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ABSTRACT

Time series anomaly detection often faces challenges such as non-stationarity
and trends. Recently, unsupervised learning methods combined with generative
models have shown promising prospects in this field, especially the application
of multi-resolution technology in anomaly detection has achieved certain results.
However, existing models usually ignore the correlations among different features
in time series data and the rich multi-resolutional knowledge contained in the orig-
inal data. To solve this problem, this paper proposes a new Model, Graph Guided
Reconstruction Diffusion Model (GGRD). GGRD is an end-to-end unsupervised
anomaly detection model based on reconstruction. It adopts overlapping sliding
Windows to sample multi-resolution data and integrates the similarity prior in
the data into the Graph-Guided Attention (GGA) mechanism, thereby effectively
dealing with complex characteristics such as non-stationarity and cross-variable
correlations of time series. The experimental results show that GGRD signifi-
cantly outperforms the existing methods on multiple real datasets. Code is avail-
able at https://anonymous.4open.science/r/GGRD-806F/.

1 INTRODUCTION

Time series anomaly detection is a fundamental problem with applications in industrial monitoring,
healthcare, and cybersecurity. Unlike other modalities, time series often exhibit trends, seasonality,
and—most critically—non-stationarity, which obscure the boundary between normal and abnormal
patterns (Wen et al., 2022). In multivariate settings, the challenge is amplified by evolving cross-
feature dependencies, where correlations emerge, vanish, or shift over time (Wang et al., 2023).
These properties render conventional anomaly detection methods insufficient for real-world time
series.

Recently, diffusion-based generative models (Chen et al., 2023; Wang et al., 2023) have shown
promise for anomaly detection. By corrupting time series with noise and reconstructing the original
signal, they provide an unsupervised framework where reconstruction error serves as the anomaly
score. Yet, existing approaches face three fundamental limitations. (i) Non-stationarity across
resolutions. MODEM (Zhong et al., 2025) incorporates multi-resolution decomposition, but its
reliance on non-overlapping pooling introduces staircase artifacts and discards fine-grained infor-
mation. Other methods such as MG-TSD (Fan et al., 2024) and MR-Diff (Shen et al., 2024) attempt
multi-granularity supervision or progressive denoising, but still yield coarse, unstable representa-
tions. (ii) Inefficient iterative denoising. ImDiffusion (Chen et al., 2023) and DiffAD (Xiao et al.,
2023) adopt multi-step denoising, which incurs high computational cost and error accumulation,
limiting real-time applicability. (iii) Missing explicit modeling of feature dependencies. Anomaly
Transformer (Xu et al., 2021) focuses on temporal association discrepancies but overlooks cross-
feature dynamics. Graph-based models such as MTAD-GAT (Zhao et al., 2020) and GDN (Deng &
Hooi, 2021) employ fixed or weakly adaptive graphs, while the Diffusion Graph Model (Lan et al.,
2025) introduces anomaly-aware edges without capturing evolving correlations.

To address these gaps, we propose the Graph-Guided Reconstruction Diffusion model (GGRD), an
end-to-end framework for unsupervised anomaly detection. GGRD introduces three innovations:
(i) a sliding-window averaging mechanism for smooth and stable multi-resolution decomposition,
(ii) a one-step reconstruction strategy that replaces iterative denoising to improve efficiency and ro-
bustness, and (iii) a Graph-Guided Network (GGN) equipped with Graph-Guided Attention (GGA),
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which injects similarity-based priors into the attention mechanism to capture dynamic cross-feature
dependencies.

In summary, the contributions of this paper are:

• Proposes GGRD, a diffusion-based framework that integrates smooth multi-resolution de-
composition with efficient one-step reconstruction.

• Introduces GGN with Graph-Guided Attention to explicitly model dynamic cross-feature
dependencies.

• Demonstrates state-of-the-art performance and efficiency on multiple real-world bench-
marks.

2 RELATED WORK

Research on time series data mainly focuses on classification, prediction, imputation, and anomaly
detection(Jin et al., 2024). Among them, anomaly detection in time series has attracted considerable
attention in both industry and academia(Zamanzadeh Darban et al., 2024), especially for multivariate
time series data. The methods for multivariate time series anomaly detection can be roughly divided
into three categories(Zhang et al., 2025): early traditional statistical methods, traditional machine
learning methods, and deep learning methods.

Statistical methods mainly utilize statistical knowledge and some statistical indicators to achieve
anomaly detection tasks, such as ARIMA(Yaacob et al., 2010) and COPOD(Li et al., 2020). Tradi-
tional machine learning methods such as PCA(Shyu et al., 2003), kNN(Ramaswamy et al., 2000),
and IForest(Liu et al., 2008) use various linear transformations, proximity measures, or outlier de-
tection algorithms to effectively identify abnormal behaviors. However, these methods cannot effec-
tively capture the complex patterns of time series data.

In recent years, with the rapid development of deep learning, a large number of deep learning-
based time series anomaly detection models have been proposed and achieved remarkable results
in different scenarios, such as VAE(Kingma & Welling, 2013), LSTM-AD(Malhotra et al., 2015),
GDN(Deng & Hooi, 2021), Anomaly Transformer(Xu et al., 2021), etc. It is worth noting that
Diffusion Models have demonstrated outstanding performance in image generation(Xu & Chi, 2024;
Luo et al., 2024; Epstein et al., 2023), prompting researchers to introduce them into time series
anomaly detection tasks. ImDiffusion(Chen et al., 2023) uses diffusion models to mask and fill time
series and combines ensemble strategies to enhance the robustness of anomaly detection, being one
of the earliest works to apply diffusion models to time series anomaly detection. DiffAD(Xiao et al.,
2023) proposes a new denoising diffusion-based imputation method and uses a density ratio-based
strategy to flexibly select normal observations, thereby reducing the interference of dense anomaly
regions on the model. D3R(Wang et al., 2023) proposes a dynamic decomposition and diffusion
reconstruction framework for non-stationary time series, which significantly reduces the impact of
drift on detection accuracy by achieving dynamic decomposition of stable and trend components
and using noise diffusion to control the information bottleneck externally.

