ε2, but it is
a large attention score for f(x) = |x| with value ε. Thus, using ℓ1-sensitivities allows for faster
identification and allows for storing a smaller set of large sensitivity rows of K.

Remark 3.2. In Musco et al. (2022), a method for efficiently computing f -sensitivities with respect
to a generic function f is presented. This function f is assumed to satisfy basic properties such as
subadditivity and symmetry. Examples include the Huber and Tukey loss functions. Musco et al.
(2022) show that the sum of these sensitivities is O(d log n), implying the existence of a subspace
embedding S with poly(d) columns to facilitate fast computation of the normalization factor. Fur-
thermore, the universal set U of rows of K now has size O(d log n/ϵ) and both U and S can be
found in O(nnz(K) + poly(d))poly(log n) time. These generalized loss functions may offer more
flexibility and different efficiency versus accuracy tradeoffs.

4 A PLANTED MODEL

We formulate a planted model of keys and queries, where, each query is a noisy liner combination
of a small set of keys; we call this set of keys, the “relevant keys for the query”. We show that our
algorithm, based on finding large attention scores, given K and a query satisfying model assump-
tions, finds the relevant set of keys. For a plausible set of model parameters, the running time of
our algorithm per query, amortized over many queries, is sublinear in n. Throughout, K will be an
n × d matrix. Kj denotes the 1 × d vector (the j-th row of K). Each row is a key. q is a 1 × d
vector, and will denote a generic query. We assume there is a subset S of keys such that for i ∈ S,
the correlation of Ki· to other keys is upper bounded. We will assume later that query vectors are
convex combinations of keys in S. We let δ1, δ2 be parameters satisfying 0 < δ2 ≤ δ1 ≤ 1/4. We
assume there is a subset S of keys satisfying:

∀j, ℓ ∈ S, j ̸= ℓ, |KjK
T
ℓ | ≤ δ1 ·min(∥Kj∥22, ∥Kℓ∥22) (1)

∀j ∈ S, ℓ /∈ S, |KℓK
T
j | ≤ δ2 ·min(∥Kj∥22, ∥Kℓ∥22) (2)

Remark 4.1. S may be thought of as a “stand out” subset of keys, since the correlation of j ∈ S to
other keys is upper bounded.

We first argue that elements of S have high self-attention scores.

Lemma 4.1. Let A = KKT .

∀i ∈ S, (Aii)
2 ≥

 n∑
j=1

(Aij)
2

 1

1 + δ21 |S|+ δ22n
.

Proof.
(Aii)

2 = (KiK
T
i )

2 = ∥Ki∥42. (3)∑
j

(Aij)
2 = |KiK

T
i |2 +

∑
ℓ∈S\i

(KℓK
T
i )

2 +
∑
ℓ/∈S

(KℓK
T
i )

2

≤ ∥Ki∥42
(
1 + δ21(|S| − 1) + δ22n

)
, (4)

using (1) and (2). Now, (3) and (4) together imply the lemma.

Note that ∥Ki∥2 canceled out because of the normalization. This demonstrates the effectiveness of
row normalization, which is a non-linear operation.
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4.1 ASSUMPTION ON QUERIES

There is an unknown subset S(q) 1 of S and unknown weights wj(q) for j ∈ S(q) satisfying∑
j∈S(q)

wj(q) ≤ 1 and wj(q) ≥ 4δ1 for all j ∈ S(q) (5)

and an unknown d-dimensional vector z(q) 2 with

|z(q)KT
ℓ | ≤

δ1
4
∥Kℓ∥22 for all ℓ ∈ [n], (6)

with
q =

∑
j∈S(q)

wjKj + z(q). (7)

We will just abbreviate wj(q) by wj .

4.2 PROPERTY OF RELEVANT KEYS

Theorem 4.2. We have ∀j ∈ S(q) : qKT
j ≥ 11

4 δ1∥Kj∥22 and ∀j /∈ S(q), qKT
j ≤ 5

4δ1∥Kj∥22.

Proof. For j ∈ S(q): qKT
j = wj∥Kj∥22 +

∑
ℓ∈S(q)\j wℓ(KℓK

T
j ) + z(q)KT

j ≥ ∥Kj∥22(4δ1 −
δ1 − δ1/4) = (11/4)δ1∥Kj∥2, using (5), (6) and (1). For j ∈ S \ S(q): |qKT

j | =∣∣∣∑ℓ∈S(q) wℓ(KℓK
T
j ) + z(q)KT

j

∣∣∣ ≤ ∥Kj∥22(δ1 + (δ1/4)) = 5δ1∥Kj∥22/4, using (5), (6) and (1).

