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ABSTRACT

Improving power grid operations is essential for enhancing flexibility and accel-
erating grid decarbonization. Reinforcement learning (RL) has shown promise
in this domain, most notably through the Learning to Run a Power Network
competitions, but prior work has primarily focused on single-agent settings, ne-
glecting the decentralized, multi-agent nature of grid control. We fill this gap
with MARL2GRID-TR, the first multi-agent RL (MARL) benchmark for power
grid topology and redispatching, developed in collaboration with transmission
system operators. Built on RTE France’s high-fidelity simulation platform, our
benchmark supports decentralized control across substations and generators, with
configurable agent scopes, observability settings, expert-informed heuristics, and
safety-critical constraints. The benchmark includes a suite of realistic scenarios
that expose key challenges, such as coordination under partial information, long-
horizon objectives, and adherence to hard physical constraints. Empirical results
show that current MARL methods struggle under these real-world conditions. By
providing a standardized, extensible platform, we aim to advance the development
of scalable, cooperative, and safe learning algorithms for power grids.

1 INTRODUCTION

Power grid operations are undergoing a profound transformation to meet the global demands of
decarbonization. The rapid rise of variable renewable energy (VRE) sources such as wind and so-
lar requires unprecedented levels of operational flexibility and reliability. To keep the lights on
while integrating VRE at scale, system operators must increasingly rely on two families of control
mechanisms: (i) topology optimization, which reconfigures grid connectivity to mitigate equipment
failures; and (ii) redispatching and curtailment which adjust generators and storage units’ outputs
to balance supply and demand in real time. These actions form the backbone of modern grid con-
trol. Nevertheless, they are difficult (or functionally unfeasible in the topological case) for human
operators and traditional optimization-based solvers to handle, especially under VRE’s uncertainty,
as well as flexible load profiles and long operating horizons (Marot et al., 2022b).

Safe and efficient grid control thus requires solving a complex, high-dimensional decision-making
problem in real time. Figure | clarifies the setup with a simplified four-substation grid operated by
two agents and interconnected by transmission lines (edges). Generators and loads are connected
to buses within substations, and the power generated at each bus, which can be redispatched or cur-
tailed, flows through the network to meet demand—the total amount of power required by the loads.
Substations typically contain multiple buses that can be reconfigured via topological modifications
to modify the power flow. Both actions are subject to many physical and operational constraints:
generators have ramping constraints, transmission lines have thermal capacities, and substations
have switching restrictions. Violating these constraints risks blackouts or costly economic losses.

Through the “Learning to Run a Power Network competition series” (L2RPN) (Marot et al., 2022b)
and the recent RL2GRID benchmark (Marchesini et al., 2025), reinforcement learning (RL) has
emerged as a promising paradigm for tackling grid control. However, these works model the problem
as a single-agent task. In contrast, real-world grids are divided across multiple operators, and even
within a single operator’s area the system can be decentralized. This motivates a multi-agent RL
(MARL) perspective, where multiple RL agents act on different parts of the grid (U.S. DoE, 2024).
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operators (TSOs) and built on the French TSO’s power simulation framework (Donnot, 2020),
our benchmark captures the cooperative nature of power grids. Each agent controls a subset of
substations and cooperates with others to satisfy demand while maintaining grid stability. To
reflect modern grid challenges, we provide multiple scenarios with different action spaces (i.e.,
discrete topological or continuous redispatching and curtailment actions) that scale in size, number
of agents, and support various observability regimes, from fully centralized to strictly local,
where agents observe only what they control. We also incorporate a multi-agent heuristic “idle”
transition scheme to simplify the problem horizon under normal grid operations, and include
safety-critical constraints such as load shedding, islanding, and line overloads. MARL2GRID-TR
thus contributes: (i) A standardized suite of MARL tasks for discrete or continuous grid control
; (i) A PETTINGZO0O interface (Terry et al., 2021), with (optional) heuristic-based transitions
and constrained task formalizations; and (iii) Reference implementations of popular baselines for
reproducible evaluation and comparison. Our extensive experiments show that current algorithms
have promising performance in the continuous case. However, they struggle with scalability,
long-horizon cooperation, and safety, which are key requirements for grid operations.

Overall, MARL2GRID-TR introduces a high-fidelity MARL benchmark for real power grids, pro-
viding a foundation for developing the next generation of scalable, cooperative, and safe algorithms.

2 PRELIMINARIES AND RELATED WORK

Table | shows existing environments for studying RL in energy contexts. Most prior efforts target
simplified settings, such as small-scale grids, low-voltage microgrids, or building districts (Chen
et al., 2022). For instance, PYTHON-MICROGRID models microgrid-level dynamics (Henri et al.,
2020), GYM-ANM focuses on network management in distribution systems (Henry & Ernst, 2021),
and the ARPA-E Grid Optimization competition focuses on offline optimization rather than on-
line decision-making with RL (ARPA-E, 2023). Recently, RL2GRID (Marchesini et al., 2025) has
established a standardized RL benchmark for grid control based on France’s TSO Grid2Op, a high-
fidelity power simulation framework (Donnot, 2020). Grid2Op captures crucial complexities of real
grids (e.g., non-linear power flows, uncertainty from VRE, and operational constraints), and has also
served as the backbone for the L2ZRPN competitions, which establish RL as a promising solution for
grid control. However, both RL2Grid and L2RPN adopt a single-agent formulation that abstracts
away the decentralized control structure of real transmission systems. Hence, they do not support the
varying observability regimes or coordination among multiple agents, which are essential features
for scalable and practical deployment in realistic power grids. MARL2GRID-TR builds directly on
the popular and realistic Grid2Op power simulation framework to address these gaps.

Table 1: Comparison of RL benchmarks for power grid operations. MARL2Grid is the only frame-
work supporting large-scale realistic multi-agent settings for grid control with safety constraints.

Benchmark / Environment Scale Multi-agent Topology Redisp. / Curt. Constraints
PYTHON-MICROGRID (Henri et al., 2020) Small X X v X
GYM-ANM (Henry & Ernst, 2021) Small X X v X
L2RPN (Marot et al., 2020b) Large X v v X
RL2GRID (Marchesini et al., 2025) Large X v v v
MARL2GRID-TR (ours) Large v v v v
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2.1 MULTI-AGENT REINFORCEMENT LEARNING

We model MARL2Grid tasks as multi-agent Markov decision processes (MMDPs) (Boutilier, 1996)
defined by the tuple (N, S, {A*}ien, P, R,v), where A is a finite set of agents, S is a finite set
of states, A’ is a set of actions for agent i, P defines the transition dynamics over joint actions
a= (a',...,a"), R : S x {A'};eny — R is the joint reward function, and v € [0,1) is the
discount factor. At each time step, each agent selects an action based on its available information,
and all agents cooperate to maximize the expected discounted return E Y2 7' R(s;, a;)], where
7 = (m!,...,7) denotes the joint policy. When agents can only observe information related to the
substations they control, we extend the previous definition to a decentralized partially observable
MDP (Dec-POMDP) (Olichoek & Amato, 2016) with ({Ol}leN, {O%}ien), where O is the local
observation space of agent i and O : S x {A'};cnr — A(O?) defines its observation distribution.
Each agent conditions its policy 7¢ on the local action-observation history h* (or, depending on the
degree of partial observability, on its own observation o} € O), maintaining the same objective.