To fully utilize the information in the data, some multi-resolution methods have been applied to time
series tasks. For example, MG-TSD(Fan et al., 2024) uses multi-granularity guided loss to enhance
prediction performance to address the instability challenge caused by randomness. MR-diff(Shen
et al., 2024) uses seasonal trend decomposition and a coarse-to-fine non-autoregressive method to
solve prediction tasks. MODEM(Zhong et al., 2025) designs a multi-resolution decomposable dif-
fusion model for the anomaly detection task of non-stationary time series, with the core being a
coarse-to-fine diffusion process and a frequency domain enhanced decomposition network, which
can capture long-term trends and short-term fluctuations at different time scales, thereby effectively
distinguishing anomalies from non-stationary patterns.

The above-mentioned methods have promoted the development of the field of anomaly detection
from the perspectives of statistics, generative models, and multi-resolution modeling. In this work,
we for the first time explicitly introduce the correlation of different features of time series in different
temporal granularity into the modeling. We consider multi-resolution data modeling and propose a
novel reconstruction diffusion model to achieve the modeling ability of complex time series rela-
tionships.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

●  ●  ●  ●   
 
 

●  ●  ●  ●   
 
 

●  ●  ●  ●   
 
 

��
� ��

�−1 �1
  ��

1��
�−2

�

GGN
��,1

��−1

�����

�

���� 1

�

GGN
��,2

��−2

�����

�

���� 2

�

GGN
��,R−1

�1

�����

�

���� R − 1

�2
 

�R−2
 

�������������� ������ :  � = ��−1 
 
 

�1 �R−1�2

��,�: �� ������� ��������

 : element-wise mean
 

������: �

Add Noise

Sampling

 Noise Data
 ��

�∈�:�

 Multi − resolution data
 ��∈�:�

����� ��∈�:�

GGRD

 Spatio-Temporal Prior Module

�����: �

Figure 1: The overall structure of our model is summarized, mainly including STPM and GGRD.

3 PRELIMINARY

The goal of multivariate time series anomaly detection is to identify time steps at which the observed
values deviate from normal behavior. Formally, let X ∈ RT×D denote the input time series, where
T is the number of time steps and D is the number of features. The anomaly labels are represented
as Y ∈ {0, 1}T , where yt = 1 indicates that the observation at time step t is anomalous and yt = 0
otherwise. In the unsupervised setting considered here, labels Y are unavailable during training and
are used only for evaluation.

A common approach to unsupervised anomaly detection is to learn a generative model that captures
the distribution of normal time series. The pipeline typically consists of three stages: (i) Training:
fit a generative model pθ(X) (or its conditional variant) using unlabeled historical data assumed to
be mostly normal; (ii) Reconstruction or prediction: given a test input X, obtain a reconstructed
(or predicted) version X̂ using the generative model; (iii) Scoring and thresholding: compute an
anomaly score st for each time step, e.g., via reconstruction error st = ∥x̂t − xt∥22, and flag t as
anomalous if st exceeds a learned or adaptive threshold.

In this work, we focus on diffusion-based models, which corrupt the input with noise and then learn
to reconstruct it, using the reconstruction error as the anomaly indicator.

4 METHODOLOGY

4.1 OVERALL FRAMEWORK

Figure 1 illustrates the architecture of our proposed framework. The model consists of two major
components: (i) a Spatio-Temporal Prior Module (STPM) that generates smooth multi-resolution
representations and similarity-guided graph priors, and (ii) a Graph-Guided Reconstruction Diffu-
sion model (GGRD) that performs one-step reconstruction guided by these priors.

Given an input time series X, the STPM first generates a set of multi-resolution series {X(r)}Rr=1 via
sliding-window averaging, where R is the number of resolutions. For each resolution, we compute
cosine similarity between feature dimensions to construct a similarity-guided graph tensor S(r) ∈
RP×D×D, which encodes the pairwise dependencies among features and time segments. The set
{X(r),S(r)} is then corrupted by Gaussian noise following the forward diffusion process to obtain
{X(r)

K }.

The GGN takes the noisy multi-resolution series as input and performs a single-step reconstruction
to produce X̂. Unlike conventional diffusion models that require iterative denoising, GGN directly
restores the clean signal in one step, significantly improving inference efficiency and mitigating error
accumulation. The reconstruction is guided by graph priors through the Graph-Guided Attention
(GGA) mechanism, enabling explicit modeling of dynamic cross-feature dependencies.

3
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Figure 2: The process of obtaining similarity-guided Graph tensors.

4.2 SPATIO-TEMPORAL PRIOR MODULE

Smooth multi-resolution decomposition To obtain multi-resolution representations, we apply a
sliding window of length rL with stride 1 over X at each resolution r ∈ [1, R]. For each window,
we take the mean of the included points to form the smoothed sequence X(r) ∈ RT×D. This
overlapping-window design preserves temporal smoothness and continuity, mitigating the staircase
artifacts introduced by non-overlapping pooling.

Timestamp hard embedding Following D3R (Wang et al., 2023), we extract calendar-based fea-
tures from absolute timestamps and build a fixed multi-granularity embedding Xtime ∈ RT×dtime .
We use dtime = 5 fields encoding minute, hour, day, week, and month. This hard-coded timestamp
representation injects priors about periodic and seasonal patterns while preserving temporal order-
ing, and is subsequently consumed by the Time-Augment Encoder to enhance multi-level temporal
modeling.

