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Abstract
In this paper, we study the feature learning ability
of two-layer neural networks in the mean-field
regime through the lens of kernel methods. To
focus on the dynamics of the kernel induced by
the first layer, we utilize a two-timescale limit,
where the second layer moves much faster than
the first layer. In this limit, the learning prob-
lem is reduced to the minimization problem over
the intrinsic kernel. Then, we show the global
convergence of the mean-field Langevin dynam-
ics and derive time and particle discretization er-
ror. We also demonstrate that two-layer neural
networks can learn a union of multiple reproduc-
ing kernel Hilbert spaces more efficiently than
any kernel methods, and neural networks aquire
data-dependent kernel which aligns with the tar-
get function. In addition, we develop a label noise
procedure, which converges to the global opti-
mum and show that the degrees of freedom ap-
pears as an implicit regularization.

1. Introduction
Although deep learning has achieved great success in var-
ious fields, the theoretical understanding is still limited.
Several works studied the relation between deep learning
and kernel medhods, which are well-studied in the machine
learning community. A line of work has shown that the
training dynamics of infinite-width neural networks can be
approximated by linearized dynamics and the corresponding
kernel is called neural tangent kernel (NTK) (Jacot et al.,
2018; Arora et al., 2019b). Furthermore, generalizability of
neural networks is shown to be characterized by the spec-
tral properties of the NTK (Arora et al., 2019a; Nitanda &
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Suzuki, 2020). However, the NTK regime is reffered as a
lazy regime and cannot explain the feature learning ability
to adapt the intrinsic structure of the data since neural net-
works behave as a static kernel machine in the NTK regime.
On the other hand, several works have shown the superiority
of the neural networks to the kernel methods in terms of
the sample complexity (Barron, 1993; Yehudai & Shamir,
2019; Hayakawa & Suzuki, 2020). Thus, as shown in sev-
eral empirical studies (Atanasov et al., 2021; Baratin et al.,
2021), neural networks must acquire the data-dependent
kernel by gradient descent. However, it is challenging to
establish a beyond NTK results on the feature learning of
neural networks with gradient-based algorithm due to the
non-convexity of the optimization landscape.

One promising approach is the mean-field analysis (Mei
et al., 2018; Hu et al., 2020), which is an infinite-width
limit of the neural networks in a different scaling than the
NTK regime. In the mean-field regime, the optimization
of 2-layer neural networks, which is non-convex in general,
is reduced to the convex optimization problem over the
distribution on the parameters. Exploiting the convexity
of the problem, several works (Nitanda & Suzuki, 2017;
Mei et al., 2018; Chizat & Bach, 2018) have shown the
convergence to the global optimum. Recently, quantitative
optimiztion guarantees has been established for the mean-
field Langevin dynamics (MFLD) which can be regarded as
a continuous limit of a noisy gradient descent (Chizat, 2022;
Nitanda et al., 2022). Moreover, very recently, uniform-in-
time results on the particle discretization error have been
obtained (Chen et al., 2023; Suzuki et al., 2022; 2023a).
This allows us to extend results effectively from infinite-
width neural networks to finite-width neural networks.

Although the mean-field limit allows us to analyze the fea-
ture learning in neural networks, the connection between
mean-field neural networks and its corresponding kernel is
still unclear. To establish the connection to the previous
works (Jacot et al., 2018; Suzuki, 2018; Ma & Wu, 2022) on
the relationship between neural networks and kernel meth-
ods, we address the following question:
Is it possible to learn the optimal kernel through the MFLD?
Futhermore, can this kernel align with the target function
by excluding the effect of noise?

To analyze the dynamics of the kernel inside the neural net-
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works, we adopt a two-timescale limit (Marion & Berthier,
2023), which separates the dynamics of the first layer and
the second layer. Then, we establish the connection between
neural networks training and kernel learning (Bach et al.,
2004), which involves selecting the optimal kernel for the
data. We provide the global convergence gurantee of the
MFLD by showing the convexity of the objective functional
and derive the time and particle discretization error. Then,
we prove that neural networks can aquire data-dependent
kernel and achieve better sample complexity than any linear
estimators including kernel methods for a union of multiple
RKHSs. We also investigate the alignment with the target
function and the degrees of freedom of the acquired kernel,
which measures the complexity of the kernel, and develop
the label noise procedure which provably reduces the de-
grees of freedom by just adding the label noise. Finally, we
verify our theoretical findings by numerical experiments.
Our contribution can be summarized as follows:

• We prove the convexity of the objective functional with
respect to the first layer distribution and the global
convergence of the MFLD in two-timescale limit in
spite of the complex dependency of the second layer
on the distribution of the first layer. We also derive the
time and particle discretization error of the MFLD.

• We show that neural networks can adapt the intrinsic
structure of the target function and achieve a better
sample complexity than kernel methods for a variant
of Baron space (Ma & Wu, 2022), which is a union of
multiple RKHSs.

• We study the training dynamics of the kernel induced
by the first layer and show that the alignment is in-
creased during the training and achieve Ω(1) align-
ment while the kernel alignment at the initialization
is O(1/

√
d) for a single-index model, where d is the

input dimension. We also show that the presence of the
intrinsic noise induces a bias towards the large degrees
of freedom. To alleviate this issue, we propose the label
noise procedure to reduce the degrees of freedom and
prove the linear convergence to the global optimum.

