
Proto-lm: A Prototypical Network-Based Framework for Built-in
Interpretability in Large Language Models

Sean Xie
Department of Computer Science

Dartmouth College

sean.xie.gr@dartmouth.edu

Soroush Vosoughi∗
Department of Computer Science

Dartmouth College

soroush.vosoughi@dartmouth.edu

Saeed Hassanpour∗
Department of Biomedical Data Science

Dartmouth College

saeed.hassanpour@dartmouth.edu

Abstract

Large Language Models (LLMs) have sig-
nificantly advanced the field of Natural Lan-
guage Processing (NLP), but their lack of in-
terpretability has been a major concern. Cur-
rent methods for interpreting LLMs are post
hoc, applied after inference time, and have
limitations such as their focus on low-level
features and lack of explainability at higher-
level text units. In this work, we introduce
proto-lm, a prototypical network-based white-
box framework that allows LLMs to learn im-
mediately interpretable embeddings during the
fine-tuning stage while maintaining competi-
tive performance. Our method’s applicability
and interpretability are demonstrated through
experiments on a wide range of NLP tasks,
and our results indicate a new possibility of
creating interpretable models without sacrific-
ing performance. This novel approach to in-
terpretability in LLMs can pave the way for
more interpretable models without the need to
sacrifice performance. We release our code at
https://github.com/yx131/proto-lm.

1 Introduction

In recent years, Large Language Models (LLMs)
have significantly improved results on a wide
range of Natural Language Processing (NLP)
tasks. However, despite their state-of-the-art perfor-
mance, LLMs, such as BERT (Devlin et al., 2018),
RoBERTa (Liu et al., 2019) and BART (Lewis et al.,
2019), are not easily interpretable. Interpretability
is a crucial aspect of language models, especially
LLMs, as it enables trust and adoption in various
domains. To address this issue, there is a grow-
ing interest in improving model interpretability for
LLMs and neural models in general.

Current interpretation methods have several lim-
itations, such as requiring a surrogate model to be
built (Ribeiro et al., 2016; Lundberg and Lee, 2017)
or being applied post-hoc to each instance, separate

∗Co-corresponding Authors.

from the original decision-making process of the
model (Shrikumar et al., 2016, 2017; Springenberg
et al., 2014). These limitations add extra compu-
tational complexity to the explanation process and
can result in approximate explanations that are un-
faithful1 to the original model’s decision-making
process (Sun et al., 2020; DeYoung et al., 2019).
Finally, current interpretability methods focus on
attributing importance to different words in the
input and do not explain the model’s decision at
the sentence or sample level. (Sundararajan et al.,
2017; Vaswani et al., 2017; Murdoch et al., 2018).

To address these challenges, we propose a novel
framework that utilizes a prototypical network to
learn an interpretable prototypical embedding layer
on top of a fine-tuned LLM, which can be trained
end-to-end for a downstream task. Our framework
utilizes trainable parameters, called prototypes, to
both perform the downstream task by capturing
important features from the training dataset and
provide explanations for the model’s decisions via
projection onto the most influential training exam-
ples. Additionally, we utilize a token-level atten-
tion layer before the prototypical layer to select
relevant parts within each input text, allowing our
model to attribute importance to individual words
like existing interpretability methods. Our frame-
work, named proto-lm, achieves competitive re-
sults on a wide range of NLP tasks and offers in-
terpretability while addressing the previously men-
tioned limitations of current interpretability meth-
ods.

Fig. 1 shows our proposed proto-lm framework
applied to a multi-classification example from the
SST5 dataset (Socher et al., 2013). As the figure
illustrates, the model’s decision-making process
is simple, transparent, and accurate as it classifies
the input as “Very Positive” based on its highest

1Faithfulness is defined as how accurately the explanation
reflects the decision-making process of the model (Jacovi and
Goldberg, 2020).

https://github.com/yx131/proto-lm

Figure 1: Illustration of the inherently interpretable decision-making process of the proto-lm model for an example
from the SST5 (5-class fine-grained sentiment analysis) dataset. The figure highlights the words identified by
token-level attention, with a stronger shade indicating a higher attention score. proto-lm correctly predicts the
input by relating it to prototypes of the “Very Positive” class. The decision process of proto-lm is transparent, and
no separate interpretability method is required.

similarity to prototypes from the “Very Positive”
class and the input’s distance (lack of similarity)
to “Negative” and “Very Negative” prototypes. A
key advantage of our framework is its inherent in-
terpretability. Our prototypical network does not
require an additional surrogate model for expla-
nation, and we can observe the exact contribution
of each prototype to the final output, resulting in
faithful explanations. Additionally, our framework
offers interpretability at both the token and sample
level, allowing for the identification of important
words in the input text as well as the attribution
of importance to impactful samples in the training
data. In this work, we make the following contribu-
tions:

• We introduce a novel framework, proto-lm
based on prototypical networks that provides in-
herent interpretability to LLMs.

• We demonstrate proto-lm’s applicability on
three LLMs and show its competitive perfor-
mance on a wide range of NLP tasks.

• We conduct ablation studies to demonstrate im-
portant characteristics of proto-lm under differ-
ent hyperparameters.

• We evaluate the interpretability of proto-lm un-
der several desiderata and show that the explana-
tions provided by proto-lm are of high quality.

2 proto-lm

The architecture of our proposed framework,
proto-lm, is shown in Figure 2. We utilize a pre-
trained LLM as the underlying language model to
encode the input and build a prototypical layer on
top of it to provide interpretable prototypes. The
goal of the learned prototypes is to capture features
representative enough of each class so that they
can be fine-tuned for the downstream classification
task. In the classification process, similarities be-
tween the encoded input and the learned prototypes
are fed through a fully-connected layer to produce
logits. We formalize this below.

