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Abstract

We depend on our own memory to encode,
store, and retrieve experiences, but face the is-
sue of memory lapses. Addressing this, life
logging through wearable devices capturing
egocentric videos is a promising memory aug-
mentation method. However, it deals with chal-
lenges in efficiently managing large video data,
computational intensity for retrieval, and pri-
vacy concerns. Our proposed system uses natu-
ral language encoding for video data, stored in
a vector database, leveraging large vision lan-
guage models for encoding and large language
models for querying. In the QA-Ego4D dataset,
our system achieved a BLEU score of 8.3, sur-
passing conventional models scoring between
3.4 and 5.8. A user study revealed our system
significantly improves episodic memory task
performance compared to human participants.

1 Introduction

Human memory, crucial for various cognitive func-
tions, often relies on external aids like photographs
and reminders for enhancing recollection of past
events (Klein, 2015; Intons-Peterson and New-
some III, 1992; Intons-Peterson, 2014). However,
these aids are limited in scope, making internal
memory essential for encoding, storing, and re-
trieving experiences. Memory lapses, especially
in aging, are common. Life logging, capturing im-
ages, videos, and personal data, is proposed as a
method for memory augmentation (Harvey et al.,
2016; Dingler et al., 2021; Chen and Jones, 2010;
Hayes et al., 2004; Hodges et al., 2006; Gurrin
et al., 2014b). The emergence of smart glasses and
AR headsets introduces new opportunities for life
logging, though challenges in data encoding, stor-
age, and privacy compliance persist (Gurrin et al.,
2014a).

This paper presents a language-encoded
episodic memory system to tackle these issues.
It employs language encoding of egocentric

videos using a large vision language model, stores
language embeddings in a vector database for
efficient retrieval, and uses a large language
model for open-ended question answering in
episodic memory tasks. We fine-tune the Large
Language and Vision Assistant (LLaVA) (Liu et al.,
2023) for egocentric data and integrate OpenAl
GPT-4 (OpenAl, 2023) with Chroma (Core, 2023)
for memory storage and retrieval.

We utilize the QA-Ego4D dataset (Bdrmann and
Waibel, 2022; Grauman et al., 2022), designed
for the Episodic Memory Question Answering
(EMQA) task with a constant-size memory con-
straint. Our method achieves a BLEU score of 8.3,
outperforming conventional models (Barmann and
Waibel, 2022).

We implemented our system on the HoloLens 2
device and conducted a week-long study. Our sys-
tem outperformed human participants in episodic
memory tasks, achieving a mean response score of
4.13/5 compared to the participants’ score of 2.46/5.
A post-study questionnaire revealed reduced pri-
vacy concerns, demonstrating the system’s effec-
tiveness in memory augmentation.

Hence, our research paper presents three contri-
butions as outlined below:

¢ We introduce, for the first time to our knowl-
edge, a memory augmentation system that com-
bines egocentric vision language encoding with
episodic memory question answering (EMQA)
tasks, utilizing a vector database for efficient stor-
age and retrieval.

* We present a large-scale quantitative evaluation
of our system using the EMQA benchmark,
specifically the QA-Ego4D dataset, demonstrat-
ing its effectiveness in episodic memory tasks.

* We conduct a user study to examine our system’s
potential applications, revealing its benefits in
various scenarios and its superior performance
on episodic memory tasks compared to humans.
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Figure 1: The memory augmentation system operates by first encoding egocentric videos into linguistic representa-
tions using a bespoke egocentric vision language model. These language-encoded outputs are stored in a buffer,
segmented, and transformed into embeddings for storage in a vector database. Upon receiving a user query, like
“Where did I leave my keys?”, the system generates an embedding of the query. This embedding is used to search
the database for relevant chunks using vector similarity algorithms. These chunks are combined with the query to
create a prompt for a large language model, which then generates the final response for the user.

2 Memory Augmentation through Life
Logging

Lifelogging, present for over 30 years, has evolved
with technology (Harvey et al., 2016; Gurrin et al.,
2013). Initially, it involved bulky equipment like
helmets and battery packs (Wolf et al., 2014),
but has since progressed to wearable devices like
glasses (Harvey et al., 2016). A key development
was Microsoft’s SenseCam in 2006, a notable lifel-
ogging device (Microsoft Research, 2004; Doherty
et al., 2012). Lifelogging now includes data from
GPS, audio, heart rate, emails, calendar events, and
social media.

Significant progress has been made in memory
augmentation through lifelogging (Harvey et al.,
2016). Le et al. (2016) focused on video summaries
for memory recall but didn’t address data selec-
tion challenges. Davies et al. (2015) highlighted
privacy and security concerns in pervasive com-
puting but lacked comprehensive solutions. Byrne
et al. (2010) developed a method for content rel-
evance in visual lifelogs but it was limited to ev-
eryday concepts. Our work uniquely implements
a memory augmentation system enabling open-
ended episodic memory queries within a wearable
headset.

