
CONTRAST: Continual Multi-source Adaptation to
Dynamic Distributions

Sk Miraj Ahmed2,∗† , Fahim Faisal Niloy1,∗ , Xiangyu Chang1, Dripta S. Raychaudhuri3,‡ ,
Samet Oymak4, Amit K. Roy-Chowdhury1

1University of California, Riverside, 2Brookhaven National Laboratory, 3AWS AI Labs,
4University of Michigan, Ann Arbor

{sahme047@, fnilo001@, cxian008@, drayc001@, amitrc@ece.}ucr.edu, oymak@umich.edu

Abstract

Adapting to dynamic data distributions is a practical yet challenging task. One
effective strategy is to use a model ensemble, which leverages the diverse expertise
of different models to transfer knowledge to evolving data distributions. However,
this approach faces difficulties when the dynamic test distribution is available only
in small batches and without access to the original source data. To address the
challenge of adapting to dynamic distributions in such practical settings, we propose
CONtinual mulTi-souRce Adaptation to dynamic diStribuTions (CONTRAST),
a novel method that optimally combines multiple source models to adapt to the
dynamic test data. CONTRAST has two distinguishing features. First, it efficiently
computes the optimal combination weights to combine the source models to adapt
to the test data distribution continuously as a function of time. Second, it identifies
which of the source model parameters to update so that only the model which
is most correlated to the target data is adapted, leaving the less correlated ones
untouched; this mitigates the issue of “forgetting" the source model parameters
by focusing only on the source model that exhibits the strongest correlation with
the test batch distribution. Through theoretical analysis we show that the proposed
method is able to optimally combine the source models and prioritize updates to
the model least prone to forgetting. Experimental analysis on diverse datasets
demonstrates that the combination of multiple source models does at least as well
as the best source (with hindsight knowledge), and performance does not degrade
as the test data distribution changes over time (robust to forgetting).

1 Introduction

Deep neural networks have shown impressive performance on test inputs that closely resemble the
training distribution. However, their performance degrades significantly when they encounter test
inputs from a different data distribution. Unsupervised domain adaptation (UDA) techniques [1, 2]
aim to mitigate this performance drop. Addressing the distribution shift in case of dynamic data
distributions is even more challenging and practically relevant - in many real-world applications like
autonomous navigation, models often encounter dynamically evolving distributions. Furthermore,
test data is often accessed in streaming batches rather than all at once, and source data may not always
be available due to privacy and storage concerns.

For domain adaptation to dynamically evolving environments, employing a model ensemble can
be beneficial, as it allows leveraging the learned knowledge of different models to more effectively
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Figure 1: Problem setup. Consider several source models trained using data from different weather
conditions. During the deployment of these models, they may encounter varying weather conditions
that could be a combination of multiple conditions in varying proportions (represented by the pie
charts on top). Our goal is to infer on the test data using the ensemble of models by automatically
figuring out proper combination weights and adapting the appropriate models on the fly.

mitigate dynamic distribution shifts. Additionally, situations may arise wherein the user has access to
a diverse set of pre-trained models across distinct source domains, and no access to source domain
data corresponding to each model due to privacy, storage or other constraints. Consequently, training
a unified model using the combined source data becomes unfeasible. In those scenarios, it is both
reasonable and effective to employ and adapt the entire available array of source models during testing,
thereby enhancing performance beyond the scope of single source model adaptation. Moreover,
employing a model ensemble provides the flexibility to effortlessly incorporate or exclude models
post-deployment, aligning with the user’s preferences and the needs of the given task. This flexibility
is not achievable with a single domain-generalized model trained on combined source data.

As an example, consider a scenario where a recognition model, initially trained on clear weather
conditions, faces data from mixed weather scenarios, like sunshine interspersed with rain (see
Figure 1). In such cases, employing multiple models - specifically those trained on clear weather and
rain — with appropriate weighting can potentially reduce the test error as opposed to relying on a
single source model. In this context, the models for clear weather and rain would be assigned higher
weights, while models for other weather conditions would receive relatively lesser weightage.

The main challenge of developing such a model ensembling method is to learn appropriate com-
bination weights to optimally combine the source model ensemble during the test phase as data is
streaming in, such that it results in a test error equal or lower than that of the best source model. To
solve this, we propose CONtinual mulTi-souRce Adaptation to dynamic diStribuTions (CONTRAST)
that handles multiple source models and optimally combines them to adapt to the test data.

The efficacy of using multiple source models also extends to preventing catastrophic forgetting that
may arise when adapting to dynamic distributions for a prolonged time. Consider again the scenario
of multiple source models, each trained on a different weather condition. During inference, only
the parameters of the models most closely related to the weather encountered during test time will
get updates, and the unrelated ones will be left untouched. This ensures that the model parameters
do not drift too far from the initial state, since only those related to the test data are being updated.
This mechanism mitigates forgetting when the test data distribution varies over a long time scale, as
is likely to happen in most realistic conditions. Even if an entirely unrelated distribution appears
during testing and there is no one source model to handle it, the presence of multiple sources can
significantly reduce the rate at which the forgetting occurs. This is again because only the most
closely related models (clear and rainy weather in the example above) are updated, while others (e.g.,
snow) are left untouched. Our setting is closely related to Test Time Adaptation methods (TTA) [3],
and ours is the first to address adaptation of multiple sources for dynamically shifting distributions
during test time.

Main Contributions. Our proposed approach, CONTRAST, makes the following contributions.
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• We propose a framework for multi-source adaptation to dynamic distribution shifts from streaming
test data and without access to the source data. Our approach has the ability to merge the source
models using appropriate combination weights during test time, enabling it to perform just as well
as the best-performing source or even surpass it.

• Our framework achieves performance on par with the best-performing source and also effectively
mitigates catastrophic forgetting when faced with long-term, fluctuating test distributions.

• We provide theoretical insights on CONTRAST, illustrating how it addresses domain shift by
optimally combining source models and prioritizing updates to the model least prone to forgetting.

• To demonstrate the real-world advantages of our methodology, we perform experiments on a diverse
range of benchmark datasets.

2 Related Works

Unsupervised Domain Adaptation. UDA methods have been applied to many machine learning
tasks, including image classification [1], semantic segmentation [2], object detection [4] and rein-
forcement learning [5], in an effort to address the data distribution shift. Most approaches try to align
the source and target data distributions, using techniques such as maximum mean discrepancy [6],
adversarial learning [7, 1, 5] and image translation [8, 9]. Recently, there has been a growing
interest in adaptation using only a pre-trained source model due to privacy and memory storage
concerns related to the source data [10–16]. These approaches include techniques such as information
maximization [17–19], pseudo labeling [20, 21], and self-supervision [22].

Table 1: Comparison of our setting to the existing adaptation settings. Our proposed setting meets
all the criteria that are expected in a comprehensive adaptation framework.

Setting Source
Free

Adaptation
On the Fly

Dynamic
Target

Multi
Source

UDA [1] ✗ ✗ ✗ ✓
Source-free UDA [18] ✓ ✗ ✗ ✓

TTA [3] ✓ ✓ ✓ ✗
CONTRAST ✓ ✓ ✓ ✓

Multi-Source Domain Adaptation (MSDA). Both UDA and source-free UDA have been extended
to multi-source setting by incorporating knowledge from multiple source models [18, 23]. Notable
techniques include discrepancy-based MSDA [24], higher-order moments [25], adversarial methods
[26], and Wasserstein distance-based methods [27]. However, these methods are specifically tailored
to UDA scenarios, where the whole target data is assumed to be available during adaptation. Whereas,
in our setting we consider access to a batch of target data at an instance. Another related field is
Domain Generalization (DG) [28, 29] , which refers to training a single model on a combined set of
data from different source domains. Hence, DG requires data from all distinct domains to be available
altogether during training, which may not be always feasible. Additionally, Model Soups [30] is
a popular approach to ensemble models fine-tuned on same data distribution, where the weights
of multiple models are averaged for inference. On the other hand, we use a weighting approach
for model predictions, where models are pre-trained on different source data distributions. In our
problem, inspired by MSDA, users are only provided with pre-trained source models.

Adaptation to Dynamic Data. Few works [31–33] have addressed the adaptation to dynamic data
distributions. However, these works either require source data or the entire target domain data to be
available during adaptation. When additional constraints such as streaming target data batches and
no access to source data are considered, the setting closely aligns with Test Time Adaptation (TTA).
While UDA methods typically require a substantial volume of target domain data for model adaptation,
which is performed offline and prior to deployment, TTA adjusts a model post-deployment, during
inference or testing. One of the early works [34] use test-batch statistics for batch normalization
adaptation. Tent [3] updates a pre-trained source model by minimizing entropy and updating batch-
norm parameters. DUA [35] updates batch-norm stats with incoming test batches. TTA methods have
also been applied to segmentation problems [36–39]. When these TTA methods are used to adapt to
changing target distribution, they usually suffer from ‘forgetting’ and ‘error accumulation’ [40]. In
order to solve this, CoTTA [40] restores source knowledge stochastically to avoid drifting of source
knowledge. EATA [41] adds a regularization loss to preserve important weights for less forgetting.
While motivated by TTA, our method considers multi-source adaptation in a dynamic setting and
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has an inherent capability to mitigate forgetting. In Table 1, we illustrate a comparison between our
setting and existing settings.