2.1 Token-level Attention
Let xi represent a single input text and yi its as-
sociated label. We denote f(xi) as the encoding
of xi by an underlying LLM, f . We pass f(xi)
through a token-level attention layer that learns to
emphasize different parts of the text, allowing us to
identify important words within each sample. We
first calculate υt, the output of a fully-connected
layer with bias (ψ), applied to ht, which the em-
bedding of each token t in f(xi), followed by a
tanh activation function (σ). We then compute
νt, the dot product of υt, and a token-level weight
vector Wν .

υt = σ(ψ(ht)) νt = υt ·Wν (1)

Figure 2: The protoypical network-based architecture
of proto-lm.

We calculate the attention score αt for each token
t using the softmax function. The attended encod-
ing of f(xi), Si, is then obtained by taking the
weighted sum of the token embeddings, where the
weight for each token is determined by its attention
score.

αt =
exp(νt)∑

t∈f(xi)

exp(νt)
Si =

∑
t∈f(xi)

αtht (2)

2.2 Prototypical Layer
In the prototypical layer P , we create N proto-
type vectors and assign n prototypes to each class
c ∈ C, where C represents the set of all classes in
the dataset. To ensure an equal number of proto-
type vectors are allocated to capture representative
features for each class, we set n = N

|C| , where |C|
denotes the total number of classes in the dataset.
The input Si is then fed into P , where we calcu-
late the similarity between Si and every prototype
vector p ∈ P by inverting the L2-distance. We
then concatenate all N similarities to obtain the
vector Mi, which serves as the embedding of input

xi in the prototypical space. Each dimension of
Mi can be interpreted as the similarity between Mi

and a prototype. Subsequently, Mi is fed through a
fully-connected layer Wh of dimension N × |C| to
obtain logits for each class. Let Wc denote the set
of weights in Wh that connect similarities in Mi to
the logit of class c. Our model’s output probabili-
ties are computed as follows:

Pr(ŷ = c | xi) =
exp(Miwc)∑

c∈C
exp(Miwc)

(3)

2.3 Training Objective

To create more representative prototypes and shape
the clusters of prototypes in the prototypical em-
bedding space, we introduce a cohesion loss term
Lcoh and a separation loss term Lsep into our loss
function in addition to the cross entropy loss Lce.
Let K be an integer hyperparameter, pj denote a
singular prototype, and Pyi represent all prototypes
in P that belong to class yi, our loss terms are
defined as follows:

Lcoh =
1

K
·

∑
∀j:pj∈Pyi

max
K
∥Si − pj∥22 (4)

Lsep = −
1

K
·

∑
∀j:pj ̸∈Pyi

min
K
∥Si − pj∥22 (5)

For every Si in the input batch, Lcoh penalizes the
average distance between Si and the K most dis-
tant prototypes of its class (yi) while Lsep penalizes
the average distance between Si and the K most
similar prototypes that do not belong to yi. Intu-
itively, for every Si, Lcoh “pulls” K prototypes of
the correct class close while Lsep “pushes” K pro-
totypes of the incorrect class away. We then add
cross-entropy loss Lce and weight each loss term
with a hyperparameter λ such that λ0+λ1+λ2 = 1
to obtain the following loss function:

Ltotal = λ0 · Lce + λ1 · Lcoh + λ2 · Lsep (6)

2.4 Prototype Projection

To understand each prototype vector pj in natural
language, we project each prototype onto the near-
est token-level attended encoding (Sj) of a sample
text (xj) in the training data that belongs to the
same class as pj and assign the token-attended
text of that prototype. Let D be the training

dataset. We formally denote the projection as in
eq.7: ∀(xj , yj) ∈ D such that yj = c:

Text of pj ← argmin
Sj

∥Sj − pj∥22 (7)

In other words, for each prototype pj , we find the
nearest Sj in the training dataset that belongs to
the same class as pj and assign the corresponding
token-attended text to pj (Details in App. D & E).

3 Performance Experiments

As we do not want interpretability to come at
the cost of performance, we first conduct ex-
periments to assess the modeling capability of
proto-lm. We implement proto-lm using BERT
(base-uncased and large-uncased), RoBERTa (base
and large) and BART-large as the base LLM en-
coders and train the token-level attention module,
prototypical layer and classification head as de-
scribed in §2. We evaluate the predictive accu-
racy of proto-lm on 5 tasks (SST-2, QNLI, MNLI,
WNLI, RTE) from the GLUE dataset (Wang et al.,
2018), IMDb sentiment analysis (Maas et al., 2011)
and SST-5 (Socher et al., 2013). For baselines, we
use the same fine-tuned versions of the LLMs with
a classification head. We tune all hyperparame-
ters using the respective validation data in each
dataset. We present the mean performance as well
as the standard deviation over 5 runs under their re-
spective optimal configurations of hyperparameters
(cf. App.A) and compare them to their baselines
in Table 1. Across our experiments 2, we observe
that proto-lm either closely matches or exceeds
the performance of its baseline LLM, proving that
there is not a trade-off between proto-lm’s inter-
pretability and performance.

4 Prototype Interpretability

4.1 Interpretable prototypical space and
decision-making

Compared to black-box models such as
BERT/RoBERTa/BART, which have uninter-
pretable embedding dimensions, proto-lm offers
the added benefit of interpretability in conjunction
with competitive performance. We show an
example of a 2-dimensional prototypical space
in Fig. 3, where proto-lm provides insight into
the model’s decision-making process by allowing

2We conduct additional performance experiments with
proto-lm in App.B

us to visualize examples in prototypical space,
where each dimension represents the normalized
similarity ∈ [0, 1] between an example and one
prototype.