1.1. Related Works

Relation between Neural Networks and Kernel Methods
Suzuki (2018) derived the generalization error bound for
deep learning models using the notion of the degrees of
freedom in the kernel literature. Ma & Wu (2022) charac-
terized the function class, which two-layer neural networks
can approximate, by a union of multiple RKHSs. However,
they did not give any optimization gurantee. Atanasov et al.
(2021) pointed out the connection between training of neural
networks and kernel learning, but their analysis is limited to
linear neural networks with whitened data.

Mean-field Analysis Chen et al. (2020) conducted NTK-
type analysis using mean-field limit. However, their analysis
relies on the closeness of the first-layer distribution to the
initial distribution. Several works have shown that the supe-
riority of the mean-field neural networks to kernel methods
including NTK with global optimization guarantee. For
example, Suzuki et al. (2023b) derived a linear sample com-
plexity with respect to the input dimension d for k-sparse
parity problems although they requires exponential time for
optimization. On the other hand, kernel methods require
Ω(dk) samples. In addition, Mahankali et al. (2023); Abbe
et al. (2022) showed the superiority of the mean-field neural
networks to the kernel methods for even quartic polymonial.
However, these works fix the second layer during the train-
ing to ensure the boundedness of each neuron. Unlike these
studies, we consider the joint training of the first and second
layer, and focus on the relationship between neural networks
and kernel machines and its implication to the feature learn-
ing ability of neural networks. We remark that Abbe et al.
(2022) considered two-layer neural networks in the mean-
field regime with the learnable second layer and showed
the superiority to kernel methods, but their analysis utilized
two-phase training, where the second layer is fixed in phase
1 and the first layer is fixed in phase 2.

Two-timescale Limit Two-timescale limit is introduced
to the analysis for training of neural networks in Marion
& Berthier (2023). They provided the global convegence
gurantee for simplified neural networks but their analysis
is limited to the single input setting and the relation to the
kernel learning was not discussed. Bietti et al. (2023)
leveraged the two-timescale limit to analyze the training of
a non-parametric model with a linear feature extractor and
show the saddle-to-saddle dynamics. However, their model
differs from neural networks.

Feature Learning in Two-layer Neural Networks Aside
from the mean-field analysis, there exists a line of work
which studies the feature learning in (finite-width) two-layer
neural networks (Damian et al., 2022; Mousavi-Hosseini
et al., 2022). For instance, Damian et al. (2022) show that
the random feature model with the first layer parameter
updated by one-step gradient descent can learn a certain
subset of p-degree polynomial with O(d2) samples while
kernel methods require Ω(dp) samples. However, most
of these works consider two-stage optimization procedure,
where the first layer is trained before proceeding to train the
second layer.

Implicit Bias of Label Noise Implicit bias of label noise
has been intensively studied recently (Damian et al., 2021;
Li et al., 2021; Vivien et al., 2022). For example, Li et al.
(2021) developed a theoretical framework to analyze the
implicit bias of label noise in small noise and learning rate
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limit and prove that the label noise induces bias towards
flat minima. On the other hand, we elucidate the implicit
regularization of label noise on the kernel inside the neural
networks.

1.2. Notations

We write the expectation with respect to X ∼ µ by EX∼µ[·]
or Eµ[·]. KL denotes the Kullback-Leibler divergence

KL(ν | µ) =
∫
log
(
µ(w)
ν(w)

)
dµ(w) and Ent denotes the

negative entropy Ent(µ) = Eµ[logµ]. N(v,Σ) denotes the
Gaussian distribution with mean v and covariance Σ and
υ(S) for S ⊂ Rd denotes the uniform distribution on S. P
denotes the set of probability measures on Rd′ with finite
second moment. For a matrixA, ∥A∥op denotes the operator
norm with respect to ∥·∥2 and ∥A∥F denotes the Frobenius
norm. For an operator A : L2(µ) → L2(µ), ∥A∥op denotes
the operator norm with respect to ∥·∥L2(µ). For l : R2 → R,
∂1l denotes the partial derivative with respect to the first
argument. For a symmetric matrix A, λmin(A) denotes the
minimum eigenvalue of A. With a slight abuse of notation,
we use f(X) for f : Rd → R andX = [x(1), . . . , x(n)]⊤ ∈
Rn×d to denote [f(x(1)), . . . , f(x(n))]⊤.

2. Problem Settings
2.1. Mean-field and Two-timescale Limit in Two-layer

Neural Networks

Given input x ∈ Rd, let us consider the following two-layer
neural network model:

f(x; a, {wi}Ni=1) =
1

N

N∑
i=1

aih(x;wi),

where ai ∈ R, wi ∈ Rd′ and h(x;wi) is the activation
function with parameter wi.

Mean-field limit of the above model is defined as an integral
over neurons:

f(x;P ) :=

∫
ah(x;w)P (da,dw), (1)

where P is a probability distribution over the parameters of
the first and second layers. However, in this formulation,
the first and the second layer are entangled, and thus it is
difficult to characterize the feature learning, which takes
place in the first layer. To alleviate this issue, we consider
the following formulation:

f(x; a, µ) :=

∫
a(w)h(x;w)dµ(w),

where a(w) =
∫
aP (da | w) and µ(w) =

∫
P (a,w)da

is the marginal distribution of w. Similar formulation can

be found in Fang et al. (2019). This formulation explicitly
separates the first and the second layer, which allows us
to focus on the feature learning dynamics in the first layer.
More generally, we consider the multi-task learning settings.
That is, f(x; a, µ) : Rd → RT is defined by

fi(x; a, µ) :=

∫
a(i)(w)h(x;w)dµ(w),

where a : Rd′ → RT is the second layer and a(i) is the i-th
component of a. Note that the first layer µ(w) is shared
among tasks.