For j /∈ S: |qKT
j | =

∣∣∣∑ℓ∈S(q) wℓ(KℓK
T
j ) + z(q)KT

j

∣∣∣ ≤ ∥Kj∥22(δ2 + (δ1/4)) ≤ (5/4)δ1∥Kj∥22
since δ2 ≤ δ1.

4.3 ALGORITHM TO LEARN RELEVANT KEYS

Let 1
1+δ21 |S|+δ22n

= ρ. It is easy to see that A2
ii∑n

j=1 A
2
ij

is at most the i-th leverage score of Ki since the

i-th leverage score is supy ̸=0
⟨y,Ki⟩2∑n
j=1⟨y,Kj⟩2 , which is at least as large as the value in this expression

with the particular value y = Ki. Let U = {i : LS(Ki) ≥ ρ}. Since the sum of all leverage scores
is at most d, we have |U | ≤ d(1 + δ21 |S| + δ22n). For a suitable setting of parameters, we have
d(1 + δ21 |S|+ δ22n) ∈ o(n) and |U | ∈ o(n). Let U ′ = {i : (Aii)

2

(
∑n

j=1(Aij)2)
≥ ρ}.

We can find U ′ using our algorithm for finding heavy leverage scores. We then compute ∥Ki∥2
for all i. This takes O(nd) time. To estimate the row lengths of A = KKT , we use a Johnson-
Lindenstrauss sketch to find the row lengths of KKTB for a random n×O(lnn) Gaussian matrix
B (see, e.g., Woodruff et al. (2014) for background on Johnson Lindenstrauss sketches). When a
query q arrives, we check for each i ∈ U ′ if qKT

i ≥ (11/4)∥Ki∥22. This suffices since S ⊆ U ′.

4.4 A STOCHASTIC EXAMPLE

We now present an example K in which the assumptions (1) and (2) hold. The example has K
as a random matrix described below. There is a latent subspace V of dimension k ≤ d/4. For
the conceptual description, we assume the first k of the d coordinates of a vector are in V and the
remaining d − k coordinates are in V ⊥. Note that this is only for ease of description; we do not
actually know V . Intuitively, for i ∈ S, Ki is mostly in V with a small “noise” component in V ⊥,
whereas, for i /∈ S, Ki is mostly in V ⊥ with a small component in V . The matrix drawn below
describes the distributions from which each part is generated. The coordinates are i.i.d. inside each
of the four parts with variance differing between parts. We assume δ1 ≥ (4/k) and δ2 ≥ (4ε1/k).
No condition on ϵ0 is required. By standard concentration bounds, (1) and (2) hold with high
probability, so that Lemma (4.1) and Theorem (4.2) hold and our algorithm applies.

1S(q) is the set of keys relevant to query q.
2z(q) can be thought of as noise.
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Figure 1: Example of an image partitioned into 196 patches
using a 14 x 14 grid. The green patches represent the neigh-
bors of the red patch within a Manhattan distance of 3.

Kn×d =

 K1

N (0, 1/k)
K2

N (0, ε1/(d− k))
K3

N (0, ε1/k)
K4

N (0, 1/(d− k))


HereK1 is ε0n×k, andK2 is ε0n×(d−k), andK3 is (1−ε0)n×k, andK4 is (1−ε0)n×(d−k).

5 EXPERIMENTS

5.1 STRUCTURAL PROPERTIES OF TYPICAL ATTENTION MATRICES

We consider a pretrained ViT model Dosovitskiy et al. (2021) for image classification and consider
the properties of the attention matrices across all of the attention heads in the model. The model we
consider has six layers and each of the layers has six attention heads. The inputs to the model are
tokenized into 197 tokens – 196 tokens representing the input image and an additional token whose
final representation is used for classifying the image (see Figure 1). Therefore each of the attention
matrices that we consider is of size 197 × 197.

For i, j, given the set of queries {Q1, . . . , Qn} ∈ Rd and keys {K1, . . . ,Kn} ∈ Rd, then for

i ∈ [n] and j ∈ [n], Ai,j =
exp(⟨Qi,Kj⟩/

√
d)∑

j exp(⟨Qi,Kj⟩/
√
d)
. For each i, we define ℓi(1), . . . , ℓi(n) such that

Ai,ℓi(1) ≥ · · · ≥ Ai,ℓi(n).