Algorithms. A central paradigm in cooperative learning systems is centralized training with decen-
tralized execution (CTDE), where agents leverage privileged information and centralized estimators
during training while maintaining decentralized policies for deployment (Lowe et al., 2017). In
value-based MARL, CTDE is often implemented through value factorization, where a centralized
value function is decomposed into agent-wise utilities to guide coordination. Prominent examples
include QMIX (Rashid et al., 2020) and QPLEX (Wang et al., 2021), the latter being widely adopted
as a strong baseline (Papoudakis et al., 2021). CTDE has also been applied in policy-gradient meth-
ods. Algorithms such as MASAC and MAPPO (Bettini et al., 2024) employ centralized critics
to stabilize learning and (potentially) improve performance, with MAPPO typically outperforming
more complex approaches (Yu et al., 2022). Motivated by their widespread adoption and empirical
success, MARL2GRID-TR includes QPLEX and MAPPO as representative baselines.

Grid operations also have safety constraints. Constrained MARL equips each agent i € A with a
set of auxiliary cost functions that capture constralnts violations (Gu et al., 2021). Agent 7 main-
tains a set of m* cost functions C = {c}} ]E{l mi}» Where each ¢ LS X {AYien — [0,1]

measures the occurrence of safety-critical events such as line overloads or load shedding. Af-
ter executing a; at time ¢, agents receive both task rewards and cost signals C; (st,as). The ob-
jective is to maximize the expected return while ensuring that the cumulative discounted cost
Ji(m) = E. [Z:io vl (st; ay)] < I V) e{L,... ,ml} remains below a threshold % for ev-
ery agent ¢ and cost index j. In practice, solving a constrained problem directly is difficult, so most
approaches rely on Lagrangian relaxation. Dual variables are introduced to balance constraint sat-
isfaction against reward maximization. Among these methods, Lagrangian MAPPO (LagrMAPPO)
(Ling et al., 2022) has emerged as a strong baseline due to its simplicity, stability, and effectiveness
across cooperative benchmarks (Ling et al., 2022; Aydeniz et al., 2024). For this reason, we adopt
LagrMAPPO as our primary constrained baseline in MARL2GRID-TR.

3 MARL2GRID

In multi-agent power grid operations, each agent generally acts on a subset of substations and must
coordinate with others to ensure stable long-term operation. The episodes span from one simulated
week to one month, and the agents make decisions at 5S-minute intervals. At each step, an agent acts
on its substations and observes global or local information (based on the selected level of observ-
ability in our codebase), contributing to the joint objective of maintaining safe and uninterrupted
power delivery despite fluctuating demand, equipment failures, and physical constraints.

Environments. MARL2GRID-TR builds on three Grid2Op power grids (referred to as base grids).
Table 2 summarizes their structure, the number of substations, lines, and generators. Each base
grid follows a double bus architecture, meaning that every electrical component—generators, loads,
and transmission lines—can connect to one of two buses within a substation. Some environments
include Batteries (B), which can function both as generators (discharging) and loads (charging) in
the continuous tasks. Environments also present operational contingencies designed to capture the
disruptions faced by TSOs: (i) Maintenance (M): Scheduled outages that agents can observe. During
maintenance, a transmission line is disconnected and remains unavailable until the maintenance
window ends. (ii) Opponent (O): Unpredictable disturbances (e.g., weather events) causing sudden
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Table 2: List of base grid environments and contingencies currently supported by MARL2GRID.

ID Maintenance Opponent Subs. Lines Gens. Loads Ep. Length (steps) |State|

bus14 v X 14 20 6 11 8064 473
bus36 v v 36 59 22 37 8064 1266
bus118 v v 118 186 62 99 2017 4460

line disconnections. These events are unobserved in advance, requiring agents to react in real time.
A disconnected line enters a cooldown period during which reconnection is not allowed.

Each grid in MARL2GRID-TR is partitioned among agents using the segmentation methods of
Henka et al. (2022). Agents are assigned control over regions of the grid with strong internal con-
nectivity and limited external interactions. This choice mirrors how TSOs structure control zones in
practice, making our benchmark more realistic. The resulting substation-to-agent assignment for the
bus118 grid is in Table 3, while we refer to Appendix C for the remaining grid configurations. At
the same time, MARL2GRID-TR is designed to be flexible. Users can modify configuration files
to redefine zone assignments and explore alternative setups. Hence, the framework also supports
a fully decentralized regime where every substation is controlled by its own agent. This config-
uration allows researchers to study the limits of coordination and scalability under higher agent
counts. By supporting different configurations, MARL2GRID-TR facilitates the study of trade-offs
between control and communication granularity, coordination complexity, and learning performance
in multi-agent grid operations.

Transition dynamics. Each environment transition is driven by realistic yet synthetic time series of
demand and generation, generated using ChroniX2Grid (Marot et al., 2020a)." At the beginning of
an episode, a random timestamp is sampled to initialize the grid, ensuring exposure to varied sea-
sonal and temporal conditions. The environment then evolves step by step in a process that mirrors
real grid operations: (i) Exogenous stochastic events (e.g., weather-induced faults) are triggered ac-
cording to Grid20p’s predefined probabilistic models. (ii) Agents jointly execute their topological
or redispatching and curtailment actions. (iii) The system updates cooldown counters and applies
any scheduled maintenance events. (iv) Grid20p’s AC power flow solver computes the new system
state. If the configuration is infeasible—due to islanding or unmet demand—the episode terminates.
Otherwise, overloaded lines are monitored, and those exceeding limits for more than three consecu-
tive steps are automatically disconnected. (v) Finally, all grid variables (i.e., the state) are updated,
capturing the nonconvex, nonlinear, and stochastic dynamics of power systems. Depending on the
observability regime, agents then receive either the full state or local observations.

Action space. Each base grid has two classes of tasks based on the selected action space.
For topology optimization (discrete action space), each agent can modify the topology of the sub-

stations it controls. Table 3 shows agent-substation assignments and dimensionality for the bus/18

Table 3: Agent-to-substation assignments and dimensionality of the bus/ 8 grid. (T stands for the
topological case, R for the redispatching and curtailment one.)