Let ρ be the true or empirical distribution of the pair of
input and output (x, y) ∈ Rd+T , and ρX be the marginal
distribution of x. Then, for λ > 0, the (regularized) risk is
defined by

L(a, µ) =
1

T

T∑
i=1

Eρ[li(fi(x; a, µ), y)],

F (a, µ) = L(a, µ) + λEµ[r(a(w), w)],

where li is the loss function for the i-th task, and r is the reg-
ularization term. In this paper, we consider l2-regularization
r(a,w) = λa

2T

∑T
i=1 a

(i)2 + λw

2 ∥w∥22, where a = (a(i))Ti=1

and λa, λw > 0. We define λ̄a = λλa, λ̄w = λλw, and
ν = N(0, I/λw) for notational simplicity.

To separate the dynamics of the first and second layer, we
introduce the two-timescale limit (Marion & Berthier, 2023),
where the second layer moves much faster than the first layer.
In this limit, the first layer a(i) converges instantaneously to
the unique optimal solution of minaEρ[l(f(x; a, µ), y)] +
λ̄a

2 ∥a∥2L2(µ) since F (a, µ) is strongly convex with respect

to a. As shown in the next section, ∥a∥2L2(µ) corresponds
to the RKHS norm for the kernel induced by the first layer.
Since the optimal second layer is a functional of the first
layer distribution µ, we write aµ for the optimal solution.
Then, the learning problem is reduced to the minimization
of the limiting functional G(µ) = F (aµ, µ). We also define
U(µ) by U(µ) := L(aµ, µ) +

λ̄
2T Eµ[∥aµ(w)∥

2
2]

Throughout the paper, we assume that h(x;wi) satisfies
Assumption 2.1. For example, tanh(u · x+ b)(w = (u, b))

satisfies the assumption if EρX [∥x∥22],EρX [∥x∥42] are finite.
Assumption 2.1. h(x;w) is twice differentiable with re-
spect to w and there exist constants cR, cL > 0 such
that supw |h(x;w)| ≤ 1,EρX [supw ∥∇wh(x;w)∥22] ≤
c2R,EρX [supw

∥∥∇2
wh(x;w)

∥∥2
op
] ≤ c2L.

2.2. Kernel Induced by the First Layer

Let us define the kernel induced by the first layer as follows:

kµ(x, x
′) =

∫
h(x;w)h(x′;w)dµ(w).
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Obviously, this is a symmetric positive definite kernel. It is
well-known that there exists a unique RKHS Hµ correspond-
ing the kernel kµ. Furthermore, the RKHS norm ∥f∥Hµ

is equal to the minimum of ∥a∥L2(µ) over all a such that
f(x; a, µ) =

∫
a(w)h(x;w)dµ(w) (Bach, 2017). Then, the

learning problem of the second layer is equivalent to the
following optimization problem:

min
fi∈Hµ

T∑
i=1

Eρ[li(fi(x), y)] +
T∑
i=1

λ̄a
2
∥fi∥2Hµ

. (2)

Therefore, learning first layer is equivalent to kernel learn-
ing (Bach et al., 2004), which choosing suitable RKHS Hµ.

2.3. Mean-field Langevin Dynamics

We optimize the limiting functional G(µ) by the mean-field
Langevin dynamics (MFLD):

dwt = −∇w
δG(µ)

δµ
dt+

√
2λdBt,

where w0 ∼ µ0 := ν, (Bt)t≥0 is the d′-dimensional Brow-
nian motion, and δG(µ)

δµ is the first variation of G(µ). The
Fokker-Planck equation of the above SDE is given by

∂tµt = λ∆µt +∇ ·
[
µt∇

δG(µ)

δµ

]
,

where µt is the distribution of wt. It is known that the
MFLD is a Wasserstein gradient flow which minimizes the
entropy-regularized functional: G(µ) := G(µ) + λEnt(µ).

To implement the MFLD, we need time and particle dis-
cretization (Chen et al., 2023; Suzuki et al., 2022; 2023a).
For a set of N particles W = {wi}Ni=1, we define the empir-
ical distribution µW = 1

N

∑N
i=1 δwi

. Let Wk = {w(k)
i }Ni=1

be a set of N particles at the k-th iteration, and µ(N)
k be a

distribution of Wk on Rd′×N . Then, at each step, we update
the particles as follows:

w
(k+1)
i = w

(k)
i − η∇δG(µWk

)

δµ
(w

(k)
i ) +

√
2ηλξ

(k)
i ,

where η > 0 is the step size and ξ(k)i ∼ N(0, I) are i.i.d.
Gaussian noise. This can be regarded as a noisy gradient
descent. For more detailed discussion, see Hu et al. (2019);
Suzuki et al. (2023a) for example.

3. Convergence Analysis
As shown in Nitanda et al. (2022); Chizat (2022), the con-
vergence of the MFLD depends on the convexity of the
functional and the properties of the proximal Gibbs distri-
bution, which is defined as pµ(w) ∝ exp

(
− 1
λ
δG(µ)
δµ (w)

)
.

