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Abstract

We depend on our own memory to encode,001
store, and retrieve experiences, but face the is-002
sue of memory lapses. Addressing this, life003
logging through wearable devices capturing004
egocentric videos is a promising memory aug-005
mentation method. However, it deals with chal-006
lenges in efficiently managing large video data,007
computational intensity for retrieval, and pri-008
vacy concerns. Our proposed system uses natu-009
ral language encoding for video data, stored in010
a vector database, leveraging large vision lan-011
guage models for encoding and large language012
models for querying. In the QA-Ego4D dataset,013
our system achieved a BLEU score of 8.3, sur-014
passing conventional models scoring between015
3.4 and 5.8. A user study revealed our system016
significantly improves episodic memory task017
performance compared to human participants.018

1 Introduction019

Human memory, crucial for various cognitive func-020

tions, often relies on external aids like photographs021

and reminders for enhancing recollection of past022

events (Klein, 2015; Intons-Peterson and New-023

some III, 1992; Intons-Peterson, 2014). However,024

these aids are limited in scope, making internal025

memory essential for encoding, storing, and re-026

trieving experiences. Memory lapses, especially027

in aging, are common. Life logging, capturing im-028

ages, videos, and personal data, is proposed as a029

method for memory augmentation (Harvey et al.,030

2016; Dingler et al., 2021; Chen and Jones, 2010;031

Hayes et al., 2004; Hodges et al., 2006; Gurrin032

et al., 2014b). The emergence of smart glasses and033

AR headsets introduces new opportunities for life034

logging, though challenges in data encoding, stor-035

age, and privacy compliance persist (Gurrin et al.,036

2014a).037

This paper presents a language-encoded038

episodic memory system to tackle these issues.039

It employs language encoding of egocentric040

videos using a large vision language model, stores 041

language embeddings in a vector database for 042

efficient retrieval, and uses a large language 043

model for open-ended question answering in 044

episodic memory tasks. We fine-tune the Large 045

Language and Vision Assistant (LLaVA) (Liu et al., 046

2023) for egocentric data and integrate OpenAI 047

GPT-4 (OpenAI, 2023) with Chroma (Core, 2023) 048

for memory storage and retrieval. 049

We utilize the QA-Ego4D dataset (Bärmann and 050

Waibel, 2022; Grauman et al., 2022), designed 051

for the Episodic Memory Question Answering 052

(EMQA) task with a constant-size memory con- 053

straint. Our method achieves a BLEU score of 8.3, 054

outperforming conventional models (Bärmann and 055

Waibel, 2022). 056

We implemented our system on the HoloLens 2 057

device and conducted a week-long study. Our sys- 058

tem outperformed human participants in episodic 059

memory tasks, achieving a mean response score of 060

4.13/5 compared to the participants’ score of 2.46/5. 061

A post-study questionnaire revealed reduced pri- 062

vacy concerns, demonstrating the system’s effec- 063

tiveness in memory augmentation. 064

Hence, our research paper presents three contri- 065

butions as outlined below: 066

• We introduce, for the first time to our knowl- 067

edge, a memory augmentation system that com- 068

bines egocentric vision language encoding with 069

episodic memory question answering (EMQA) 070

tasks, utilizing a vector database for efficient stor- 071

age and retrieval. 072

• We present a large-scale quantitative evaluation 073

of our system using the EMQA benchmark, 074

specifically the QA-Ego4D dataset, demonstrat- 075

ing its effectiveness in episodic memory tasks. 076

• We conduct a user study to examine our system’s 077

potential applications, revealing its benefits in 078

various scenarios and its superior performance 079

on episodic memory tasks compared to humans. 080
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Figure 1: The memory augmentation system operates by first encoding egocentric videos into linguistic representa-
tions using a bespoke egocentric vision language model. These language-encoded outputs are stored in a buffer,
segmented, and transformed into embeddings for storage in a vector database. Upon receiving a user query, like
“Where did I leave my keys?”, the system generates an embedding of the query. This embedding is used to search
the database for relevant chunks using vector similarity algorithms. These chunks are combined with the query to
create a prompt for a large language model, which then generates the final response for the user.