Grid Agent Controlled Substations (IDs) Lines Gens. Loads |Obs (T/R)| |Actions (T/R)|
0 [0-13, 15, 116] 23 7 12 281/ 187 414/5
1 [14, 16-18, 29, 32, 37] 18 5 5 140/ 121 377/3
2 [33-36] 10 1 3 61/51 73/1
3 [38—41, 48] 18 7 5 1557127 65706/ 3
4 [42-47] 10 1 6 84 /146 52172

busl18 5 [49-63, 65, 66] 32 11 14 382 /249 1375/ 13
6 [23, 64, 68-72] 18 4 1 119/ - 225/ -
7 [67,73-80, 115, 117] 24 6 8 218/163 2121/3
8 [81-101] 33 10 17 431 /269 2640/ 10
9 [102-111] 15 5 9 186 /243 145/3
10 [19-22, 24-28, 30-31, 112-114] 20 5 11 166/ 126 195/5
11 [0-117] (redispatching agent forR) 186 62 99 -/1233 -/20

"We use the Grid20p’s grids data, spanning up to several years and covering various conditions.
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Table 4: List of features composing the state of a power grid that are shared between the discrete
and continuous cases. For brevity, n_ indicates “number of”’, gen stands for “generators.”

Name(s) Type Dim. Description

p float n_line Transmission capacity of each line
gen_p float n_gen Gens real power

load.p float n_load Loads active load

line_status bool n_line Boolean flag for line connectivity
timestep_overflow int n_line Timesteps since line exceeded capacity

grid. Agents can perform two types of decisions: (i) switching the status of transmission lines (i.e.,
connecting or disconnecting them), and (ii) reassigning electrical components—generators, loads,
and lines—to one of the two buses within a substation. While these operations correspond to sim-
ple remote switch commands in real power grids, they result in a high-dimensional space. Line
switching introduces a discrete action per line, whereas bus reassignments (or “bus-splitting”) yield
an exponentially large number of valid actions. The total number of discrete actions at a double-
bus substation with Ny lines, IV, generators, and IV; loads is given by (Chauhan et al., 2023):
N = 2NinestNg+Ni—1 _ 1 For example, substation #5 in Figure 2, which contains 2 generators, 1
load, and 4 lines (7 elements total), has 63 distinct topological configurations—each representing a
unique combination of bus assignments. In larger grids such as bus36, a single substation can exceed
65,000 for a single agent. This combinatorial explosion makes traditional optimization approaches
intractable and underscores the need for advanced MARL methods.

For redispatching and curtailment (continuous action space), the objective is to balance total genera-
tion and demand at every time step. To reflect real-world operations, MARL2GRID-TR introduces
a mixed agent structure, where: (i) decentralized agents manage the curtailment of renewable gener-
ators and the charging/discharging of storage units within their areas, and (ii) a global redispatching
agent adjusts the outputs of the other generators across the grid. The action space dimensionality
thus scales linearly in the number of generators and storage units. For example, the action space size
for the bus118 gridis N = Niegisp + Newrt + Nsior = 69, where Niegisp is the number of redispatchable
generators, N, the number of renewable generators, and Ny, the number of storage units.

State space. The features of the state vector that are shared between the discrete and continuous
tasks are listed in Table 4, including generator outputs, load demands, transmission line status and
capacities.” In a centralized setting, each agent has access to the state (whose dimensionality is
reported in Table 2). In a decentralized setting, agents observe only data corresponding to the sub-
stations they directly control. Neighboring agents share partial information for lines that connect
their substations. This decentralized structure better mirrors the realities of transmission system op-
erations, where control centers operate with limited observability and coordination. Crucially, our
codebase enables users to flexibly configure observability regimes for any base grid, allowing them
to extend MARL2GRID-TR and study coordination and learning under different paradigms.

Reward function. The objective in grid operations is to ensure long-term safety and efficiency.
For topology optimization, MARL2GRID-TR adopts the reward design of Marchesini et al. (2025),
developed in consultation with TSOs. It balances three components: R = aRgyrvive + B Roverload +
1nReost, Where «, 3, and 1) are weights specified in Appendix E. The three terms respectively encour-
age survival, penalize overloads, and account for economic costs (formal definitions are provided
in Appendix D). For redispatching and curtailment, we adopt the reward of Donnot (2025), which

directly reflects line loading margins: R =1 — %, where L. is the set of connected lines and

p1 is the loading of line [. Specifically, grid safety decreases as line flows approach thermal limits
and this formulation yields better learning performance in the continuous setting.

3.1 MULTI-AGENT IDLE TRANSITIONS

Given the complexity and dimensionality of the tasks, MARL2GRID-TR integrates an expert-
informed idle heuristic (1), illustrated in Figure 2, to reduce the effective decision horizon and sim-

2Appendix B contains a detailed overview of the task-specific features. See RTE France (2025) for more
information about these features and their ranges.
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Figure 2: Overview of the multi-agent idle heuristic.

plify learning. This emulation of operational behavior modifies the transition dynamics, focusing
learning on safety-critical situations. Our design builds on prior L2ZRPN solutions and Marchesini
et al. (2025), formalizing the heuristic transitions for the multi-agent case.

For topology optimization, the heuristic issues an idle action if all line loadings p remain below a
safety threshold py.x. During idle phases, agent controls are suspended and the environment pro-
gresses without intervention. When any line exceeds the threshold, control returns to the agents, who
try to restore normal operation. In the redispatching and curtailment case, the heuristic first attempts
to reconnect any available transmission lines. If no reconnections are possible, the heuristic performs
the same idle check as in the discrete case. Importantly, the heuristic does not replace agent learning
but complements it: each agent action may trigger a sequence of heuristic-guided transitions, during
which rewards continue to accrue. This design combines expert-in-the-loop guidance with MARL
flexibility, reducing redundant exploration, improving sample efficiency, and stabilizing training.

3.2 FOSTERING SAFE OPERATIONS VIA MULTI-AGENT CONSTRAINTS

MARL2GRIZ also includes constrained problem formalizations, in which agents have to jointly
minimize safety violations under a shared set of constraints. In detail, local decisions made by one
agent could affect the entire grid due to the highly coupled, nonlinear, and non-convex dynamics.
This phenomenon, emphasized in our discussions with TSOs at the time of development, motivated
our decision to adopt a joint constraint formulation. Hence, constraint costs are not assigned to
individual agents but are instead accumulated globally and shared among all agents—mirroring the
joint reward structure. This encourages agents to reason beyond their local context and collectively
maintain system-level safety, reflecting real-world operational practices. We focus on two primary
classes of operational constraints, derived from major failure modes in real transmission grids, that
lead to two types of constrained tasks for each base grid.

