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Abstract

In this paper, we propose a novel resultant-based method
for solving polynomial systems of equations that are com-
monly encountered in computer vision, particularly as min-
imal problems. Unlike traditional algorithms that rely on
matrix inversion, the primary merits of the proposed method
are the numerical stability of its formulation and the lack of
need to compute the inverse of a matrix by leveraging null
space computations. Additionally, its formulation paves the
way for more computations to be performed in the offline
stage by using the sparsity of coefficient matrices, thereby
reducing the computational load in the online stage. This
inverse-free formulation is especially suited for sparse sys-
tems and offers improved robustness in scenarios where ma-
trix inversion is unstable or infeasible. Experimental results
demonstrate better accuracy compared to state-of-the-art
methods such as SRBM and GAPS across a variety of cam-
era geometry problems.

1. Introduction

Solving polynomial systems of equations holds a special
place in computer vision, as many camera geometry prob-
lems such as camera pose estimation, triangulation, and
structure-from-motion can be modeled using polynomials
derived from minimal sets of data—commonly referred to
as minimal problems. A minimal solver computes so-
lutions to these minimal problems and is typically used
within RANSAC (Random Sample Consensus) frameworks
[15, 16].

In this application, systems with a particular structure
of coefficients need to be solved repeatedly, as RANSAC
randomly samples minimal subsets of data to hypothesize
models. Additionally, validating models across different
data subsets requires solving the minimal problem multiple
times. In the context of SLAM (Simultaneous Localization
and Mapping), minimal problems must be solved continu-
ously and repeatedly [12]. Therefore, fast computation is
essential to maintain high performance.

A common strategy is to symbolically manipulate a poly-
nomial system so that, after substituting numerical values
into its coefficients, the solution process is as fast as possi-
ble. The first stage, involving symbolic computations, is re-
ferred to as the offline stage, while the second stage, involv-
ing numerical calculations, is known as the online stage. It
is preferable to perform as many computations as possible
during the offline stage, as this can significantly accelerate
the online phase.

There are two main classes of methods for solving poly-
nomial systems of equations in minimal problems: Groeb-
ner basis methods and resultant-based methods. Groebner
basis methods have been widely used in the context of min-
imal solvers [6, 27], while resultant-based methods have
only recently gained attention. Groebner basis techniques
are sensitive to coefficient perturbations and often require
careful tuning. Resultant-based methods, on the other hand,
offer a promising alternative but typically depend on identi-
fying invertible or full-rank submatrices, which can be com-
putationally expensive and numerically unstable [1, 13].

In this paper, we propose a method based on null space
computation that does not require an invertible matrix at any
stage. Moreover, since the coefficient matrices of polyno-
mial systems are often sparse, this sparsity can be exploited
to compute the null space either partially or entirely dur-
ing the offline stage. We demonstrate that our method out-
performs existing techniques in terms of accuracy and effi-
ciency, particularly in scenarios where traditional methods
struggle due to ill-conditioned matrices or sparsity. Overall,
we can state the following merits of the proposed method:

* Offline stage:
Possibility to compute the null space entirely during the
offline stage, or use a hybrid offline-online approach
No need to trim or manipulate the coefficient matrix
No need to find an invertible submatrix within the co-
efficient matrix

— More suitable for sparse coefficient matrices
* Online stage:

— Improved accuracy

— Reduced sensitivity to numerical instability



In the next section, we briefly review the Groebner-based
and resultant-based methods to solve a polynomial system
of equations. In Section 3, we will describe the proposed
method and cover how the null space computation can be
done partially or completely offline. In Section 4, the pro-
posed method is compared with a resultant-based and a
Groebner-based method and finally Section 5 covers the
conclusion.

2. Polynomial systems of equations

The goal is to solve the following system
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where n is the number of variables, m is the number
of equations and each f; is a polynomial in n variables
Z1,...,Ln. BEvery polynomial system of equations can be
written as

Mx =0 2)

where M is the coefficient m X n matrix and x is a vector
containing all monomials of the system.