In the training of neural networks, the convexity is usually
ensured by the linearity of f with respect to distribution as
in Eq. (1). On the other hand, in the two-timescale limit,
f(x;µ) := f(x; aµ, µ) is not linear with respect to µ be-
cause the second layers aµ depend on µ in a non-linear way.
However, we can prove that the functional G(µ) is convex
and its first variation can be written in a simple form if
{li}Ti=1 are convex.

Theorem 3.1. Assume that the losses {li}Ti=1 are convex.
Then, the limiting functional G(µ) is convex. That is, it
holds that

G(µ1) +

∫
δG(µ1)

δµ
(w)(µ2(w)− µ1(w))dw ≤ G(µ2)

for any µ1, µ2 ∈ P . In addition, the first variation of G(µ)
is given by

δG

δµ
(µ)(w) = λ

(
− λa
2T

∥aµ(w)∥22 +
λw
2
∥w∥22

)
. (3)

See Appendix B.1 for the proof. We remark that the convex-
ity holds for general regularization term r which is strongly
convex with respect to a.

The convergence rate of the MFLD depends on the constant
in the log-Sobolev inequality for the proximal distribution
pµ.

Definition 3.2. We say a probability distribution µ satisfies
log-Sobolev inequality with constant α > 0 if for all smooth
function g : Rd → R with Eµ[g2] <∞,

Eµ[g2 log g2]− Eµ[g2] logEµ[g2] ≤
2

α
Eµ[∥∇g∥2].

To derive the LSI constant α, we assume either of the fol-
lowing conditions on the loss functions:

Assumption 3.3. li is squared loss. That is, li(z, y) =
1
2 (z − y)2. In addition, |yi| ≤ cl a.s. for some constant
cl > 0.

Assumption 3.4. li is convex and twice differentiable
with respect to the first argument and |∂1li(z, y)| ≤
cl,
∣∣∂21 li(z, y)∣∣ ≤ 1 for any z, y ∈ R.

The latter assumption is satisfied by several loss functions
such as logistic loss. Then, using the formula for the
first variation, we can derive the LSI constant applying
the Holley-Stroock argument (Holley & Stroock, 1987) for
bounded perturbation.

Lemma 3.5. Assume that each li satisfies Assumption 3.3
or 3.4. Then, the proximal distribution pµ for any µ ∈ P
satisfies LSI with constant α = λw exp

(
−2

λac
2
l

λ̄2
a

)
.

The proof can be found in Appendix B.2. Unfortunately, the
LSI constant is extremely small if λ is small, which reads to
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exponential computational complexity with respect to 1/λ.
We remark that similar dependency also appears in some
previous works (Chizat, 2022; Nitanda et al., 2022; Suzuki
et al., 2023a), which consider models with the fixed second
layer.
Remark 3.6. In the standard formulation (1), the first varia-
tion of F (P ) = Eρ[l(f(x;P ), y)] + λEP [r(a,w)] is given
by δF

δP = Eρ[∂1l(f(x;P ), y)ah(x;w)] + λr(a,w). Then,
Eρ[∂1l(f(x;P ), y)ah(x;w)] is not bounded nor Lipschitz
continuous with respect to (a,w), even if ∂1l and h is
bounded. Therefore, without two-timescale limit, it is diffi-
cult to obtain a LSI constant even for the single output set-
ting. Indeed, previous works fix the second layer or clip the
output using some bounded function (Chizat, 2022; Nitanda
et al., 2022; Suzuki et al., 2023a) to ensure the boundedness
or Lipschitz continuity of the output of neurons.

Combining above results, we can show the linear conver-
gence of the MFLD.

Theorem 3.7. Let µ∗ be the minimizer of G(µ) and
GN (µ

(N)
k ) = NE

W∼µ(N)
k

[G(µW )] + λEnt(µ
(N)
k ). Then,

for the constant α in Lemma 3.5, µt satisfies

G(µt)− G(µ∗) ≤ exp(−2αλt)(G(µ0)− G(µ∗))

for any 0 ≤ t. Furthermore, for any η <

min {1/4, 1/(4λα)}, µ(N)
k satisfies

1

N
GN (µ

(N)
k )− G(µ∗)

≤ exp(−αληk/2)(GN (µ
(N)
0 )− G(µ∗)) + δ̄η,N ,

where δ̄η,N = O( 1
N + η).

See Appendix B.3 for the proof and the concrete expression
of discretization error δ̄η,N . The proof is based on the frame-
work in Suzuki et al. (2023a). To obtain discretization error,
we prove some additional conditions on the smoothness of
the objective functional via the optimality condition on aµ.
This is far from trivial due to the non-linear dependency of
aµ on µ. Note that we cannot apply the arguments in Chizat
(2022); Nitanda et al. (2022); Suzuki et al. (2023a) without
two-timescale limit since they assume the boundedness or
Lipschitz continuity of each neuron. See also Remark 3.6
for detailed discussion.

Furthermore, the convergence of the loss function in the
discretized setting can be transferred to the convergence of
the function value of the neural networks as shown in the
following proposition.

Proposition 3.8. Assume that h(x;w) is cR-Lipschitz con-
tinuous with respect to w for any x ∈ S, where S is some
subset of Rd. Let ∆ =

c2R
λα (G

N (µ
(N)
k )−NG(µ∗))+

c2RG(µ0)

λ̄w
.