3 Problem Formulation

Natural Language Video Localization (NLVL) and
Video Question Answering (VideoQA) are distinct
yet related tasks in video content analysis. NLVL
focuses on finding a video segment matching a

natural language query, requiring the model to un-
derstand both video and query context (Krishna
et al., 2017; Gao et al., 2017; Regneri et al., 2013;
Grauman et al., 2022). VideoQA, on the other hand,
involves answering questions based on video con-
tent, demanding a deep understanding of the video
and the ability to provide precise answers (Lei et al.,
2020; Mun et al., 2020; Sun et al., 2021; Miyanishi
and Kawanabe, 2021; Le et al., 2020Db).

Episodic Memory Question Answering (EMQA)
is a specific subtask of VideoQA, introduced by
Biarmann and Waibel (2022). It differs in its
memory constraints, shifting from offline analy-
sis (VideoQA) to an online algorithm and setting a
maximum limit on memory usage for computation,
thus suitable for long-term or life-long use.

This paper focuses on EMQA due to its advan-
tages over NLVL and traditional VideoQA. While
NLVL produces non-textual output and VideoQA
has scalability issues, EMQA offers textual outputs
and a constant-size memory constraint, enhancing
efficiency for long videos.

4 Methodology

Human memory involves encoding, storing, and
retrieving information. Encoding is key for convert-
ing information into a format suitable for memory
storage. Storage maintains this information until
needed, and retrieval accesses and reinstates it into
consciousness. Our system mimics these biological
memory processes (Zlotnik and Vansintjan, 2019).

Initially, each video frame v is transformed into a
language encoding [ using the encoding function F,
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Figure 2: The Egocentric Vision-Language Model is de-
veloped through a process called fine-tuning. This pro-
cess involves extracting knowledge from a large model
and transferring it to smaller models, resulting in im-
proved accuracy and faster inference times. The Ego-
centric Vision-Language Model combines the power of
vision and language to effectively process and under-
stand egocentric video data. 13B and 7B refer to large
language models with 13 billion and 7 billion parame-
ters.

denoted as [ = E(v). These language encodings
are accumulated over time, forming a cumulative
history Lhistory-

An embedding model acts as a transformation
function 7" to convert chunks C' of Lyjstory into vec-
tor representation g, expressed as g = T'(C'). The
vector g is stored in a vector database via a storage
function S, where S(g) — Database.

For retrieval, the system uses the same transfor-
mation function 7' to convert a natural language
query ¢ into a query vector ¢,: ¢, = T'(q). The
retrieval function R then fetches the most relevant
language encodings c as context based on g, for-
mulated as R(q,, Database) — c. This context c
and the query ¢ are concatenated and processed by
large language models to generate an answer based
on the context.

4.1 Encode

We employ language as a means to encode egocen-
tric visual perceptions. Specifically, our focus lies
on adopting a frame-based approach rather than
encoding clips using a sliding window. This deci-
sion stems from the fact that encoding clips using a
sliding window can result in excessively long infer-
ence times, rendering it impractical for real-time
usage. Furthermore, the field of video captioning
is still in its early stages, and even state-of-the-art
models are unable to provide accurate and detailed
encodings (Xu et al., 2023; Zhang et al., 2023; Xu
et al., 2016; Wang et al., 2022). Consequently, we
opt to encode videos by their individual frames.
We present a novel model, Ego-LLaVA, for ego-
centric video encoding. This model is fine-tuned

from LLaVA (Large Language and Vision Assis-
tant) (Liu et al., 2023) on egocentric data, which
captures first-person experiences in a 3D environ-
ment. This fine-tuning procedure leads to better per-
formance in understanding first-person data which
involves interpreting human-object interactions and
complex social behaviors.

To tackle this issue, we curated our own
egocentric video frame description dataset from
Ego4D (Grauman et al., 2022) and fine-tuned the
LLaVA model to learn egocentric features.