2 Memory Augmentation through Life081

Logging082

Lifelogging, present for over 30 years, has evolved083

with technology (Harvey et al., 2016; Gurrin et al.,084

2013). Initially, it involved bulky equipment like085

helmets and battery packs (Wolf et al., 2014),086

but has since progressed to wearable devices like087

glasses (Harvey et al., 2016). A key development088

was Microsoft’s SenseCam in 2006, a notable lifel-089

ogging device (Microsoft Research, 2004; Doherty090

et al., 2012). Lifelogging now includes data from091

GPS, audio, heart rate, emails, calendar events, and092

social media.093

Significant progress has been made in memory094

augmentation through lifelogging (Harvey et al.,095

2016). Le et al. (2016) focused on video summaries096

for memory recall but didn’t address data selec-097

tion challenges. Davies et al. (2015) highlighted098

privacy and security concerns in pervasive com-099

puting but lacked comprehensive solutions. Byrne100

et al. (2010) developed a method for content rel-101

evance in visual lifelogs but it was limited to ev-102

eryday concepts. Our work uniquely implements103

a memory augmentation system enabling open-104

ended episodic memory queries within a wearable105

headset.106

3 Problem Formulation107

Natural Language Video Localization (NLVL) and108

Video Question Answering (VideoQA) are distinct109

yet related tasks in video content analysis. NLVL110

focuses on finding a video segment matching a111

natural language query, requiring the model to un- 112

derstand both video and query context (Krishna 113

et al., 2017; Gao et al., 2017; Regneri et al., 2013; 114

Grauman et al., 2022). VideoQA, on the other hand, 115

involves answering questions based on video con- 116

tent, demanding a deep understanding of the video 117

and the ability to provide precise answers (Lei et al., 118

2020; Mun et al., 2020; Sun et al., 2021; Miyanishi 119

and Kawanabe, 2021; Le et al., 2020b). 120

Episodic Memory Question Answering (EMQA) 121

is a specific subtask of VideoQA, introduced by 122

Bärmann and Waibel (2022). It differs in its 123

memory constraints, shifting from offline analy- 124

sis (VideoQA) to an online algorithm and setting a 125

maximum limit on memory usage for computation, 126

thus suitable for long-term or life-long use. 127

This paper focuses on EMQA due to its advan- 128

tages over NLVL and traditional VideoQA. While 129

NLVL produces non-textual output and VideoQA 130

has scalability issues, EMQA offers textual outputs 131

and a constant-size memory constraint, enhancing 132

efficiency for long videos. 133

4 Methodology 134

Human memory involves encoding, storing, and 135

retrieving information. Encoding is key for convert- 136

ing information into a format suitable for memory 137

storage. Storage maintains this information until 138

needed, and retrieval accesses and reinstates it into 139

consciousness. Our system mimics these biological 140

memory processes (Zlotnik and Vansintjan, 2019). 141

Initially, each video frame v is transformed into a 142

language encoding l using the encoding function E, 143
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Figure 2: The Egocentric Vision-Language Model is de-
veloped through a process called fine-tuning. This pro-
cess involves extracting knowledge from a large model
and transferring it to smaller models, resulting in im-
proved accuracy and faster inference times. The Ego-
centric Vision-Language Model combines the power of
vision and language to effectively process and under-
stand egocentric video data. 13B and 7B refer to large
language models with 13 billion and 7 billion parame-
ters.