Then, we have

E
Wk∼µ(N)

k

 sup
(x,y)
∈S×S

∣∣∣kµWk
(x, y)− kµ∗(x, y)

∣∣∣2
 = O

(
∆

N

)
.

In addition, if li satisfies Assumption 3.3, then we have

E
Wk∼µ(N)

k

[
sup
x∈S

(fi(x;µWk
)− fi(x;µ

∗))2
]

= O

(
c20(λ̄

2
a + 1)

λ̄4a
· ∆
N

)
.

See Appendix B.4 for the proof. Note that this result is not
covered by Lemma 2 in Suzuki et al. (2023b) since their
analysis relies on the Lipschitz continuity of each neuron.
In the following sections, we consider infinite-width neural
networks trained by the MFLD for simplicity, but the results
can be transferred via this proposition to the finite-width
neural networks trained by the discretized MFLD.

4. Generalization Error for Barron Spaces and
Superiority to Kernel Methods

In this section, we provide the separation of the general-
ization error between neural networks and kernel methods
which cannot adapt the intrinsic structure of the target func-
tion.

Let D =
{
(x(i), y(i))

}n
i=1

be training data sampled from
the true distribution in an i.i.d. manner. We define X =[
x(1), . . . , x(n)

]⊤ ∈ Rn×d, Yi = [y
(1)
i , . . . , y

(n)
i ]⊤ ∈ Rn

and Σ̂µ = Eµ[h(X;w)h(X;w)⊤]. In the following, we
write the true distribution by ρ and the empirical distribu-
tion by ρ̂. In addition, to distinguish the empirical risk
and population risk, we write Uρ(µ),Gρ(µ) for the (regu-
larized) population risk and Uρ̂(µ),Gρ̂(µ) for the empirical
risk. Then, we assume the following.

Assumption 4.1. the output yi for each task is generated by
yi = f◦i (x) + εi, where f◦i : Rd → R is the target function
and εi is the noise, which follows υ([−σ, σ]) independently
for some σ ≥ 0.

To see the benefit of the feature learning or kernel learning,
we consider the following function class.

Definition 4.2 (KL-restricted Barron space). Let PM =
{µ ∈ P | KL(ν | µ) ≤M} for some M > 0. Then, we
define the KL-restricted Barron space as

BM =
{
f(x; a, µ) | µ ∈ PM , a ∈ L2(µ)

}
,

and the corresponding norm as

∥g∥BM
= inf
µ∈PM ,a∈L2(µ)

{
∥a∥L2(µ) | g(x) = f(x; a, µ)

}
.
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This can be seen as a variant of Barron space in E et al.
(2019); Ma & Wu (2022). Similar function classes are
also considered in Bach (2017) but they consider Frank-
Wolfe type optimization algorithm, which is different from
usual gradient descent. We remark that Barron space can
be regarded as a union of RKHS: BM =

⋃
µ∈PM

Hµ and
the norm ∥f∥BM

is equal to the minimum of ∥f∥Hµ
over

all µ ∈ PM (Ma & Wu, 2022).

To obtain the generalization guarantee, we utilize the
Rademacher complexity. The Rademacher complexity of a
function class F of functions f : Rd → RT is defined by

R(F) := Eσ

[
sup
f∈F

1

nT

n∑
i=1

T∑
t=1

σitft(xi)

]
,

where σit is an i.i.d. Rademacher random variable (P (σit =
1) = P (σit = −1) = 1/2). Then, we have the following
bound for the mean-field neural networks.

Lemma 4.3. Assume that h(x;w) satisfies Assumption 2.1.
Define a class of the mean-field neural networks by

FR,M =
{
f(x; a, µ) | KL(ν | µ) ≤M, ∥a∥2L2(µ) ≤ R

}
.

Then, the Rademacher complexity of FR,M is bounded by

R(FR,M ) ≤
√
R(4M + 2T log 2)

nT
= O

(
R(M + T )

nT

)
.

This is a generalization of the result in Chen et al. (2020).
See Appendix C.2 for the proof.

Then, we can derive the generalization error bound for the
empirical risk minimizer µ̂ = argmin

µ
Gρ̂(µ). Note that the

empirical risk minimizer µ̂ can be obtained by the MFLD
as shown in Theorem 3.7.

Theorem 4.4. Assume that Assumption 2.1 and 4.1 holds
with σ = 0, T = 1, and f◦1 ∈ BM , ∥f◦1 ∥BM

≤ R for given
M,R > 0. In addition, let λ = 1/

√
n, and λa = 2M/R.

Then, with probability at least 1 − δ over the choice of
training examples, it holds that

∥f(·; µ̂)− f◦∥2L2(ρX) = O

(
(R+ 1)

√
M + 1 + log 1/δ

n

)
.

See Appendix C.3 for the proof. Therefore, if R = O(1),
the mean-field neural networks can learn the Barron space
with n = O(M) samples.

Next, we show the lower bound of the estimation error for
kernel methods. For a given kernel k, a kernel method
returns a function of the form f(x) =

∑n
i=1 αik(x, xi) for

αi ∈ R. This type of estimator is called linear estimator.
The following theorem gives the lower bound of the sample
complexity for any linear estimators.