3 CONTRAST Framework

3.1 Problem Setting

In this problem setting, we propose to combine multiple pre-trained models during test time through
the application of suitable combination weights, determined based on a limited number of test
samples. Specifically, we will focus on the classification task that involves K categories. Consider
the scenario where we have a collection of N source models, denoted as {fjS}Nj=1, that we aim

to deploy during test time. In this situation, we assume that a sequence of test data {x(1)
i }Bi=1 →

{x(2)
i }Bi=1 → . . . {x(t)

i }Bi=1 → . . . are coming batch by batch in an online fashion, where t is the
index of time-stamp and B is the number of samples in the test batch. We also denote the test
distribution at time-stamp t as D(t)

T , which implies {x(t)
i }Bi=1 ∼ D(t)

T . Motivated by [18], we model
the test distribution in each time-stamp t as a linear combination of source distributions where the
combination weights are denoted by {w(t)

j }Nj=1. Thus, our inference model on test batch t can be

written as f(t)T =
∑N

j=1 w
(t)
j f

j(t)
S where fj(t)S is the adapted j-th source in time stamp t. Based on this

setup our objective is twofold:

1. We want to determine the optimal combination weights {w(t)
j }Nj=1 for the current test batch such

that the test error for the optimal inference model is lesser than or equal to the test error of best
source model. Mathematically we can write this as follows:

ϵ
(t)
test(f

(t)
T ) ≤ min

1≤j≤N
ϵ
(t)
test(f

j
S), (1)

where ϵ
(t)
test(·) evaluates the test error on t-th batch.

2. We also aim for the model to maintain consistent performance on source domains, as it progres-
sively adapts to the changing test conditions. This is necessary to ensure that the model has not
catastrophically forgotten the original training distribution of the source domain and maintains its
original performance if the source data is re-encountered in the future We would ideally want to
have:

ϵsrc(f
j(t)
S ) ≈ ϵsrc(f

j
S) ∀j, t, (2)

where, ϵsrc(f
j
S) denote the test error of j-th source on its corresponding test data when using the

original source model fjS , whereas ϵsrc(f
j(t)
S ) represents the test error on the same test data using

the j-th source model adapted up to time step t, denoted as fj(t)S .

3.2 Overall Framework

Our framework undertakes two operations on each test batch. First, we learn the combination weights
for the current batch at time step t by freezing the model parameters. Then, we update the model
corresponding to the largest weight with existing state-of-the-art TTA methods, which allows us to
fine-tune the model and improve its performance. This implies that the model parameters of source j
might get updated up to p times at time-step t, where 0 ≤ p ≤ (t− 1).

In other words, the states of the source models evolve over time depending on the characteristics of
the test batches up to the previous time step. To formalize this concept, we define the state of the
source model j at time-step t as fj(t)S . In the next section, we will provide a detailed explanation of
both aspects of our framework: (i) learning the combination weights, and (ii) updating the model
parameters. By doing so, we aim to provide a comprehensive understanding of how our approach
works in practice.

3.3 Learning the combination weights

For an unlabeled target sample x
(t)
i that arrives at time-stamp t, we denote its pseudo-label, as

predicted by source j, as ŷ(t)ij = f
j(t)
S (x

(t)
i ), where f

j(t)
S is the state of source j at time-stamp t. Now
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Figure 2: Overall Framework. During test time, we aim to adapt multiple source models in a manner
such that it optimally blends the sources with suitable weights based on the current test distribution.
Additionally, we update the parameters of only one model that exhibits the strongest correlation with
the test distribution.

we linearly combine these pseudo-labels by source combination weights w = [w1 w2 . . .wN ]⊤ ∈ RN

to get weighted pseudo-label ŷ(t)i =
∑N

j=1 wj ŷ
(t)
ij . Using these weighted pseudo-labels for all the

samples in the t-th batch we calculate the expected Shannon entropy as,

L(t)
w (w) = −ED(t)

T

K∑
c=1

ŷ
(t)
ic log(ŷ

(t)
ic ) (3)

Based on this loss we solve the following optimization:

minimize
w

L(t)
w (w)

subject to wj ≥ 0,∀j ∈ {1, 2, . . . , N},
n∑

j=1

wj = 1

(4)

Suppose we get w⋆(t) to be the optimal combination weight vector by performing the optimization in
(4). In such case, the optimal inference model for test batch t can be expressed as follows:

f
(t)
T =

N∑
j=1

w
⋆(t)
j f

j(t)
S (5)

Thus, by learning w in this step, we satisfy Eqn. (1).

Model parameter update. After obtaining w⋆(t), next we select the most relevant source model
k given by k = arg max

1≤j≤N
w

⋆(t)
j . This indicates that the distribution of the current test batch is

most correlated with the source model k. We then adapt model k to the test batch t using any
state-of-the-art single source method that adapts to dynamic target distributions. Specifically, we
employ three distinct adaptation approaches: (i) TENT [3], (ii) CoTTA [40], and (iii) EaTA [41].

Optimization strategy for (4). Solving the optimization problem in Eq. 4 is a prerequisite for
inferring the current test batch. As inference speed is critical for test-time adaptation, it is desirable
to learn the weights quickly. To achieve this, we design two strategies: (i) selecting an appropriate
initialization for w, and (ii) determining an optimal learning rate.
(i) Initialization: Pre-trained models contain information about expected batch mean and variance in
their Batch Norm (BN) layers based on the data they were trained on. To leverage this information,
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we extract these stored values from each source model prior to adaptation. Specifically, we denote
the expected batch mean and standard deviation for the l-th layer of the j-th source model as µj

l and
σj
l , respectively.

During testing on the current batch t, we pass the data through each model and extract its mean and
standard deviation from each BN layer. We denote these values as µT (t)

l and σ
T (t)
l , respectively. One

useful metric for evaluating the degree of alignment between the test data and each source is the
distance between their respective batch statistics. A smaller distance implies a stronger correlation
between the test data and the corresponding source. Assuming that the batch-mean statistic per node of
the BN layers to be a univariate Gaussian, we calculate the distance (KL divergence) between the j-th
source (approximated as N (µj

l , (σ
j
l )

2)) and the t-th test batch (approximated as N (µ
T (t)
l , (σ

T (t)
l )2))

as follows (derivation in Appendix Section H):

θtj =
∑
l

DKL

[
N
(
µ
T (t)
l , (σ

T (t)
l )2

)
,N
(
µj
l , (σ

j
l )

2
)]

=

nj∑
l=1

dlj∑
m=1

log

(
σj
lm

σ
T (t)
lm

)
+

(
σ
T (t)
lm

)2
+
(
µj
lm − µ

T (t)
lm

)2
2
(
σj
lm

)2 −1

2

where subscript lm denotes the m-th node of l-th layer. After obtaining the distances, we use a
softmax function denoted by δ(·) to normalize their negative values. The softmax function is defined
as δj(a) =

exp(aj)∑N
i=1 exp(ai)

, where a ∈ RN , and j ∈ 1, 2, . . . , N . If θt = [θt1, θ
t
2 . . . θ

t
N ]

⊤ ∈ RN is the
vectorized form of the distances from all the sources, we set

w
(t)
init = δ(−θt) (6)

where w(t)
init is the initialization for w. As we shall see, this choice leads to a substantial performance

boost compared to random initialization.

(ii) Optimal step size: Since we would like to ensure rapid convergence of optimization in Eqn. 4 ,
we select the optimal step size for gradient descent in the initial stage. Given an initialization w

(t)
init

and a step size α(t), we compute the second-order Taylor series approximation of the function L(t)
w at

the updated point after one gradient step. Next, we determine the best step size α
(t)
best by minimizing

the approximation with respect to α(t). This is essentially an approximate Newton’s method (details
in Appendix section I) and has a closed-form solution given by

α
(t)
best =

[(
∇wL(t)

w

)⊤ (
∇wL(t)

w

)
/
(
∇wL(t)

w

)⊤
Hw

(
∇wL(t)

w

)] ∣∣∣∣∣
winit

. (7)

Here ∇wL(t)
w and Hw are the gradient and Hessian of L(t)

w with respect to w. Together with w
(t)
init

and α
(t)
best, optimization of ( 4) converges very quickly as demonstrated in the experiments (in Table

6 of Appendix). Please note that, we calculate the Hessian for only n scalar parameters, with n
representing the number of source models. Typically, in common application domains, addressing
distribution shifts requires only a small number of source models, making the computational overhead
of calculating hessian negligible.