It is usual to extend the polynomial system by creating
new equations by multiplying exisiting ones by some mono-
mials. This action, while preserving the solutions, enables
elimination techniques such as Gaussian elimination to be
performed by simplifying the forms. It also can make a co-
efficient matrix sparser, this can be useful for methods es-
pecially designed for sparse matrices. For resultant-based
methods, this is a crucial step to make the coefficient matrix
square. Itis also required for the resulting coefficient matrix
to be full-rank.

2.1. Groebner-based methods

Groebner-based methods can be used to convert a system of
polynomial equations into an easier-to-solve equivalent sys-
tem—for example, one in which an equation involves only
a single variable and can therefore be solved using methods
for single-variable polynomials.

One of the drawbacks of Groebner basis methods is their
sensitivity to fluctuations in coefficients [18]. To use them
in practical applications, one approach is to extend their def-
initions to enhance stability.

One of the drawbacks of Groebner basis computations in
numerical settings is their sensitivity to floating-point per-
turbations in the coefficients [ 18]. Although Groebner bases
are algebraically stable under generic specializations (see
[7, Section 4.7, Theorem 2]), their numerical computation
can be unstable, motivating extensions and modified formu-
lations that improve robustness in practical applications.

An important subgroup of the Groebner-based meth-
ods for minimal solvers is action matrix-based methods
[22, 25]. After constructing a quotient ring from the poly-
nomial system and choosing a basis for it, a linear map is

defined that connects multiplication by a polynomial to a
matrix representation—this matrix is known as the action
matrix. It encodes the structure of the polynomial system
and allows us to solve it by computing eigenvalues and
eigenvectors. Effectively, the action matrix is obtained by
using Gaussian elimination on the matrix that encodes the
polynomial system (called elimination template). The set of
monomials is divided into three parts and based on this the
elimination template is reduced. For our comparsions, we
use a variant of action matrix-based methods called GAPS
[22, 25].

2.2. Resultant-based methods

Simply put, the resultant of a system of polynomial equa-
tions is a polynomial in the coefficients of the system such
that, for a given set of coefficients, the system has a com-
mon solution if and only if the resultant is equal to zero
[3, 13].

One issue with resultant-based methods is the emergence
of extra solutions. This occurs because the list of monomi-
als is inherently connected, and linearizing the system fails
to account for these connections, leading to extraneous so-
lutions. A common goal in these methods is to eliminate or
detect such solutions [3].

2.2.1 Hiding a variable

When using resultants, it is necessary for the number of
equations to exceed the number of variables by one. How-
ever, systems typically have an equal number of equations
and variables. To address this, one variable is often treated
as a scalar [2]. In other words, to apply the properties of
resultants to a square system, we treat one of the variables
as a coefficient—effectively hiding it. This transforms the
resultant into a polynomial in the hidden variable. Solving
this polynomial then reveals the values of the hidden vari-
able that corresponds to the solutions of the original system.

2.2.2 Adding an equation

Another approach to leveraging resultants involves adding
an extra equation to the system, enabling the computation
of a resultant polynomial from which the solutions can be
extracted.

One major class of methods in this group is the u-
resultant [17]. In this method, we add an equation of the
form:

o1 = uo Furz1 + + UpTy 3)

and then assign random values to all but one u; (i # 0)
and then hide the remaining one. Considering the linearity
of the extra constraint, one of the key advantages of the u-
resultant method is its ability to more effectively track the
hidden variable within the coefficient matrix. This property



can be particularly useful when designing methods based
on linear algebra.

A resultant-based model suggested by Bhayani et. al. [1]
called Sparse Resultant-Based Minimal Solvers (SRBM)
uses Schur complement of Macaulay matrix in order to con-
vert the extended system of polynomial equations into an
eigenvalue problem.

First, they add an extra equation such as z; — A to the
system (where A is a new variable that will be hidden sub-
sequently). Then, they divide the multiplication matrix for
the extended system as follows:

_ A1 A2 0 0 X1
we (3wl DIE] @
Using the Schur complement, they have the following gene-
rialized eigenvalue problem:

(Ag — A4A§1A1)X1 = )\Xl. (5)

We use this method later for our comparisons with the pro-
posed method. It has been proven [3] that SRBM and
action-based methods can give the equivalent solver under
some conditions and it therefore proves the close connec-
tion of resultant-based and Groebner-based methods.