In Fig. 3, we select one positive and one neg-
ative prototype from the prototypical layer of the
model to create a 2-dimensional space in which
we place examples #1-#4. The vertical axis repre-
sents similarity to the negative prototype, and the
horizontal axis represents similarity to the positive
prototype. From this, we can see that example #1
is much more similar to the negative prototype than
to the positive prototype, and example #3 is much
more similar to the positive prototype than to the
negative prototype, and both are correctly classified
as a result.

From the prototypical space, we can see clearly
that the model’s decision to misclassify example
#2 as positive is due to elements in the example
that make it similar to the positive prototype. Sim-
ilarly, the prototypical space of proto-lm reveals
that example #4 was misclassified because, while
it contains elements that are similar to both the
positive and negative prototypes, it is closer to the
negative prototype. The interpretable prototypi-
cal space of proto-lm provides an explanation for
why difficult cases such as examples #2 and #4 are
misclassified. It should be noted that while similar
analyses and explanations can be obtained through
post-hoc techniques such as generating sentence
embeddings (Reimers and Gurevych, 2019; Gao
et al., 2021), proto-lm has this capability built-in.

4.2 Prototype quality and performance

We investigate the effect of different weightings
of the loss terms in our loss function. We train
proto-lm, holding all other hyperparameters con-
stant, under 11 different values of λ0 evenly dis-
tributed on [0, 1], and report our results in Figure
4. For these experiments, we place equal weight
on Lcoh and Lsep such that λ1 = λ2 = 1−λ0

2 (ad-
ditional details in App. C).

Because prototypes not only help interpret the
model but also capture the most representative fea-
tures from the data, placing an excessive emphasis
on Lce actually achieves the adverse effect. As
shown in Figure 4, increasing λ0 comes at the cost
of learning representative prototypes (which Lcoh

and Lsep do) and this is reflected in decreasing clas-
sification accuracy on the downstream task. We

SST2 QNLI MNLI WNLI RTE IMDb SST5
proto-lm/BERT-base 93.6 ±0.02/93.2 90.5 ±0.02 /90.2 84.0 ±0.03 /84.6 47.9/46.4* 68.1 ± 0.01/66.4 91.5 ± 0.02/91.3 55.3 ± 0.03/54.9
proto-lm/BERT-large 95.2 ±0.03/94.9 92.4 ±0.03 /92.7 86.3 ±0.02 /86.7 47.9/47.9* 76.2 ± 0.02/70.1 93.6 ± 0.03/92.0 56.4 ± 0.02/56.2
proto-lm/RoBERTa-base 94.0 ±0.03/93.6 92.2 ±0.01 /92.5 86.9 ±0.03 /87.2 56.3/56.3* 84.2 ± 0.03/78.7 95.0 ± 0.02/94.7 56.8 ± 0.03/56.4

proto-lm/RoBERTa-large 96.5 ±0.02/96.4 94.6 ±0.02 /94.7 90.1 ±0.02 /90.2 56.4/56.4* 88.6 ± 0.02/86.6 95.8 ± 0.03/95.6 58.0 ± 0.04/57.9
proto-lm/BART-large 97.0 ±0.04/96.6 94.2 ±0.05 /94.9 89.3 ±0.06 /90.2 - 89.2 ± 0.05/87.0 - -

Table 1: Predictive accuracy of proto-lm compared against fine-tuned versions of their base LLM’s. We observe
competitive performance when compared to baselines on all tasks, with bolded and underlined values representing
better and equivalent performances, respectively. ∗ indicates that the performance is a result of our experiments
on that task and not reported in the original work cited. All results for proto-lm are results under the optimal
arrangement of hyperparameters for that task, which we obtain through experimentation.

Figure 3: Two-dimensional prototypical space representation of four test examples, where each dimension represents
the normalized similarity between the sample and a prototype. A positive prototype is chosen for the horizontal axis,
and a negative prototype for the vertical axis. Examples #1 and #3 are correctly classified, as they are much more
similar to the prototype of their respective ground-truth class. Examples #2 and #4 are misclassified, due to their
high similarities to the prototype of the incorrect class.

observe that the optimal accuracy is achieved when
λ0 = 0.3. As we increase λ0 from 0.3, we see not
only a decline in accuracy but also a decline in the
quality of the prototypes associated with the input.
On the other, placing sole emphasis on Lcoh and
Lsep without any emphasis on Lce (as in the case
of λ0 = 0) leads to prototypes that do not help with
the downstream task.

4.3 Size of prototypical space

As noted in §4.2, prototypes serve to capture fea-
tures from data that are useful for making predic-
tions in addition to interpretability. As a result, the
number of prototypes (N) in the prototypical layer
directly affects the expressiveness of our model.
We conduct experiments varying the number of pro-
totypes N using RoBERTa-Large as the base and
show our results in Fig. 5. We observe a general in-
crease in accuracy up until N = 1000, after which

Figure 4: Predictive accuracy of the proto-lm model
with RoBERTa-large as the base LM on the IMDb
dataset as a function of λ0, with N = 1400, n = 700,
and K = 350. We illustrate the closest (most similar)
prototypes to the positive input generated by proto-lm
when trained under different values of λ0. We observe
a non-linear relationship between accuracy and λ0.

accuracy plateaus for some tasks while increasing
only slightly for others. We reason that increasing
N can only improve the model’s expressiveness
until the point when N reaches the embedding di-
mension of the underlying LLM, after which more
prototypes in the prototypical space no longer aid
in capturing more useful features from the training
data. In Fig. 5’s case, as RoBERTa-large’s output
dimension is 1024, we see the increasing trend of
accuracy stop at around 1000 prototypes.