Please refer to Algorithm 1 for a complete overview of CONTRAST.

3.4 Theoretical insights regarding combination weights

Theorem 1 (Convergence of Optimization 4.). The Optimization 4 converges according to the rule
as follows:

1

(k + 1)

k∑
j=0

∥∇ℵLw(w
(j))∥22 ≤ 2(Lw(w

(0))− Lw(w
⋆))

α
(t)
best(k + 1)

(8)

where, ∇ℵ represents the gradient of the objective function over the set of n-simplex ℵ and j represents
the iteration number.

Proof. Please refer to the Appendix (Section A) for the proof.
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Implication of Theorem 1. The theorem tells us that to make the optimization converge faster with
fewer iterations (small k), it is crucial to start with a good initialization close to the best solution
((L(w(0)) − L(w⋆)) should be small). By using Eqn. (6), we ensure this condition for quicker
convergence. Also, please note that in Theorem 1, j denotes the iteration number in the optimization
process, and for simplicity, the batch number t has been intentionally omitted from the notation.

Algorithm 1: Overview of CONTRAST

Input: Pre-trained source models {fjS}
N
j=1, streaming sequential unlabeled test data

{x(1)
i }

B
i=1 → {x

(2)
i }

B
i=1 → . . . {x(t)

i }
B
i=1 → . . .

Output: Optimal inference model for t-th test batch f
(t)
T ∀t

Initialization: Assign f
j(1)
S ← fjS ∀j

while t ≥ 1 do
Set initial w(t)

init using Eqn. (6)
Set α(t)

best using Eqn. (7)
Solve optimization 4 to get w⋆(t)

Infer the test batch t using inference model f(t)T using Eqn. (5)
Find source index k such that k = arg max

1≤j≤N
w

⋆(t)
j

Update source model fk(t)S according to Model Parameter Update paragraph of Section 3.3 to get fk(t)S
for 1 ≤ j ≤ N do

if j = k then
Set fj(t+1)

S ← f
j(t)
S

else
Set fj(t+1)

S ← f
j(t)
S

end
end

end
end

3.5 Theoretical insights regarding model update

We now provide theoretical justification on how CONTRAST selects the best source model by
optimally trading off model accuracy and domain mismatch. At time t, let f(t)S be the set of source

models defined as
[
f
1(t)
S f

2(t)
S . . . f

N(t)
S

]
. CONTRAST aims to learn a combination of these models

by optimizing weights w on the target domain. For simplicity of exposition, we consider convex
combinations w ∈ ∆ where ∆ is the N -dimensional simplex.

To learn w ∈ ∆, CONTRAST runs empirical risk minimization on the target task using a loss
function ℓ(·) with pseudo-labels generated by w-weighted source models. Let L(f) denote the target
population/test risk of a model f (with respect to ground-truth labels) and L⋆(t)

T represent the optimal
population risk obtained by choosing the best possible w ∈ ∆ (i.e. oracle risk). We introduce the
functions: (1) Ψ which returns the distance between two data distributions and (2) φ which returns
the distance between two label distributions. We note that, rather than problem-agnostic metrics like
Wasserstein, our Ψ, φ definitions are in terms of the loss landscape and source models f(t)S , hence
tighter. We have the following generalization bound at time step t (precise details in Appendix
Section A).

Theorem 2. Consider the model f(t)T with combination weights w⋆(t) obtained via CONTRAST by
minimizing the empirical risk over B IID target examples per Eqn. 5. Let ŷ(t)w denote the pseudo-
label variable of w-weighted source models and D(t)

w =
∑N

i=1 w
(t)
i D(t)

Si
denote weighted source

distribution. Under Lipschitz ℓ and bounded f
(t)
S , with probability at least 1− 3e−τ over the target

batch, test risk obeys

L(f(t)T )︸ ︷︷ ︸
CONTRAST

− L⋆(t)
T︸ ︷︷ ︸

Optimal

≤ min
w∈∆

{Ψ(D(t)
T ,D(t)

w )︸ ︷︷ ︸
shift

+φ(ŷ(t)
w , y(t)

w )︸ ︷︷ ︸
quality

}+
√
Õ((N + τ)/B).
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Proof. Please refer to the Appendix (Section A) for the proof.

Discussion. In a nutshell, this result shows how CONTRAST strikes a balance between: (1)
choosing the domain that has the smallest shift from target, and (2) choosing a source model that
has high-quality pseudo-labels on its own distribution (i.e. ŷ(t)w matches y(t)w ). From our analysis,
it is evident that, rather than adapting the source models to the target distribution, if we simply
optimize the combination weights to optimize pseudo-labels for inference, the left side excess risk
term (L(f(t)T )−L⋆(t)

T ) becomes upper bounded by a relatively modest value. This is because the shift
and quality terms on the right-hand side are optimized with respect to w. We note that

√
N/B is the

generalization risk due to finite samples B and search dimension N .

To further refine this, our immediate objective is to tighten the upper bound. This can be achieved
by individually adapting each source model to the current test data, all the while maintaining the
optimized w constant. Yet, such an approach is not ideal since our second goal is to preserve
knowledge from the source during continual adaptation. To attain our desired goal, we must relax the
upper bound, reducing our search over w ∈ ∆̂. Here, ∆̂ is the discrete counterpart of the simplex
∆. The elements of ∆̂ are one-hot vectors that have all but one entry zero. The elements of ∆̂
essentially represent discrete model selection. Examining the main terms on the right reveals that:
(i) source-target distribution shift and (ii) divergence between ground-truth and pseudo-labels are
all minimized when we select the source model with the highest correlation to target. This model,
denoted by f

⋆(t)
S , essentially corresponds to the largest entry of w⋆(t) and presents the most stringent

upper bound within the ∆̂ search space. Thus, to further minimize the right hand side, the second
stage of CONTRAST adapts f⋆(t)S with the current test data. Crucially, besides minimizing the target
risk, this step helps avoids forgetting the source because f

⋆(t)
S already does a good job at the target

task. Thus, during optimization on target data, f⋆(t)S will have small gradient and will not move much,
resulting in smaller forgetting. Please refer to the Appendix (Section A) for more detailed discussion
along with the proof of this theorem.

4 Experiments

Datasets. We demonstrate the efficacy of our approach using both static target distribution and
dynamic target data distributions. For static case, we employ the Digits and Office-Home datasets
[42]. For the dynamic case, we utilize CIFAR-100C and CIFAR-10C [43]. Detailed descriptions of
these datasets along with results on segmentation task can be found in the Appendix.

Baseline Methods. As our problem setting is most closely related to test time adaptation, our
baselines are some widely used state-of-the-art (SOTA) single source test time adaptation methods:
we specifically compare our algorithm with Tent [3], CoTTA [40] and EaTA [41]. These methods
deal with adaptation from small batches of streaming data and without the source data, which is our
setting, and hence we compare against these as our baselines. To evaluate the adaptation performance,
we follow the protocol similar to [18], where we apply each source model to the test data from a
particular test domain individually, which yields X-Best and X-Worst where “X" is the name of the
single source adaptation method, representing the highest and lowest performances among the source
models adapted using method “X", respectively. For our algorithm, we extend all of the methods “X"
in the multi source setting and call the multi-source counterpart of “X" as “X+CONTRAST".

Implementation Details. We use ResNet-18 [44] model for all our experiments. For solving the
optimization of Eq. (4), we first initialize the combination weights using Eq. (6) and calculate the
optimal learning rate using Eq. (7). After that, we use 5 iterations to update the combination weights
using SGD optimizer and the optimal learning rate. For all the experiments we use a batch size of
128, as used by Tent [3]. For more details on implementation and experimental setting see Appendix.

Experiment on CIFAR-100C. We conduct a thorough experiment on this dataset to investigate the
performance of our model under dynamic test distribution. We consider 3 corruption noises out
of 15 noises from CIFAR-100C, which are adversarial weather conditions namely Snow, Fog and
Frost. We add these noises for severity level 5 to the original CIFAR-100C training set and train three
source models, one for each noise. Along with these models, we also add the model trained on clean
training set of CIFAR-100. During testing, we sequentially adapt the models across the 15 noisy
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domains, each with a severity of 5, from the CIFAR-100C dataset [40, 41]. We report the results for
the experiment in Table 2. Moreover, we also conduct an experiment on CIFAR10-C with the exact
same experimental settings as with CIFAR100-C. CIFAR-10C results are in Table 5 of Appendix.