The main drawback of this method is the need to have an
invertible A,. In practice, A5 can be a badly scaled matrix
that can greatly influence the accuracy of the method. Addi-
tionally, in the offline part, it can be difficult or even impos-
sible to find a non-singular As. In the paper [1], the authors
use a trimming strategy to remove extra rows and columns
in order to find and locate a non-singular A;. However, it
is not guaranteed that such a matrix can be found, and the
process can also be computationally expensive. In some ex-
amples, the method may get stuck during the offline stage of
trimming the Macaulay matrix. Therefore, in practice, for a
sparse Macaulay matrix, it would be usually impossible to
find an invertible matrix without trimming. Thus, trimming
creates a submatrix which is non-singular.

Also, calculating the inverse of a matrix during the on-
line stage each time can be time-consuming, and for certain
sets of given coefficients, we might obtain a matrix with a
very large condition number.

Another issue that can arise, especially in problems with
more variables, is that the monomials included in x; do not
necessarily contain information about all variables. As a
result, it may not be possible to extract certain variable val-
ues from the eigenvectors simply by dividing some of their
elements.

3. Proposed Method

As previously mentioned, methods such as SRBM require
identifying a non-singular submatrix within the Macaulay
matrix. This process can lead to numerical instability and,

in some cases, it may not be feasible to find such a subma-
trix. It can be said that SRBM performs best with dense
matrices. As we will see, the proposed method can actually
be more effective for sparse matrices, while still remaining
applicable to dense coefficient matrices.

In our approach, we follow a similar strategy to SRBM
by adding a linear equation that incorporates the difference
of a predetermined variable. The new variable—essentially
equivalent to one of the original ones—is then hidden in the
method.

The key innovation of the proposed method lies in using
the null space instead of matrix inversion to find solutions
to the polynomial system, which can be derived from an
eigenvalue problem. Utilizing the null space offers greater
numerical stability and allows for partial or full computa-
tion during the offline phase, thereby accelerating the on-
line phase. It also eliminates the need to use or identify a
non-singular matrix.

1) (Offline) First, choose a variable such as z; and add the
equation x; — A to the system, where ) is the extra vari-
able.

2) (Offline) Hide the extra variable .

3) (Offline) Extend the given polynomial system so that we
have Mx = 0 with a square M and x is the extended
vector of monomials.

4) (Offline) Divide the rows of extended multiplication ma-
trix such that

w-[ay]-[a][a] o

where A contains the coefficients of equations that are
multiplicands of the original equations, and B(\) con-
tains coefficients of equations that are multiplicand of
the extra equation. Considering the linearity of the ex-
tra equation, we can write B(A\) = By — ABs. Note that
elements of both B; and By are mostly zeros with some
ones.

5) (Offline or hybrid offline-online or online) Calculate the
null space of A as Z (Section 3.2).

6) (Offline or online) Considering that Ax = 0, we have
x = Zy and using the lower part of Equation (6), we can
write

B\Zy = AByZy (M

which is a generalized eigenvalue problem.

7) (Online) The eigenvalues of this problem are the x; com-
ponents of the solutions. The eigenvectors need to be
multiplied by Z in order to give the final monomial vec-
tors, which contain the solutions of the problem.

Note that in this algorithm, aside from Step 7—which is
computed numerically during the online stage—the remain-
ing steps can be performed during the offline stage. How-
ever, it is also possible to perform the computation of null
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Figure 1. A diagram showcasing the flow of the proposed algo-
rithm. Blue and green nodes represent offline and online stages,
respectively. Yellow nodes represent steps that can be done in a
hybrid manner.

space in a hybrid offline-online manner or entirely online.
If Step 5 is performed hybrid offline-online or completely
online, then subequently Step 6 is also required to be per-
formed online. Further explanation about different stages of
the algorithm will be provided in the next section.