Theorem 4.5. Fix m ∈ N and let d ≥ max{2,m} and ρX
be the uniform distribution on {−1, 1}d and h(x;w) =
tanh(u · x+ b), where w = (u, b) ∈ Rd+1. In addi-
tion, let Hn ⊂ L2(ρX) be a set of functions of the form∑n
i=1 αihi(x) and d(f,Hn) = inf f̂∈Hn

∥f − f̂∥L2(ρX).
Then, there exist constants c1, c2 > 0 which is independent
of d, such that, for every choice of fixed basis functions
h1(x), . . . , hn(x), it holds that

sup
f∈BM ,∥f∥2

BM
≤R

d(f,Hn) ≥
1

4

if n ≤ N/2 andM = c1d log d,R = c2 whereN =
(
d
m

)
=

Ω(dm).

The proof can be found in Appendix C.4. The key obser-
vation for the proof is that we can construct a function in
the Barron space that approximates a single index model
with certain regularity by taking a measure which concen-
trates on a line toward a certain direction. This theorem
implies that any kernel estimator with n = o(dm) cannot
learn the Barron space with M = Ω(d log d). This is in
contrast to the mean-field neural networks which can learn
the Barron space with n = O(d log d) samples as shown
in Theorem 4.4. This is because the kernel methods can-
not adapt the underlying RKHS under the target function.
Therefore, feature learning or kernel learning is essential to
obtain good generalization results.

5. Properties of the Kernel Induced by the
First Layer

In the previous section, we proved that feature learning is
essential to obtain good generalization results and two-layer
neural networks trained by the MFLD can excel over kernel
methods. In this section, we study the properties of the
kernel trained via the MFLD. We show that in regression
problem, the kernel induced by the first layer moves to in-
crease kernel and parameter alignment. We also proved that
the presence of the noise ε induces bias towards the large
degrees of freedom. To overcome this issue, we provide
the label noise procedure, which provably converges to the
global minima of the objective functional with the degrees
of freedom regularization.

5.1. Kernel and Parameter Alignment

For simplicity, we consider the single output setting T = 1
and define f◦ = f◦1 . In addition, we consider tanh activa-
tion h(x;w) = tanh(u · x+ b) (w = (u, b)) and assume
that ρX = N(0, I). To measure the adaptation of the kernel
to the target function, we define the kernel alignment Cris-
tianini et al. (2001), which is commonly used to measure
the similarity between kernel and labels.

6
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Definition 5.1. For µ ∈ P , the empirical and population
kernel alignment is defined by

Â(µ) =
f◦(X)⊤Σ̂µf

◦(X)

∥f◦(X)∥22
∥∥∥Σ̂µ∥∥∥

F

,

A(µ) =
Ex∼ρX ,x′∼ρX [f◦(x)kµ(x, x

′)f◦(x′)]

EρX [f◦(x)2]
√
Ex∼ρX ,x′∼ρX [k(x, x′)2]

.

Note that Â(µ) and A(µ) satisfy 0 ≤ Â(µ), A(µ) ≤ 1 and
larger A(µ) means that the kernel is aligned with the target
function.

In this section, we consider the regression problem with
squared loss. If σ = 0, the limiting functional Uρ̂(µ) has
the following explicit formula.

Uρ̂(µ) =
λ̄a
2
f◦(X)

⊤
(Σ̂µ + nλ̄aI)

−1f◦(X).

From Jensen’s inequality, we have

Â(µ) ≥
λ̄a∥f◦(X)∥22
2Uρ̂(µ)n

− λ̄a.

See Lemma D.2 for the detailed derivation. Therefore, the
minimization of Uρ̂(µ) is equivalent to the maximization of
the lower bound of the kernel alignment.

To derive a concrete expression of the kernel alignment, we
assume that the target function f◦ is a single-index model
, which is a common structural assumption on the target
function (Bietti et al., 2022).

Assumption 5.2. There exist f̃ : R → R, u◦ ∈
Rd (∥u◦∥2 = 1) such that f̃ is differentiable, ∥f̃ ′∥∞,
∥f̃∥∞ ≤ 1, Ez∼N(0,1)[f̃(z)] = 0, and f◦(x) = f̃(u◦ · x).

We also define the parameter alignment, which measures
the similarity between the first layer parameters and the
intrinsic direction of the target function.

Definition 5.3. For µ ∈ P , the parameter alignment is
defined as

P (µ) = E(u,b)∼µ

[
(u⊤u◦)2

∥u∥2

]
.

Here, we define (u⊤u◦)2

∥u∥2 = 0 for u = 0.

This is the expected cosine similarity between parameters
and the target direction, and thus 0 ≤ P (µ) ≤ 1. Note that
larger P (µ) means that the first layer parameters are aligned
with the intrinsic direction of the target function.

Then, we have the following result on the kernel for empiri-
cal risk minimizer µ̂.

Theorem 5.4. Assume that Assumption 5.2 holds. Then,
there exists universal constants c3, c4, c5 satisfying the
following: Let µ̂ be the minimizer of Gρ̂(µ) with n ≥
c3(d log d+log 1/δ), λ = c4/(d log d), and λa = c5d log d
for 0 < δ < 1 and d ≥ 2. Then, the kernel and parameter
alignment for the initial distribution µ0 and the empirical
risk minimizer µ̂ satisfies

A(µ0) = O(1/
√
d), A(µ̂) = Ω(1),

P (µ0) = O(1/d), P (µ̂) = Ω(1),

with probability at least 1− δ over the choice of samples.