The fine-tuning process is described below:

* Training Data: We begin by employing LLaVA

using a descriptor prompt P!, to generate de-
tailed descriptions for a randomly sampled set of
3,000 images. Subsequently, we engaged three
research assistants from our institution to cor-
rect the descriptions in scenarios where objects
were inaccurately identified or significant objects
within the frames were missed. This process re-
sults in a collection of 3,000 image/video frame-
text/description pairs. It has been observed by
Zhu et al. (2023) that a set of 3,000 training pairs
is adequate. Zhu et al. (2023) successfully fine-
tuned a visual-language model using only 3,500
image-text pairs, which yielded exceptional per-
formance in tasks such as image question answer-
ing.
The practice of training language models using
responses generated by larger language models
has become increasingly common due to the
robustness of these models. Vicuna-13B (Chi-
ang et al., 2023) is an example of a model
trained by fine-tuning the LLaMA-13B (Zhang
et al., 2023) base model with approximately
70,000 user-shared conversations gathered from
ShareGPT (ShareGPT, 2023), a website that
collects conversational data from OpenAl Chat-
GPT. Similarly, MiniGPT-4 (Zhu et al., 2023)
and LLaVA (Liu et al., 2023) are trained using
large language model-generated content, achiev-
ing state-of-the-art results and saving significant
time on human labeling.

* Fine-Tuning: In our experiment, as shown in Fig-
ure 2, we use Vicuna-13B (Chiang et al., 2023)
as the 13B language model and MPT-7B (Mo-
saicML, 2022) as the 7B language model. MPT
(MosaicML Pretrained Transformer) is optimized
for efficient training and fast inference, utiliz-

'See the full prompt in Appendix A.1



ing FlashAttention (Dao et al., 2022) and Faster-
Transformer (NVIDIA, 2023) techniques.

More specifically, Ego-LLaVA is fine-tuned on
image-text pairs where the descriptor question
P prompts a description of the video frame v,
and the ground truth prediction answer [ is the
original detailed description. During training, the
weights of both the visual encoder and LLM are
kept constant, and the probability p(l|v, P) of the
target answers [ is maximized by only training the
parameters of the linear projection layer between
the visual encoder and the LLM. This process al-
lows for the alignment of the video frame features
H,, with the pre-trained LLM word embedding.

4.2 Store

A vector database stores data as vectors g with
each element g representing a data attribute (Core,
2023; Pinecone, 2022). This can enhance Large
Language Models (LLMs) by storing and retriev-
ing vector representations g for long-term memory
retention and contextually relevant responses (Stata
et al., 2000; Chase, 2022).

Our approach involves:

1. Chunking: Break the language-encoded history
into smaller, manageable chunks C. Our approach
employs fixed-size chunking. We set the target size
of each text chunk in tokens to 7" = 1024, and the
overlap chuck size to O = 256. The minimum size
of each text chunk is set to M = 350. We discard
chunks C shorter than five characters.

2. Associate Metadata: We associate metadata
M, including frame number ' and time ¢, with the
chunks C'. The metadata M can be used by Vector
Database for more advanced searches.

3. Vector Embeddings: Create vector embed-
dings g for the segmented chunks C, capturing
their semantic meaning. We utilize OpenAl model,
text-embedding-ada-002, for the extraction of vec-
tor embeddings g = T'(c),c € C.

4. Storage: Store the vector embeddings g in a
vector databas. We use Chroma (Core, 2023),
which serves as a vector database solution, pro-
viding the capability to store, search, and access
vector data on a large scale. The storage function
is expressed as S(g) — Database, where S is the
storage function.

4.3 Retrieve

The retrieval system functions as follows: It starts
by taking the user’s input question ¢ and employ-

ing the OpenAl model, text-embedding-ada-002,
to generate an embedding for this question. This
process is expressed as ¢, = T'(q). This resultant
embedding vector g, is subsequently used to make
a query to the Database Interface, aiming to find rel-
evant chunks [ related to the question. The retrieval
function is formulated as R(g,,Database) — I.
The query vector g, does not necessarily have to
exactly align with the vectors in the database, as
the database engine from Chroma (Core, 2023) is
capable of efficiently extracting data indexed by
vectors that bear close resemblance.

First, chunks of context data ¢ from a vector
database that are semantically related to the query
q are obtained. These context chunks c, along with
the query g, are then inserted into a prompt tem-
plate: You are my Al assistant to support memory
augmentation. Use the following pieces of con-
text to answer the question at the end. {context}
Question: {question}. The placeholders {context}
and {question} represent the acquired chunks c and
the user’s query g, respectively. Next, a chain of
thought prompt is constructed, incorporating the
prompt template, and presented to the OpenAl GPT-
4.

5 Evaluation of the Memory
Augmentation System on QA-Ego4D

To study the proposed memory augmentation sys-
tem’s performance we carry out a large-scale quan-
titative evaluation using the public dataset QA-
Ego4D. The evaluation focuses on the EMQA task,
which is detailed in Section 3.

5.1 Dataset - QA-Ego4D

The QA-Ego4D dataset, an extension of the Ego4D
dataset’s Natural Language Query (NLQ) sub-
task, features egocentric videos paired with nat-
ural language questions, answers, and annotations
for answer-relevant video segments (Birmann and
Waibel, 2022; Grauman et al., 2022). Each video
averages eight minutes in length. The dataset in-
cludes 19.2K queries from 227 hours of video
across 34 scenarios from ten universities. Queries
average 8.3 words, with response windows averag-
ing 9.3 seconds, presenting a search challenge. The
dataset omits “When?” questions due to undefined
natural language answers.