4.4 Prototype uniqueness and performance

The interpretability of proto-lm stems from the
retrieval of the most informative training exam-
ples. If all prototypes are predominantly associ-
ated with a limited number of training examples,
this reduces their utility from an interpretability
perspective. Hence, it is beneficial to encourage
prototype segregation, that is, a broader projec-
tion onto the dataset and a more diverse represen-
tation of different samples. Besides normalizing
prototype distances, which has been shown to in-
fluence prototype segregation (Das et al., 2022),
proto-lm introduces an additional hyperparame-
ter, K. This parameter controls the number of
prototypes that each training example associates

Figure 5: Performance of proto-lm on tasks under vary-
ing numbers of prototypes in the prototypical layer (N).

and disassociates with during training. As chang-
ing K also influences the decision-making process
of the model by altering the number of samples
the models compare for each input, we examine
the impact of K on both prototype segregation and
model performance. In our experiment, we em-
ploy proto-lm with RoBERTa-large as our base
on SST2 and IMDb. We set N , the total number
of prototypes, to be 1000, and n = 1000/2, the
number of prototypes per class, to be 500. We train
models under seven different K values, keeping all
other hyperparameters constant. We report the ac-
curacy of the models and the percentage of unique
prototypes in P under each different K in Fig.6.

A prototype is considered unique if no other pro-
totype in P projects onto the same sample in the
dataset. We observe that the best prototype segrega-
tion (highest number of unique prototypes) occurs
when K = 1, and the number of unique prototypes
significantly drops as we increase K. Intuitively,
if more prototypes are drawn close to each sample
during training (eq.4), it becomes challenging to
create unique prototypes. It is important to note
that eq. 5 is less related to the uniqueness of pro-
totypes as prototypes are projected onto samples
from the same class. We also witness a slight rise in
model accuracy as we increase K. We conjecture
that while unique prototypes contribute to inter-
pretability, the model doesn’t necessarily require
prototypes to be unique to make accurate decisions.
Thus, we observe a minor trade-off between inter-
pretability and model performance.

Figure 6: Performance and prototype uniqueness in
proto-lm when trained with different K’s.

5 Evaluating the Interpretability of
proto-lm

Through the usage of its prototypical space,
proto-lm is a white-box, inherently interpretable
model. But just how well do the explanations pro-
vided by proto-lm satisfy common desiderata in
interpretability? We conduct experiments to try to
answer that question in this section. Specifically,
we evaluate the inherent interpretability provided
by proto-lm via measures of faithfulness (DeY-
oung et al., 2019; Jacovi and Goldberg, 2020) and
simulatability (Pruthi et al., 2022; Fernandes et al.,
2022).

5.1 Faithfulness experiments

Recently, the concept of faithfulness, which mea-
sures the extent to which an explanation accu-
rately reflects the true decision-making process
of a model, has garnered attention as a criterion
for evaluating explainability methods (Jacovi and
Goldberg, 2020, 2021; Chan et al., 2022; Dasgupta
et al., 2022). For textual inputs, faithfulness is con-
cretely evaluated using the metrics of comprehen-
siveness (Comp) and sufficiency (Suff), as defined
by DeYoung et al. (2019). Specifically, Comp and
Suff quantify the reduction in the model’s confi-
dence for its output when salient features are re-
moved and retained, respectively.

We extend the application of Comp and Suff to
prototypical networks to assess the faithfulness of
proto-lm. For an input xi, we initially identify the
top k% of most similar prototypes and the bottom
k% of least similar prototypes. Let pki denote the
k% prototypes identified, we compute Comp as the

percentage difference in model confidence when
pki are removed (by setting pki ’s weights in Wh are
set to 0). Specifically, let ŷi be the prediction of a
modelM on xi, let prŷi be the output logit of M
for ŷi, and let prŷi(P \pki) be the output logit when
pki prototypes are removed from the prototypical
layer, we calculate Comp as follows:

Comp =
prŷi − prŷi(P \ pki)

prŷi
(8)

We analogously calculate Suff as the percentage
difference in model confidence when the k% of
prototypes are retained:

Suff =
prŷi − prŷi(pki)

prŷi
(9)

We compute Comp and Suff k ∈ 1, 5, 10, 20, 50
and our present mean results across SST2, QNLI,
MNLI and SST5 in Fig 7. Our formulation of pro-
totype Comp and Suff are inspired by DeYoung
et al. (2019). We note here that under this formu-
lation, a lower sufficiency is better i.e., a smaller
amount of reduction in model confidence when
only salient features are retained is better. As we
remove more top k% prototypes, we observe a gen-
eral increase in Comp. We also note a general
decrease in Suff (a lower Suff is preferable) as we
retain more top k% prototypes. Moreover, when
the bottom k% of prototypes are removed, there
are relatively small changes in Comp and large
changes in Suff when only the bottom k% of pro-
totypes are retained. These trends underscore the
influence of the learned prototypes on the model’s
decision-making process and their faithfulness.

5.2 Simulatability experiments
Simulatability refers to the capacity of a human to
mimic or replicate the decision-making process of
a machine learning model (Doshi-Velez and Kim,
2017; Pruthi et al., 2022). It is a desirable attribute
as it inherently aligns with the goal of transparently
communicating the model’s underlying behavior to
human users (Fernandes et al., 2022). We assess
the simulatability of proto-lm by providing human
annotators with various explanations of model out-
puts on SST2/QNLI and recording the percentage
of model outputs that the annotators can replicate.
We provide explanations under the following four
settings:

• No Explanations (NE): Annotators are pre-
sented with only the sample data, without any
explanations, and asked to make a decision.

Figure 7: The comprehensiveness and sufficiency of proto-lm with k% prototypes removed.

Figure 8: Simulatability and accuracy of human annotators under different settings of provided explanations from
proto-lm.