Similarity-guided graph construction As in Figure 2, for each resolution r, we divide X(r) into
P consecutive patches(time segments) along the temporal dimension:

P =

⌈
T

patch size

⌉
(1)

For each patch p, we compute a cosine-similarity matrix:

S
(r,p)
ij =

⟨x(r,p)
:,i ,x

(r,p)
:,j ⟩

∥x(r,p)
:,i ∥2 ∥x(r,p)

:,j ∥2
, (2)

where x
(r,p)
:,i denotes the series of feature i in patch p. The collection {S(r,p)} forms a dynamic

graph prior that captures time-varying, multi-resolution feature dependencies.

4.3 DIFFUSION FORWARD PROCESS

Following denoising diffusion probabilistic models (DDPM) (Ho et al., 2020), we gradually inject
Gaussian noise into each X(r) over K steps via a forward Markov chain:

q(X
(r)
k | X(r)

k−1) = N
(√

1− βk X
(r)
k−1, βkI

)
, k = 1, . . . ,K, (3)

where βk ∈ (0, 1) is a variance schedule. In practice, X(r)
k can be sampled in closed form at any k,

allowing efficient generation of the fully-noised sample X
(r)
K in one step.

4.4 GRAPH-GUIDED NETWORK (GGN)

The GGN serves as the backbone for one-step reconstruction. It operates in a coarse-to-fine manner
over R resolution levels and R − 1 steps. At step m, we first fuse the noisy input X(R−m)

K with the
previous reconstruction Ẑ(m−1) through a channel-wise concatenation and a 1D projection layer:

Z(m) = Proj
(
[X

(R−m)
K ; Ẑ(m−1)]

)
, Ẑ(0) ≡ X

(R)
K , m = 1, . . . , R− 1. (4)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

GG
N

 B
lo

ck

GG
N

 B
lo

ck

GG
N

 B
lo

ck

FF
N

× �

��

Time-Feature    Encoder
 

Feature 
Block

Cat Layer Norm
Conv

 
Conv

 

Time 
Block

�'�

(�'�)�

Da
ta

 E
m

be
dd

in
g

Ti
m

e 
Em

be
dd

in
g

ADD & NormFFNADD & NormConv
 

Identity Identity 

��

�����

Time-Augment   Encoder
 

× ��  
�  ��   

� × � 
� ’ ~  � SoftMax

Transpose
 

� × � 

� 

Linear & Transpose

� ∈ ℝ�×�×�  

Transpose
 

�  �  
× ��  

Linear & Transpose

Scores

Graph-Guided Attention

GGA

FFN

ADD & Norm

MSA

ADD & Norm

�
�

��

�

��+1

Graph-Guided 
       Block

Figure 3: The overall structure of GGNetwork mainly includes Time-Feature Encoder, Time-
Augment Encoder and some GGN Blocks. The structures of GGN Block and GGA are respectively
to the right and below the dotted line.

This fusion passes information across resolutions, enabling progressively refined reconstruction.

Dual encoders The structure of GGN is presented in Figure 3.The fused sequence Z(m) is embed-
ded into a dmodel-dimensional space and processed by two parallel encoders(the detailed structure
is in the Appendix C.1): (i) the Time-Feature Encoder Etf , which extracts temporal dependencies
and feature-wise interactions using self-attention and local convolutions, and (ii) the Time-Augment
Encoder Eta, which projects the timestamp embedding Xtime into the same space. Their outputs are
added elementwise:

H
(m)
0 = Etf(Z(m)) + Eta(Xtime). (5)

Stacked GGN blocks with GGA The hidden state is refined through N stacked GGN blocks.
Each block contains(as shown in Figure 3): (a) a Graph-Guided Attention (GGA) module that
incorporates the similarity-guided graph prior S̄(m), which is obtained by a specially defined fusion
function f (see Appendix C.2 for details), representing the information fusion between S of the
current step and S of the previous step,and (b) a temporal self-attention layer that maintains global
temporal context.

Given queries Q, values V projected from H
(m)
ℓ , Linear&T(·) represents passing through the linear

layer and immediately transposing.GGA modifies the attention computation by applying the graph
prior to the keys:

K = Linear&T2

(
Linear&T1(X

T)⊙ S̄(m)
)

(6)

A(m) = softmax
(QK⊤

√
d

)
, GGA(H) = A(m)V. (7)

This biases attention weights toward feature pairs with higher similarity in S̄(m), explicitly capturing
dynamic cross-feature dependencies. The GGA output is added to the temporal attention output and
passed through a lightweight feed-forward layer with residual connections and layer normalization.

Stage output After N blocks, the hidden representation is projected back to the input dimension
to yield the reconstruction:

Ẑ(m) = Head(H
(m)
N ) ∈ RT×D, (8)

which is then passed to the next resolution level as input. The final reconstruction X̂ = Ẑ(R−1) is
used for anomaly scoring.

5
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4.5 TRAINING OBJECTIVE AND ANOMALY SCORING

We train GGRD to minimize the mean squared error (MSE) between the original and reconstructed
series:

L =
1

TD

T∑
t=1

D∑
d=1

(
xt,d − x̂t,d

)2
. (9)

During inference, the anomaly score at time step t is defined as the reconstruction error st = ∥x̂t −
xt∥22. Anomalies are identified by applying an adaptive thresholding method SPOT (Siffer et al.,
2017) to {st}Tt=1.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets This paper mainly uses five public time series datasets,including PSM (Pooled Server
Metrics)(Abdulaal et al., 2021),SMD(Server Machine Dataset)(Su et al., 2019),and SWaT(Secure
Water Treatment)(Mathur & Tippenhauer, 2016).The training set and validation do not contain la-
bels,only the test set data has labels.More descriptions of the datasets are in Appendix A.1.

Metrics The experiments adopt Precision, Recall and F1 score as the main evaluation metrics.
Unlike the point adjustment method commonly used in most existing studies(Chen et al., 2023; Xiao
et al., 2023; Wen et al., 2025), we use the Affiliation based(Huet et al., 2022) strategy to calculate the
indicators. In a continuous anomaly interval, as long as any point is predicted, the point adjustment
strategy will be regarded as the entire interval being detected, thereby significantly improving TP
and masking the deficiency of the model in anomaly localization, which is prone to cause false
performance improvement(Wang et al., 2023). In contrast, the method based on Affiliation measures
the matching relationship between the predicted anomalies and the true anomaly intervals, which
more objectively reflects the performance of the model in interval-level anomaly detection. It can
avoid excessive bias towards long interval anomalies and thus obtain more reasonable results.