It’s divided into training, validation, and test
sets, with 997 training videos, 162 for validation,
and 166 for testing, comprising 10,746, 1,913, and



Model BLEU METEOR ROUGE
DNC (Graves et al., 2016) 34027 179+2.15 27.0+£324
STM (Le et al., 2020a) 58+£081 17.6+£132 262=%3.93
LT-CT (Rae et al., 2019) 53+£053 185+1.85 27.5+£3.30
RM (Zhang et al., 2021) 45+063 17.7+2.66 26.6+3.99
Language-Encoded QA
(with EVLP (Lin et al., 2022)) 43+£060 172+1.72 27.0+3.51
Language-Encoded QA
(with Video-LLaMA (Zhang et al., 2023)) >3+ 111 19.3+232 30.7 & 4.60
Language-Encoded QA
(with LLaVA (Liu et al., 2023)) 74+125 36.1+£542 50.7=+7.60
Language-Encoded QA 831086 423+535 547+621

(With Ego-LLaVA)

Table 1: EMQA results on the QA-Ego4D test set with standard deviations.

Category Template BLEU
Where is object X before
/ after event Y? 8.7+£087
Where is object X? 89+ 1.12
What did I put in X? 7.6 £0.76
°3?
Objects  1LOW many X's’ 74+ 111
(quantity question)
What X did 1 Y? 83+0.83
In what location
did I see object X? 8.5+128
What X is Y 8.0 +0.80
State of an object 7.8+ 1.17
Where is my object X? 9.0 £ 1.35
Place Where did I put X? 8.2 £ 0.98
Who did I interact
poople_ ith when I did activity X? 8.1+1.22
Who did I talk to 34+ 126

in location X?

Table 2: The templates span a wide range of inquiries
that individuals can make use of to enhance their mem-
ory, and retrieve information about various objects, loca-
tions, and individuals they encounter in their daily lives.
We also show the average BLEU score with standard
deviations for the proposed memory augmentation sys-
tem for each template.

1,854 question-answer pairs for each set respec-
tively. The test data uses half of the validation set’s
canonical videos, as Ego4D’s test data is unpub-
lished.

5.2 Baseline Models

In our comparison, we include models from the
QA-Ego4D paper (Barmann and Waibel, 2022):
Differentiable Neural Computer (DNC) (Graves
et al., 2016), Self-attentive-Associative-Memory-
based Two-memory Model (STM) (Le et al.,
2020a), Long-Term Comprehensive Transformer
(LT-CT) (Rae et al., 2019), and Rehearsal Memory
(RM) (Zhang et al., 2021).

We also employ alterations to the encoding meth-
ods:

* Language-Encoded QA (with EgoVLP) Lin

et al. (2022): The EVLP (Egocentric Video-
Language Pretraining) model is a dual-
encoder system for egocentric video-language
pretraining, using separate video and text en-
coders. This model is optimized for tasks in-
volving egocentric videos and their associated
text.

* Language-Encoded QA (with Video-
LLaMA (Zhang et al., 2023)): We employ a
sliding window approach with a width and
stride of 6 seconds each to encode video
clips into language. Video-LLaMA is a
state-of-the-art video QA model which is
suitable for video captioning.

* Language-Encoded QA (with LLaVA (Liu
et al., 2023)): We use the original LLaVA
as the encoding method.

We prompt both the above two models using the
same prompt as for Ego-LLaVA. These contrasting
models provide a comprehensive comparison for
the model proposed in this paper.

5.3 Evaluation Metrics

We report standard Natural Language Processing
metrics for EMQA tasks, including BLEU-4 (Pap-
ineni et al., 2002), METEOR (Banerjee and Lavie,
2005), and ROUGE-L (f-score) (Lin, 2004).

5.4 Results

Our System Achieved State-of-the-Art in QA-
Egod4D dataset: Table 1 demonstrates that our
language-encoded method surpasses not only con-
ventional vision-based machine learning models
on the QA-Ego4D test set, but also exceeds the
performance of other pre-trained vision-language
models utilizing the language encoding technique.
Notably, Ego-LLaVA exceeds the original LLaVA



in encoding effectiveness, likely due to LLaVA’s
fine-tuning with egocentric data. Despite a small
fine-tuning dataset of 3,000 image-text pairs, the
model aligns image and text features well. Never-
theless, employing Video LLaMA as an encoder
yields subpar performance due to problems with
hallucination. Similarly, the backbone model used
by EVLP is not adequately equipped to describe
images in fine-grained detail, resulting in lackluster
performance when using the language encoding
technique.