• Random Explanations (Random): Each sample
in the dataset is presented along with prototypes
from proto-lm chosen randomly as explanations.
This setting serves as our baseline.

• Prototypical Explanations (PE): Each sample
in the dataset is presented along with the top
5 prototypes most similar to the sample when
proto-lm made its decision.

• PE + Output: In addition to the prototypical
explanations, the model decision for each sample
is also presented.

We employ workers from Amazon Mechanical
Turk to crowdsource our evaluations and presented
3 workers with 50 examples each from the SST2
and QNLI datasets, along with explanations for the
model’s decisions in the settings mentioned in §5.2.
We use the best performing models for SST2 and
QNLI (those presented in Table 1), since previous
studies found that the utility of PE’s are reliant on
model accuracy (Das et al., 2022). Additionally,
we assess the accuracy of the human annotators
in relation to the ground truth labels. We present
results for both in Fig. 8. The results show that
the case-based reasoning explanations offered by
PEs are more effective in assisting annotators in
simulating model predictions than the random base-
line. We also notice a minor drop in accuracy when
we provide PE + output compared to just PE. We

attribute this to the fact that the models are not en-
tirely accurate themselves, and in instances where
the model is inaccurate, presenting the output leads
annotators to replicate inaccurate decisions.

Furthermore, we compare proto-lm’s simulata-
bility against 3 other well-known interpretability
methods: LIME, Integrated Gradients, and Guided
Backprop. We employed three workers for each
example and reported the mean percentage of ex-
amples where the workers correctly replicated the
model’s decision. For an example of the a simu-
latability questionnaire with PE, see Fig.12. For
an example of an accuracy questionnaire with Ran-
dom explanations, see Fig.13. For an example of
the questionnaire for LIME/IG/GB explanations,
see Fig.14. For results of proto-lm against LIME,
IG and GB, please see Table 2. Our addditional
results further indicate that proto-lm allow the
workers to replicate the model’s decisions better
than all the other interpretability methods on both
tasks.

6 Related Works

Prototypical networks (Snell et al., 2017) have
shown strong performance in few-shot image and
text classification tasks (Sun et al., 2019; Gao et al.,
2019). However, these approaches do not actively
learn prototypes and instead rely on summarizing

SST-2 QNLI
Random Explanations 42.3% 48.7%
LIME 87.3% 90.3%
Integrated Gradient 84.7% 84.3%
Guided Backprop 78.0% 88.0%
Prototype explanations
from proto-lm 90.0% 92.0%

Table 2: Simulatability of proto-lm on SST-2 and
QNLI reported as the mean percentage of model de-
cisions replicated by three workers.

salient parts of the training data. Their focus is
on learning one representative prototype per class
while their performance is dependent on the size of
the support set in few-shot learning scenarios. Due
to these limitations, there have been relatively few
works that utilize prototypical networks to provide
interpretability for LLM’s in NLP (Garcia-Olano
et al., 2022; Das et al., 2022; Van Aken et al., 2022).
Chen et al. (2019) and Hase et al. (2019) use pro-
totypical parts networks with multiple learned pro-
totypes per class but only apply their methods to
image classification tasks.

Our work is most closely related to Das et al.
(2022) and Van Aken et al. (2022) in terms of the
approach taken. However, our work differs in that
the architecture in (Das et al., 2022) only utilizes
a single negative prototype for binary classifica-
tion, while proto-lm enables multi-class classifi-
cation by using multiple prototypes for each class.
Additionally, we have extended the work of (Das
et al., 2022) by implementing token-level atten-
tion to identify not only influential samples but
also influential sections of text within each sample.
Moreover, different from the single-prototype-as-a-
summary approach in Van Aken et al. (2022), by
learning multiple prototypes per class, proto-lm
creates a prototypical space (§4.1), where, unlike
the embedding space of LLM’s, each dimension is
meaningful, specifically the distance to a learned
prototype, and can be used to explain a decision.
Our work is also similar to Friedrich et al. (2021)
in terms of our loss function design. However,
Friedrich et al. (2021) ’s loss function aims to max-
imize the similarity of the closest prototypes of the
same class. Conversely, our approach strives to
minimize the distance of the furthest prototypes
of the same class. This results in Friedrich et al.
(2021)’s approach tending to draw a single proto-
type closer to a specific example, potentially lim-

iting prototype diversity and representation power.
Friedrich et al. (2021) counteracts this potential
limitation by introducing an additional diversity
loss term. proto-lm, in contrast, ensures proto-
type diversity by leveraging the K hyperparameter,
which we delve into in section §4.4.

7 Conclusion

We introduce proto-lm, a white-box framework
designed to offer inherent interpretability for Lan-
guage Model Learning (LLMs) through inter-
pretable prototypes. These prototypes not only
explain model decisions but also serve as feature
extractors for downstream tasks. Our experimental
results indicate that proto-lm delivers competitive
performance across a range of Natural Language
Processing (NLP) tasks and exhibits robustness
under various hyperparameter settings. The in-
terpretability of proto-lm is evaluated, and our
findings show that proto-lm delivers faithful ex-
planations that can effectively assist humans in
understanding and predicting model decisions.

8 Limitations

While proto-lm offers inherent interpretability by
creating a connection between input text and perti-
nent parts of training data through the use of proto-
types, it remains dependent on an underlying lan-
guage model to convert text into a semantic space.
Consequently, the interpretability of proto-lm is
constrained by the interpretability of the founda-
tional language model.

Moreover, interpreting the significance of a
learned prototype in the context of Natural Lan-
guage Processing (NLP) tasks is still an open re-
search area. Computer Vision (CV) methods used
for visualizing prototypes in image-based tasks,
such as upsampling a prototypical tensor, are not
transferrable to language embeddings. Instead, re-
searchers depend on projecting prototypes onto
nearby training examples to decode prototype ten-
sors into comprehensible natural language.