Table 2: Results on CIFAR-100C. We take four source models trained on Clear, Snow, Fog, and
Frost. We employ these models for adaptation on 15 sequential test domains. This table illustrates
that even in the dynamic environment X+ CONTRAST performs better than X-Best, which is the
direct consequence of optimal aggregation of source models as well as better preservation of source
knowledge. (Results in error rate ↓ (in %))

GN SN IN DB GB MB ZB Snow Frost Fog Bright Contrast Elastic Pixel JPEG Mean
Source Worst 97.7 96.5 98.2 68.8 78.1 66.1 65.1 53.6 59.3 62.0 55.8 95.4 61.9 71.5 75.2 73.7
Source Best 90.5 89.0 94.5 50.7 48.1 51.9 44.5 30.0 29.5 28.2 39.0 81.9 44.0 38.5 57.1 54.5
Tent Worst 55.9 55.6 71.2 58.0 75.5 78.2 83.3 89.2 92.4 93.7 95.4 96.7 96.5 96.6 96.7 82.3
Tent Best 45.6 43.8 59.1 48.5 59.1 59.1 60.4 65.6 66.1 76.7 75.3 89.8 89.0 91.3 94.2 68.2

Tent + CONTRAST 42.2 40.6 55.3 28.6 40.7 31.9 29.6 31.7 32.4 30.9 28.6 41.5 38.5 34.8 49.9 37.1
EaTA Worst 57.7 54.0 66.5 40.6 53.2 41.4 36.8 44.0 43.5 45.4 34.8 45.4 45.7 39.9 55.7 47.0
EaTA Best 48.1 44.7 57.9 37.1 44.1 38.7 34.9 33.7 31.9 31.6 33.2 37.2 40.0 34.7 50.3 39.9

EaTA + CONTRAST 43.3 40.7 54.3 27.5 39.4 30.4 27.5 29.2 29.1 28.3 25.9 31.3 33.4 29.0 43.1 34.2
CoTTA Worst 59.2 57.4 68.0 40.1 52.7 42.1 40.5 47.0 46.6 47.2 39.4 43.6 44.5 41.4 47.4 47.8
CoTTA Best 49.8 46.6 58.6 34.0 40.7 36.5 34.2 34.2 32.8 33.0 32.8 34.8 35.3 33.6 41.1 38.5

CoTTA + CONTRAST 44.6 43.8 57.2 27.8 37.6 30.6 28.0 29.3 29.3 28.2 26.6 30.0 32.5 29.7 41.4 34.4

From the table, we can draw two key observations:
(i) As anticipated, X+CONTRAST consistently outperforms X-Best across each test distribution,
underscoring the validity of our algorithmic proposition.

Table 3: Results on Office-Home. We train three source
models using three domains in this dataset and use them
for testing on the remaining domain under the TTA setting.
Our results demonstrate that X+CONTRAST consistently
outperforms all of the baselines (X) (% error).

Ar Cl Pr Rw Avg.
Source Worst 61.4 64.9 46.2 43.9 54.1
Source Best 42.5 58.5 29.8 35.7 41.6
Tent Worst 57.7 60.4 46.5 42.1 51.7
Tent Best 41.4 54.3 27.9 36.0 39.9

Tent + CONTRAST 40.7 52.5 27.4 27.4 37.0
EaTA Worst 58.4 64.3 48.0 43.5 53.5
EaTA Best 42.1 57.8 30.3 35.9 41.5

EaTA + CONTRAST 40.1 53.3 28.3 28.0 37.4
CoTTA Worst 58.3 62.9 47.1 42.8 52.8
CoTTA Best 42.1 55.0 29.0 34.9 40.2

CoTTA + CONTRAST 40.6 53.3 28.3 29.0 37.8

(ii) Given that the CoTTA and EaTA
methods are tailored to mitigate
forgetting, the average error post-
adaptation across the 15 noises using
these methods is significantly lower
than that of Tent, which is not de-
signed for this specific challenge. For
instance, in Table 2, Tent-Best error is
approximately 68.2%, while CoTTA
and EaTA-Best are around 39.9% and
38.5%, respectively. However, when
these adaptation methods are incor-
porated into our framework, the final
errors are remarkably close: 37.1%
for Tent, 34.2% for EaTA, and 36.9%
for CoTTA. This suggests that even
though Tent is more lightweight and
faster compared to the other methods
and is not inherently designed to handle forgetting, its performance within our framework is on par
with the results obtained when incorporating the other two methods designed to prevent forgetting.
This shows the generalizability of our approach to various single-source methods. Note that identical
to the experiment on CIFAR100-C, the results on CIFAR10-C in Table 5 follow the same trend where
X+CONTRAST outperforms the X-Best.

Experiment on Office-Home. We report the results of the experiment on static distribution using
the Office-Home dataset in Table 3. Each column in the table represents a target domain from
Office-Home dataset. We train three source models on the remaining Office-Home datasets. For
instance, in case of ‘Ar’ column, ‘Ar’ is the target domain where three source models trained on
‘Cl’, ‘Pr’ and ‘Rw’ are adapted in test time. We calculate the test error of each incoming test batch
and then report the numbers by averaging the error values over all the batches. The table shows that
CONTRAST provides a significant reduction of test error compared to the best single source model.
This demonstrates that when presented with an incoming test batch, CONTRAST has the capability
to effectively blend all available sources using optimal weights, resulting in superior performance
compared to the best single source model. It is important to note that each test batch in this experiment
is drawn from the same stationary distribution, which represents the distribution of the target domain.
We conduct a similar experiment with the same experimental settings on Digits dataset that can be
found in Table 4 of Appendix.
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Analysis of Forgetting. Here, we demonstrate the robustness of our method against catastrophic
forgetting by evaluating the classification accuracy on the source test set after completing adaptation
to each domain [41, 45, 46]. For CONTRAST, we use our ensembling method to adapt to the
incoming domain. After adaptation, we infer each of the adapted source models on its corresponding
source test set. For the baseline single-source methods, every model is adapted individually to the
incoming domain, followed by inference on its corresponding source test set. The reported accuracy
represents the average accuracy obtained from each of these single-source adapted models.

From Figure 3, we note that our method consistently maintains its source accuracy during the
adaptation process across the 15 sequential noises. In contrast, the accuracy for each individual single-
source method (X) declines on the source test set as the adaptation process progresses. Specifically,
Tent, not being crafted to alleviate forgetting, experiences a sharp decline in accuracy. While CoTTA
and EaTA exhibit forgetting, it occurs at a more gradual pace. Contrary to all of these single-source
methods, our algorithm exhibits virtually no forgetting throughout the process.

Ablation Study. We conduct an ablation study in Tables 6, 7 in the Appendix to evaluate the impact
of various initialization and learning rate strategies on the optimization process described in (4). Our
findings demonstrate that the initialization and learning rate configurations generated by our method
outperform other alternatives.

Figure 3: Comparison with baselines in terms
of source knowledge forgetting. Maintaining the
same setting as in Table 2, we demonstrate that
by integrating single-source methods with CON-
TRAST, the source knowledge is better preserved
during dynamic adaptation. Unlike all these single-
source methods, our algorithm demonstrates virtu-
ally no forgetting throughout the entire adaptation
process.

Additionally, our experiments in Tables 8, 9 and
10 in the Appendix reveal that selectively up-
dating the most correlated model parameters
enhances performance compared to updating
all model parameters, the least correlated ones,
a selected subset of correlated models or even
updating the models according to their combi-
nation weights. We report the comparison with
MSDA in Table 11 and Model-Soups in Table
12. We also report the values of the combination
weights learned by our method. See Section D
of the Appendix for detailed observations.

5 Conclusions

We propose a novel framework called CON-
TRAST, that effectively combines multiple
source models during test time with small
batches of streaming data and without access to
the source data. It achieves a test accuracy that
is at least as good as the best individual source
model. In addition, the design of CONTRAST
offers the added benefit of naturally preventing
the issue of catastrophic forgetting. To validate
the effectiveness of our algorithm, we conduct
experiments on a diverse range of benchmark
datasets for classification and semantic segmen-
tation tasks. We also demonstrate that CONTRAST can be integrated with a variety of single-source
methods. Theoretical analysis of the performance of CONTRAST is also provided.

6 Broader Impact and Limitations

Implementing multiple models for adaptation on dynamic distribution can yield broad impacts. For
instance, this approach could find applications in robot navigation, autonomous vehicles or decision
making in dynamically evolving scenarios. In all these cases, the algorithm can intelligently select
the optimal combination of models during inference, ensuring sustained performance over extended
periods. Our method currently assumes that data sampled within a batch comes from the same
distribution. In the future, we aim to explore using mixed data samples from different target domains
within a batch.
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A Proof and discussion of Theorems 1 and 2

Proof of Theroem 1. The optimization (4) has a structure similar to a class of non convex problems
as follows:

minimize
x ∈ χ

g(x)− h(x)) (9)

where χ is a closed convex set, g(x) is Mg smooth and h(x) is a continuous convex function. In such
cases, the optimization converges as follows [47]:

1

(k + 1)

k∑
j=0

(
∇χ∥f(xk)∥22

)
≤ 2(f(x0)− f⋆))

α(k + 1)
(10)

where, f(x) = (g(x)− h(x)).