3.1. Step 1-4: Preparing the system

At the beginning, we define a new variable, \, and set it
equal to an existing variable, such as z;. This is done
by adding a new constraint, z; — A = 0, to the system.
Since this constraint is linear in the new variable, its simple
structure can be advantageous for formulating an eigenvalue
problem to subsequently solve the system.

Then, the system is expanded by multiplying its con-
straints by monomials. In this paper, we use the extended
elimination templates of SRBM. After doing so, the result-
ing square coefficient system consists of two parts: the mul-
tiplicands of the original equations and the new equation.
Therefore, it can be rewritten as Equation 6.

For the problems that we applied our proposed method to
(see Section 4), between 20% and 80% of the rows in the co-
efficient matrix are multiplicands of the new equation. This
percentage can be one of the important indicators when de-
ciding whether to compute the null space during the offline

stage, in a hybrid manner, or entirely online, as coefficient
matrices with a higher percentage tend to be sparser.

Based on Equation 6, we can clearly see that for the ex-
tended set of monomials x, we have Ax = 0 and B1x =
ABsx. This means, x is in the null space of the long ma-
trix A. If Z := null(A), then there exists a vector y such
that x = Zy, therefore based on the lower part of Equation
6, we can write B1Zy = AByZy. Based on the way we
expand the system, we know that A is full-rank, therefore,
both B1Z and B;Zy are square matrices and System 7 is
an eigenproblem.

3.2. Step 5: Computing the null space

The main computational cost of the proposed method lies in
calculating the null space. If this step can be performed dur-
ing the offline stage, it significantly enhances the method’s
efficiency. Unlike the inverse of a sparse matrix, sparsity
can be kept for the the null space computations if we do
not consider orthonormality condition. This fact is ben-
eficial for symbolic computations. Moreover, as we will
demonstrate, the null space can be computed using a hybrid
offline-online approach.

Null space calculation has been used in the past to
solve polynomial systems of equations in some applications
[9, 10, 17], but it is not typically considered within the con-
text of symbolic computation and minimal problems. One
way to calculate the null space of A with size k X p is to
compute the QR decomposition of A! and then consider the
last p — k columns of @) [17]. However, performing a full
QR decomposition in the offline stage can be costly. Es-
sentially, we do not need the basis for the null space to be
normalized and orthogonal. Also, doing so we are going to
lose sparsity of the matrix and the resulting null matrix is
going to be dense.

One of the key aspects of the extended multiplication
matrix is that usually even if the coefficients of the poly-
nomial system are dense, the matrix still has a considerable
number of zeros and many rows with the same structure.
Therefore, it would be more efficient to just use a form of
Gaussian elimination in order to find the null space fully
or partially in the offline stage. It would also be benefi-
cial to sort the rows of the matrix and divide it into dense
and sparse parts to better utilize a hybrid offline-online ap-
proach. A more detailed investigation is presented in the
following subsection.

3.2.1 Partial calculation of null space

For calculating the null space of a matrix such as A, con-
sider that we divide it into two parts, that is

_ A
A{AJ, ®)



then if we have N7 = null(A;) and Ny = null(As), for
calculating the null space of A, z € null(A) if and only
x € null(Ay) Nnull(As), this means there exists a y such
that v = Nyy and Asx = As N1y = 0. Therefore, we need
to find the null space of A5 V7 and calculate z = Ny to get
the members of the null space of A.

Considering that the main computational cost of sym-
bolic null space calculations arises from the dense part of
the matrix, this approach enables the development of a
hybrid numerical-symbolic method for computing the null
space. The Macaulay matrix can typically be divided into a
large sparse part and a small dense part by sorting the rows
based on the number of non-zero elements. Therefore, it is
possible to compute the null space of the sparse part sym-
bolically, and then incorporate the dense part and compute
the final null space numerically as outlined in Algorithm 1.