Top Heaviness. We find that at many of the attention heads, the attention weight of a token is
distributed in a “top heavy” manner, meaning that for many tokens i, the sum of the top-32 attention
weights, defined as

∑32
j=1Ai,ℓi(j) is quite large. We show the distribution of top-32 attention weights

for an image input in Figure 2 in the Appendix. For a given attention head, we observe that the
distribution of top-32 attention weights remains similar across multiple inputs.

Locality. We measure the amount of attention mass that is solely captured by the “neighboring”
tokens (see Figure 1). We observe that only at a small fraction of heads, the attention mass of tokens
is fully captured by the local tokens and that in general, a significant portion of the attention mass
is distributed among non-local tokens. In Figure 3 in the Appendix, we show the histograms of the
attention weights captured by local tokens at each of the attention heads in all the layers of the model
for a typical input.

Important Keys. For j ∈ [n], we define Wj to be the non-local attention weight captured by j
as

∑
i:(i,j) are not neighbors Ai,j . We define important keys to be the set of 32 keys with the largest

Wj values. We find that in the initial layers of the models, at many attention heads, most of the
attention weight is captured by the local tokens and a small set of “important keys”. In Figure 4
in the Appendix, we show the distribution of the attention weight captured by the set of “important
keys” along with the local tokens.

5.2 INFERENCE FROM SOFTMAX VIT MODELS VIA LEVERAGE SCORE SELECTION

We consider three ViT models from the work of Dosovitskiy et al. (2021): (i) S/16, a small 22M
parameter model that splits an image into 196 patches each of size 16 × 16 pixels, (ii) L/16, a large

9
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Model Accuracy on validation set

S/16 (softmax) 76.47%
S/16 (LevAttention, top-32, pretrained w/ softmax) 13.3%
S/16 (ℓ2 norm selection, top-32, pretrained w/ softmax) 3.3%
S/16 (LevAttention, top-32) 68.30%
S/16 (LevAttention, top 64) 72.48%

L/16 (softmax) 78.83%
L/16 (LevAttention, top-32, pretrained w/ softmax) 48.58%
L/16 (ℓ2 norm selection, top-32, pretrained w/ softmax) 8.9%
L/16 (LevAttention, top-32) 75.12%
L/16 (LevAttention, top-64) 77.27%
L/16 (LevAttention, top-128) 77.17%

L/8 (softmax) 79.47%
L/8 (LevAttention, top-32, pretrained w/ softmax) 0.8%
L/8 (LevAttention, top-32) 71.96%
L/8 (LevAttention, top-64) 74.64%
L/8 (LevAttention, top-128) 76.69%

Table 1: Accuracies of models with various attention mechanisms.

305M parameter model that splits an image into 196 patches each of size 16 × 16 pixels, and (iii)
L/8, a large 305M parameter model that splits an image into 784 patches each of size 8 × 8 pixels.
Note that all the models have one token appended whose representation after processing through the
transformer is used for classifying images. We train the models on the Imagenet-1k (Russakovsky
et al., 2015) dataset using the same hyperparameters as in the original work (Dosovitskiy et al.,
2021). We find that the S/16, L/16 and L/8 models achieve accuracies of 76.47%, 78.83% and
79.47% respectively on the validation split of the Imagenet-1k dataset.

We then estimate the performance of leverage score selection on these datasets. At each attention
head, we compute the keys with the 32 largest ℓ2 leverage scores and then make each query attend
only to this set of keys in the attention mechanism. While we find that the accuracies drop signif-
icantly compared to the full softmax attention, our results show that the models still achieve non-
trivial accuracies. In particular, the L/16 model has an accuracy of 48.58% using this mechanism. If
we instead select top-32 keys based on the squared row norms, we observe that the accuracy of the
L/16 model drops to 8.9%. This supports the idea that leverage scores are much better predictors of
the importance of the keys compared to row norms.