9 Ethics Statement

We present proto-lm, a framework that enhances
the interpretability of Language Model Learning
(LLMs) by providing explanations for their deci-
sions using examples from the training dataset. We
anticipate that the broad applicability of proto-lm
across various NLP tasks will promote trans-
parency and trust in the use of LLMs, thereby en-

couraging their wider adoption. As observed by
authors like Rudin (2019) and Jiménez-Luna et al.
(2020), models with higher levels of interpretability
inspire more confidence and enjoy greater utiliza-
tion. We aim to contribute to advancing the field of
interpretability research in NLP through our work.

For assessing the simulatability of our method,
we employed Amazon Mechanical Turk (MTurk)
for our human evaluation. To ensure English pro-
ficiency among workers, we restricted their loca-
tion to the United States. Furthermore, only work-
ers with a HIT approval rate of at least 99% were
permitted to undertake our tasks. We provided a
compensation of $0.20 per task, which roughly
translates to about $24 per hour, significantly ex-
ceeding the US federal minimum wage. To uphold
anonymity, we refrained from collecting any per-
sonal information from the annotators.

10 Acknowledgements

This research was supported in part by grants
from the US National Library of Medicine
(R01LM012837 & R01LM013833) and the US
National Cancer Institute (R01CA249758). In
addition, we would like to extend our gratitude
to Joseph DiPalma, Yiren Jian, Naofumi Tomita,
Weicheng Ma, Alex DeJournett, Wayner Barrios
Quiroga. Peiying Hua, Weiyi Wu, Ting Shao,
Guang Yang, and Chris Cortese for their valuable
feedback on the manuscript and support during the
research process.

References
Simon Baker, Ilona Silins, Yufan Guo, Imran Ali, Johan

Högberg, Ulla Stenius, and Anna Korhonen. 2016.
Automatic semantic classification of scientific litera-
ture according to the hallmarks of cancer. Bioinfor-
matics, 32(3):432–440.

Aaron Chan, Maziar Sanjabi, Lambert Mathias, Liang
Tan, Shaoliang Nie, Xiaochang Peng, Xiang Ren,
and Hamed Firooz. 2022. Unirex: A unified learning
framework for language model rationale extraction.
In International Conference on Machine Learning,
pages 2867–2889. PMLR.

Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett,
Cynthia Rudin, and Jonathan K Su. 2019. This looks
like that: deep learning for interpretable image recog-
nition. Advances in neural information processing
systems, 32.

Anubrata Das, Chitrank Gupta, Venelin Kovatchev,
Matthew Lease, and Junyi Jessy Li. 2022. Prototex:

Explaining model decisions with prototype tensors.
arXiv preprint arXiv:2204.05426.

Sanjoy Dasgupta, Nave Frost, and Michal Moshkovitz.
2022. Framework for evaluating faithfulness of local
explanations. In International Conference on Ma-
chine Learning, pages 4794–4815. PMLR.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Jay DeYoung, Sarthak Jain, Nazneen Fatema Rajani,
Eric Lehman, Caiming Xiong, Richard Socher, and
Byron C Wallace. 2019. Eraser: A benchmark to
evaluate rationalized nlp models. arXiv preprint
arXiv:1911.03429.

Finale Doshi-Velez and Been Kim. 2017. Towards a
rigorous science of interpretable machine learning.
arXiv preprint arXiv:1702.08608.

Patrick Fernandes, Marcos Treviso, Danish Pruthi, An-
dré Martins, and Graham Neubig. 2022. Learning to
scaffold: Optimizing model explanations for teach-
ing. Advances in Neural Information Processing
Systems, 35:36108–36122.

Felix Friedrich, Patrick Schramowski, Christopher
Tauchmann, and Kristian Kersting. 2021. Interac-
tively providing explanations for transformer lan-
guage models. arXiv preprint arXiv:2110.02058.

Tianyu Gao, Xu Han, Zhiyuan Liu, and Maosong Sun.
2019. Hybrid attention-based prototypical networks
for noisy few-shot relation classification. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 33, pages 6407–6414.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
Simcse: Simple contrastive learning of sentence em-
beddings. arXiv preprint arXiv:2104.08821.

Diego Garcia-Olano, Yasumasa Onoe, Joydeep Ghosh,
and Byron C Wallace. 2022. Intermediate entity-
based sparse interpretable representation learning.
arXiv preprint arXiv:2212.01641.

Yu Gu, Robert Tinn, Hao Cheng, Michael Lucas, Naoto
Usuyama, Xiaodong Liu, Tristan Naumann, Jianfeng
Gao, and Hoifung Poon. 2021. Domain-specific lan-
guage model pretraining for biomedical natural lan-
guage processing. ACM Transactions on Computing
for Healthcare (HEALTH), 3(1):1–23.

Peter Hase, Chaofan Chen, Oscar Li, and Cynthia Rudin.
2019. Interpretable image recognition with hierar-
chical prototypes. In Proceedings of the AAAI Con-
ference on Human Computation and Crowdsourcing,
volume 7, pages 32–40.

Alon Jacovi and Yoav Goldberg. 2020. Towards faith-
fully interpretable nlp systems: How should we
define and evaluate faithfulness? arXiv preprint
arXiv:2004.03685.

Alon Jacovi and Yoav Goldberg. 2021. Aligning faithful
interpretations with their social attribution. Transac-
tions of the Association for Computational Linguis-
tics, 9:294–310.