Varied System Performance Across Question
Templates: Table 2 shows the system’s perfor-
mance on various question templates. We observe
that simpler questions, such as “Where is object
X? or “Where did I put X?”, generally yield
better results due to their straightforward nature,
demanding less complex reasoning from the sys-
tem. Conversely, questions involving more intricate
reasoning or understanding of dynamic elements,
such as “Where is object X before / after event
Y?” or “What X did I Y?”, may not perform as
well. This is attributed to the current encoding
method’s limitations in capturing temporal corre-
lations, which are crucial for comprehending dy-
namic activities. Quantity-based questions, such
as “How many X’s?”, pose a challenge due to the
encoding model’s resolution limitations, making
accurate object counting difficult.

Questions about the state of an object could also
be challenging if the state involves fine details, or
dynamic elements that change over time. Without
the ability to apply attention to the data, the sys-
tem might not capture these dynamic subtleties,
leading to a significant loss of crucial informa-
tion. In essence, the system’s performance on dif-
ferent question templates largely depends on the
question’s complexity, the required level of detail,
and the system’s ability to understand dynamic ele-
ments and temporal correlations. Future improve-
ments in these areas could potentially enhance the
system’s performance on more complex question
templates.

6 Human User Study of the Memory
Augmentation System

Having established quantitative performance bene-
fits of the memory augmentation system in theory
it is natural to ask whether the system is usable in
practice. To this end, we carried out a user study
with two objectives. The first objective is to evalu-

ate and contrast the performance of human partici-
pants with that of the memory augmentation system
in answering a set of episodic memory questions.
The second objective is to explore the framework’s
capability in handling open-ended questions, which
could potentially demand strong reasoning power
and access to an external knowledge base. We did
not incorporate another memory augmentation sys-
tem as a comparison because we are the first to
propose such a memory augmentation framework
and hence no such baseline exist. The conventional
machine learning models have very limited usabil-
ity as suggested by the results of the large-scale
evaluation we described previously.

6.1 Study Protocol

Participants We recruited a total of 12 partici-
pants using opportunity sampling to take part in the
study (average age = 26.7, sd = 5.2; 7 males and 5
females). A G*Power’s analysis (Faul et al., 2007)
based on a t-test suggested a sample size of 12 as
being adequate for the study based on an effect
size of 0.81 (calculated from the collected results),
an error probability of 0.05, and a power of 0.8.
Among the 12 participants in the user study, four
were students, five were employed, and three were
self-employed. Each participant is compensated
with Amazon vouchers worth 10 GBP.

Materials The study used a HoloLens 2 device
which has an inbuilt front camera to stream ego-
centric videos. The encoding, storage, and retrieval
tasks were performed by calling APIs hosted on
our server.

Procedure The study had two stages. In the first,
participants used a HoloLens 2 for tasks in a house
setting: viewing a painting, switching TV chan-
nels, cooking eggs, reading a book, and selecting
a movie. After 5-7 days, reflecting the “forgetting
curve” concept by Rivera-Lares et al. (2022), they
entered the second stage, answering questions re-
lated to these tasks and others not directly linked
but relevant to the scenarios.

Participants also asked the memory augmenta-
tion system five open-ended questions and rated
both the system’s and their own responses on a 1-5
Likert scale. They completed post-study surveys
on their experience, assessing the system’s value,
accuracy, and creativity, and their willingness to
use always-on camera for memory augmentation.

Additionally, they are also asked open-ended



Where did you place the TV remote?

Name the list of movies you browsed?

What was the dominant color of the painting?

How many eggs did you cook?

Name the book you read?

What color was the guitar beside the painting?

What was the person you interacted with wearing?

What is the color of the kettle beside the pan?

How many vases did you see on the dining table?
Describe the painting in detail.

Il Human
s MA
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Figure 3: Comparative analysis of scores for the memory augmentation (MA) system and Human responses across
various questions. Each question has multiple pairs of Al and human scores represented by the bars. The z-axis
enumerates different questions, while the y-axis shows the scores ranging from 1 to 5. The bars are color-coded,
with one color representing Al and another representing human scores. The legend on the top-right corner outside

the plot area distinguishes between Al and human bars.
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Figure 4: The five-point Likert responses to the post-
study questionnaire. Q1. The memory augmentation
capability is valuable; Q2. The information provided by
the memory augmentation system is accurate; Q3. The
response to my open-ended question by the memory
augmentation system is creative; Q4. I am willing to
wear an always-on camera for memory augmentation
through language encoding; Q5. I am willing for others
in my close vicinity to wear an always-on camera for
memory augmentation through language encoding.

questions about using the feature, concerns, sug-
gested improvements, and other feedback.’