denoted as l = E(v). These language encodings144

are accumulated over time, forming a cumulative145

history Lhistory.146

An embedding model acts as a transformation147

function T to convert chunks C of Lhistory into vec-148

tor representation g, expressed as g = T (C). The149

vector g is stored in a vector database via a storage150

function S, where S(g) → Database.151

For retrieval, the system uses the same transfor-152

mation function T to convert a natural language153

query q into a query vector qv: qv = T (q). The154

retrieval function R then fetches the most relevant155

language encodings c as context based on qv, for-156

mulated as R(qv,Database) → c. This context c157

and the query q are concatenated and processed by158

large language models to generate an answer based159

on the context.160

4.1 Encode161

We employ language as a means to encode egocen-162

tric visual perceptions. Specifically, our focus lies163

on adopting a frame-based approach rather than164

encoding clips using a sliding window. This deci-165

sion stems from the fact that encoding clips using a166

sliding window can result in excessively long infer-167

ence times, rendering it impractical for real-time168

usage. Furthermore, the field of video captioning169

is still in its early stages, and even state-of-the-art170

models are unable to provide accurate and detailed171

encodings (Xu et al., 2023; Zhang et al., 2023; Xu172

et al., 2016; Wang et al., 2022). Consequently, we173

opt to encode videos by their individual frames.174

We present a novel model, Ego-LLaVA, for ego-175

centric video encoding. This model is fine-tuned176

from LLaVA (Large Language and Vision Assis- 177

tant) (Liu et al., 2023) on egocentric data, which 178

captures first-person experiences in a 3D environ- 179

ment. This fine-tuning procedure leads to better per- 180

formance in understanding first-person data which 181

involves interpreting human-object interactions and 182

complex social behaviors. 183

To tackle this issue, we curated our own 184

egocentric video frame description dataset from 185

Ego4D (Grauman et al., 2022) and fine-tuned the 186

LLaVA model to learn egocentric features. 187

The fine-tuning process is described below: 188

• Training Data: We begin by employing LLaVA 189

using a descriptor prompt P 1, to generate de- 190

tailed descriptions for a randomly sampled set of 191

3,000 images. Subsequently, we engaged three 192

research assistants from our institution to cor- 193

rect the descriptions in scenarios where objects 194

were inaccurately identified or significant objects 195

within the frames were missed. This process re- 196

sults in a collection of 3,000 image/video frame- 197

text/description pairs. It has been observed by 198

Zhu et al. (2023) that a set of 3,000 training pairs 199

is adequate. Zhu et al. (2023) successfully fine- 200

tuned a visual-language model using only 3,500 201

image-text pairs, which yielded exceptional per- 202

formance in tasks such as image question answer- 203

ing. 204

The practice of training language models using 205

responses generated by larger language models 206

has become increasingly common due to the 207

robustness of these models. Vicuna-13B (Chi- 208

ang et al., 2023) is an example of a model 209

trained by fine-tuning the LLaMA-13B (Zhang 210

et al., 2023) base model with approximately 211

70,000 user-shared conversations gathered from 212

ShareGPT (ShareGPT, 2023), a website that 213

collects conversational data from OpenAI Chat- 214

GPT. Similarly, MiniGPT-4 (Zhu et al., 2023) 215

and LLaVA (Liu et al., 2023) are trained using 216

large language model-generated content, achiev- 217

ing state-of-the-art results and saving significant 218

time on human labeling. 219

• Fine-Tuning: In our experiment, as shown in Fig- 220

ure 2, we use Vicuna-13B (Chiang et al., 2023) 221

as the 13B language model and MPT-7B (Mo- 222

saicML, 2022) as the 7B language model. MPT 223

(MosaicML Pretrained Transformer) is optimized 224

for efficient training and fast inference, utiliz- 225

1See the full prompt in Appendix A.1

3



ing FlashAttention (Dao et al., 2022) and Faster-226

Transformer (NVIDIA, 2023) techniques.227

More specifically, Ego-LLaVA is fine-tuned on228

image-text pairs where the descriptor question229

P prompts a description of the video frame v,230

and the ground truth prediction answer l is the231

original detailed description. During training, the232

weights of both the visual encoder and LLM are233

kept constant, and the probability p(l|v, P ) of the234

target answers l is maximized by only training the235

parameters of the linear projection layer between236

the visual encoder and the LLM. This process al-237

lows for the alignment of the video frame features238

Hv with the pre-trained LLM word embedding.239

4.2 Store240

A vector database stores data as vectors g with241

each element g representing a data attribute (Core,242

2023; Pinecone, 2022). This can enhance Large243

Language Models (LLMs) by storing and retriev-244

ing vector representations g for long-term memory245

retention and contextually relevant responses (Stata246

et al., 2000; Chase, 2022).247

Our approach involves:248

1. Chunking: Break the language-encoded history249

into smaller, manageable chunks C. Our approach250

employs fixed-size chunking. We set the target size251

of each text chunk in tokens to T = 1024, and the252

overlap chuck size to O = 256. The minimum size253

of each text chunk is set to M = 350. We discard254

chunks C shorter than five characters.255

2. Associate Metadata: We associate metadata256

M , including frame number F and time t, with the257

chunks C. The metadata M can be used by Vector258

Database for more advanced searches.259

3. Vector Embeddings: Create vector embed-260

dings g for the segmented chunks C, capturing261

their semantic meaning. We utilize OpenAI model,262

text-embedding-ada-002, for the extraction of vec-263

tor embeddings g = T (c), c ∈ C.264

4. Storage: Store the vector embeddings g in a265

vector databas. We use Chroma (Core, 2023),266

which serves as a vector database solution, pro-267

viding the capability to store, search, and access268

vector data on a large scale. The storage function269

is expressed as S(g) → Database, where S is the270

storage function.271

4.3 Retrieve272

The retrieval system functions as follows: It starts273

by taking the user’s input question q and employ-274

ing the OpenAI model, text-embedding-ada-002, 275

to generate an embedding for this question. This 276

process is expressed as qv = T (q). This resultant 277

embedding vector qv is subsequently used to make 278

a query to the Database Interface, aiming to find rel- 279

evant chunks l related to the question. The retrieval 280

function is formulated as R(qv,Database) → l. 281

The query vector qv does not necessarily have to 282

exactly align with the vectors in the database, as 283

the database engine from Chroma (Core, 2023) is 284

capable of efficiently extracting data indexed by 285

vectors that bear close resemblance. 286

First, chunks of context data c from a vector 287

database that are semantically related to the query 288

q are obtained. These context chunks c, along with 289

the query q, are then inserted into a prompt tem- 290

plate: You are my AI assistant to support memory 291

augmentation. Use the following pieces of con- 292

text to answer the question at the end. {context} 293

Question: {question}. The placeholders {context} 294

and {question} represent the acquired chunks c and 295

the user’s query q, respectively. Next, a chain of 296

thought prompt is constructed, incorporating the 297

prompt template, and presented to the OpenAI GPT- 298

4. 299

5 Evaluation of the Memory 300

Augmentation System on QA-Ego4D 301

To study the proposed memory augmentation sys- 302

tem’s performance we carry out a large-scale quan- 303

titative evaluation using the public dataset QA- 304

Ego4D. The evaluation focuses on the EMQA task, 305

which is detailed in Section 3. 306

5.1 Dataset - QA-Ego4D 307

The QA-Ego4D dataset, an extension of the Ego4D 308

dataset’s Natural Language Query (NLQ) sub- 309

task, features egocentric videos paired with nat- 310

ural language questions, answers, and annotations 311

for answer-relevant video segments (Bärmann and 312

Waibel, 2022; Grauman et al., 2022). Each video 313

averages eight minutes in length. The dataset in- 314

cludes 19.2K queries from 227 hours of video 315

across 34 scenarios from ten universities. Queries 316

average 8.3 words, with response windows averag- 317

ing 9.3 seconds, presenting a search challenge. The 318

dataset omits “When?” questions due to undefined 319

natural language answers. 320

It’s divided into training, validation, and test 321

sets, with 997 training videos, 162 for validation, 322

and 166 for testing, comprising 10,746, 1,913, and 323
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Model BLEU METEOR ROUGE
DNC (Graves et al., 2016) 3.4 ± 0.27 17.9 ± 2.15 27.0 ± 3.24