* Load shedding and islanding (L). This constraint captures two critical failure modes: (i)
insufficient generation to meet demand, and (ii) the formation of electrical islands (discon-
nected parts of the grid). Let Pp(s,a) and Pg(s,a) denote the total demand and genera-
tion, respectively, given the state s and the joint action a at a given step. We define the load
shedding indicator function: L(s,a) = ¥ (Pg(s,a) < Pp(s,a)), and the islanding indica-
tor based on the number of disconnected areas N (s,a) as I(s,a) = W(Ny(s,a) > 0). The
per-step cost is thus defined as Cy.(s,a) = L(s,a) + I(s,a), and episodes are considered
safe if the cumulative cost satisfies 3, CL.(s,a) = 0.

* Transmission line overload (O). This constraint captures two key failure modes in trans-
mission networks: (i) thermal overloads, where flows exceed line capacity, and (ii) line
disconnections caused by prolonged violations. Let Ppy(s,a) denote the power flow
on line ¢ at a given step, and ;}?X(s, a) its thermal capacity limit. We define an over-
load indicator function Oy(s,a) = W(Ppy(s,a) > gzx(s,a)), triggered when the
line exceeds its thermal capacity, and a disconnection indicator function Dy(s,a) =
H‘(E disconnected due to overload), triggered when a line is disconnected by the envi-
ronment due to sustained overload. The per-step cost across all transmission lines L is
then Co(s,a) = > ;.. (O¢(s,a) + Dy(s,a)), and the cumulative constraint is enforced

as E;F:o Co(s,a) < 7, where 7 is a fixed threshold.

By formalizing multi-agent safety constraints, we aim to provide a principled testbed for developing
constrained MARL algorithms capable of balancing grid performance with operational risk.
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4 EXPERIMENTS

We evaluate popular MARL methods that often serve as building blocks for more advanced algo-
rithms. Consistent with prior single-agent works (Marot et al., 2022a; Marchesini et al., 2025), topol-
ogy optimization is substantially more challenging than the redispatching and curtailment setup.
This reflects the priorities of TSOs, who regard topology optimization as both harder and more im-
pactful to enable grid decarbonization. Due to the complexity of the task, our experiments focus
primarily on the smaller bus/4 task for the topological setup, where we evaluate most algorithmic
variations (e.g., the constrained algorithm) to then show how our best-performing baseline fails on
the more complex bus118 grid.® Specifically, we evaluate: (i) QPLEX (Wang et al., 2021), MAPPO
(Yu et al., 2022) with and without the idle heuristic, and LagrMAPPO (Gu et al., 2021) (on the
constrained L and O versions) in the busi4 task; and (iii) MAPPO on the high-dimensional busi18
task. Despite decentralization being essential to reflect how TSOs operate real grids, we also eval-
uate a fully observable single-agent PPO controller and its lagrangian versions LagrPPO (on the
constrained L and O versions) to verify whether centralization would offer any advantage and to
validate whether the challenges observed stem from the MARL decomposition or the intrinsically
complex nature of the tasks. Moreover, the redispatching and curtailment case is comparatively eas-
ier, and the MAPPO baseline already achieves strong performance. For this reason, we report our
evaluation only for the bus/18 scenario, testing MAPPO, MASAC (Bettini et al., 2024) and PPO,
augmented with the idle heuristic. Crucially, these differences in the evaluation are consistent with
what has been done in previous single-agent works (Marot et al., 2022a; Marchesini et al., 2025).

Overall, this selection highlights the pressing challenges of topology optimization that motivate
our benchmark, while showing that continuous redispatching, though important in practice, poses a
comparatively simpler learning problem under our novel task formalization.

Experimental setup. Experiments were run on Xeon E5-2650 and Silver 4214R CPU nodes with
256-376GB of RAM. Baselines were implemented using custom code inspired by CleanRL’s design
and BenchMARL (Bettini et al., 2024), with hyperparameters selected via grid search (see Ap-
pendix E). Unless otherwise noted, results correspond to the average survival or reward of the grid
over 100-episode windows, aggregated across S independent runs per method. Shaded regions indi-
cate 95% bootstrapped confidence intervals. Survival is defined as the normalized fraction of time
steps during which the grid remains functional, with a value of 1 indicating uninterrupted operation
for a full episode. The experiments in this work required ~120,000 CPU hours to execute.

4.1 RESULTS

Topology Optimization (discrete). Overall, the baselines struggle to cope with the complexities of
multi-agent topology optimization. Figure 3 shows the training performance of the unconstrained
baseline on the busl4 grid. MAPPO learns the most effective policy, maintaining good operations
for roughly 84% of an episode. Moreover, PPO with full observability achieves lower survival than
MAPPO, showing the benefits of decentralization, and QPLEX fails to sustain stable operation be-
yond a few dozen steps. Augmenting these baselines with the idle heuristic converges to a ~20%
average survival. Hence, despite the effectiveness of the idle heuristic in multi-agent redispatching
and curtailment tasks (see next section), this heuristic interacts poorly within decentralized control
under a combinatorial discrete action structure. Because control is decentralized, each agent sees
only a subset of the grid and must coordinate with others through the environment’s nonlinear AC
coupling. The idle heuristic reduces the already limited windows during which agents can exper-
iment with (and learn) multi-step coordinated reconfigurations across zones. In an exponentially
large discrete action space, where successful topological interventions are rare and require tempo-
ral coordination, this loss of actuation opportunities severely hinders exploration and joint policy
improvement. Thus, while idle transitions accelerate learning in centralized single-agent settings
(Marchesini et al., 2025), they can become detrimental in MARL topology control due to reduced
exploration capacity and the need for tightly coupled multi-agent coordination.

Figure 4 shows the Pareto frontier of average survival versus cost for LagrMAPPO and LagrPPO
with both types of constraint at convergence, with dashed lines indicating the thresholds. Despite
having promising constraint satisfaction results, LagrMAPPO and LagrPPO fail to achieve good per-

3 Appendix A provides an high-level description of all the baselines.
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formance. The best performing LagrMAPPO (L) converges to roughly 21% average survival, while
the single-agent baseline consistently achieves lower performance than the multi-agent counterpart.
Finally, Table 5 shows the average survival at convergence for two years of data, for all baselines
and for a “DoNothing” agent that only executes idle actions. These long-horizon evaluations cor-
roborate the training curves, confirming that MAPPO achieves good control while other methods
fail to maintain reliable performance.