In our case g(x) = c, where c is a constant (smooth and continous) and h(x) is negative of the
Shannon entropy, which is continous and convex. Also, χ is the n-simplex ℵ, which is a closed
convex set. So, according to the proof derived in [47], we can conclude the bound in Theroem 1.

Proof of Theorem 2. We adapt the theorem from a corollary (corollary 1) in [48]. In this corollary
the following result was derived:

L(fτα̂) ≤ min
α∈∆

(lα⋆ (D)+DMD
D′(α) + 4ΓRnτ (Fα))

+

√
Õ((heff + t)/nν) + δ

Here fτ in the fτα̂ is the trained model on the training(τ ) distribution D′ and α̂ is a hyper-parameter
that has been empirically optimized by fine tuning on the validation(ν) distribution D. L is the
expected risk over the distribution D. DM measures the distribution mismatch via difference of
sub-optimality gap using the training and validation distribution. Rnτ

(Fα)) is the Rademacher
complexity of the function class F with α as the hyper-parameter. The corollary holds for probability
of at least 1 − 3e−t and heff is the effective dimension of the hyper-parameter space. Also nν is
the number of samples under the validation. The bound can be first of all easily extended to the
source/target scenario instead of train/validation. In our scenario the source models jointly construct
the function class Fα where, the hyper-parameter α is the combination weight w. Effective dimension
for our case is exactly the number of source model N and instead of t we took τ as the probability
variable. For the sake of simplicity we omitted δ > 0 which is a positive constant along with the
Rademacher complexity. Also nν = B in our setting since we have B number of samples for the
target/validation. Now there is a new term in our bound which is φ which was not in the original
corollary. This term is used to account for the mismatch between actual and pseudo-labels generated
by the source. This is done due to the fact that we do empirical minimization of the entropy of the
target pseudo-label since the problem is unsupervised and actual labels are not available. The left
side of the inequality is derived using the test/target pseudo-label. Consequently, we can introduce an
added distribution mismatch term. This term can be broken down into three components: mismatch
from target pseudo to target ground truth (gt), from target gt to source gt, and from source gt to source
pseudo label. Of these components, the first two can be readily integrated into the Ψ(.) function ,
given that it measures the discrepancy between the weighted source and the target. The remaining
third component is denoted by the φ(.) function. This completes the proof.

B Results on Digits

We report here the results of digit classification in Table 4. Similar to the experiment on Office-Home
dataset, each column of the table represents a target domain dataset. We train four source models on
the rest of the digit datasets. For instance, in case of ‘MM’ column ‘MM’ is the target domain which
is adapted using four source models trained on ‘MT’, ‘UP’, ‘SV’ and ‘SY’ respectively.

We once again calculate the test error for each incoming test batch and report the results by averaging
the errors across all batches. The table demonstrates that CONTRAST achieves a significant reduction
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Table 4: Results on Digits dataset. We train the source models using four digit datasets to perform
inference on the remaining dataset. The column abbreviations correspond to the datasets as follows:
‘MM’ for MNIST-M, ‘MT’ for MNIST, ‘UP’ for USPS, ‘SV’ for SVHN, and ‘SY’ for Synthetic
Digits.. The table (reporting % error rate(↓)) shows that X+CONTRAST outperforms all of the
baselines (X-Best) consistently .

MM MT UP SV SY Avg.
Source Worst 80.5 59.4 50.3 88.5 84.8 72.7
Source Best 47.7 2.2 16.8 18.3 6.7 18.3
Tent Worst 84.2 46.9 41.1 90.1 85.4 69.5
Tent Best 45.2 2.3 16.7 14.4 6.7 17.1

Tent + CONTRAST 37.5 1.9 11.2 14.2 6.7 14.3
EaTA Worst 80.1 48.4 42.6 88.0 83.1 68.4
EaTA Best 47.1 2.7 18.2 18.5 7.2 18.7

EaTA + CONTRAST 39.5 2.0 11.5 18.0 7.0 15.6
CoTTA Worst 80.0 48.3 42.8 87.9 82.9 68.4
CoTTA Best 47.0 2.8 18.6 18.5 7.2 18.8

CoTTA + CONTRAST 39.6 2.0 11.7 18.1 7.1 15.7

in test error compared to the best single source (on average 3% error reduction than the best source).
Another baseline exists that simply uses a naive ensemble of the source models, without any weight
optimization. In situations where there’s a significant performance gap between the best and worst
source models adapted using single-source methods, a uniform ensemble of these models produces
a predictor that trails considerably behind the best-adapted source, as noted by [18]. Referring
to Table 4, when testing on the SVHN dataset, the error disparity between the best and worst
adapted source models is approximately 70.7%—a substantial margin. Consequently, using a uniform
ensemble in such a scenario results in an error rate of roughly 45.5% (experimentally found, not
reported in the table). This is strikingly higher than our method’s error rate of around 14.2%. Given
these findings, we deduce that uniform ensembling is not a reliable approach for model fusion. Thus,
we exclude it from our experiment section’s baseline.

C Results on CIFAR-10C

Here, we report the results on dynamic target distribution using CIFAR-10C dataset. Note that
identical to the experiment on CIFAR100-C in the main paper the results on CIFAR10-C in Table 5
follow the same trend where X+CONTRAST outperforms the X-Best.

Table 5: Results on CIFAR-10C. We take four source models trained on Clear, Snow, Fog and Frost.
We employ these models for adaptation on 15 sequential test domains. This table illustrates that even
in the dynamic environment X+CONTRAST performs better than X, which is the direct consequence
of better retaining source knowledge. (Results in error rate ↓ (in %))

GN SN IN DB GB MB ZB Snow Frost Fog Bright Contrast Elastic Pixel JPEG Mean
Source Worst 84.7 81.1 89.1 42.6 55.6 36.2 32.2 30.6 39.2 28.7 18.5 76.4 26.9 50.0 32.7 48.3
Source Best 72.1 67.8 76.5 22.8 20.4 26.6 18.7 8.1 8.2 6.9 10.6 56.8 18.8 13.9 23.9 30.1
Tent Worst 26.6 22.7 36.1 20.0 34.9 28.8 28.7 32.8 34.4 36.1 30.3 38.2 44.8 41.7 46.8 33.5
Tent Best 19.3 17.6 27.9 14.5 21.1 17.6 13.5 14.3 12.6 14.4 12.4 17.0 19.0 14.3 20.4 17.1

Tent + CONTRAST 17.2 15.6 25.7 9.1 19.1 11.7 9.0 9.9 10.1 9.7 7.7 11.7 14.5 10.3 17.4 13.2
EaTA Worst 31.5 30.4 44.8 14.8 33.9 16.1 13.4 20.5 21.6 19.3 11.2 18.9 23.2 19.5 29.6 23.2
EaTA Best 21.9 20.8 33.9 10.5 19.6 14.3 10.6 8.6 9.0 7.5 8.5 10.3 16.1 11.4 24.0 15.1

EaTA + CONTRAST 18.0 17.3 29.4 8.3 18.2 10.0 7.5 8.0 8.4 7.9 6.4 9.1 13.1 10.0 18.1 12.6
CoTTA Worst 30.1 26.8 37.8 15.0 28.5 16.6 14.6 19.3 18.6 17.5 12.2 15.9 19.4 15.4 19.3 20.5
CoTTA Best 21.0 18.5 28.0 11.2 17.3 13.3 11.1 10.6 10.4 9.5 9.7 11.2 13.1 10.5 15.6 14.1

CoTTA + CONTRAST 18.4 17.0 28.0 8.4 17.7 10.7 7.9 9.1 8.4 8.5 6.8 8.3 12.1 9.3 15.3 12.4

In the single-source scenario, one among the four source models achieves the X-Best (for example
CoTTA-Best) accuracy for a specific domain. The determination of which individual model (from
the four) will attain the best accuracy for that domain remains uncertain beforehand. Furthermore,
the individual source model yielding the X-Best accuracy varies across different domains within
CIFAR10-C. However, in our X+CONTRAST approach, the need to deliberate over the selection of
one out of the four source models is eliminated. X+CONTRAST reliably outperforms any single
source X-model that might achieve the X-Best accuracy.

Individual TTA methods may have distinct advantages. For example, Tent offers several distinct
advantages over CoTTA, including its lightweight nature and faster performance. Conversely, CoTTA
presents certain benefits over Tent, such as increased resilience against forgetting. Consequently, the

17



choice between TTA methods is dependent on the user’s preferences, aligning with the specific task
at hand. In this experiment, we have demonstrated that CONTRAST can be integrated with any TTA
method of the user’s choosing.

D Ablation Study

D.1 Initialization and Learning Rate

Table 6: Effect of initialization and step size choice. Error rate on Office-Home under different
choices of initialization and step sizes.