STM (Le et al., 2020a) 5.8 ± 0.81 17.6 ± 1.32 26.2 ± 3.93
LT-CT (Rae et al., 2019) 5.3 ± 0.53 18.5 ± 1.85 27.5 ± 3.30
RM (Zhang et al., 2021) 4.5 ± 0.63 17.7 ± 2.66 26.6 ± 3.99
Language-Encoded QA

(with EVLP (Lin et al., 2022)) 4.3 ± 0.60 17.2 ± 1.72 27.0 ± 3.51

Language-Encoded QA
(with Video-LLaMA (Zhang et al., 2023)) 5.8 ± 1.11 19.3 ± 2.32 30.7 ± 4.60

Language-Encoded QA
(with LLaVA (Liu et al., 2023)) 7.4 ± 1.25 36.1 ± 5.42 50.7 ± 7.60

Language-Encoded QA
(With Ego-LLaVA) 8.3 ± 0.86 42.3 ± 5.35 54.7 ± 6.21

Table 1: EMQA results on the QA-Ego4D test set with standard deviations.

Category Template BLEU

Objects

Where is object X before
/ after event Y? 8.7 ± 0.87

Where is object X? 8.9 ± 1.12
What did I put in X? 7.6 ± 0.76
How many X’s?
(quantity question) 7.4 ± 1.11

What X did I Y? 8.3 ± 0.83
In what location
did I see object X? 8.5 ± 1.28

What X is Y 8.0 ± 0.80
State of an object 7.8 ± 1.17
Where is my object X? 9.0 ± 1.35

Place Where did I put X? 8.2 ± 0.98

People

Who did I interact
with when I did activity X? 8.1 ± 1.22

Who did I talk to
in location X? 8.4 ± 1.26

Table 2: The templates span a wide range of inquiries
that individuals can make use of to enhance their mem-
ory, and retrieve information about various objects, loca-
tions, and individuals they encounter in their daily lives.
We also show the average BLEU score with standard
deviations for the proposed memory augmentation sys-
tem for each template.

1,854 question-answer pairs for each set respec-324

tively. The test data uses half of the validation set’s325

canonical videos, as Ego4D’s test data is unpub-326

lished.327

5.2 Baseline Models328

In our comparison, we include models from the329

QA-Ego4D paper (Bärmann and Waibel, 2022):330

Differentiable Neural Computer (DNC) (Graves331

et al., 2016), Self-attentive-Associative-Memory-332

based Two-memory Model (STM) (Le et al.,333

2020a), Long-Term Comprehensive Transformer334

(LT-CT) (Rae et al., 2019), and Rehearsal Memory335

(RM) (Zhang et al., 2021).336

We also employ alterations to the encoding meth-337

ods:338

• Language-Encoded QA (with EgoVLP) Lin339

et al. (2022): The EVLP (Egocentric Video- 340

Language Pretraining) model is a dual- 341

encoder system for egocentric video-language 342

pretraining, using separate video and text en- 343

coders. This model is optimized for tasks in- 344

volving egocentric videos and their associated 345

text. 346

• Language-Encoded QA (with Video- 347

LLaMA (Zhang et al., 2023)): We employ a 348

sliding window approach with a width and 349

stride of 6 seconds each to encode video 350

clips into language. Video-LLaMA is a 351

state-of-the-art video QA model which is 352

suitable for video captioning. 353

• Language-Encoded QA (with LLaVA (Liu 354

et al., 2023)): We use the original LLaVA 355

as the encoding method. 356

We prompt both the above two models using the 357

same prompt as for Ego-LLaVA. These contrasting 358

models provide a comprehensive comparison for 359

the model proposed in this paper. 360

5.3 Evaluation Metrics 361

We report standard Natural Language Processing 362

metrics for EMQA tasks, including BLEU-4 (Pap- 363

ineni et al., 2002), METEOR (Banerjee and Lavie, 364

2005), and ROUGE-L (f-score) (Lin, 2004). 365

5.4 Results 366

Our System Achieved State-of-the-Art in QA- 367

Ego4D dataset: Table 1 demonstrates that our 368

language-encoded method surpasses not only con- 369

ventional vision-based machine learning models 370

on the QA-Ego4D test set, but also exceeds the 371

performance of other pre-trained vision-language 372

models utilizing the language encoding technique. 373

Notably, Ego-LLaVA exceeds the original LLaVA 374
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in encoding effectiveness, likely due to LLaVA’s375