Experiment setup GGRD uses Adam as the optimizer, with the learning rate set to 1e − 4 and
weight decay set to 1e− 4. For the unlabeled data in each dataset, we select 80% as the training set,
20% as the validation set, and the labeled data as the test set. For all datasets, the size of batchsize
is set to 8 and the training epoch is 10. Go through 1, 000 steps from 0.0001 to 0.02. The number of
GGN blocks N is set to 4 in the SMD dataset and 2 in the rest of the datasets. The number of noise
additions K to the original time series data is 500. All the experiments of GGRD were carried out
under the Linux system, Pytorch, and a total of 4 NVidia A100 GPUs were used.

Baseline The baseline methods we selected cover multiple paradigms, including probabilistic
modeling, linear transformation, deep neural networks, and Transformer methods, etc. For specific
descriptions, please refer to the Appendix A.2.

5.2 DETECTION RESULTS

We conducted experiments on the GGRD model and baselines on multiple real-world datasets, and
the experimental results are shown in Table. 1. The GGRD model achieved the best performance on
the non-stationary datasets PSM and SMD, which were 3.28% higher than the second-best results
(from 0.8100 to 0.8428) and 1.44% higher (from 0.9238 to 0.9382), respectively. The mean of the
overall F1 on all datasets, Avg-F1, was 0.2% higher than the second-best result (from 0.8420 to
0.8440). However, on the SWaT dataset, GGRD performs slightly worse than D3R and MODEM.
This is mainly because SWaT data usually contains short-term burst exceptions, while the modeling
mechanisms of D3R and MODEM are more sensitive to such instantaneous changes. In contrast,
the advantage of GGRD lies in its ability to effectively capture the dependencies between non-
stationary features and complex features. Therefore, on time series datasets such as PSM and SMD,
which have complex dynamic behaviors and cross-feature correlations, GGRD demonstrates more
robust and superior anomaly detection performance, but it is not the case in SWaT(see the details
in Appendix A.4). These results indicate that although there is a slight gap in specific short-term
sudden abnormal scenarios, GGRD still has significant advantages when dealing with real complex
environments and high-dimensional multi-variable data.
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Table 1: The comparison test results with other models on three real-world datasets show that our
GGRD leads on most datasets. The best F1 score is marked in bold, and the second best is marked
with an underline. Avg-F1 represents the average F1 score.

Method
PSM SMD SWaT

Avg-F1P R F1 P R F1 P R F1

COPOD 0.7602 0.3175 0.4479 0.6676 0.1366 0.2268 0.9876 0.1180 0.2108 0.2952
ECOD 0.7460 0.3384 0.4656 0.7398 0.1615 0.2651 0.9761 0.1151 0.2059 0.3122

OCSVM 0.8761 0.4744 0.6155 0.0000 0.0000 0.0000 0.6196 0.7558 0.6810 0.4322
CBLOF 0.5990 0.9845 0.7449 0.8667 0.3352 0.4834 0.6308 0.7091 0.6677 0.6320
HBOS 1.0000 0.0654 0.1228 0.5628 0.8007 0.6610 0.5771 0.8049 0.6722 0.4853
IForest 1.0000 0.0335 0.0648 1.0000 0.0937 0.1713 0.6127 0.6280 0.6203 0.2855
LODA 0.9266 0.4017 0.5605 0.5902 0.6618 0.6240 0.6117 0.7014 0.6535 0.6127
VAE 0.6221 0.8772 0.7280 0.8209 0.4349 0.5686 0.6355 0.7218 0.6759 0.6575

DeepSVDD 0.7405 0.5064 0.6015 0.6498 0.6477 0.6488 0.5911 0.9353 0.7244 0.6582
LSTM-AE 0.7511 0.7586 0.7548 0.8496 0.4349 0.5753 0.6018 0.7219 0.6564 0.6622

MTAD-GAT 0.7990 0.6014 0.6863 0.8590 0.6769 0.7571 0.6590 0.7751 0.7123 0.7186
TFAD 0.7914 0.7163 0.7520 0.5632 0.9783 0.7149 0.6038 0.8196 0.6953 0.7207

Anomaly Transformer 0.5201 0.8504 0.6455 1.0000 0.0319 0.0619 0.5541 0.5994 0.5759 0.4278
Diff-AD 0.5564 0.7674 0.6450 0.5014 0.9093 0.6464 0.5183 0.7979 0.6284 0.6399

D3R 0.6294 0.9619 0.7609 0.7715 0.9926 0.8682 0.7206 0.8529 0.7812 0.8034
Imdiffusion 0.7556 0.8784 0.8100 0.9605 0.5271 0.6741 0.8387 0.2058 0.3297 0.6046
MODEM 0.7348 0.8755 0.7990 0.8918 0.9582 0.9238 0.7436 0.8732 0.8032 0.8420

ours 0.8827 0.8064 0.8428 0.9812 0.8988 0.9382 0.6529 0.8840 0.7511 0.8440

5.3 ABLATION STUDIES

To verify the role of each module in the model, we conducted systematic ablation experiments on
multiple datasets and compared the results with those of the complete model,and the ablation results
are shown in Table 2.

Table 2: The ablation experiment results reported the best F1.