Step size
Initialization 1e− 3 1e− 2 1e− 1 1e0 1e1 Ours

Random 40.7 40.9 40.6 39.6 41.5 39.3
Ours 37.9 37.8 37.5 37.4 39.1 37.0

Table 6 presents the error rate results on the Office-Home dataset under the same experimental
setting as Table 3 (Appendix) with Tent as the adaptation method, but with different initialization and
learning rate choices for solving the optimization in (4). It is evident from the table that our chosen
initialization and adaptive learning rate result in the highest accuracy gain.

We additionally show another ablation study in Table 7, where we initialize the combination weights
based on the probability of source model predictions. More precisely, we set the initial weights
inversely proportional to the entropy of the source model predictions. In simpler terms, a source
model with low entropy receives a higher weight, while one with high entropy receives a lower
weight.

Table 7: Initialization based on Entropy. The table shows the results of entropy based initialization.
(Results in error-rate % ↓)

Update Policy GN SN IN DB GB MB ZB Snow Frost Fog Bright Contrast Elastic Pixel JPEG Mean
Entropy_init 42.7 41.1 56.9 33.5 46.5 39.4 37.2 41.0 43.2 50.6 46.7 78.6 77.9 79.5 88.7 53.6

Ours 42.2 40.6 55.3 28.6 40.7 31.9 29.6 31.7 32.4 30.9 28.6 41.5 38.5 34.8 49.9 37.1

In the presented table for CIFAR-100C, we note a 16.5% reduction in error resulting from our
initialization method. We found that initializing the combination weights using the entropy of the test
batch for various sources leads to somewhat uniform initialization. However, when we initialize the
combination weights using KL divergence, we achieve a highly effective and peaky prior, favoring
the most correlated source model with relatively higher weightage. This clarifies why initializing
with entropies fails to converge quickly to the optimum, resulting in significantly poorer outcomes
compared to our method.

D.2 Model Update Policy

In Table 8 and 9, we demonstrate that by updating only the model with the highest correlation to
the target domain, our method produces the lowest test accuracy. This is in comparison to scenarios
where we either update all models or solely the least correlated one. This empirical observation
directly supports our theoretical assertion from the theorem: updating the most correlated model is
most effective in preventing forgetting, thereby resulting in the smallest test error during gradual
adaptation. We also experiment with another model update policy where a subset of model is updated.

D.2.1 Subset of Model Update

In this approach, rather than focusing solely on the most correlated source model, we identify
and update a subset of source models that exhibit higher correlation than the rest of the models.
Specifically, we select models for updating based on their combination weights, choosing only those
whose weights exceed 1/n, with n representing the total number of models. The intuition behind
selecting this threshold 1/n for subset selection is grounded in the distance of the combination weight
distribution with respect to the uniform distribution. A uniform combination weight implies that all
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Table 8: Choice of model update (CONTRAST+CoTTA). In our experiments using CoTTA as the
model update method on CIFAR100-C, we tested four scenarios: updating all models, updating only
the least correlated model, updating subset of model, and updating only the most correlated model.
Our results indicate that our model selection approach produces the most favorable outcome. (Results
in error rate ↓ (in %))

Update Policy GN SN IN DB GB MB ZB Snow Frost Fog Bright Contrast Elastic Pixel JPEG Mean
All Model Update 44.0 42.5 54.5 30.1 38.9 33.4 31.7 32.7 32.1 32.6 30.2 32.8 34.5 32.0 40.2 36.2
Least Corr. Update 44.8 44.5 58.9 28.6 38.7 31.0 28.4 29.1 28.9 29.5 26.9 30.9 33.8 30.5 44.0 35.2

Subset of Models Update 44.5 43.3 57.1 28.1 37.5 30.6 28.4 29.9 29.9 28.8 26.8 30.2 32.4 30.2 40.4 34.5
Most Corr. Update 44.6 43.8 57.2 27.8 37.6 30.6 28.0 29.3 29.3 28.2 26.6 30.0 32.5 29.7 41.4 34.4

Table 9: Choice of model update (CONTRAST+Tent). In our experiments using Tent as the model
update method on CIFAR100-C, we tested four scenarios: updating all models, updating only the
least correlated model, updating subset of model, and updating only the most correlated model. Our
results indicate that our model selection approach produces the most favorable outcome. (Results in
error rate ↓ (in %))

Update Policy GN SN IN DB GB MB ZB Snow Frost Fog Bright Contrast Elastic Pixel JPEG Mean
All Model Update 41.6 40.9 57.8 47.1 60.2 60.3 62.1 68.6 73.2 80.9 82.1 92.4 91.2 92.5 94.9 69.7
Least Corr. Update 43.8 41.4 56.1 31.2 41.4 34.8 31.4 33.5 33.1 37.5 31.5 41.6 41.5 37.5 53.1 39.3

Subset of Models Update 43.0 41.1 56.4 33.0 47.8 38.7 37.5 41.4 45.3 51.1 46.4 83.6 81.0 60.1 92.4 53.3
Most Corr. Update 42.2 40.6 55.3 28.6 40.7 31.9 29.6 31.7 32.4 30.9 28.6 41.5 38.5 34.8 49.9 37.1

models are equidistant w.r.t the test distribution and should be updated. However, if only one model
weight surpasses 1/n, it signifies that only one model exhibits a high correlation with the overall
model.

Results are shown in Table 8 and 9. Several key observations can be extracted from here. Notably,
when utilizing the Tent adaptation algorithm, updating a subset of models results in significantly
poorer performance compared to updating only the most correlated model. Conversely, with the
CoTTA adaptation algorithm, the performance decrement from updating a subset of models is
relatively minor compared to updating the most correlated model. This discrepancy can be attributed
to the varying degrees of resistance to forgetting exhibited by these adaptation algorithms. Updating
multiple models tends to induce forgetting, leading to a decline in overall performance, especially
when the adaptation algorithm is not highly resistant to forgetting. Despite the adaptation method’s
robustness to forgetting, it has been consistently observed that updating the most correlated model
not only delivers superior performance but also offers computational advantages over updating a
subset of models. This approach simplifies the update process and ensures more efficient use of
computational resources.

D.2.2 Model Update According to Weight

Here, we update the model j weighted by wj . To do so, we need to properly devise an approach that
updates models in measures according to their correlation with the test data. Drawing inspiration
from recent studies that employ variable learning rates for single-source TTA, we devise a strategy to
adjust the learning rate ηj used in updating model j based on their respective combination weights
wj . Specifically, we assigned the highest learning rate ηmax = 0.001 (0.001 is the learning rate used
for both Tent and CoTTA in our experiments) to the model with the greatest combination weight,
while the lowest learning rate ηmin = 0.0001, (a tenfold reduction) was allocated to the model
with the lowest combination weight. For the remaining models, we interpolated their learning rates
proportionally between the highest and lowest rates, based on their respective combination weights
following the formula: ηj = [

(
wj−wmin

wmax−wmin

)
× (ηmax − ηmin)] + ηmin. In the Table 10, we present

the resulting error rates for CIFAR-100C dataset using both Tent and CoTTA.

Table 10: Model Update according to Weight. The table shows results of updating model according
to their respective weights. (Results in error-rate % ↓)

Update Policy GN SN IN DB GB MB ZB Snow Frost Fog Bright Contrast Elastic Pixel JPEG Mean
Tent 41.7 39.7 53.0 33.9 43.9 36.8 34.6 37.8 39.3 41.0 36.8 56.1 49.5 41.4 60.1 43.0

CONTRAST+Tent 42.2 40.6 55.3 28.6 40.7 31.9 29.6 31.7 32.4 30.9 28.6 41.5 38.5 34.8 49.9 37.1
CoTTA 44.5 43.0 56.2 28.1 38.1 30.8 28.6 29.9 29.6 28.7 27.0 29.5 31.8 29.0 38.6 34.2

CONTRAST+CoTTA 44.6 43.8 57.2 27.8 37.6 30.6 28.0 29.3 29.3 28.2 26.6 30.0 32.5 29.7 41.4 34.4
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Our investigation reveals that, in scenarios where the update algorithm exhibits limited robustness
against forgetting, such as Tent, updating only the model with the highest combination weight
proves more advantageous. This is because even marginal updates to uncorrelated models can lead
to detrimental forgetting, resulting in poor performance. Conversely, when the update algorithm
demonstrates resilience against forgetting (CoTTA), updating the most correlated model impacts per-
formance the most. While updating uncorrelated models does not substantially enhance performance,
it significantly increases computational costs. It should also be noted that we have found exactly same
finding with our ablation study focused on updating subsets of models. Consequently, we assert that
updating the single model with the highest combination weight yields optimal performance across all
scenarios.

D.3 Combination Weight Visualization

To provide insight into the combination weight distribution, let’s consider an example where the
source models are trained on the clean, snow, frost, and fog domains using the training data. We
then select one of these domains to collect the average weights over all the test data. When the test
data is from the fog domain, the weight distribution appears as follows: [0.05, 0.08, 0.09, 0.78]. On
the other hand, when the test domain is frost, we observe the following weight distribution: [0.07,
0.14, 0.69, 0.11]. These results clearly illustrate that the weight distribution accurately reflects the
correlation between the source models and target domains.