fine-tuning with egocentric data. Despite a small376

fine-tuning dataset of 3,000 image-text pairs, the377

model aligns image and text features well. Never-378

theless, employing Video LLaMA as an encoder379

yields subpar performance due to problems with380

hallucination. Similarly, the backbone model used381

by EVLP is not adequately equipped to describe382

images in fine-grained detail, resulting in lackluster383

performance when using the language encoding384

technique.385

Varied System Performance Across Question386

Templates: Table 2 shows the system’s perfor-387

mance on various question templates. We observe388

that simpler questions, such as “Where is object389

X?” or “Where did I put X?”, generally yield390

better results due to their straightforward nature,391

demanding less complex reasoning from the sys-392

tem. Conversely, questions involving more intricate393

reasoning or understanding of dynamic elements,394

such as “Where is object X before / after event395

Y?” or “What X did I Y?”, may not perform as396

well. This is attributed to the current encoding397

method’s limitations in capturing temporal corre-398

lations, which are crucial for comprehending dy-399

namic activities. Quantity-based questions, such400

as “How many X’s?”, pose a challenge due to the401

encoding model’s resolution limitations, making402

accurate object counting difficult.403

Questions about the state of an object could also404

be challenging if the state involves fine details, or405

dynamic elements that change over time. Without406

the ability to apply attention to the data, the sys-407

tem might not capture these dynamic subtleties,408

leading to a significant loss of crucial informa-409

tion. In essence, the system’s performance on dif-410

ferent question templates largely depends on the411

question’s complexity, the required level of detail,412

and the system’s ability to understand dynamic ele-413

ments and temporal correlations. Future improve-414

ments in these areas could potentially enhance the415

system’s performance on more complex question416

templates.417

6 Human User Study of the Memory418

Augmentation System419

Having established quantitative performance bene-420

fits of the memory augmentation system in theory421

it is natural to ask whether the system is usable in422

practice. To this end, we carried out a user study423

with two objectives. The first objective is to evalu-424

ate and contrast the performance of human partici- 425

pants with that of the memory augmentation system 426

in answering a set of episodic memory questions. 427

The second objective is to explore the framework’s 428

capability in handling open-ended questions, which 429

could potentially demand strong reasoning power 430

and access to an external knowledge base. We did 431

not incorporate another memory augmentation sys- 432

tem as a comparison because we are the first to 433

propose such a memory augmentation framework 434

and hence no such baseline exist. The conventional 435

machine learning models have very limited usabil- 436

ity as suggested by the results of the large-scale 437

evaluation we described previously. 438

6.1 Study Protocol 439

Participants We recruited a total of 12 partici- 440

pants using opportunity sampling to take part in the 441

study (average age = 26.7, sd = 5.2; 7 males and 5 442

females). A G*Power’s analysis (Faul et al., 2007) 443

based on a t-test suggested a sample size of 12 as 444

being adequate for the study based on an effect 445

size of 0.81 (calculated from the collected results), 446

an error probability of 0.05, and a power of 0.8. 447

Among the 12 participants in the user study, four 448

were students, five were employed, and three were 449

self-employed. Each participant is compensated 450

with Amazon vouchers worth 10 GBP. 451

Materials The study used a HoloLens 2 device 452

which has an inbuilt front camera to stream ego- 453

centric videos. The encoding, storage, and retrieval 454

tasks were performed by calling APIs hosted on 455

our server. 456

Procedure The study had two stages. In the first, 457

participants used a HoloLens 2 for tasks in a house 458

setting: viewing a painting, switching TV chan- 459

nels, cooking eggs, reading a book, and selecting 460

a movie. After 5-7 days, reflecting the “forgetting 461

curve” concept by Rivera-Lares et al. (2022), they 462

entered the second stage, answering questions re- 463

lated to these tasks and others not directly linked 464

but relevant to the scenarios. 465

Participants also asked the memory augmenta- 466

tion system five open-ended questions and rated 467

both the system’s and their own responses on a 1-5 468

Likert scale. They completed post-study surveys 469

on their experience, assessing the system’s value, 470

accuracy, and creativity, and their willingness to 471

use always-on camera for memory augmentation. 472

Additionally, they are also asked open-ended 473
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0 1 2 3 4 5
Score

Where did you place the TV remote?
Name the list of movies you browsed?

What was the dominant color of the painting?
How many eggs did you cook?

Name the book you read?
What color was the guitar beside the painting?

What was the person you interacted with wearing?
What is the color of the kettle beside the pan?

How many vases did you see on the dining table?
Describe the painting in detail.

Human
MA

Figure 3: Comparative analysis of scores for the memory augmentation (MA) system and Human responses across
various questions. Each question has multiple pairs of AI and human scores represented by the bars. The x-axis
enumerates different questions, while the y-axis shows the scores ranging from 1 to 5. The bars are color-coded,
with one color representing AI and another representing human scores. The legend on the top-right corner outside
the plot area distinguishes between AI and human bars.
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Disagree
Neither agree nor disagree
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Figure 4: The five-point Likert responses to the post-
study questionnaire. Q1. The memory augmentation
capability is valuable; Q2. The information provided by
the memory augmentation system is accurate; Q3. The
response to my open-ended question by the memory
augmentation system is creative; Q4. I am willing to
wear an always-on camera for memory augmentation
through language encoding; Q5. I am willing for others
in my close vicinity to wear an always-on camera for
memory augmentation through language encoding.