Dataset GGRD
w/o w/o w/o w/o w/o

time-feature time-augment gga sliding window timestamp

SMD 0.9382 0.8922 0.9271 0.8515 0.9181 0.8931
PSM 0.8428 0.8078 0.8168 0.7721 0.8089 0.8231
SWaT 0.7511 0.7267 0.7331 0.7117 0.7377 0.7404

average 0.8440 0.8089 0.8257 0.7784 0.8216 0.8189

Spatio-Temporal Prior Module This module is mainly used to generate hard-coded timestamps,
multi-resolution data and graph structures. In the ablation experiment, we removed the timestamps,
denoted as w/o timestamp, and replaced the generation method of multi-resolution data from the
proposed sliding window to non-overlapping average pooling(Zhong et al., 2025), denoted as w/o
sliding window. The experimental results in Table 2 show that after removing the timestamp on
the SMD dataset, the F1 value decreased from 0.9382 to 0.8931, and the performance decreased by
4.51%. Similarly, after replacing the sliding window with non-overlapping average pooling, the F1
of all three datasets decreased, indicating that timestamps and efficient multi-resolution modeling
methods are of great significance for capturing the dynamic patterns of time series.
Reconstruction of Multivariate Time Series Module This module is the core part of the GGRD
proposed in this paper, including Time-Feature Encoder, Time-Augment Encoder and GGA. We
remove one of the components respectively, denoted as w/o time-feature, w/o time-augment and
w/o gga. The experimental results show that on multiple datasets, the F1 value of the complete
model is always superior to that of the ablated version. For example, in PSM, the F1 value of the
original model was 0.8428, but it decreased to 0.8078 after removing the time-feature, a reduction
of 3.5%. In SMD, the best F1 value decreased from 0.9382 to 0.8515 after removing GGA, with the
largest performance decline and other datasets also have a significant impact, further verifying the
key role of GGA in capturing cross-dimensional dependencies and dynamic features.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Feature
Re

so
lu

ti
on

 s
ca

le
 1

Time segment 1

Feature

Fe
at

ur
e

Time segment 6

Feature

Fe
at

ur
e

Time segment 11

Feature

Fe
at

ur
e

Time segment 16

Feature

Ti
m

e 
se

gm
en

t 
1

Resolution scale 1

Feature
Fe

at
ur

e

Resolution scale 2

Feature

Fe
at

ur
e

Resolution scale 3

Feature

Fe
at

ur
e

Resolution scale 4

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 4: Visualization of Similarity-guided Graph Tensor S on SMD. The four matrices in the first
row represent the changes at different time segments when the resolution scale is 1. The second row
represents the changes in different resolution scales within the same time segment (time segment 1).

5.4 EFFECTIVENESS ANALYSIS

Similarity-Guided Graph Tensor To further illustrate the effectiveness of GGA, in the previous
paper, Similarity-guided Graph Tensor S was constructed based on cosine Similarity, and the S was
visualized at four resolution scales and any four time segments of the SMD dataset. As shown in the
Figure 4, the similarity between features shows significant differences at different time segments
and resolutions, indicating that the feature dependency relationship is dynamic and multi-scale.
For instance, when the resolution scale is 1(the first row), the similarity between features at
different time segments varies the most. Similarly, when the time segmen is fixed (the second row),
the feature similarity also shows significant differences at different resolutions.Compared with
the methods that do not explicitly consider this information, S can provide additional correlation
information for multi-head self-attention, thereby enabling GGA to better capture cross-dimensional
dependencies and improve the expressive ability of the model in anomaly detection.
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(a)Real data and abnormal scores.
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Figure 5: Real data and the abnormal scores corresponding to the two methods respectively. Both
methods obtain abnormal scores under their own optimal models. The higher the abnormal score,
the easier it is to be detected as an anomaly. The two types of data show differences at non-stationary
points.

Obtain multi-resolution data using sliding windows When initially constructing the sliding win-
dow, we reduce the information loss between adjacent times. We use overlapping sliding Windows
instead of non-overlapping average pooling. In Figure 5(a), the upper part is the original data of a
feature in the SMD dataset, and the red transparent background represents the anomaly. The lower
part shows the magnitudes of the anomaly scores corresponding to the two data generation methods.
And the Figure 5(b) is an example. The black manually marked areas show obvious differences
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because the real data of the adjacent timestamps corresponding to the two places are changing dras-
tically. The sliding window method, being smoother compared to the latter method and less likely to
lose more information, can obtain higher outliers, while lower outliers may lead to missed detections
of anomalies. Similarly, when the label is normal, non-overlapping methods that are not stationary
may also receive higher scores and be misjudged as abnormal.

5.5 HYPERPARAMETER ANALYSIS

Hyperparameters of GGRD Here we mainly investigated the influence of the number of resolu-
tion categories R, the number of GGN modules N , patch size, and the initial window length L on
the model performance.The specific experimental results can be found in the Appendix A.3.
Anomaly detection threshold Given a probability q, the SPOT algorithm can automatically ob-
tain the detection threshold by using the abnormal scores of the training data and the test set. The
following figure presents the metrics of different datasets under different q. In this experiment, we
evaluated using the SPOT algorithm on three datasets (SWaT, PSM, and SMD), and observed the
changes in Precision, Recall, and F1-score by adjusting the threshold q. The results are presented in
Figure 6. The results show that as the q value increases, it is often accompanied by an increase in
Recall, and Precision usually decreases, and q represents the proportion of outliers among extreme
points(Siffer et al., 2017). This trend is particularly evident in the SWAT and PSM datasets, with
the optimal F1-scores appearing at q = 0.007 and q = 0.02, respectively. On the SMD dataset,
the model as a whole demonstrates high stability and robustness, with relatively stable Precision and
Recall. Therefore, it is necessary to seek a trade-off between Precision and Recall to achieve the best
F1. Overall, the SPOT algorithm can achieve high anomaly recognition results on different types of
time series data and strike a good balance between accuracy and recall by reasonably selecting q,
demonstrating its applicability and reliability in multiple scenarios.
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Figure 6: The influence of different q on Model performance

6 CONCLUSION AND LIMITATION

Conclusion. This paper proposes a Graph Guided Reconstruction Diffusion Model (GGRD) to ad-
dress the deficiencies of existing methods in anomaly detection of multivariate time series. Specif-
ically, we generate multi-resolution data through a sliding window, reducing the resolution while
retaining the original information features as much as possible. Furthermore, in this study, the re-
construction structure of GGRD was carefully designed and the correlation between features was
considered. Similarity-Guided Graph Tensors were introduced into GGN to effectively guide fea-
ture interaction and improve the accuracy and robustness of data modeling. A large number of
experiments have shown that GGRD outperforms existing anomaly detection methods on various
datasets.