6.2 Results

Episodic Memory Questions Figure 3 shows
that the memory augmentation system generally
outperforms human memory in episodic memory
questions. The scoring correlates with response
accuracy; for example, a precise color or quantity
answer scores higher. The system excels in detailed
descriptions, like of paintings, but struggles in tasks
like counting or differentiating actions, such as

2See Appendix B.1 for additional details.

determining the placement of objects.

Humans perform well in specific tasks but often
forget details not directly related to their main fo-
cus, like the color of a kettle or a list of movies. The
memory augmentation system is particularly useful
in memory-intensive tasks, detailed descriptions,
and overlooked details.

Statistically, the system’s mean response score of
4.13/5 surpasses human responses at 2.46/5, with a
Friedman’s test indicating a significant difference
(x? = 37.928, p = 0.0009). The system shows in-
creased stability and consistency in responses with
a smaller standard deviation compared to human
memory.

Open-Ended Questions Participants gave the
memory augmentation system’s responses to open-
ended questions an average rating of 3.97/5 with a
standard deviation of 0.604. This reflects the bene-
fit of integrating OpenAl GPT-4 as a conversational
interface with an external knowledge base, enhanc-
ing its effectiveness in context-aware responses.
Common queries included movie or book recom-
mendations, with responses like suggesting “The
Godfather” or “The Dark Knight” typically receiv-
ing high ratings of 5/5. Questions about tasks, like
improving egg cooking, also received positive feed-
back, with the system providing detailed steps and
showing awareness of the user’s specific circum-
stances, often rated between 4/5 and 5/5.

Post-Study Survey Figure 4 shows participant
responses to the memory augmentation system, cat-
egorized as Strongly Disagree to Strongly Agree,
covering aspects like capability, accuracy, creativ-
ity, and willingness to use. The system is generally



seen as accurate, creative, and valuable, particu-
larly for typical EMQA questions and open-ended
responses.

Participants in open-ended surveys recognized
the system’s value in various settings like biomed-
ical experiments and conferences. However, con-
cerns were raised about social awkwardness, ethi-
cal implications of over-reliance on the system for
memory, and privacy issues, particularly regarding
recording others’ actions. Some worries subsided
as participants understood the language encoding
function, but apprehensions remained for a few.

To address these issues, participants suggested
using indicators for the system’s operation, lim-
iting its usage to specific scenarios, and making
the camera device more discreet to enhance social
acceptance.’

7 Discussion

In this paper we have demonstrated a novel memory
augmentation system and demonstrated its perfor-
mance. Besides being lightweight, as it is reliant
on language-encoding as opposed to vision-based,
we discuss three additional advantages of this ap-
proach: performance, privacy, and device agnosti-
cism.

Ego-LLaVA Paried with Language Encoding
Achieved State-of-the-Art in QA- Ego4D The
system outperformed traditional models in the QA-
Ego4D dataset evaluation with a BLEU score of
8.3. This superior performance in the EMQA task
is due to addressing memory constraints that re-
quire compression of information into a fixed-size
representation, specialized modeling beyond the
capabilities of simpler models like STM, and ef-
fective relevance selection within the limited mem-
ory space, challenges that baseline models struggle
with.

Language Encoding is Lightweight In this pa-
per, the Language Encoding Approach and the
Vision-based Approach are compared. Language
Encoding stores textual data from video, requir-
ing around 0.517 TB/year uncompressed, reduced
to 0.246-0.345 TB with compression, while the
Vision-based Approach needs 5.74 TB/year for low
bitrate 720p video.

Language Encoding is Private Privacy concerns
in life logging and memory augmentation systems,

3See Appendix B.2 for additional details.

as highlighted in the post-study surveys in Sec-
tion 6.2, are critical. Video data, rich in detail,
is challenging to sanitize without compromising
content. Language-encoded systems, conversely,
can more easily anonymize or remove private in-
formation, maintaining information quality. Such
systems can inherently prioritize privacy by exclud-
ing sensitive details during encoding, preserving
both privacy and utility. Furthermore, hardware
design considerations for privacy, as discussed in
Section 6.2, can enhance user trust and consent.

Language Encoding is Device Agnostic For
question and answering, the language encoding
approach introduced in this paper gives rise device
agnosticism due to its design. This contrasts with
vision-based QA models which may exhibit dimin-
ished accuracy, or necessitate fine-tuning, when
transitioning across different devices. Moreover,
the device-agnostic nature is carried through in our
language encoding model. The novel egocentric
vision language model we introduced in this paper
is cultivated using a diverse array of devices in-
cluding GoPro, Vuzix Blade, Pupil Labs, ZShades,
ORDRO EP6, iVue Rincon 1080, and Weeview, to
capture egocentric videos. This breadth of train-
ing sources fortifies our framework’s compatibility
with any device capable of delivering egocentric
video streaming. While we use the HoloLens 2 as
the AR headset, its usage is solely as a conduit for
streaming egocentric videos, further illustrating the
adaptability of the model.