questions about using the feature, concerns, sug-474

gested improvements, and other feedback.2475

6.2 Results476

Episodic Memory Questions Figure 3 shows477

that the memory augmentation system generally478

outperforms human memory in episodic memory479

questions. The scoring correlates with response480

accuracy; for example, a precise color or quantity481

answer scores higher. The system excels in detailed482

descriptions, like of paintings, but struggles in tasks483

like counting or differentiating actions, such as484

2See Appendix B.1 for additional details.

determining the placement of objects. 485

Humans perform well in specific tasks but often 486

forget details not directly related to their main fo- 487

cus, like the color of a kettle or a list of movies. The 488

memory augmentation system is particularly useful 489

in memory-intensive tasks, detailed descriptions, 490

and overlooked details. 491

Statistically, the system’s mean response score of 492

4.13/5 surpasses human responses at 2.46/5, with a 493

Friedman’s test indicating a significant difference 494

(χ2 = 37.928, p = 0.0009). The system shows in- 495

creased stability and consistency in responses with 496

a smaller standard deviation compared to human 497

memory. 498

Open-Ended Questions Participants gave the 499

memory augmentation system’s responses to open- 500

ended questions an average rating of 3.97/5 with a 501

standard deviation of 0.604. This reflects the bene- 502

fit of integrating OpenAI GPT-4 as a conversational 503

interface with an external knowledge base, enhanc- 504

ing its effectiveness in context-aware responses. 505

Common queries included movie or book recom- 506

mendations, with responses like suggesting “The 507

Godfather” or “The Dark Knight” typically receiv- 508

ing high ratings of 5/5. Questions about tasks, like 509

improving egg cooking, also received positive feed- 510

back, with the system providing detailed steps and 511

showing awareness of the user’s specific circum- 512

stances, often rated between 4/5 and 5/5. 513

Post-Study Survey Figure 4 shows participant 514

responses to the memory augmentation system, cat- 515

egorized as Strongly Disagree to Strongly Agree, 516

covering aspects like capability, accuracy, creativ- 517

ity, and willingness to use. The system is generally 518
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seen as accurate, creative, and valuable, particu-519

larly for typical EMQA questions and open-ended520

responses.521

Participants in open-ended surveys recognized522

the system’s value in various settings like biomed-523

ical experiments and conferences. However, con-524

cerns were raised about social awkwardness, ethi-525

cal implications of over-reliance on the system for526

memory, and privacy issues, particularly regarding527

recording others’ actions. Some worries subsided528

as participants understood the language encoding529

function, but apprehensions remained for a few.530

To address these issues, participants suggested531

using indicators for the system’s operation, lim-532

iting its usage to specific scenarios, and making533

the camera device more discreet to enhance social534

acceptance.3535

7 Discussion536

In this paper we have demonstrated a novel memory537

augmentation system and demonstrated its perfor-538

mance. Besides being lightweight, as it is reliant539

on language-encoding as opposed to vision-based,540

we discuss three additional advantages of this ap-541

proach: performance, privacy, and device agnosti-542

cism.543

Ego-LLaVA Paried with Language Encoding544

Achieved State-of-the-Art in QA- Ego4D The545

system outperformed traditional models in the QA-546

Ego4D dataset evaluation with a BLEU score of547

8.3. This superior performance in the EMQA task548

is due to addressing memory constraints that re-549

quire compression of information into a fixed-size550

representation, specialized modeling beyond the551

capabilities of simpler models like STM, and ef-552

fective relevance selection within the limited mem-553

ory space, challenges that baseline models struggle554

with.555

Language Encoding is Lightweight In this pa-556

per, the Language Encoding Approach and the557

Vision-based Approach are compared. Language558

Encoding stores textual data from video, requir-559

ing around 0.517 TB/year uncompressed, reduced560

to 0.246-0.345 TB with compression, while the561

Vision-based Approach needs 5.74 TB/year for low562

bitrate 720p video.563

Language Encoding is Private Privacy concerns564

in life logging and memory augmentation systems,565

3See Appendix B.2 for additional details.