Limitations. The length of the time segment in GGRD is fixed (depending on the patch size and
T ), but in fact, the correlation between time series features does not remain constant over a fixed-
length time segment. That is to say, the duration of a certain correlation situation varies and is often
highly uncertain. Therefore, a method for dynamically obtaining the graph structure prior is needed
to enhance the detection ability of irregular fluctuations and short-term sudden anomalies. At the
same time, in addition to cosine similarity (even though it is simple and effective), other forms can
be considered for the graph structure tensor to further improve the modeling ability of time series.
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A EXPERIMENTAL DETAILS

A.1 DATASETS

Just like D3R(Wang et al., 2023),we only retained the continuous variables in the data for the exper-
iment and provided the statistical data of these datasets in the Table 3.

Table 3: Dataset statistical description(AR represents the Rate of Anomalies in the test set).

Dataset Training size Testing size Dimensions Frequency AR(%)
SMD 23688 23689 33 1 minute 15.7
PSM 132481 87841 25 1 minute 27.8

SWAT 6840 7500 25 1 minute 12.6

A.2 BASELINE

Some of the baselines selected for the experiment adopted the results of D3R and were implemented
following the configuration recommended in the original paper. Apart from the first one, the other
baselines are based on our operation and run with the recommended configuration in the original
paper.

COPOD(Li et al., 2020) COPOD innovatively utilizes copula to construct an empirical distribu-
tion and calculate the tail probability, thereby achieving a parameterless, interpretable and efficient
anomaly detection method.

ECOD(Li et al., 2022) Based on the empirical cumulative distribution function to estimate the tail
probability, a parameter-free, easily interpretable and highly efficient and scalable anomaly detection
method has been implemented, which significantly outperforms existing methods on large-scale and
high-dimensional data.

OCSVM(Schölkopf et al., 2001) This method extends the support vector machine to unsupervised
scenarios, constructs a discriminant function through the kernel function, divides the input space into
high-probability subsets and their complements to ensure that the probability of new samples falling
into this subset is controlled, and solves the extended coefficients through quadratic programming
to achieve efficient anomaly detection.

CBLOF(He et al., 2003) It is an unsupervised anomaly detection method based on local clusters,
which identifies anomalies by evaluating the behavioral significance of data points in their respective
clusters and can effectively discover outliers with physical or statistical significance.

HBOS(Goldstein & Dengel, 2012) It is an unsupervised anomaly detection method based on his-
tograms. By assuming feature independence, it achieves linear time scoring and can efficiently
identify global anomalies, but it performs weakly in local anomaly detection.

IForest(Liu et al., 2008) Unsupervised anomaly detection methods based on the idea of isolation
achieve linear time complexity and low memory consumption by explicitly isolating outliers and
using sub-sampling, and exhibit excellent performance on large-scale, high-dimensional or datasets
with irrelevant features.

LODA(Pevnỳ, 2016) LODA is an unsupervised anomaly detection method based on weak detector
integration, which can efficiently handle large-scale or streaming data, deal with missing variables
and concept drift, and simultaneously identify the characteristics of anomaly occurrence. It outper-
forms many existing methods in terms of speed and accuracy.

VAE(Kingma & Welling, 2013) By reparameterizing the variational lower bound and approxi-
mating the model, efficient learning and inference of directed probabilistic models with continuous
latent variables have been achieved, and effective optimization can be carried out even in the case of
posteriorly unresolvable and large-scale datasets.
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DeepSVDD(Ruff et al., 2018) It is a deep method trained with anomaly detection as the goal.
By directly optimizing the anomaly detection target in the neural network, it shows good results in
image benchmark datasets and adversarial sample detection.

LSTM-AE(Kieu et al., 2018) This model generates statistical features for time series and recon-
structs them using autoencoders to capture representative patterns, thereby identifying outliers that
deviate from the reconstruction. At the same time, it combines convolutional and LSTM networks
as well as context information to improve the accuracy of anomaly detection.

MTAD-GAT(Zhao et al., 2020) By capturing the dependencies of multivariate time series in the
time and feature dimensions through the parallel graph attention layer, and combining prediction
and reconstruction optimization, efficient anomaly detection is achieved, while also having good
interpretability and anomaly diagnosis capabilities.

TFAD(Zhang et al., 2022) TFAD utilizes time-frequency joint analysis and enhances anomaly
detection performance and interpretability through time series decomposition and data augmentation
mechanisms.

Anomaly Transformer(Xu et al., 2021) By using the self-attention mechanism to calculate the
correlation differences of points in the time series, and amplifying the distinguisability between
normal and abnormal through abnormal attention and the minim-to-maximum strategy, advanced
performance has been achieved in various unsupervised time series anomaly detection tasks.

Diff-AD(Xiao et al., 2023) By using the density ratio to select normal observations and com-
bining with denoising diffusion interpolation with increasing conditional weights and multi-scale
state space modeling, abnormal concentration scenarios can be effectively handled, achieving stable
multi-variable time series anomaly detection.

D3R(Wang et al., 2023) By combining the dynamic decomposition of data-time hybrid atten-
tion with noise diffusion reconstruction, the time series is split into stable components and trend
components, and the non-stationary multivariable time series is processed end-to-end, significantly
reducing the false alarm rate caused by drift and improving the detection performance.