Algorithm 1: Hybrid offline-online calculation of
null space

Input: Symbolic matrix A € R™*", size of rows
needed for offline calculation & < m
Output: Matrix NV, the null space of A
1 Sort A based on the number of non-zeros in
descending order;
2 Initialize S < A(1: k,:);
3 Calculate the null space of symbolic matrix S using
Algorithm 2 as Ng;
4 Substitute numericals inside A and Ng, denoted by
Anum and NS"um;
5 Let Ny < null(Apum(k +1:end,:) * Ng
¢ Calculate N < Ng * Na;
7 return N

num ) 4

num

Note that in the previous algorithm, when selecting a
suitable value for k, we can begin with a single row and
compute its null space. Additional rows can then be added
iteratively, and symbolic calculations can be halted when-
ever the number of operations or computation time exceeds
the allocated budget.

Another hybrid approach involves preconditioning the
symbolic matrix to accelerate computations during the on-
line stage. In [11], the authors suggested that by applying
certain permutation matrices (found by performing random-
ized evaluation) to the symbolic matrix, the problem can be
structured in a way that leads to faster computation. Their
work focuses on applications in multibody mechanical sys-
tems, where the matrices involved are typically large and
dense, making it impractical to compute them entirely dur-
ing the offline stage.

3.2.2 Fraction-free Gaussian elimination

Gaussian elimination is a common method for transforming
a matrix into row-echelon form. As we will see, It also plays
an important role in computing the null space. A modified
version of Gaussian elimination, known as the Bareiss algo-
rithm, avoids divisions by multiplying the row to be elim-
inated by the pivot [24, 26]. Then, instead of dividing, we
simply add the negative of the pivot row to the target row.

However, fraction-free Gaussian elimination is not well-
suited for very large or dense matrices, as multiplying rows
by the pivot can lead to numerical instability due to the
growth of very large or very small elements. That said, in
computer vision applications—where the systems are typ-
ically sparse and relatively small—fraction-free Gaussian
elimination is a suitable method for computing the null
space.

In the context of symbolic matrices, a dense matrix can
result in extremely long symbolic expressions, making it
difficult or even infeasible to compute the symbolic null
space efficiently. Before applying fraction-free Gaussian
elimination, it is advisable to sort the rows of the ma-
trix based on the number of non-zero elements. This can
help identify shorter pivot elements and, as previously men-
tioned, is essential for the hybrid symbolic-numerical ap-
proach to null space computation.

Using fraction-free Gaussian elimination, we can adopt
two different strategies to compute the null space. These
approaches will be briefly discussed in the following two
subsections.

3.2.3 Back-substitution from reduced matrix

After transforming the matrix into row-echelon form R, the
goal is to solve the system *x = 0 to find the null space.
Assuming that R is a tall, full-rank matrix of size n x m, it
will have n — m free variables. We assign zero values to all
but one of the free variables. The remaining free variable is
set to one. Then, we solve the equation Rx = 0 to obtain
the values of the bound variables (Step 22-29 of Algorithm
2). This process yields a basis vector for the null space of
the matrix. The drawback of this approach is the need to
calculate solutions of a linear system.

3.2.4 Facilitating null space calculation

One of the main challenges in symbolic null space com-
putation is the generation of excessively long expressions,
which can make symbolic calculations difficult or even in-
feasible to make.

One way to mitigate the impact of long expressions in
symbolic null space computation is to introduce auxiliary
symbols to represent them. This can be done after con-
structing the extended Macaulay matrix for a polynomial



Algorithm 2:  Null Space Computation with
Fraction-Free Elimination and Back-substitution
Input: Symbolic matrix A € R"™*"
Output: Matrix NV, the null space of A
1 Initialize R + A, r < 1, pivots + [];
2 forc+ 1tondo

3 Find the first nonzero entry in column ¢ from
row r to m;
4 if pivot found at pivot_row then
5 if pivot_row # r then
6 | Swap rows  and pivot_row in R;
7 end
8 Include c in pivots;
9 for i < 1tomdo
10 if i # r and RJ[i, | # 0 then
1 R[i,:] + RJi,:
|- R[r,c] — Ri, ] - R[r,:];
12 end
13 end
14 r<r+1;
15 end
16 if » > m then
17 break;
18 end
19 end
20 Define free variables as
freewars + {1,...,n} \ pivots;

21 Initialize N as a zero matrix of size
n X size(freevars);
22 foreach fv € free_vars do

23 Setx + 0, z[fv] + 1;

2 for j < |pivots| to 1 do

25 r < j, bound + pivots[jl;
R[r,freevars]-z[freevars]

26 x[bound] + — Rl bound] ;

27 end

28 Let = as the fv-th column of N,

29 end

30 return NV

system by substituting each lengthy expression with a new
variable. The symbolic null space is then computed using
these simplified expressions. During the online stage, the
auxiliary variables are replaced with their corresponding ac-
tual values, restoring the full solution.