Figure 5 analyzes how the unconstrained policies learn to control the grid in the complex discrete
task (referring to Appendix F for a similar analysis for the constrained case). We report two opera-
tional metrics, margin and topology, each shown with 95% confidence intervals as average scores.
The margin score (defined in Section 3) measures the cumulative available capacity across all con-
nected transmission lines. Higher values indicate that agents maintain larger safety margins and
greater flexibility to handle contingencies. Successful MAPPO policies consistently maximize mar-
gins, and higher survival performance appears closely related to higher line capacity. The topology
score quantifies deviations from the initial grid configuration as —d(G}, Go), where G, is the topol-
ogy attime ¢ and d(G¢, Gy) is the Hamming distance from the initial configuration G. Values near 0
correspond to minimal changes, whereas increasingly negative values indicate substantial reconfigu-
rations. Effective MAPPO agents exploit topological interventions to stabilize operation. This result
is confirmed by the lower margins and topological changes of the single-agent PPO that also leads to
alower grid survival. The analysis demonstrates how these agents strike a balance between maintain-
ing transmission margins and performing topology reconfigurations to achieve good performance.
Notably, even in the rela-

tively small busi4 system, ~—MAPPO - QPLEX --PPO

the difficulty of learning ot soq angln (gher = bettr)
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This is confirmed by our )
additional results in Ap- Figure 5: Avg. score for line margins (higher values mean better con-

pendix F, showing how our tingency management) and topological changes (showing the extent
best performing solution, to Which agents reconfigure the grid) for the baselines of Figure 3.

MAPPO, fails at controlling the topology in the more complex busl 18 system. Notably, Marchesini
et al. (2025) shows how the single-agent PPO baseline (with full observability) fails on bus118,
confirming that grid control challenges stem from the intrinsic structure of the topological task.
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Discrete Results Analysis. MAPPO achieves good performance in the busi4 setup, and our analysis
of operational metrics (Figure 5) shows that good policies reliably maximize line-loading margins
while performing topology reconfigurations that successfully relieve local congestion. These be-
haviors break down in larger grids, and we identified four main reasons for that: (i) Exploration
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struggles in large combinatorial action spaces, where a single substation may contain tens of thou-
sands of valid configurations, and good multi-step reconfigurations become exceedingly rare. (ii)
Agents have difficulty coordinating across electrically coupled zones: actions that increase mar-
gins locally often overload distant lines (a challenge that does not appear in bus/4). (iii) Partial
observability combined with delayed, global overload penalties creates severe credit-assignment
problems as agents struggle to link distant or delayed outcomes to their own actions. (iv) Topology
switches involve long-horizon irreversible consequences (cooldown timers, islanding, overload-to-
disconnection logic), so early random actions often lead to unrecoverable states. As a result, we
noticed the learned policies do not succeed in increasing margins nor in discovering meaningful
topological changes in larger grids, directly explaining their poor performance. We extensively dis-
cuss avenues for future research directions related to these challenges in Section 5.

Redispatching and curtailment (continuous). In contrast to the topological task, the continuous
setting does not involve exponential action spaces and requires optimally balancing generation and
demand, making it inherently less complex and leading to higher performance. Figure 6 shows the
learning curves of the baselines, each augmented with the heuristic from Figure 2, in the complex
bus118 grid. For this scenario, we train on February data to expose agents to more challenging
operating conditions. Because the continuous task reward is defined directly in terms of margin, we
report average reward rather than survival to avoid misinterpretation. Similar to the discrete case,
MAPPO converges to strong performance, achieving ~ 58% average survival in our evaluation.
The fully observable, single-agent PPO also achieves strong performance, but it is still inferior to
MAPPO when both are trained for 3 million steps. However, in contrast to the topological setting,
PPO surpasses MAPPO by 9% once trained to convergence, as shown in Table 6 (although requiring
roughly 10 million steps to reach this level, underscoring its lower sample efficiency). Table 6
reports average survival over a two-year test set, comparing the baselines to the same “DoNothing”
agent used in the topological case, and a “RecoPowerline” agent that directly applies the heuristic of
Figure 2. Notably, MASAC is unable to achieve the performance of its heuristic, whereas MAPPO
and PPO confirm their superior performance, surviving twice as long as the “DoNothing” agent.

— MAPPOQ -+ MASAC --- PPO
800 Table 6: buslI8 (cont.) Avg. survival of the

- N e Ry i TRk baselines on 2 years of test data.
§ 600 e
5 AR
2 400 s Agent type Avg. Survival
3200 DoNothing 0.29
= RecoPowerline 0.34
0.0 0.5 1.0 1.5 2.0 2.5 3.0 MASAC 025
Global step 1e0 MAPPO 0.58
Figure 6: busl18 (cont.) Avg. reward per episode PPO 0.67

during training.

5 CHALLENGES AND OPPORTUNITIES FOR MARL IN GRID OPERATIONS

Our work highlights the promise and limitations of MARL for power grid control. While MARL
naturally reflects the decentralized structure of real-world operations and performs reasonably well
in redispatching and curtailment tasks, our results show that popular MARL algorithms are not
suitable to address high-dimensional topology optimization. This gap underscores the need for new
methods and evaluation paradigms that explicitly address the combinatorial action spaces, partial
observability, and safety-critical constraints of realistic and long-horizon grid operations. Closing
this gap is essential if MARL is to evolve from a research prototype into a tool that supports TSOs
in managing future decarbonized grids. Below, we outline key directions for such future research
and how MARL can be deployed in grid operations.

Beyond imitation. Unlike many domains where imitation learning provides a strong starting point,
grid topology optimization lacks reliable expert demonstrations as operators themselves cannot op-
timally solve the problem at scale. This makes direct imitation infeasible. Instead, we argue for
the development of advanced heuristic-guided MARL, where richer domain-inspired rules and ap-
proximate dynamics models serve as scaffolds to reduce exploration complexity while still allowing
agents to learn effective policies.
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Coordination under partial observability. In practice, each agent has only a local view of the grid
yet must coordinate implicitly with others to prevent cascading failures. Current MARL baselines
struggle to balance local autonomy with system-wide safety. Advances in communication learning,
coordination graphs, and multi-agent credit assignment are needed to ensure agents act collectively
rather than at cross-purposes.

Scalability. The exponential growth of topology actions poses a combinatorial barrier that is am-
plified in the multi-agent setting, where action spaces interact across agents. Effective abstractions
(e.g., through hierarchical control, action pruning, or structured representations of topology) are thus
crucial to scaling MARL to realistically sized grids. In MARL2Grid-TR, the 118-bus system already
reaches a meaningful scale for research: it is large enough to expose the core coordination, safety,
and combinatorial challenges of realistic operator-level control, yet still tractable for large-scale ex-
perimentation. Scaling to grids with thousands of buses remains an important long-term goal, but
our findings indicate that substantial algorithmic advances are required before reaching that scale.

Realism , evaluation, simulation. Future progress will also depend on more realistic evaluations.
While our benchmark already includes long horizons, stochastic renewable fluctuations, and safety-
critical constraints, further realism is required (e.g., explicit N—1 security). Evaluation should also
go beyond average survival to assess economic impact, robustness under rare but critical contin-
gencies, and cooperation in large, heterogeneous networks. Regarding simulation, the benchmark
captures key operational constraints via Grid20p’s AC solver but omits fast transients, detailed in-
verter and protection dynamics, and some practical action constraints, and while larger grids can be
configured, MARL training on very large systems remains computationally heavy. Only by coupling
algorithmic advances with increasingly realistic benchmarks can MARL approaches move toward
practical deployment.