Imdiffusion(Chen et al., 2023) Combining time series interpolation with diffusion models,
anomaly prediction is carried out through stepwise denoising to generate signals, accurately model-
ing time series and cross-variable dependencies.

MODEM(Zhong et al., 2025) By jointly modeling non-stationary time series through multi-
resolution diffusion and frequency-domain augmented networks, cross-resolution correlations are
captured during the coarse-to-fine generation process to achieve precise anomaly detection of com-
plex time series patterns.

A.3 HYPERPARAMETER OF GGRD ANALYSIS

The results are shown in Figure 7, and the following conclusions can be drawn: (1) As R in-
creases, performance shows certain differences on different datasets. Overall, better results are
usually achieved when R = 4. For example, on the SMD dataset, the F1-score reached 0.9382
when R = 4, and the performance declined when it increased further. The lower resolution (R = 2)
leads to insufficient expressive power of the model and a decline in discrimination. However, ex-
cessive resolution division can lead to overly fine division, which affects the model’s judgment of
the overall trend of the time series and instead impacts the model’s discriminative ability. (2) The
effect of increasing the number of GGN blocks on different datasets is not consistent. On the SMD
dataset, the performance is the best when N = 4, while on PSM and SWaT, too many GGN blocks
(N = 6, 8) instead lead to a decline in performance. This indicates that a balance needs to be struck
between complexity and expressive power, and overly deep stacking is not always beneficial. (3)
Appropriate patch partitioning affects the shape of S and alters the number of time segmens a time
series is divided into. The results show that on each dataset, a smaller patch size (such as 4 or 6)
can achieve a higher F1-score, while an overly large size (such as 8) will lead to information loss. It
is indicated that overly large patches will weaken the ability to capture local patterns. (4) The initial
length L, in coordination with R, determines the size of the sliding window. It can be found that in
any dataset, the smaller L can achieve better results.
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Figure 7: Parameter sensitivity analysis on R, N , patch size and L

Based on these analyses, the optimal parameters of the SMD, PSM and SWaT datasets on
R,N ,patch size and L are respectively {4, 4, 4, 2},{4, 2, 2, 2}, and {4, 2, 2, 2}.

A.4 VISUALIZATION OF THE PROPERTIES OF SWAT DATASETS

The main advantage of GGRD lies in its ability to capture the similarity between displayed features.
As shown in Figure 9, the values of S in the SWaT dataset do not show significant differences at
different time periods (Time segment 1, 11, 21, 32) and different resolution scales (Resolution 1,
2,3,4). This also limits the modeling upper limit of GGRD to a certain extent. Compared with
large and cumbersome models like MODEM, the performance of our GGRD on the SWaT dataset
is slightly lower.

Figure 8: Time Block and Feature Block.
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Figure 9: Visualization of Similarity-guided Graph Tensor S on SWaT.

B ADDITIONAL EXPERIMENTS

B.1 ONE STEP VS MULTI-STEP

The core advantage of multi-step iterative denoising (such as DDPM) lies in generating high-quality
and high-fidelity samples, which is crucial in tasks like image generation as it requires creating
details from scratch.
However, in anomaly detection based on refactoring, our goal is not to ’create’, but to ’test’. The
ultimate goal is to calculate the reconstruction error. To verify the efficiency advantage of one-step
denoising, we designed a multi-step denoising experiment. In multi-step denoising training, the
model learns to recover from any noise level Xk to Xk−1, and in the inference stage, it iterates
step by step from high noise to the final output in a completely consistent manner. We evaluated
the impact of different denoising steps on model performance and computational efficiency, and the
experiment was independently repeated five times.
The results in Table. 4 show that a more detailed multi-step denoising setting does not lead to an
improvement in performance. Instead, it results in a significant increase in training and inference
time. This further demonstrates the superiority of one-step denoising Settings in reconstruction-
based anomaly detection tasks.

B.2 THE INFLUENCE OF NOISE ADDITION FREQUENCY

To illustrate the necessity and effectiveness of the denoising process of diffusion in this time series
anomaly detection task, we conducted comparative experiments on Kunder different datasets and
compared the classification metrics and MSE on the test sets. It can be found that the impact of the
denoising level on the anomaly detection performance is significant, which proves the necessity of
denoising in the model.
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Table 4: The performance and efficiency of the model under different denoising steps on the SWaT
dataset, with the best results indicated in bold.

Denoising Steps F1-score (mean ± std) Training Time (min) Inference Time (min)

1-step 0.7411 ± 0.0105 27.40 5.84
5-steps 0.6855 ± 0.0185 48.33 28.16

10-steps 0.6748 ± 0.0159 54.01 39.23

The experimental results Table. 5 indicate that either no noise (K = 0) or insufficient noise will
affect the discriminative ability of anomaly detection. When the noise is moderate (K = 500), all
the indicators of the model reach the optimum. Meanwhile, the results of MSE also show that in the
task of time series anomaly detection based on reconstruction, a smaller reconstruction error does
not necessarily lead to a better detection effect. In the reconstruction model, the model reconstructs
by learning normal patterns to identify outliers. If no noise is added or the noise is insufficient during
training or inference, the model may overfit the training data. It reconstructs the training set well but
has poor generalization ability, resulting in significant reconstruction errors for normal samples with
slight changes in the test set or actual scenarios, which affects abnormal judgment. Adding noise can
force the model to learn denoising ability, enabling it to correctly reconstruct the normal mode even
when the input contains disturbances, thereby enhancing the robustness of the reconstruction and
the discrimination ability of anomaly detection. Appropriately increasing the number of noisy steps
Kcan make the model pay more attention to the overall pattern of the sequence rather than point-
by-point fitting, causing more obvious reconstruction differences in outliers and thereby improving
the performance of anomaly detection.

Table 5: The influence of different noise levels K on the performance of anomaly detection,with the
minimum value is bolded.