D.4 Comparison with MSDA

Existing multi-source source-free methods are designed for offline settings where all the target data
are available during adaptation. However, in our setting, data is received batch by batch during
adaptation. Therefore, theoretically, these methods are expected to perform worse in our setup.
Nevertheless, we compared CONTRAST with the seminal paper [18] on source-free multi-source
Unsupervised Domain Adaptation (UDA), specifically the DECISION method, to demonstrate its
effectiveness in an online adaptation setting. We keep the hyperparameters exactly the same as
described in the DECISION and perform adaptation on each incoming batch of test data with the
number of epochs specified in DECISION.

Table 11: Comparison with MSDA. The table compares the performance of our method with MSDA
approach DECISION. (Results in error-rate % ↓)

Update Policy GN SN IN DB GB MB ZB Snow Frost Fog Bright Contrast Elastic Pixel JPEG Mean
DECISION 55.0 76.2 90.5 95.2 97.3 97.9 98.2 98.0 98.3 98.4 98.4 98.7 99.0 98.9 98.9 93.3

CONTRAST+Tent 42.2 40.6 55.3 28.6 40.7 31.9 29.6 31.7 32.4 30.9 28.6 41.5 38.5 34.8 49.9 37.1

It is evident from Table 11 that DECISION performs notably poorly in the online setting, with an
error rate almost 56% higher than CONTRAST. DECISION utilizes clustering of the entire offline
dataset based on the number of classes, a method not feasible to accurately implement in our setting
with very small batch sizes. This highlights the necessity of a multi-source method specifically
tailored for our setting.

D.5 Comparison with Model Soups

Model Soups [30] is a popular approach for utilizing a set of models by averaging their parameters to
create a single model for inference on test data. For completeness, we compare our method against
Model Soups.

Table 12: Comparison with Model Soups. The table compares the performance our method against
model soups. (Results in error-rate % ↓)

Update Policy GN SN IN DB GB MB ZB Snow Frost Fog Bright Contrast Elastic Pixel JPEG Mean
Model-Soups 96.82 96.26 97.08 95.17 95.33 95.30 95.22 95.17 95.86 95.28 94.96 97.41 95.04 95.05 95.86 95.72

CONTRAST+Tent 42.2 40.6 55.3 28.6 40.7 31.9 29.6 31.7 32.4 30.9 28.6 41.5 38.5 34.8 49.9 37.1

As shown in Table 12, the performance of Model Soups is significantly worse compared to our
method. Model Soups averages the parameters of models fine-tuned on the same data distribution.
However, in our setting, we have models trained on different source domains, making the averaging
of model parameters suboptimal.
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E Implementation Details

In this section, we provide a comprehensive overview of our experimental setup. We conducted
two sets of experiments: one on a stationary target distribution, and the other on a dynamic target
distribution that changes continuously. The reported results in the main paper are average of three
runs with different seeds.

E.1 Stationary Target

E.1.1 Digit Classification

The digit classification task consists of five distinct domains from which we construct five different
adaptation scenarios. Each scenario involves four source models, with the remaining domain treated
as the target distribution. In total, we construct five adaptation scenarios for our study.

The ResNet-18 architecture was used for all models, with an image size of 64×64 and a batch size of
128 during testing. Mean accuracy over the entire test set is reported in Table 2 of the main paper. For
Tent we use a learning rate of 0.01 and for rest of the adaptation method a learning rate of 0.001 is
used. We use Adam optimizer for all the adaptation methods. Model parameter update is performed
using a single step of gradient descent.

E.1.2 Object Recognition

The object recognition task on the Office-Home dataset comprises of four distinct domains from
which we construct four different adaptation scenarios, similar to the digit classification setup. We
use the same experimental settings and hyperparameters as the digit classification experiment, with
the exception of the image size, which is set to 224 × 224 in this experiment. The results of this
evaluation are reported in Table 3 of the main paper.

E.2 Dynamic Target

E.2.1 CIFAR-10/100-C

In this experiment, we use four ResNet-18 source models trained on different variants of the CIFAR-
10/100 dataset: 1) vanilla train set, 2) train set with added fog (severity = 5), 3) train set with added
snow (severity = 5), and 4) train set with added frost (severity = 5). To evaluate the models, we use
the test set of CIFAR-10/100C (severity = 5) and adapt to each of the domains in a continual manner.
The images are resized to 224× 224. For all the adaptation methods, a learning rate of 0.001 with
Adam optimizer is used.

F Semantic Segmentation

Table 13: Result on Cityscape to ACDC: In this experiment, we test our method on the test data from
individual weather conditions (static test distribution) of ACDC. The source models are trained on
the train set of Cityscape and its noisy variants. Our method clearly outperforms baseline adaptation
method. (Results in % mIoU)

Method Fog Rain Snow Night Avg.
Tent-Best 25.3 21.0 19.2 12.6 19.5

CONTRAST 27.7 22.8 21.1 14.0 21.4

Our method is not just limited to image classification tasks and can be easily extended to other
tasks like semantic segmentation (sem-seg). We assume access to a set of sem-seg source models
{fjS}Nj=1, where each model classifies every pixel of an input image to some class. Specifically,
fjS : RH×W → RH×W×K , where K is the number of classes. In this case, the entropy in Eqn. 3 of
the main paper will be modified as follows:
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Table 14: Result on Cityscapes to ACDC for dynamic test distribution: This table illustrates that
over a prolonged cycle of repetitive test distributions, our model can retain performance better than
baseline Tent. ((Results in % mIoU))

Time t
Round 1 3 5 All
Conditions Rain Snow Fog Night Rain Snow Fog Night Rain Snow Fog Night Mean
Tent-Best 20.1 21.3 22.3 11.3 18.5 17.2 19.5 8.4 15.8 14.5 17.5 6.8 16.1
CONTRAST 22.1 21.4 24.3 13.4 21.4 18.3 23.5 11.3 18.6 15.5 21.4 10.4 18.6

L(t)
w (w) = −ED(t)

T

H∑
h=1

W∑
w=1

K∑
c=1

ŷ
(t)
ihwc log(ŷ

(t)
ihwc) (11)

Where, ŷ(t)ihwc is the weighted probability output corresponding to class c for the pixel at location
(h,w) at time-stamp t. We modify Eqn. 3 in the main paper, while keeping the rest of the framework
the same.

F.1 Datasets

We use the following datasets in our experiments:
• Cityscapes: Cityscapes [49] is a large-scale dataset that has dense pixel-level annotations for 30
classes grouped into 8 categories (flat surfaces, humans, vehicles, constructions, objects, nature, sky,
and void). There are also fog and rain variants [50, 51] of the Cityscapes dataset, where the clean
images of Cityscapes have been simulated to add fog and rainy weather conditions.
• ACDC: The Adverse Conditions Dataset [52] has images corresponding to fog, night-time, rain,
and snow weather conditions. Also, the corresponding pixel-level annotations are available. The
number of classes is the same as the evaluation classes of the Cityscapes dataset.

F.2 Experimental setup

We use Deeplab v3+ [53] with a ResNet-18 encoder as the segmentation model for all the experiments.
We resize the input images to a size of 512× 512. Following the conventional evaluation protocol
[49], we evaluate our model on 19 semantic labels without considering the void label.

We first experiment in a static target distribution setting. Specifically, we train three source models on
clean, fog, and rain train splits of Cityscapes. We then evaluate the models on the test set of each
of the weather conditions of ACDC dataset using CONTRAST and baseline Tent models. We use a
batch size of 16 and report the mean accuracy over all the test batches. Again, we have updated the
combination weights of CONTRAST with SGD optimizer using 5 iterations. For updating the source
model in CONTRAST that has the most correlation with the incoming test batch, we use the Adam
optimizer with a learning rate of 0.001 and updated the batch-norm parameters with one iteration.
The baseline Tent models are also updated with the same optimizer and learning rate. The results in
Table. 13 clearly demonstrate that CONTRAST outperforms all the baselines on test data from each
of the adverse weather conditions.

We also evaluate our method in a dynamic test distribution setting, where we have sequentially
incoming test batches from the four weather condition test sets of ACDC dataset. The test sequence
includes 5 batches of Rain, followed by 5 batches of Snow, 5 batches of Fog, and finally 5 batches
of Night. This sequence is repeated (with the same test images) for a total of 5 rounds. We report
the mean accuracy over the 5 batches and include the results for the 1st, 3rd, and 5th rounds in
Table 14. We use the same hyperparameters as in the dynamic setting of previous experiments with
the exception that the batch-size is 16.