See Appendix D.2 for the proof. In high-dimensional setting
d ≫ 1, A(µ̂), P (µ̂) = Ω(1) is a significant improvement
over P (µ0) = O(1/d), A(µ0) = O(1/

√
d) at the initial-

ization. For the parameter alignment, similar results are
shown in Mousavi-Hosseini et al. (2022), but they train only
the first layer and use the norm of the irrelevant directions
as a measure of the alignment. On the other hand, we con-
sider the joint learning of the first and second layers and
use the cosine similarity as a measure of the alignment. In
addition, Atanasov et al. (2021) studied the kernel align-
ment of NTK, but their analysis is limited to linear neural
networks. Furthermore, Ba et al. (2022); Wang et al. (2024)
studied the alignment of the conjugate kernel of two-layer
neural networks after one-step gradient descent, but their
frameworks cannot deal with full training dynamics.

5.2. Degrees of Freedom and Label Noise

To measure the complexity of the acquired kernel, we define
the (empirical) degrees of freedom by

dλ(µ) = tr
[
Σ̂µ(Σ̂µ + nλI)−1

]
for λ > 0. This quantity is the effective dimension of
the kernel kµ and plays a crucial role in the analysis of
kernel regression (Caponnetto & De Vito, 2007). In addition,
it is known that the degrees of freedom is related to the
compressibility of neural networks (Suzuki et al., 2020).

Under Assumption 4.1, each label Yi can be decom-
posed as Yi = f◦i (X) + εi, where εi is the observation
noise. Then, taking the expectation of Uρ̂(µ) with re-
spect to ε yields Eε[Uρ̂(µ)] = B − V + const., where
B = λ̄a

2T

∑T
i=1 Eε[f◦i (X)

⊤
(Σ̂µ + nλ̄aI)

−1f◦i (X)] and
V = λ̄aσ

2

6n dλ̄a
(µ). See Lemma D.3 for the derivation. Here,

B is the bias term, which corresponds to the alignment with
the target function as shown in the previous section, and V is
the variance term, which corresponds to the degrees of free-
dom. Since −V appears in Eε[Uρ̂(µ)], minimizing Uρ̂(µ)
leads to the larger variance and the degrees of freedom. We
verify this phenomenon in Section 6.

To obtain good prediction performance, we need to mini-
mizeB+V and control the bias-variance tradeoff. Here, we

7
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consider the following objective functional with the degrees
of freedom regularization:

L(µ) := Gρ̂(µ) +
λ̄aσ̃

2

6n
dλ̄a

(µ).

Here, σ̃ ≥ 0 controls the strength of the regularization.
Since this regularization is proportional to the variance V ,
minimizing L(µ) would lead to smaller variance and better
generalization. To obtain the minimizer of the above func-
tional L(µ), we provide the label noise procedure, where
we add independent label noise to the training data for im-
plicit regularization. In the discretized MFLD update, we
add independent label noise ε̃i ∼ υ([−σ̃, σ̃]n) to Yi at each
time step. We use the noisy label Ỹi := Yi + ε̃i to train
the second layer and obtain ã(i)µ := argmin 1

nT

∑T
i=1 ∥Ỹi−

f(X; a, µ)∥22+ λ̄a

2 Eµ[a(w)2]. Here, the noisy limiting func-
tional Gε̃(µ) is defined as

Gε̃(µ) :=
1

nT

T∑
i=1

∥Yi − f(X; ãµ, µ)∥22

+
λ̄a
2
Eµ
[
∥ãµ(w)∥22

]
+
λ̄w
2
Eµ[∥w∥22].

Note that we use the clean label Yi to define Gε̃(µ) instead
of Ỹi. Then, we update the first layer by the following
discretized MFLD.

w
(k+1)
i = w

(k)
i − η∇δGε̃(k)(µWk

)

δµ
(w

(k)
i ) +

√
2ηλξ

(k)
i ,

where ε̃(k) is an independent noise at the k-th iteration. In
fact, the expectation of Gε̃(µ) + λEnt(µ) with respect to
ε̃ is equal to L(µ) and the above procedure can be seen
as the stochastic MFLD for minimizing L(µ). Indeed, the
following theorem holds.

Theorem 5.5. Let µ∗ = argmin
µ

L(µ). Then,

for η < min(1/4, 1/(4αλ)) and 0 ≤ σ̃2/3 ≤
λmin

(
1
T

∑T
i=1 YiYi

⊤
)

, we have

1

N
E[LN (µNk )]− L(µ∗)

≤ exp(−αληk/2)(E[LN (µN0 )]− L(µ∗)) + δ̄′η,N ,

where δ̄′η,N = O(η + 1
N ). Here, the expectation is taken

with respect to the randomness of the label noise.

See Appendix D.3 for the proof. Intuitively, the degrees of
freedom represents a metric for quantifying the adaptability
to noise and the first layer performs the robust feature learn-
ing where the second layer is difficult to fit the label noise.
Suzuki & Suzuki (2023) has shown the Bayes optimality
of two-layer linear neural networks which minimizes the
empirical risk with the degrees of freedom regularization.

However, they ignore the optimization aspect and directly
assume that the optimal solution can be obtained. Note that
the condition on σ̃2 is needed to ensure the convexity of the
objective and the multi-learning setting is necessary to set
σ̃ > 0 since 1

T

∑T
i=1 YiYi

⊤ must be full rank. However, as
shown in Section 6, the label noise procedure is effective
even for the single output setting.