Datasets K P R F1 MSE

SMD

0 0.8159 0.9537 0.8794 15.64
100 0.8088 0.8620 0.8346 15.85
300 0.8491 0.9621 0.9021 16.98
500 0.9812 0.8988 0.9382 14.74

PSM

0 0.7497 0.8368 0.7909 0.2540
100 0.7160 0.8999 0.7975 0.2397
300 0.7991 0.7943 0.7967 0.2563
500 0.8827 0.8064 0.8428 0.2912

SWaT

0 0.5657 0.8889 0.6914 318.84
100 0.6836 0.7665 0.7227 318.80
300 0.5748 0.8887 0.6981 318.93
500 0.6529 0.8840 0.7511 319.02

B.3 REPEATED EXPERIMENT STATISTICS

To verify the stability of the model’s performance. We independently conducted five experiments to
obtain the standard deviation of F1 and the 95% confidence interval. As shown in Table. 6, the stan-
dard deviation is controlled within 0.01, and the model demonstrates high stability and robustness
on each dataset.

B.4 COMPARED WITH THE OVERHEAD OF OTHER ADVANCED MODELS

We compared the model overhead with the existing advanced models MODEM and D3R. The results
of Table. 7 show that the proposed GGRD model has relatively reasonable training and inference
overhead while ensuring detection performance. Compared with D3R, the total number of parame-
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Table 6: Repeated Measures Experiment

Datasets F1-score (mean ± std) 95% CI (t-method)

PSM 0.8409 ± 0.0171 [0.8137, 0.8682]
SMD 0.9264 ± 0.0137 [0.9045, 0.9483]
SWaT 0.7411 ± 0.0105 [0.7281, 0.7542]

ters of GGRD has decreased by half, and the inference time is approximately 10 minutes, which is
acceptable for actual deployment and maintenance.

Table 7: The comparison with D3R regarding training time, inference time and parameters, with the
best ones in bold

Model Training Time (min) Inference Time (min) Total Params (MB)

D3R 42.33 18.29 199.18
MODEM 38.48 14.12 34.28

GGRD (ours) 28.70 10.31 84.92

B.5 REGARDING THE RELATIONSHIP BETWEEN PATCH SIZE AND EFFICIENCY

(i) The specific meaning of the ’graph structure’ we proposed is the correlation between the features
of different sensors within different time periods. Nodes represent different features, while edges
represent the relationships between features. Given a X(r) ∈ RT×D, we obtain the graph structure S
by partitioning patch. Therefore, the size of patch sizewill affect the size of P, but will not influence
the inherent number of nodes D. P represents the number of time periods that divide the time series
of a sliding window T into.
(ii) Regarding the efficiency issue in handling long time series. Our model does not handle the entire
infinitely long time series at one time. In practical applications, we perform the calculation within
a fixed-length sliding window (T = 64, 128, 512). This means that no matter how long the total
length of the input time series L is (weeks, months or even years), the computational complexity
and memory consumption of our model at each time step are only related to the fixed window size
T , and not to the total length L. The time complexity of constructing S is O(T × D2), which
is independent of patch size. When GGA subsequently utilizes S, it only involves an additional
matrix multiplication and does not change the order of complexity.
(iii) We verified the model training and inference efficiency under different patch size and T (based
on the SWaT dataset) in Table. 8 and Table. 9, it can be found that as the patch size decreases, the
training and inference time does indeed increase. But the growth rate shows a clear nonlinear trend
and does not increase exponentially. Therefore, a smaller patch size does not significantly reduce
time efficiency, which is determined by the complexity of our algorithm.

Table 8: Training and inference time under different patch sizes (T = 64).

patch size Training Time (s) Inference Time (s)
2 1644.25 350.62
4 1367.52 273.94
8 1221.85 232.58

16 1136.84 215.79
32 703.78 124.81
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Table 9: Training and inference time under different patch sizes (T = 256).

patch size Training Time (s) Inference Time (s)
2 4582.70 1128.08
4 2668.35 700.57
8 2430.75 550.15

16 1987.99 526.45
32 2153.20 505.33

C SOME SPECIFIC MODEL COMPONENTS

C.1 TIME BLOCK AND FEATURE BLOCK STRUCTURE

The structures of the Time Block and the Feature Block are shown in the Figure 8, except that the
shapes of the input data are different (non-transposed and transposed). Firstly, the input data is ex-
changed for information through the multi-head self-attention (MSA) module and processed by the
GELU activation function. Subsequently, local features are extracted through the convolutional layer
and the final output is obtained by connecting the residual and normalizing the layer. This Block is
designed to extract the time information and feature information from the data respectively, thereby
providing an effective representation for subsequent time series modeling and feature interaction.

C.2 FUSION FUNCTION

In the process of coarse-to-fine reconstruction of time series data, for step m, in order to obtain the
similarity matrix S̄(m) and integrate the previous similarity information and also take into account
the current one, a function f is defined:

S̄(m) = f(m), (10)

f(m) =
1

2

( 1

m

R∑
i=R−m+1

S(i) + S(R−m)
)
(m > 1), f(1) =

S(R) + S(R−1)

2
. (11)

D LLM USAGE

We only use LLM for aid or polish writing in a very small part of the article.

19


	Introduction
	Related Work
	Preliminary
	Methodology
	Overall Framework
	Spatio-Temporal Prior Module
	Diffusion Forward Process
	Graph-Guided Network (GGN)
	Training Objective and Anomaly Scoring

	Experiments
	Experimental settings
	Detection Results
	Ablation studies
	Effectiveness analysis
	Hyperparameter Analysis

	Conclusion and Limitation
	Experimental Details
	Datasets
	Baseline
	Hyperparameter of GGRD Analysis
	Visualization of the properties of SWaT datasets

	Additional experiments
	One step VS multi-step
	The influence of noise addition frequency
	Repeated experiment statistics
	Compared with the overhead of other advanced models
	Regarding the relationship between patch size and efficiency

	Some specific model components
	Time Block and Feature Block Structure
	Fusion function

	LLM usage