The resulting expression for the null space typically re-
quires simplification, which can be performed during its
computation. However, by postponing this step until after
the null space has been calculated, the simplification can be
efficiently executed using parallelization techniques.

An unlikely ally in easing symbolic computation can, in
fact, be a larger coefficient matrix. While it is common in

the literature to minimize the size of the expanded coeffi-
cient matrix or elimination template, there is no clear ev-
idence linking the size of the coefficient matrix to the ac-
curacy of a method. For null space computation, having a
larger coefficient matrix can be beneficial, as it typically re-
sults in a sparser matrix. This sparsity reduces the pressure
on pivot elements and can lead to smaller algebraic expres-
sions in the computed null space.

3.3. Step 6-7: Eigenvalue problem and extracting
solutions

Depending on whether the null space was calculated offline
or online, the eigenvalue problem in Equation 7 can be for-
mulated either during the offline or online phase. After solv-
ing this system, it is common for spurious solutions to cor-
respond to infinite eigenvalues, which are removed at this
stage.

If the hidden variable ) is set to be equivalent to the vari-
able z;, then the eigenvalues represent the components x;
of the solution. The remaining components of the solution
can be extracted from the eigenvectors. To do this, we iden-
tify monomials such that dividing one by another yields a
specific component of the solution. This is equivalent to
dividing the corresponding elements of the eigenvectors.

4. Camera geometry problems

In this section, we compare our proposed method with other
state-of-art methods for solving camera-related problems in
computer vision.

In the offline stage, the main computational cost of the
SRBM method [1] lies in identifying an invertible subma-
trix within the coefficient matrix of the extended system.
Additionally, matrix trimming may be required. Based on
our experience, there is a significant risk that the method
may fail during the offline stage, particularly when it be-
comes stuck trying to locate an invertible submatrix. In such
cases, it is often necessary to attempt solving the problem
using multiple parameter configurations, though in some in-
stances, especially for overtly sparse coefficient matrices, it
may not be possible to find feasible options, and the method
may become stuck while attempting to remove rows. There
is a small chance that, when using eigenvectors represented
as monomial vectors, there may not be enough information
to extract a particular component. This is due to the method
selecting a smaller set of monomials for its sparse basis. In
the proposed method, since we multiply the null matrix by
the eigenvectors, we obtain a complete monomial vector.

In the proposed method, the primary computational cost
lies in calculating the null space of a matrix, which can be
efficiently performed partially or completely during the of-
fline stage, especially when the matrix is sparse. If the null
space computation is done online, both the null space com-
putation in the proposed method and the matrix inversion



in SRBM have a theoretical complexity of O(n?). How-
ever, for sparse matrices, null space computation tends to
be more numerically stable and better suited for symbolic
manipulation. Another aspect that can influence the compu-
tation time during the online stage of the proposed problem
is the process of substituting numerical values into the sym-
bolic null space matrix. To accelerate this step, it would be
beneficial to perform the substitutions in parallel.

For the better understanding of merits of our problem,
we comapred our method with two other methods, the
resultant-based SRBM and Groebner-based GAPS [22, 25]
on twelve well-known camera geometry problems. The
elimination matrix that we use for our proposed method is
based on SRBM.

As can be seen from Table 1, the proposed method is
consistently more accurate than SRBM, with the difference
becoming more pronounced as the coefficient matrix be-
comes larger or sparser (for example, problem p9, unsynch
and three-view geometry). Error measures are calculated
based on the mean and median of LoglO of normalized
equation residuals. Each problem is calculated for 1000
runs with random data points. In comparison to GAPS, the
proposed method have the same level of accuracy in seven
problems, is clearly better in three problem and performs
worse in two problems.