8 Conclusion

In conclusion, our research presents a novel mem-
ory augmentation system that employs a fine-tuned
vision language model, Ego-LLaVA, on egocen-
tric vision data for accurate language encoding.
This system, combined with a vector database, en-
ables efficient data storage and retrieval. Demon-
strating superior performance in the EMQA bench-
mark, specifically the QA-Ego4D dataset, with a
BLEU score of 8.3, it outperforms conventional
vision-based models, and other pre-trained vision
language models paired with language encoding
techniques. A user study further confirmed its ef-
fectiveness in episodic memory tasks, surpassing
human participants. These findings underscore the
potential of our system for real-world applications
in enhancing human memory.



Limitation

We introduce an encoding method that operates on
an individual frame basis. However, this method
struggles to capture temporal correlations, which
are essential for understanding dynamic features
like activities. Figure 3 shows the lower perfor-
mance on the two questions related to dynamic ele-
ments, including “place” and “cook”. Such move-
ments or scene changes, are better understood when
temporal correlations between frames are consid-
ered. Without this, the encoding method may miss
these dynamic subtleties, leading to a significant
loss of crucial information. Activities usually occur
over a series of frames. Ignoring temporal correla-
tions can make it challenging to fully understand
these activities. For example, the action of a per-
son picking up an object involves a sequence of
movements across several frames. Despite these
shortcomings, this encoding method excels in cap-
turing static features, as each frame is encoded
separately.

Ethics Statement

This work reports on using language-encoded ego-
centric perception to build an accurate memory
augmentation system. There are no perceived ethi-
cal risks associated with this work.
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A Training and Implementation Details
A.1 Prompt to Ego-LLaVa to Encode Video
Frames

Describe the image in detail. Start with a high-level
description: Begin by providing an overall descrip-
tion of the image, capturing its main subject or
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scene. Describe the visual elements: Break down
the image into its key visual elements and describe
them in detail. Provide context and additional de-
tails: Include any relevant context or details that
enhance the understanding of the image. Use spa-
tial relationships: Describe the arrangement of ob-
Jjects within the image, their relative sizes, and their
positions. Consider proportions and scale: Specify
the proportions and scale of various elements to
ensure their accurate representation. This includes
the size of objects, distances between them, and
any other relevant measurements. Finally, avoid
fabricating information.

A.2 Ego-LLaVA Fine-tuning Details

For the fine-tuning process, we employ a clus-
ter of eight A100 GPUs. The whole training
process takes around 10 hours. Our training
protocol benefits from the use of DeepSpeed
ZeRO-3 (DeepSpeed Team, 2021). Given the
substantial computational demands, we incorporate
LoRA (Hu et al., 2021), enabling the training
process to fit within the constraints of eight
A100-40G GPUs. The pretraining model is
designed with a maximum text length of 1024
and an image size of 448. It incorporates gradient
checkpointing and is tailored to operate with a chat
template. The model parameters are loaded from
liuhaotian/LLaVA-Lightning-MPT-7B-preview
in Hugging Face, and the model is further aug-
mented with LoRA, which is configured with a
radius of 64 and an alpha of 16. The learning
rate schedule adheres to the linear warmup cosine
learning rate strategy. It starts with an initial
learning rate of 1e-5, a minimum learning rate of
8e-5, and a warmup learning rate of le-6. The
weight decay is set at 0.05, and the training process
is designed to run for up to 50 epochs. Our training
setup comprises six workers, with each epoch
consisting of 1000 iterations and a warmup step
of 1000. To ensure reproducibility, the training
process is seeded at 66. Furthermore, the training
process is configured to utilize mixed-precision
training (amp) for optimized performance.

A.3 Memory Augmentation System
Implementation Details

The process begun with the uploading of the video
to the server. To optimize the speed of the en-
coding process, we extracted four frames per sec-
ond from the video. To expedite this process
and approach near real-time encoding, we used
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multi-process threading. This technique allowsed
multiple encoding tasks to be executed simultane-
ously, significantly reducing the overall time re-
quired. Once the frames were encoded, they were
stored in a vector database. Vector databases, such
as Pinecone (Pinecone, 2022) and Chroma (Core,
2023), are designed to handle high-dimensional
vector data, making them ideal for this purpose.
In our case, we decided to use Chroma as it is an
open-source project. We used LangChain (Chase,
2022) as the implementation framework and Ope-
nAl GPT-4 as the large language model to imple-
ment the conversational Al assistant that performs
question-answering for memory augmentation.