José Jiménez-Luna, Francesca Grisoni, and Gisbert
Schneider. 2020. Drug discovery with explainable
artificial intelligence. Nature Machine Intelligence,
2(10):573–584.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De-
noising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension.
arXiv preprint arXiv:1910.13461.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Scott M Lundberg and Su-In Lee. 2017. A unified
approach to interpreting model predictions. In Ad-
vances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc.

Andrew Maas, Raymond E Daly, Peter T Pham, Dan
Huang, Andrew Y Ng, and Christopher Potts. 2011.
Learning word vectors for sentiment analysis. In
Proceedings of the 49th annual meeting of the associ-
ation for computational linguistics: Human language
technologies, pages 142–150.

W James Murdoch, Peter J Liu, and Bin Yu. 2018. Be-
yond word importance: Contextual decomposition
to extract interactions from lstms. arXiv preprint
arXiv:1801.05453.

Danish Pruthi, Rachit Bansal, Bhuwan Dhingra,
Livio Baldini Soares, Michael Collins, Zachary C
Lipton, Graham Neubig, and William W Cohen.
2022. Evaluating explanations: How much do ex-
planations from the teacher aid students? Transac-
tions of the Association for Computational Linguis-
tics, 10:359–375.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. " why should i trust you?" explaining
the predictions of any classifier. In Proceedings of
the 22nd ACM SIGKDD international conference on
knowledge discovery and data mining, pages 1135–
1144.

Cynthia Rudin. 2019. Stop explaining black box ma-
chine learning models for high stakes decisions and
use interpretable models instead. Nature Machine
Intelligence, 1(5):206–215.

Avanti Shrikumar, Peyton Greenside, and Anshul
Kundaje. 2017. Learning important features
through propagating activation differences. CoRR,
abs/1704.02685.

Avanti Shrikumar, Peyton Greenside, Anna Shcherbina,
and Anshul Kundaje. 2016. Not just a black box:
Learning important features through propagating acti-
vation differences. arXiv preprint arXiv:1605.01713.

Jake Snell, Kevin Swersky, and Richard Zemel. 2017.
Prototypical networks for few-shot learning. Ad-
vances in neural information processing systems, 30.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empiri-
cal methods in natural language processing, pages
1631–1642.

Gizem Soğancıoğlu, Hakime Öztürk, and Arzucan
Özgür. 2017. Biosses: a semantic sentence simi-
larity estimation system for the biomedical domain.
Bioinformatics, 33(14):i49–i58.

Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas
Brox, and Martin Riedmiller. 2014. Striving for sim-
plicity: The all convolutional net. arXiv preprint
arXiv:1412.6806.

Shengli Sun, Qingfeng Sun, Kevin Zhou, and Tengchao
Lv. 2019. Hierarchical attention prototypical net-
works for few-shot text classification. In Proceed-
ings of the 2019 conference on empirical methods
in natural language processing and the 9th interna-
tional joint conference on natural language process-
ing (EMNLP-IJCNLP), pages 476–485.

Zijun Sun, Chun Fan, Qinghong Han, Xiaofei Sun,
Yuxian Meng, Fei Wu, and Jiwei Li. 2020. Self-
explaining structures improve NLP models. CoRR,
abs/2012.01786.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017.
Axiomatic attribution for deep networks. CoRR,
abs/1703.01365.

Betty Van Aken, Jens-Michalis Papaioannou, Marcel G
Naik, Georgios Eleftheriadis, Wolfgang Nejdl, Fe-
lix A Gers, and Alexander Löser. 2022. This patient
looks like that patient: Prototypical networks for in-
terpretable diagnosis prediction from clinical text.
arXiv preprint arXiv:2210.08500.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint
arXiv:1804.07461.

https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
http://arxiv.org/abs/1704.02685
http://arxiv.org/abs/1704.02685
http://arxiv.org/abs/2012.01786
http://arxiv.org/abs/2012.01786
http://arxiv.org/abs/1703.01365
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

A Training Details

In our experiments, we utilized two NVIDIA Titan
RTX and two GeForce RTX 3090 GPUs to run our
experiments. We conducted an extensive search
for the best hyperparameters through experimenta-
tion. Our models were trained for a maximum of
40 epochs. We initialize weights (in the classifica-
tion layer) connecting each prototype’s similarity
to the logit of their respective weights to 1 and
other weights to -.5. This technique (Chen et al.,
2019) allows for better association of prototypes
and faster convergence. In terms of initializing the
parameters within the prototypes, we initialized
them randomly from [0,1). We used a learning rate
and batch size to be 3e-6 and 128, respectively. We
employed Adam (Kingma and Ba, 2014) as our
optimizer with β’s of (0.9, 0.999). Additionally,
we limited the input size (number of tokens) to
512 during tokenization. We also investigated the
optimal number of N and tested proto-nlp un-
der N ∈ {100, 200, 400, 800, 1000, 1200, 1400}.
We discuss thsi in §4.3. Similarly, we tested
K ∈ {1, 2, 5, 10, 100, 250, 500} and reported the
results in §4.4. Furthermore, we evaluated the ef-
fect of λ0, λ1, and λ2 on our framework. The re-
sults of one of these tasks (IMDb) are presented
in Figure 4 in the paper. The optimal λ0 for the
remaining tasks are reported in Table.3.

λ0 λ1 λ2
SST2 0.2 0.4 0.4
QNLI 0.1 0.45 0.45
MNLI 0.1 0.45 0.45
WNLI 0.2 0.4 0.4
RTE 0.3 0.35 0.35
IMDb 0.3 0.35 0.35
SST5 0.2 0.4 0.4

Table 3: Optimal λ’s for each task found through exper-
iments.