Figure 2 demonstrates that the proposed method yields
more stable results across different problems compared to
SRBM. The histogram of the proposed method exhibits a
more uniform structure, whereas the other methods show
more sporadic behavior.

4.1. Time Analysis of SRBM vs. Proposed Method

The main advantage of the proposed method compared to
SRBM lies in the offline stage. This is because SRBM
needs to find a non-singular submatrix within the coeffi-
cient matrix, which it attempts to do by trimming the ma-
trix in many different ways. However, in some cases, iden-
tifying such a submatrix is difficult or even impossible,
causing the method to stall. Since many problems yield
a sparse coefficient matrix, SRBM also requires the ex-
tended coefficient matrix to be made as small as possible
(or denser) to increase the likelihood that trimming will
produce a non-singular submatrix. This offline process is
time-consuming, and in some cases, SRBM fails to find
a suitable coefficient matrix altogether, preventing it from
solving the system.

In contrast, our proposed method does not require find-
ing an invertible matrix, trimming the coefficient matrix, or
increasing its density, which makes it significantly faster
during the offline stage. Based on our experience, during
the online stage—when SRBM does manage to find a suit-
able coefficient matrix—the computation time of the pro-
posed method and SRBM is quite similar.

5. Conclusion

We provided a new way for calculating solutions of minimal
problems using null space calculations. It was shown that
a large part of computations can be done offline and it can
prove a better or on-par accuracy in comparison to other
state-of-art methods.

We observed that using the null space instead of
matrix inverses yielded a method with superior accuracy
in a majority of the problems. Therefore the proposed
method can be considered an improved and more accurate
version SRBM. In future work, it would be interesting to
investigate how the Macaulay matrix can be constructed
to improve null space computations. One approach is to
use the coefficient matrix from methods such as GAPS
or other methods with non-square Macaulay matrix, and
then complete the remaining needed rows of the matrix by
adding extra constraints related to the hidden variable. Our
preliminary results indicate that this approach can yield
solutions to the system. However, determining the selection
criteria for achieving the best accuracy remains a challenge
that needs to be addressed.
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Problem Ep Esrpm Ecaps
mean med mean med mean med

problem_9pt2radial [20] -8.7668 -9.5406 -7.3922 -8.2950  -8.6463 -9.4926
problem_relpose_6p_focal [20] -11.8939  -12.4575 -11.8400 -12.2319 -10.9547 -11.7503
problem_relpose_7p_fr_1s_partial_elim [23] -12.0681  -12.6467 -11.6930 -12.3030 -11.1879 -11.7780
problem_opt_pnp_hesch [14] -10.6501  -11.1942  -10.3908 -10.8760 -11.3546 -11.7743

problem_three-view_ geometry _rad._dist. [4] -8.2435 -10.3122  -5.8022 -7.4497 -6.4892 -7.5263
problem_rel_pose_E+f_6pt [5] -13.2676  -13.2294  -12.9122 -13.2018 -13.6130  -13.8800
problem_p4p_optimal_abs_pos [28] -8.7149 -8.7965 -8.4963 -8.5769  -10.7443  -11.1389
problem_pc_relpose_Sp_nulle_ne__simple [25] -12.6551 -12.9403  -12.6693 -12.8629 -12.6217 -12.8542
problem_triangulation_satellite [29] -11.2089 -11.4307 -10.7408 -10.9819 -11.1484 -11.3274
problem_unsync_relpose_diff_focal [8] -9.4846  -10.6105 -7.6550 -8.7970 -9.4265 -10.8491
problem_8ptF_radial _1s [19] -12.5427 -13.2104  -12.2373  -13.1171 -12.4209 -13.1464
problem_relpose_6p_focal_elim [21] -10.9472  -11.9029  -9.8970 -10.6260 -11.0329 -11.7200

Table 1. Error comparison of the proposed method (P), SRBM and GAPS. Mean and median are computed from Log10 of normalized

equation residuals.
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Figure 2. Histograms of Logio residual errors of four problems. Errors are calculated for 1000 runs of each problem.
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