as highlighted in the post-study surveys in Sec- 566

tion 6.2, are critical. Video data, rich in detail, 567

is challenging to sanitize without compromising 568

content. Language-encoded systems, conversely, 569

can more easily anonymize or remove private in- 570

formation, maintaining information quality. Such 571

systems can inherently prioritize privacy by exclud- 572

ing sensitive details during encoding, preserving 573

both privacy and utility. Furthermore, hardware 574

design considerations for privacy, as discussed in 575

Section 6.2, can enhance user trust and consent. 576

Language Encoding is Device Agnostic For 577

question and answering, the language encoding 578

approach introduced in this paper gives rise device 579

agnosticism due to its design. This contrasts with 580

vision-based QA models which may exhibit dimin- 581

ished accuracy, or necessitate fine-tuning, when 582

transitioning across different devices. Moreover, 583

the device-agnostic nature is carried through in our 584

language encoding model. The novel egocentric 585

vision language model we introduced in this paper 586

is cultivated using a diverse array of devices in- 587

cluding GoPro, Vuzix Blade, Pupil Labs, ZShades, 588

ORDRO EP6, iVue Rincon 1080, and Weeview, to 589

capture egocentric videos. This breadth of train- 590

ing sources fortifies our framework’s compatibility 591

with any device capable of delivering egocentric 592

video streaming. While we use the HoloLens 2 as 593

the AR headset, its usage is solely as a conduit for 594

streaming egocentric videos, further illustrating the 595

adaptability of the model. 596

8 Conclusion 597

In conclusion, our research presents a novel mem- 598

ory augmentation system that employs a fine-tuned 599

vision language model, Ego-LLaVA, on egocen- 600

tric vision data for accurate language encoding. 601

This system, combined with a vector database, en- 602

ables efficient data storage and retrieval. Demon- 603

strating superior performance in the EMQA bench- 604

mark, specifically the QA-Ego4D dataset, with a 605

BLEU score of 8.3, it outperforms conventional 606

vision-based models, and other pre-trained vision 607

language models paired with language encoding 608

techniques. A user study further confirmed its ef- 609

fectiveness in episodic memory tasks, surpassing 610

human participants. These findings underscore the 611

potential of our system for real-world applications 612

in enhancing human memory. 613

8



Limitation614

We introduce an encoding method that operates on615

an individual frame basis. However, this method616

struggles to capture temporal correlations, which617

are essential for understanding dynamic features618

like activities. Figure 3 shows the lower perfor-619

mance on the two questions related to dynamic ele-620

ments, including “place” and “cook”. Such move-621

ments or scene changes, are better understood when622

temporal correlations between frames are consid-623

ered. Without this, the encoding method may miss624

these dynamic subtleties, leading to a significant625

loss of crucial information. Activities usually occur626

over a series of frames. Ignoring temporal correla-627

tions can make it challenging to fully understand628

these activities. For example, the action of a per-629

son picking up an object involves a sequence of630

movements across several frames. Despite these631

shortcomings, this encoding method excels in cap-632

turing static features, as each frame is encoded633

separately.634

Ethics Statement635

This work reports on using language-encoded ego-636

centric perception to build an accurate memory637

augmentation system. There are no perceived ethi-638

cal risks associated with this work.639
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A Training and Implementation Details874

A.1 Prompt to Ego-LLaVa to Encode Video875

Frames876

Describe the image in detail. Start with a high-level877

description: Begin by providing an overall descrip-878

tion of the image, capturing its main subject or879

scene. Describe the visual elements: Break down 880

the image into its key visual elements and describe 881

them in detail. Provide context and additional de- 882

tails: Include any relevant context or details that 883

enhance the understanding of the image. Use spa- 884

tial relationships: Describe the arrangement of ob- 885

jects within the image, their relative sizes, and their 886

positions. Consider proportions and scale: Specify 887

the proportions and scale of various elements to 888

ensure their accurate representation. This includes 889

the size of objects, distances between them, and 890

any other relevant measurements. Finally, avoid 891

fabricating information. 892

A.2 Ego-LLaVA Fine-tuning Details 893

For the fine-tuning process, we employ a clus- 894

ter of eight A100 GPUs. The whole training 895

process takes around 10 hours. Our training 896

protocol benefits from the use of DeepSpeed 897

ZeRO-3 (DeepSpeed Team, 2021). Given the 898

substantial computational demands, we incorporate 899

LoRA (Hu et al., 2021), enabling the training 900

process to fit within the constraints of eight 901

A100-40G GPUs. The pretraining model is 902

designed with a maximum text length of 1024 903

and an image size of 448. It incorporates gradient 904

checkpointing and is tailored to operate with a chat 905

template. The model parameters are loaded from 906

liuhaotian/LLaVA-Lightning-MPT-7B-preview 907

in Hugging Face, and the model is further aug- 908

mented with LoRA, which is configured with a 909

radius of 64 and an alpha of 16. The learning 910

rate schedule adheres to the linear warmup cosine 911

learning rate strategy. It starts with an initial 912

learning rate of 1e-5, a minimum learning rate of 913

8e-5, and a warmup learning rate of 1e-6. The 914

weight decay is set at 0.05, and the training process 915

is designed to run for up to 50 epochs. Our training 916

setup comprises six workers, with each epoch 917

consisting of 1000 iterations and a warmup step 918

of 1000. To ensure reproducibility, the training 919

process is seeded at 66. Furthermore, the training 920

process is configured to utilize mixed-precision 921

training (amp) for optimized performance. 922

A.3 Memory Augmentation System 923

Implementation Details 924

The process begun with the uploading of the video 925

to the server. To optimize the speed of the en- 926

coding process, we extracted four frames per sec- 927

ond from the video. To expedite this process 928

and approach near real-time encoding, we used 929
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multi-process threading. This technique allowsed930