We utilized pretrained transformer models from
Hugging Face, including:

• BERT-base-uncased:
https://huggingface.co/bert-base-uncased

• BERT-large-uncased:
https://huggingface.co/bert-large-uncased

• RoBERTa-base:
https://huggingface.co/roberta-base

HoC (F1) BIOSSES (MSE)
proto-lm/PubMedBERT 83.15 ± 0.88/82.32 1.32 ± 0.14 / 1.14
proto-lm/BioGPT 82.78 ± 0.43/85.12 1.16 ± 0.10 / 1.08

Table 4: proto-lm’s performance on biomedical
datasets HoC and BIOSSES

• RoBERTa-large:
https://huggingface.co/roberta-large

• BART-large: https://facebook/bart-large

B Additional experiments and
interpretability examples

We perform additional experiments with proto-lm
on two biomedical datasets: The Hallmarks of Can-
cer Corpus (HoC) (Baker et al., 2016) and Sen-
tence Similarity Estimation System for the Biomed-
ical Domain (BIOSSES) (Soğancıoğlu et al., 2017).
HoC is a text classification dataset comprising of
1852 abstracts from PubMed publications that have
been annotated by medical experts based on a tax-
onomy. BIOSSES consists of 100 pairs of PubMed
sentences, with each pair having been evaluated by
five expert annotators. The sentences are assigned
a similarity score ranging from 0 (indicating no
relation) to 4 (indicating equivalent meanings).

We build proto-lm with two pretrained LLM’s
for the biomedical domain: PubMedBERT (Gu
et al., 2021) and BioGPT (Gu et al., 2021). We
report our results on the biomedical datasets in Ta-
ble 4. For the HoC results, we use N = 1000,
λ0 = 0.3, λ1 = 0.35, λ2 = 0.35, and K = 1. For
the BIOSSES results, we use N = 25, λ0 = 0.6,
λ1 = 0.25, λ2 = 0.25, and K = 1. Also, as
BIOSSES is a regression task, we set C to 1, forgo
the softmax layer in the classification head, and
replace Lce with Lmse. Similar to our results in Ta-
ble. 1, we observe competitive performances from
proto-lm, once again showing that proto-lm of-
fers interpretability, but not at the cost of perfor-
mance. To demonstrate proto-lm’s interpretability,
we additionally show 3 examples from HoC and
the most/least similar prototypes found for those
examples in Fig. 11.

C Effect of unequal λ1 and λ2

We conduct experiments on proto-lm, varying
only λ1 and λ2 (the weights of coh and sep losses,
respectively) while keep other hyperparameters the
same. We show the results for these instances of
proto-lm on SST5 in Figure. 9. We observe that

while differing λ1 and λ2 values lead to conver-
gence, placing equal emphasis on λ1 and λ2 leads
to convergence at a lower loss. Intuitively, rely-
ing on either only pulling the correct prototypes
together (cohesion) or only relying on pushing the
incorrect prototypes apart (separation) is sufficient
to create a meaningful prototypical space that al-
lows for adequate performance on the task. Our
experimental results show that placing equal em-
phasis leads to better performance.

Figure 9: Loss of proto-lm on SST5 with different
combinations of λ1 and λ2. We observe faster conver-
gence at a lower loss when λ1 == λ2.

D Projecting prototypes

In order to help human users understand prototypes
in natural language, we identify the closest train-
ing data sample for each prototype and project the
prototype onto that sample. The projection of proto-
types onto the nearest sample is a well-studied and
established technique (Das et al., 2022; Van Aken
et al., 2022; Chen et al., 2019; Hase et al., 2019).
We compare the quality of our projections against
the projections obtained via the training procedure
of Proto-tex (Das et al., 2022) and the loss function
used in Protoypical Network (Chen et al., 2019)
by measuring the average normalized distance be-
tween each prototype and their projected sample’s
embedding. We show the results for two datasets in
Fig. 10. We observe that proto-lm is able to train
prototypes that are much closer in distance to their
projected samples’ embeddings than the prototypes
obtained via Protoypical Network loss and within
a margin of error to that of Proto-tex.

E Prototype faithfulness

In addition to experiments in §5.1 and §5.2, we
provide a theoretical justification for the inherent
interpretability in proto-lm in this section. Denote
dji as the distance between two prototypes and/or

Figure 10: Average normalized distance between pro-
totypes and the output embedding of the prototypes’
projected samples.

training samples i and j. Let Πj = πj1:|D| be the
probability distribution for prototype pj over the
dataset D, where πji =

ηj

dji
and ηj is a constant for

normalization. Let a and b represent two training
samples, their relative probabilities (for being pro-

jected onto by pj) would be πj
a

πj
b

=
ηj/d

j
a

ηj/d
j
b

=
djb
dja

.

In addition,
∑

k∈D π
j
k = 1 =

∑
k∈D ηj/d

j
k →

ηj =
1∑

k∈D 1/djk
, which means that each prototype

is a soft-clustering over examples in D. Moreover,
since dja/d

j
b =

1

πj
a/π

j
b

, if a a is n times further away

from pj than b, then b is n times more probable
in the probability distribution Πj . Similarly, dur-
ing inference time, for example k, if a prototype
i is n times away from k than prototype j, then
dik/d

j
k = n → πjk/π

i
k = n, i.e. j will be n times

more probable to be the prediction than i for k.

F Interpretability examples and sample
Mturk questionnaires

Figure 11: Example inputs from HoC, their predictions and prototypes identified by proto-lm

Figure 12: Example Amazon Mechanic Turk questionnaire used to evaluate simulatability with prototypical
explanations (PE)

Figure 13: Example Amazon Mechanic Turk questionnaire we used to evaluate accuracy with random explanations.

Figure 14: Example Amazon Mechanic Turk questionnaires we used to evaluate simulatability of LIME/Integrated
Gradients/Guided Backprop.