Deployment.  While the power sector is rightly conservative, the joint development of
MARL2GRID-TR with TSOs show a clear interest in RL because traditional optimization tools
struggle with the growing combinatorial and real-time complexity introduced by high VRE, frequent
contingencies, and large reconfiguration spaces. Crucially, RL can address these challenges and be
integrated within existing operator workflows and validated through offline simulation, shadow-
mode deployment, and safety filters before a broader adoption in the industry.

In summary, MARL magnifies the core challenges of grid control (e.g., combinatorial action spaces,
strict safety constraints, and long horizons) while introducing new ones such as coordination under
partial observability and the lack of expert demonstrations. Addressing these challenges will require
going beyond standard MARL methods to design algorithms, heuristics, and evaluation protocols
tailored to the unique demands of power system operations and decarbonization.

6 CONCLUSION

MARL2GRID-TR introduces the first multi-agent RL benchmark for realistic power grid opera-
tions, covering both discrete topology optimization and continuous redispatching, curtailment, and
storage control. By distributing control across agents responsible for subsets of substations, the
benchmark reflects the cooperative structure of real-world grids while exposing key challenges:
partial observability, high-dimensional action spaces, and safety-critical constraints such as load
shedding, islanding, and line overloads.

The benchmark provides standardized tasks of increasing complexity, PETTINGZ0O-compatible in-
terfaces, heuristic-based idle transitions, and constrained multi-agent training settings. Experiments
show that while MARL achieves promising performance in a subset of the proposed tasks and is a
natural paradigm for distributed grid control, current methods struggle with scalability, coordination,
and safety in most of these long-horizon scenarios.

We expect MARL2GRID-TR to serve as a foundation for developing, evaluating, and comparing
cooperative MARL algorithms that can enable safe and efficient grid control under modern large
amounts of (distributed) VRE and flexible loads.

10
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ETHICS STATEMENT

This work introduces a benchmark for MARL in realistic power grid operations. The benchmark is
developed entirely on top of publicly available, synthetic data generated with the Grid2Op frame-
work, ensuring that no sensitive, private, or personally identifiable information is used. The envi-
ronments model stylized versions of real-world power systems in collaboration with TSOs, but do
not replicate proprietary or security-critical grid infrastructure.

The primary goal of this research is to advance the development of safe, cooperative MARL methods
in the context of power grid operations. While RL agents trained on our benchmark are not directly
deployable in operational power grids, we acknowledge that methods for controlling critical infras-
tructure must be carefully validated and subject to rigorous safety and regulatory oversight before
practical use. By explicitly modeling safety-critical constraints (e.g., load shedding, islanding, and
line overloads), MARL2GRID-TR aims to encourage research directions that emphasize safety and
reliability.

We believe that this work aligns with the ICLR Code of Ethics by supporting transparent, repro-
ducible research and by fostering methods that can contribute positively to the reliable and decar-
bonized operation of power systems.

REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our work. The full benchmark codebase
will be released as anonymous supplementary code during the review process.

Detailed descriptions of the state and action spaces, reward functions, transition dynamics, and
safety constraints are provided in Section 3 and Appendices B to D, while hyperparameter choices
and grid search ranges are reported in Appendix E. All experiments were run on standard CPU clus-
ters, with hardware details and data collection protocols documented in Section 4. For each baseline,
we provide references to the original algorithm and describe how it was adapted to the multi-agent
power grid setting (Appendix A). Together, these materials ensure that all results presented in the
paper can be independently verified and extended.

REFERENCES

ARPA-E. Grid Optimization (GO) Competition. https://gocompetition.energy.gov/,
2023.

Ayhan Alp Aydeniz, Enrico Marchesini, Christopher Amato, and Kagan Tumer. Entropy seeking
constrained multiagent reinforcement learning. In Proceedings of the 23rd International Confer-
ence on Autonomous Agents and Multiagent Systems, pp. 2141-2143, 2024.

Matteo Bettini, Amanda Prorok, and Vincent Moens. Benchmarl: Benchmarking multi-agent rein-
forcement learning. Journal of Machine Learning Research, 25(217):1-10, 2024.

Craig Boutilier. Planning, learning and coordination in multiagent decision processes. In Proceed-
ings of the 6th Conference on Theoretical Aspects of Rationality and Knowledge, pp. 195-210,
1996. ISBN 1558604179.

Anandsingh Chauhan, Mayank Baranwal, and Ansuma Basumatary. Powrl: A reinforcement learn-
ing framework for robust management of power networks. In AAAI, 2023.

Xin Chen, Guannan Qu, Yujie Tang, Steven Low, and Na Li. Reinforcement learning for selective
key applications in power systems: Recent advances and future challenges. IEEE Transactions
on Smart Grid, 13(4):2935-2958, 2022.

B. Donnot. Grid2op- A testbed platform to model sequential decision making in power systems. .
https://GitHub.com/rte-france/grid2op, 2020.

B. Donnot. Grid2op - linescapacityreward. https://grid2op.readthedocs.io/en/
latest/user/reward.html#grid2op.Reward.LinesCapacityReward, 2025.

11


https://gocompetition.energy.gov/
https://GitHub.com/rte-france/grid2op
https://grid2op.readthedocs.io/en/latest/user/reward.html#grid2op.Reward.LinesCapacityReward
https://grid2op.readthedocs.io/en/latest/user/reward.html#grid2op.Reward.LinesCapacityReward

Under review as a conference paper at ICLR 2026

Shangding Gu, Jakub Grudzien Kuba, Munning Wen, Ruiqing Chen, Ziyan Wang, Zheng Tian, Jun
Wang, Alois Knoll, and Yaodong Yang. Multi-agent constrained policy optimisation. In arXiv,
volume abs/2110.02793, 2021.

Noureddine Henka, Quentin Francois, Sami Tazi, Manuel Ruiz, and Patrick Panciatici. Power grid
segmentation for local topological controllers. In Power System Computation Conference (PSCC),
2022.

Gonzague Henri, Avishai Halev Tanguy Levent, Reda Alami, and Philippe Cordier. pymgrid: An
open-source python microgrid simulator for applied artificial intelligence research. arXiv, 2020.

Robin Henry and Damien Ernst. Gym-anm: Open-source software to leverage reinforcement learn-
ing for power system management in research and education. Software Impacts, 9, 2021.

Jiajing Ling, Arambam James Singh, Duc Thien Nguyen, and Akshat Kumar. Constrained multia-
gent reinforcement learning for large agent population. In ECML PKDD, 2022.

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent actor-
critic for mixed cooperative-competitive environments. In Conference on Neural Information
Processing Systems (NeurIPS), 2017.