F.3 Visualization

In Fig. 4, we present the input images along with the corresponding predicted masks of the baseline
models and CONTRAST from the last round. The figure contains rows of input image samples from
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the four different weather conditions of the ACDC dataset, in the order of rain, snow, fog, and night.
CONTRAST is compared with baseline adaptation method Tent, and as shown in Fig. 4, it is evident
that CONTRAST provides better segmentation results compared to the baselines visually.

Input GT Mask Tent-Best CONTRAST

Figure 4: Visual Comparison of CONTRAST with Baselines for Semantic Segmentation Task.
Each row in the figure corresponds to a different weather condition (rain, snow, fog, and night from
top to bottom). It is evident that CONTRAST outperforms the baselines in terms of segmentation
results.

G Additional discussion

The φ(.) function implies that trained sources should produce high-quality pseudo-labels within
their own distribution. Essentially, this function evaluates the effectiveness of the model’s training.
For instance, even if the shift between the source and target is minimal, a poorly trained source
model might still under-perform on the target. Observe that both the shift and the quality terms are
minimized when we broaden our search space over ∆̂. This allows us to select a model that exhibits
the highest correlation with the test domain, thereby providing us with the most strict bound within
the discrete simplex.
Examining the issue through the lens of the gradient provides another perspective. By updating the
source model that is most correlated with the test data, its gradient will be smaller than those of other
models. Over time, this ensures that the model’s parameters remain closer to the original source
parameters, thereby preventing catastrophic forgetting. let’s examine a toy case mathematically of
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the most correlated source can give us least gradient.
Let us assume a binary classification task with linear regression where the final activation is sigmoid
σ(.) function. Now let’s take the pseudo-label for a sample x be ŷ, where ŷ = σ(w⊤x). Then the
entropy h of ŷ will be h = −ŷ log(ŷ). Then we take the derivative of the objective h w.r.t w weight
as follows:

h = −ŷ log(ŷ)

⇒ ∂h

∂w
= (1 + log(ŷ))ŷ(ŷ − 1)x

Now we can easily verify that if the source model is closest to the test domain, then the pseudo-label
generated by the model has very small entropy which also means ŷ is either close to 0 or close to 1.
For both of the cases the derivative expression above goes close to zero which validate the claim of
having smallest gradient for highest correlated source.

H KL divergence between two univariate Gaussians

During the discussion of initialization of the combination weights in Section 3.5, we come up
with θtj which is calculated using the formula for KL divergence between two univariate Gaussians
N (µ1, σ

2
1) and N (µ2, σ

2
2). In this section, we provide the detailed derivation of this below:

From the definition of KL divergence, we know the distance between two distributions p and q is
given by,

DKL(p, q) =

∫ +∞

−∞
p(x) log

(
p(x)

q(x)

)
dx

=

∫ +∞

−∞
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(12)

Here in this problem p and q are univariate Gaussians and can be expressed as follows:
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Now we compute the second term in Eqn. (12) as follows:

∫ +∞

−∞
p(x) log (q(x)) dx = log

(
1

(2πσ2
2)

1
2

)
−
∫ +∞

−∞
p(x)

(x− µ2)
2

2σ2
2

dx

= log

(
1

(2πσ2
2)

1
2

)
−
∫ +∞
−∞ x2p(x) dx− 2µ2

∫ +∞
−∞ xp(x) dx+ µ2

2

2σ2
2

= log

(
1

(2πσ2
2)

1
2

)
−

E
[
X2
]
− 2µ2E [X] + µ2

2

2σ2
2

= log

(
1

(2πσ2
2)

1
2

)
− Var [X] + (E [X])

2 − 2µ2E [X] + µ2
2

2σ2
2

= log

(
1

(2πσ2
2)

1
2

)
− σ2

1 + µ2
1 − 2µ2µ1 + µ2

2

2σ2
2

= log

(
1

(2πσ2
2)

1
2

)
− σ2

1 + (µ1 − µ2)
2

2σ2
2

(13)

In a similar manner we calculate the first term in Eqn. (12) as follows:

24



∫ +∞

−∞
p(x) log (p(x)) dx = log

(
1

(2πσ2
1)

1
2

)
−
∫ +∞

−∞
p(x)

(x− µ1)
2

2σ2
1

dx

= log

(
1

(2πσ2
1)

1
2

)
−
∫ +∞
−∞ x2p(x) dx− 2µ1

∫ +∞
−∞ xp(x) dx+ µ2

1

2σ2
1

= log

(
1

(2πσ2
1)

1
2

)
−

E
[
X2
]
− 2µ1E [X] + µ2

1

2σ2
2

= log

(
1

(2πσ2
2)

1
2

)
− Var [X] + (E [X])

2 − 2µ1E [X] + µ2
1

2σ2
1

= log

(
1

(2πσ2
1)

1
2

)
− σ2

1 + µ2
1 − 2µ2

1 + µ2
1

2σ2
1

= log

(
1

(2πσ2
1)

1
2

)
− 1

2

(14)

Now combining Eqn. (14) and Eqn. (13), we get the final KL divergence as follows:

DKL(p, q) = log
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(2πσ2
1)

1
2

)
− 1

2
− log

(
1

(2πσ2
2)

1
2

)
+

σ2
1 + (µ1 − µ2)

2

2σ2
2

= log

(
σ2

σ1

)
+

σ2
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2σ2
2
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I Optimal step size in approximate Newton’s method

In the main paper, we compute the optimal combination weights by solving the optimization below:

minimize
w

L(t)
w (w)

subject to wj ≥ 0,∀j ∈ {1, 2, . . . , N},
n∑

j=1

wj = 1

(16)

To solve this problem, we begin by initializing w
(t)
init as δ(−θt). Next, we determine the optimal

step size based on the initial combination weights to minimize the loss L(t)
w as much as possible.

Specifically, we use a second-order Taylor expansion to approximate the loss at the updated point
after taking a single step with a step size of α(t). Thus, after one step of gradient descent, the updated
point becomes:

w
(t)(1)
init = w

(t)
init − α(t)

(
∇wL(t)

w

) ∣∣∣∣winit (17)

For notational simplicity let us first denote w
(t)(1)
init = w(1), w(t)

init = w(0) and
(
∇wL(t)

w

) ∣∣∣∣winit =

∇w(0)L(t)
w . We also denote the hessian of L(t)

w at w(0) as Hw(0) . Now, we can write the taylor series
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expansion of L(t)
w at w(1) as follows:

L(t)
w (w(1)) = L(t)

w (w(0) − α(t)∇w(0)L(t)
w )

= L(t)
w (w(0))− α(t)

(
∇w(0)L(t)

w

)⊤ (
∇w(0)L(t)

w

)
+

(
α(t)

)2
2

(
∇w(0)L(t)

w

)⊤
Hw(0)

(
∇w(0)L(t)

w

)
+O((α(t))3)

≈ L(t)
w (w(0))− α(t)

(
∇w(0)L(t)

w

)⊤ (
∇w(0)L(t)

w

)
+

(
α(t)

)2
2

(
∇w(0)L(t)

w

)⊤
Hw(0)

(
∇w(0)L(t)

w

)
(18)

In order to minimize L(t)
w (w(1)) we differentiate Eqn. (18) with respect to α(t) and set it zero to get

α
(t)
best. Specifically,

∂L(t)
w (w(1))

∂α(t)

∣∣∣∣
α(t)=α

(t)
best

= 0

=⇒ −
(
∇w(0)L(t)

w

)⊤ (
∇w(0)L(t)

w

)
+ α

(t)
best

(
∇w(0)L(t)

w
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Hw(0)

(
∇w(0)L(t)

w

)
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=⇒ α
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w
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w

)
(
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) =
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)
(
∇wL(t)
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(
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w

)
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winit

(19)

This is the desired expression of α(t)
best in Eqn. 10 in the main paper.

Note that w(1) does not lie within the simplex. To ensure that the updated w remains within the
simplex, we project it onto the simplex after each gradient step. This can be done by applying the
softmax operator (δ(.) in the main paper), which will ensure that the updated weights are normalized
and satisfy the constraints of the simplex. Moreover, in an ideal scenario, one would calculate the
optimal step size α

(t)
best after each gradient step, taking into account the updated point. However,

for the purpose of our experiment, we calculate α
(t)
best only for the first step and use this value as

the learning rate for the remaining steps in order to avoid hessian calculation repeatedly. In our
experiment, we limit the number of steps to 5 in order to ensure quicker inference. Empirically, we
have observed that using the obtained step size as fixed throughout the optimization process works
reasonably well.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper discusses limitations of the work performed.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The paper provides full set of assumtions and complete proof.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper fully discloses all the information needed to reproduce the main
experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: The paper fully discloses all the information needed to reproduce the main
experimental results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Training details is included in the supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The paper provides information about the statistical significance of the experi-
ments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper provides sufficient information on the computer resources.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, we confirm.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
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10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Included in the paper.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not pose such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The data and models used are properly cited.
Guidelines:
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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