B Human User Study

B.1 Study Protocol

Firstly, we have issued risk disclaimers to the partic-
ipants. The study consisted of two stages. During
the first stage, participants were equipped with a
HoloLens 2 device and were instructed to perform
a series of tasks. These tasks were divided into five
different scenarios: (1) looking at a painting in a
living room; (2) switching TV channels in a living
room; (3) cooking eggs in a kitchen; (4) reading a
book in a study room; and (5) selecting a movie on
a laptop. These tasks took place in an actual house
equipped with a variety of furniture and items. Par-
ticipants were encouraged to freely engage in the
tasks to simulate a normal daily life experiences.
Between five and seven days later, participants
proceeded to the second stage of the study. This
delay was used based on the concept proposed by
Rivera-Lares et al. (2022). They suggest that after
a week, the amount of retained information may
have diminished to a level referred to as the “floor”,
making it challenging to detect or observe any ad-
ditional instances of forgetting. This can be repre-
sented by the forgetting curve, which hypothesizes
a decline in memory retention over time in the ab-
sence of deliberate attempts to retain information.
During the second stage of the study the partici-
pants were presented with a set of questions mod-
eled after Table 2, which were derived from the
tasks they performed. Standard questions included
“Where did you place the TV remote?”, “Name
the list of movies you browsed on the laptop?”,
“What was the dominant color of the painting you
observed?”, “How many eggs did you cook?”, and
“Name the book you read?”. In addition to these
task-related questions, there were other queries that
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were not directly linked to the tasks but remained
relevant to the scenarios, including “What color
was the guitar beside the painting?”, “What was
the person you interacted with (study facilitator)
wearing?”, “What is the color of the kettle beside
the pan” and “How many vases did you see on the
dining table?”. An example of a description type
question for the third category of queries is the
following: “Describe the painting in detail”. We
asked each participant these ten questions.

In addition, participants were encouraged to ask
the memory augmentation system five open-ended
questions through a interactive conversational in-
terface. Examples of questions were “What movie
would you recommend for next time?”, “Based on
what you know, do you think I eat healthily, and if
not, what suggestions do you have for my diet?”,
and “What are the steps to better cook an egg?”.

Thereafter the participants were asked to rate
the responses generated by the system as well as
their own answers using a scale ranging from 1
(very bad) to 5 (very good). Note that the order of
queries and the order of which responses to score
were randomized. Participants were also requested
to score the system’s responses to open-ended ques-
tions using the same scale. We then used post-study
surveys to gather feedback from the participants
regarding their subjective opinions on the overall
experience with the system.

The participants were asked to respond to the
following Likert scale questions: (1) The mem-
ory augmentation capability is valuable; (2) The
information provided by the memory augmenta-
tion system is accurate; (3) The response to my
open-ended questions by the memory augmenta-
tion system is creative; (4) I am willing to wear an
always-on camera for language-encoded memory
augmentation; and (5) I am willing for others in
my close vicinity to wear an always-on camera for
language-encoded memory augmentation.

Finally, we asked four open-ended questions:
(1) Under what circumstances would you use this
memory augmentation feature?; (2) Do you have
any concerns regarding the memory augmentation
capability?; (3) What improvements would you
suggest for the memory augmentation system? and
(4) Do you have any other feedback or suggestions
regarding the memory augmentation feature?

B.2 Post-Study Survey

In the open-ended surveys, participants emphasized
the importance and value of having a memory aug-



mentation system, highlighting various applicable
scenarios such as biomedical experiments, confer-
ences, attending lectures/meetings, and exploring
new places (P1, P3, P4, P6, P7, P10, P11, P12).

However, participants expressed concerns about
the system being socially awkward to wear (p1, p2,
p6). Ethical concerns were also raised, such as
the potential degradation of people’s memorization
capabilities if they rely solely on the system (P4,
P10). Additionally, some participants highlight
privacy issues concerning individuals donning it
and recording their actions. For example, P3 noted
that “the system’s powerful and accurate capabili-
ties could pose safety risks if breached”, while P2
expressed worries about “discomfort with others
wearing the system and recording their activities”.
However, as the understanding of the system’s func-
tion through language encoding grew, the majority
of concerns diminished (P1, P3, P5, P6, P7, PS,
P12), although a few participants still felt uneasy
(P1, P2, P9, P11).

Participants proposed specific improvements to
address these issues, including incorporating indi-
cators to make people aware of the system’s opera-
tion and limiting its use to specific scenarios such
as teaching and conferences rather than everyday
life (P1, P3, P4, P12). Additionally, participants
suggested making the always-on camera device
as lightweight and inconspicuous as possible to
minimize social awkwardness and increase social
acceptance (P2, P5, P6, PS8, P9, P11).
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