Enrico Marchesini, Benjamin Donnot, Constance Crozier, Ian Dytham, Christian Merz, Lars
Schewe, Nico Westerbeck, Cathy Wu, Antoine Marot, and Priya L. Donti. RL2Grid: Bench-
marking reinforcement learning in power grid operations. arXiv:2503.23101, 2025.

A. Marot, N. Megel, V. Renault, and M. Jothy. ChroniX2Grid - The Extensive PowerGrid Time-serie
Generator. https://github.com/BDonnot/ChroniX2Grid, 2020a.

Antoine Marot, Benjamin Donnot, Camilo Romero, Balthazar Donon, Marvin Lerousseau, Luca
Veyrin-Forrer, and Isabelle Guyon. Learning to run a power network challenge for training topol-
ogy controllers. Electric Power Systems Research, 189:106635, 2020b.

Antoine Marot, Benjamin Donnot, Karim Chaouache, Adrian Kelly, Qiuhua Huang, Ramij-Raja
Hossain, and Jochen L Cremer. Learning to run a power network with trust. Electric Power
Systems Research, 212:108487, 2022a.

Antoine Marot, Adrian Kelly, Matija Naglic, Vincent Barbesant, Jochen Cremer, Alexandru Ste-
fanov, and Jan Viebahn. Perspectives on future power system control centers for energy transition.
Journal of Modern Power Systems and Clean Energy, 10(2):328-344, 2022b.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, 1. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing atari with deep reinforcement learning. In Conference on Neural Information Processing
Systems (NeurIPS), 2013.

Frans A Oliehoek and Christopher Amato. A concise introduction to decentralized POMDPs.
Springer, 2016.

Georgios Papoudakis, Filippos Christianos, Lukas Schifer, and Stefano V Albrecht. Benchmarking
multi-agent deep reinforcement learning algorithms in cooperative tasks. In Thirty-fifth Con-
ference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 1),
2021.

Tabish Rashid, Gregory Farquhar, Bei Peng, and Shimon Whiteson. Weighted QMIX: expanding
monotonic value function factorisation. In Conference on Neural Information Processing Systems
(NeurIPS), 2020.

RTE France. Dive into grid2op sequential decision process, 2025. URL https://grid2op.
readthedocs.io/en/latest/mdp.html#some-constraints. Accessed: 2025-05-
15.

J Terry, Benjamin Black, Nathaniel Grammel, Mario Jayakumar, Ananth Hari, Ryan Sullivan, Luis S
Santos, Clemens Dieffendahl, Caroline Horsch, Rodrigo Perez-Vicente, et al. Pettingzoo: Gym
for multi-agent reinforcement learning. Advances in Neural Information Processing Systems, 34:
15032-15043, 2021.

12


https://github.com/BDonnot/ChroniX2Grid
https://grid2op.readthedocs.io/en/latest/mdp.html#some-constraints
https://grid2op.readthedocs.io/en/latest/mdp.html#some-constraints

Under review as a conference paper at ICLR 2026

U.S. DoE. Distribution grid transformation. https://www.energy.gov/
distribution—-grid, 2024.

Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. QPLEX: duplex dueling
multi-agent g-learning. In International Conference on Learning Representations (ICLR), 2021.

Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexandre M. Bayen, and Yi Wu. The surprising
effectiveness of MAPPO in cooperative, multi-agent games. In Conference on Neural Information
Processing Systems (NeurIPS), 2022.

13


https://www.energy.gov/distribution-grid
https://www.energy.gov/distribution-grid

Under review as a conference paper at ICLR 2026

A MARL BASELINES

In this section, we briefly introduce the baseline MARL algorithms employed in our evaluation,
referring to the original papers for exhaustive details (Wang et al., 2021; Yu et al., 2022; Gu et al.,
2021; Bettini et al., 2024).

QPLEX (Wang et al., 2021). QPLEX is a value-based method designed for cooperative MARL. It
builds on the QMIX framework by introducing a dueling network architecture. Each agent maintains
its own local @-utility, while a mixing network combines these into a joint action-value function.
This decomposition allows decentralized execution while maintaining centralized training. Similar
to DQN Mnih et al. (2013) in the single-agent case, QPLEX is restricted to discrete action spaces,
making it applicable to topology optimization tasks.

MAPPO (Yu et al., 2022) and LagrMAPPO (Gu et al., 2021). MAPPO extends PPO to the multi-
agent setting using a centralized critic and decentralized actors. Each agent learns its own policy,
while the centralized critic leverages global information to centralize training. The clipped surro-
gate objective from PPO ensures stable updates, balancing policy improvement and regularization.
MAPPO can handle both discrete (topology optimization) and continuous (redispatching and curtail-
ment) actions, depending on the distribution chosen for the actor. LagrMAPPO augments MAPPO
with a constraint-handling mechanism: in addition to training the policy, it learns Lagrangian mul-
tipliers associated with each constraint (as in Section 2). Policy updates then take gradient ascent
steps in 7 and descent steps in A, trading off constraint satisfaction and task performance. This
ensures penalties grow when constraints are violated and decay when constraints are respected.

MASAC (Bettini et al., 2024). MASAC adapts SAC to the multi-agent setting, combining central-
ized critics with decentralized actors. As in the single-agent SAC, MASAC jointly optimizes for
expected return and policy entropy, encouraging exploration and robustness. Each agent learns a
stochastic policy, while the centralized critic leverages information across agents to reduce variance
and improve stability. MASAC supports well continuous action spaces and is therefore particularly
suitable for our redispatching and curtailment tasks.

B STATE-SPACE

Tables 7 and 8§ describe the remaining task-specific features composing agents’ observations in the
discrete and continuous case, respectively.

Table 7: List of additional features composing the state of a power grid for the discrete case. For
brevity, n_ indicates “number of”’, gen, sub stands for “generators” and “substations”, respec-
tively, and dim_topo is the size of the vector containing the current topology of the grid.

Name(s) Type Dim. Description

t int 1 Current simulation step

gen_-theta float n_gen Gens real power and voltage angle

load.f float n_load Loads active load and voltage angle

topo_vect int dim_topo Topological vector of the grid; the bus
to which each object is connected

time before_cooldown_lineint n_line Line cooldown timer

time before_cooldown_sub int n_sub Cooldown timer for substations

{time, int n_line Remaining time and duration of the

duration} next maintenance next maintenance

14
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Table 8: List of additional features composing the state of a power grid for the continuous case.
For brevity, n_ indicates “number of”’, gen, stor stands for “generators” and “storage units”,
respectively.