multiple encoding tasks to be executed simultane-931

ously, significantly reducing the overall time re-932

quired. Once the frames were encoded, they were933

stored in a vector database. Vector databases, such934

as Pinecone (Pinecone, 2022) and Chroma (Core,935

2023), are designed to handle high-dimensional936

vector data, making them ideal for this purpose.937

In our case, we decided to use Chroma as it is an938

open-source project. We used LangChain (Chase,939

2022) as the implementation framework and Ope-940

nAI GPT-4 as the large language model to imple-941

ment the conversational AI assistant that performs942

question-answering for memory augmentation.943

B Human User Study944

B.1 Study Protocol945

Firstly, we have issued risk disclaimers to the partic-946

ipants. The study consisted of two stages. During947

the first stage, participants were equipped with a948

HoloLens 2 device and were instructed to perform949

a series of tasks. These tasks were divided into five950

different scenarios: (1) looking at a painting in a951

living room; (2) switching TV channels in a living952

room; (3) cooking eggs in a kitchen; (4) reading a953

book in a study room; and (5) selecting a movie on954

a laptop. These tasks took place in an actual house955

equipped with a variety of furniture and items. Par-956

ticipants were encouraged to freely engage in the957

tasks to simulate a normal daily life experiences.958

Between five and seven days later, participants959

proceeded to the second stage of the study. This960

delay was used based on the concept proposed by961

Rivera-Lares et al. (2022). They suggest that after962

a week, the amount of retained information may963

have diminished to a level referred to as the “floor”,964

making it challenging to detect or observe any ad-965

ditional instances of forgetting. This can be repre-966

sented by the forgetting curve, which hypothesizes967

a decline in memory retention over time in the ab-968

sence of deliberate attempts to retain information.969

During the second stage of the study the partici-970

pants were presented with a set of questions mod-971

eled after Table 2, which were derived from the972

tasks they performed. Standard questions included973

“Where did you place the TV remote?”, “Name974

the list of movies you browsed on the laptop?”,975

“What was the dominant color of the painting you976

observed?”, “How many eggs did you cook?”, and977

“Name the book you read?”. In addition to these978

task-related questions, there were other queries that979

were not directly linked to the tasks but remained 980

relevant to the scenarios, including “What color 981

was the guitar beside the painting?”, “What was 982

the person you interacted with (study facilitator) 983

wearing?”, “What is the color of the kettle beside 984

the pan” and “How many vases did you see on the 985

dining table?”. An example of a description type 986

question for the third category of queries is the 987

following: “Describe the painting in detail”. We 988

asked each participant these ten questions. 989

In addition, participants were encouraged to ask 990

the memory augmentation system five open-ended 991

questions through a interactive conversational in- 992

terface. Examples of questions were “What movie 993

would you recommend for next time?”, “Based on 994

what you know, do you think I eat healthily, and if 995

not, what suggestions do you have for my diet?”, 996

and “What are the steps to better cook an egg?”. 997

Thereafter the participants were asked to rate 998

the responses generated by the system as well as 999

their own answers using a scale ranging from 1 1000

(very bad) to 5 (very good). Note that the order of 1001

queries and the order of which responses to score 1002

were randomized. Participants were also requested 1003

to score the system’s responses to open-ended ques- 1004

tions using the same scale. We then used post-study 1005

surveys to gather feedback from the participants 1006

regarding their subjective opinions on the overall 1007

experience with the system. 1008

The participants were asked to respond to the 1009

following Likert scale questions: (1) The mem- 1010

ory augmentation capability is valuable; (2) The 1011

information provided by the memory augmenta- 1012

tion system is accurate; (3) The response to my 1013

open-ended questions by the memory augmenta- 1014

tion system is creative; (4) I am willing to wear an 1015

always-on camera for language-encoded memory 1016

augmentation; and (5) I am willing for others in 1017

my close vicinity to wear an always-on camera for 1018

language-encoded memory augmentation. 1019

Finally, we asked four open-ended questions: 1020

(1) Under what circumstances would you use this 1021

memory augmentation feature?; (2) Do you have 1022

any concerns regarding the memory augmentation 1023

capability?; (3) What improvements would you 1024

suggest for the memory augmentation system? and 1025

(4) Do you have any other feedback or suggestions 1026

regarding the memory augmentation feature? 1027

B.2 Post-Study Survey 1028

In the open-ended surveys, participants emphasized 1029

the importance and value of having a memory aug- 1030
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mentation system, highlighting various applicable1031

scenarios such as biomedical experiments, confer-1032

ences, attending lectures/meetings, and exploring1033

new places (P1, P3, P4, P6, P7, P10, P11, P12).1034

However, participants expressed concerns about1035

the system being socially awkward to wear (p1, p2,1036

p6). Ethical concerns were also raised, such as1037

the potential degradation of people’s memorization1038

capabilities if they rely solely on the system (P4,1039

P10). Additionally, some participants highlight1040

privacy issues concerning individuals donning it1041

and recording their actions. For example, P3 noted1042

that “the system’s powerful and accurate capabili-1043

ties could pose safety risks if breached”, while P21044

expressed worries about “discomfort with others1045

wearing the system and recording their activities”.1046

However, as the understanding of the system’s func-1047

tion through language encoding grew, the majority1048

of concerns diminished (P1, P3, P5, P6, P7, P8,1049

P12), although a few participants still felt uneasy1050

(P1, P2, P9, P11).1051

Participants proposed specific improvements to1052

address these issues, including incorporating indi-1053

cators to make people aware of the system’s opera-1054

tion and limiting its use to specific scenarios such1055

as teaching and conferences rather than everyday1056

life (P1, P3, P4, P12). Additionally, participants1057

suggested making the always-on camera device1058

as lightweight and inconspicuous as possible to1059

minimize social awkwardness and increase social1060

acceptance (P2, P5, P6, P8, P9, P11).1061
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