5.3 TRAINING VIT MODELS

In the previous experiments, we used models trained using softmax attention and used LevAtten-
tion only at inference time. To see if the performance of the models improve if they are aware of
LevAttention, we use the leverage score selection based attention mechanism to train the models
as well. Using the same training setup as the softmax attention models, i.e., the same learning rate
schedule, batch sizes, and optimizer, we see significant improvements in the validation accuracies.
For the L/8 and L/16, we train for the initial 15% of the steps with full attention to obtain the warm
start parameters and then train the remaining 85% of the steps using the leverage score selection
based attention. We report the results in Table 1. To test if training the models with the awareness of
“leverage score selection” truly is useful, we train models using (i) “row norm selection” where at
each attention head, we pick 32 keys with the largest ℓ2 norms, and (ii) “random selection”, where at
each attention head, we pick 32 random key positions and only make the queries attend to those po-
sitions throughout the training process. We observe that these models achieve similar performance
to the models trained via “leverage score selection”. This shows that the “selection aware” training
procedure is currently unable to translate the usefulness of leverage scores, as identified in the previ-
ous section, into obtaining better models than those achieved by “row norm selection” and “random
selection” attention mechanisms. We note that only leverage scores have some provable guarantees,
while the other methods do not. We leave the important question of obtaining better models trained
using LevAttention as a future research direction.
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6 APPENDIX: EXPERIMENTAL RESULTS

In this section, we present empirical observations on the behavior of attention matrices in a ViT
model trained using softmax attention. We use the same setup as in (Dosovitskiy et al., 2021) to
train a 6-layer transformer model with 6 attention heads in each of the layers on the Imagenet-1k
dataset. We consider a typical input to the model and in Figures 2, 3 and 4, we present the properties
of the attention weights matrix across different layers and attention heads in the model.
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Figure 2: Histograms of top-32 attention weights. Each of the histograms plots the distribution of
the sum of top-32 attention weights for query tokens. We note that at many attention heads, for many
query tokens, the largest 32 attention weights constitute a significant fraction of the total attention
weight.
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Figure 3: Histograms of attention weights captured by local tokens. Each of the histograms plots
the distribution of attention weight captured by keys within a Manhattan distance of 3.
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Figure 4: Histograms of Attention weights captured by the important keys along with local tokens.
As discussed in Section 5.1, important keys are defined as the 32 keys capturing the largest attention
weight at a given attention head. The histogram shows that at a large number of attention heads,
the important keys together with local keys are able to capture a significant fraction of the attention
weight for a large number of queries.
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7 APPENDIX: OVERVIEW OF RECENT RELATED WORK FOR REDUCING
COMPUTATIONAL COMPLEXITY

Zaheer et al. (2020) propose Big Bird, a sparse attention mechanism that combines global and local
attention to handle longer sequences in transformers. While Big Bird employs a fixed sparsity pat-
tern, our work introduces a data-dependent sparsity approach by identifying a universal set of keys
based on leverage scores. These approaches could be seen as complementary: Big Bird provides
a general framework for handling long sequences, while our method offers a more fine-grained
approach for identifying the most relevant information in the attention matrix. Combining these
techniques could be an interesting direction for future work.

Song et al. (2024) address the computational challenge of solving attention kernel regression prob-
lems, where the matrix exponential of the Gram matrix is the kernel. They propose using a pre-
conditioner to accelerate the solution of these regression problems. While their work focuses on a
specific formulation of the attention mechanism as a regression task, our work provides a more gen-
eral method of approximating the attention matrix by identifying a universal set of important keys.
Our approach could potentially complement their work by providing a reduced set of keys, which
could further speed up their pre-conditioned solver.

Gao et al. (2023) propose a fast optimization approach for training single-layer attention networks in
LLMs. They reformulate the attention mechanism using tensor and SVM tricks to achieve a training
time comparable to matrix multiplication. While they modify the training process itself to improve
efficiency, our work focuses on identifying a core set of important keys, which can be used to speed
up both inference and training. Both their approach and ours could potentially be used in conjunction
with learned leverage scores during training. They could incorporate learned leverage scores into
their tensor-based optimization framework, while we could use learned leverage scores to construct
our universal sets. Exploring the interplay between these techniques could be an interesting avenue
for future research.

KDEFormer (Zandieh et al. (2023)) is a precursor to HyperAttention that uses fast kernel density
estimation algorithms to approximate the softmax attention. These algorithms efficiently estimate
the normalization factor for each row of exp(QKT ), as well as the sampling probabilities used in its
approximate matrix multiplication. However, KDEFormer requires at least n1.173 time and relies on
assumptions such as bounded diameter datasets and small stable rank to achieve its strongest results.
In contrast, our method directly identifies the most important columns with theoretical guarantees
and runs in linear time with respect to n, without requiring these assumptions. Furthermore, as dis-
cussed in our work, the universal set we identify can be used as input to HyperAttention, effectively
reducing its runtime by focusing its computation on the most relevant tokens. This could potentially
lead to both faster and more accurate attention mechanisms.
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