Name(s) Type Dim. Description

month int 1 Month of the year

day-of_week int 1 Day of the week

hour_of_day, minute_of_hour int 1 The time it is

p-or float n_line Active power of each line

storage_charge float n_stor Storage units charge

storage_power float n_stor Storage units power

curtailment float n_gen Curtailed power for each generator

curtailment_limit float n_gen Limit imposed on each renewable
generator

gen_p-before_curtail float n_gen Production there would have been
without curtailment

target_dispatch float n_gen Targeted redispatching

actual_dispatch float n_gen Implemented redispatching

C AGENT CONFIGURATIONS

Table 9 reports the agent grid partitions for the busi4 and bus36 topology optimization (discrete)
tasks. For these smaller grids, we focus exclusively on the discrete setting, which is substantially
more challenging and already causes common MARL algorithms to struggle, even in the simplest
busi4 setup (see Section 4). By contrast, redispatching and curtailment (continuous) setups already
achieve promising performance in the larger and more complex busI18 scenario, making the smaller
cases not challenging enough to investigate in the continuous setting.

Table 9: Agent-to-substation assignments, number of controlled components, observation and action
dimensions for the local observation setup of busi4, bus36 (T stands for the topology case)

Grid Agent Controlled Substations Lines Gens. Loads |Obs (T)| |Actions (T)|
0 [0,1,2,4] 8 3 3 71 61
busl4 1 [3,6,7, 8] 9 1 2 49 55
2 [5,9, 10,11, 12, 13] 9 2 6 83 89
0 [0,1,2,3,4] 9 1 6 77 77
bus36 1 [6,7,8,9, 16] 18 7 5 150 65642
us 2 [5,10, 11, 12, 13, 14, 15, 32, 35] 13 3 12 139 127
3 [17-31, 33, 34] 32 11 14 377 1119
D REWARD

In this section, we formally define the reward components for the discrete topological tasks. We
recall the joint reward the agents get at each step is R = aRgurvive + S Roverload + 7 Rcost- While
Rguvive 1s a cumulative positive constant, the overload and cost rewards are defined as:

(i) Overload: Penalizes line overloads and disconnections, and rewards available line capacity based
on the difference between line flows and capacity limits. In unconstrained settings, disconnected
lines incur a fixed penalty. This is more formally defined as:

P, — pmax
Roverload = Z [max <Oa M) - “é(g is dlSC)] ) (1)

max
tel Py 0 T€

where P is the power flow on line ¢, Pp'3* is its capacity limit, € is a small constant to avoid
divisions by 0, and the indicator function returns 1 if the line is disconnected. This term is then
normalized to lie within [—1, 1].
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(ii) Cost: This component accounts for redispatching, curtailment, and storage usage, all of which
induce operational costs. It is defined as:

Reost = — [(PG - PD) + |Credisp‘ + |Pst0rageH Cmarginal s

where Pg and Pp denote the total power generated and total demand consumed at each step, respec-
tively, with their difference representing transmission losses, Credgisp corresponds to the redispatched
power (i.e., the absolute deviation from scheduled generator setpoints), and Pyorage represents the
power exchanged with storage units. All cost components are scaled by the marginal generation cost
Cmarginal, defined as the cost per MWh of the most expensive generator currently producing power.
This value is also normalized to lie in the range [—1, 0].

E HYPERPARAMETERS

Table 10 lists the hyperparameters considered during our initial grid search and the best-performing
parameters used to run the experiments in Section 4.

Table 10: Details of the grid search used to find the best-performing hyperparameters for each
algorithm in the topology optimization (discrete) and redispatching and curtailment (continuous)

cases.

Algorithm Parameter Grid search Chosen value
Shared N° parallel envs 10, 20, 50 10
Max gradient norm 10, 20, 50 10
Discount 0.9, 0.95, 0.99 0.99
Pmax 0.9, 0.95 0.9
Top. opt. reward « 0.1,0.5,1.0 1.0
53 0.1,0.5,1.0 1.0
n 0.1,0.5,1.0 1.0
QPLEX Train frequency 10, 50, 100 100
Target network update 250, 500, 2500 2500
Buffer size 500000, 1000000 1000000
Batch size 128, 256 128
Learning rate 0.003, 0.0003, 0.00003 0.00003
e-decay fraction 0.1,0.250.5 0.5
MAPPO N° steps (total) 10000, 20000, 40000 20000
(discrete case) N° minibatches 1,4, 8 4
N° update epochs 20, 40, 80 80
Actor learning rate 3e-3, 3e-4, 3e-5 3e-5
Critic learning rate 3e-3, 3e-4, 3e-5 3e-5
e-clip 0.1,0.2,0.3 0.2
MAPPO Batch size 3000, 6000, 9000 9000
(continuous case)  N° update epochs 5,15, 30 30
Actor learning rate 3e-4, 3e-5, 3e-6 3e-5
Critic learning rate 3e-4, 3e-5, 3e-6 3e-5
LagrMAPPO A 0, 50 0 (L), 50 (O)
M\ init 0.0, 1.0 0.0
A\ learning rate 0.01, 0.025, 0.05 0.05
MASAC Batch size 3000, 6000, 9000 9000
Minibatch size 128, 256 256
N° optimizer steps 1000, 2000 1000
Learning rate 3e-4, 3e-5, 3e-6 3e-4
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F MISSING PLOTS IN SECTION 4

To complement the main results in the topology optimization (discrete) case, we evaluate the best-
performing baseline, MAPPO, on the more complex bus/ 18 system. Unlike in the smaller busl4
grid, where MAPPO manages to sustain operation for a substantial fraction of the episode horizon,
performance on bus/18 is unsatisfactory. Figure 7 summarizes the outcomes in terms of average
survival at training time and analyzes the margin and topology scores for the trained policies. Sur-
vival rates are close to zero, indicating that MAPPO fails to maintain stable operation for more than
a few steps. This is reflected in the margin metric, which remains consistently low and shows that
agents are unable to preserve sufficient transmission capacity to handle contingencies. Similarly, the
topology score indicates that agents rarely exploit meaningful structural reconfigurations; deviations
from the initial configuration are minimal and do not translate into improved stability.

Overall, these results highlight the dramatic increase in difficulty when scaling from busi4 to
busl18. Even our strongest baseline fails to discover effective strategies for coordinated topology
optimization at this scale, reinforcing the conclusion that MARL-based grid control requires new
algorithmic advances beyond current MARL literature.
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Figure 7: Results of the best performing baseline, MAPPO, in the topology optimization (discrete)
bus118 task. (Left) Average survival during training for the discrete case on the bus14 task. (Center)
Avg. margin score for the trained policy. (Right) Avg. topology score for the trained policy.

Moreover, Figure 8 presents the same
operational metrics analysis as Fig-
ure 5, but for the constrained base-
line. LagrMAPPO with load shed-
ding and islanding constraints (L)
achieves higher performance than
the transmission line overload con-
strained version (O), despite operat-
ing under a stricter threshold. No-
tably, these policies tend to converge Globalstep  Te7 Globalstep 17

on a single topological modification ) ) ]
that increases available margins, al- Figure 8: Average score for line margins and topological

lowing the grid to remain operational changes for the constrained algorithm of Figure 4.
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for roughly 20% of the episode horizon.
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