6. Numerical Experiments
To validate our theoretical results, we conduct numerical
experiments with synthetic data. Specifically, we con-
sider f◦(x) = x1x2 for d = 15. Then, the samples{
(x(i), y(i))

}n
i=1

are independently generated so that x(i)

follows N(0, I) and y(i) = f◦(x(i)) + ε(i), where ε(i) ∼
υ([σ, σ]). We consider a finite width neural network with the
width m = 2000. We trained the network via noisy gradient
descent with η = 0.2, λ = 0.004, λw = 0.25, λa = 0.25
until T = 10000. The results are averaged over 5 different
random seeds.

First, we investigated the training dynamics of the kernel by
changing the intrinsic noise σ. As shown in Figure 1, kernel
moves to increase the kernel alignment and the degrees
of freedom. In addition, the intrinsic noise increases the
degrees of freedom, which is consistent with our arguments
in Section 5.2.

Next, we demonstrated the effectiveness of the label noise
procedure. Fig. 2 shows the evolution of the degrees of
freedom and the test loss during the training for different σ̃.
As expected, the label noise procedure reduces the degrees
of freedom. Moreover, the test loss is also improved, which
implies that the degrees of freedom is a good regularization
for the generalization error.
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Figure 1. Evolution of the kernel alignment and the degrees of
freedom of neural network optimized by the MFLD

7. Conclusion
In this paper, we studied the feature learning ability of two-
layer neural networks in the mean-field regime via kernel
learning formulation. For that purpose, we proposed to
use the two-timescale limit to analyze the training dynam-
ics of the mean-field neural networks. Then, we provided
the linear convergence guarantee to the global optimum by
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Figure 2. Evolution of the degrees of freedom and the test error of
the label noise procedure

showing the convexity of the limiting functional and derive
the discretization error. We also studied the generalization
ability of the empirical risk minimizer and proved that the
feature learning is essential to obtain good generalization
results for a union of multiple RKHSs. Then, we showed
that the kernel induced by the first layer moves to increase
kernel and parameter alignment and the intrinsic noise in
labels induces bias towards the large degrees of freedom.
Finally, we proposed the label noise procedure to reduce the
degrees of freedom and provided the global convergence
guarantee.
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A. Auxiliary Lemmas
Lemma A.1 (Holley & Stroock (1987)). Assume that a probability distribution p(w) satisfies the LSI with a constant α > 0.
For a bounded perturbation B(w) : Rd′ → R, define p′(w) = p(w) exp(B(w))/Ep[exp(B(w))]. Then, p′ satisfies the LSI
with a constant α

exp(4∥B∥∞)
.

Lemma A.2. The optimal i-th second layer a(i)µ satisfies

a(i)µ (w) = − 1

λ̄a
Eρ[∂1li(fi(x; aµ, µ), yi)h(x;w)].

for any w ∈ Rd′ .

Proof. From the optimality condition on a(i)µ , it holds that

∂L

∂a
(i)
µ

(a(i), µ)(w) + λ∂air(aµ(w), w)µ(w) = E[∂1li(fi(x; a(i)µ , µ), yi)h(x;w)]µ(w) + λ̄aa
(i)
µ (w)µ(w) = 0.

Thus, we have

a(i)µ (w) = − 1

λ̄a
Eρ[∂1li(fi(x; aµ, µ), y)h(x;w)],

which completes the proof.

Lemma A.3. Define T : L2(µ) → L2(ρX) by

T (a) =

∫
a(w)h(x;w)dµ(w)

and its adjoint operator T ∗ : L2(ρX) → L2(µ) by

T ∗(f) =

∫
f(x)h(x;w)dρ(x).

For l2-loss, the optimal i-th second layer a(i)µ has the following explicit formula.

a(i)µ (w) = (T ∗T + λ̄a Id)
−1T ∗f◦i

= T ∗(TT ∗ + λ̄a Id)
−1f̄◦i ,

where f◦i (x
′) := Eρ[yi | x = x′] is the conditional expectation of yi given x. In addition, if ρX is the empirical distribution

1
n

∑n
i=1 δxi , then, a(i)µ is written by

a(i)µ (w) = h(X;w)⊤(Σ̂µ + nλ̄aI)
−1Yi.

Proof. For l2-loss, the optimality condition on a is given by

Eρ[(T (a(i)µ )− y)h(x;w)] + λ̄aa
(i)
µ (w) = 0.

Using Eρ[yih(x;w)] = EρX [f◦i (x)h(x;w)] = T ∗f◦i , we have

T ∗T (a(i)µ ) + λ̄aa
(i)
µ = T ∗f◦i .

Since λ̄a > 0 and (T ∗T + λ̄a Id) is invertible, we arrive at

a(i)µ = (T ∗T + λ̄a Id)
−1T ∗f◦i .

Since (T ∗T + λ̄a Id)T
∗ = T ∗(TT ∗ + λ̄a Id), we have T ∗(TT ∗ + λ̄a Id)

−1 = (T ∗T + λ̄a Id)
−1T ∗, and thus a(i)µ =

T ∗(TT ∗ + λ̄a Id)
−1f◦i .
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Lemma A.4. Assume that li satisfies Assumption 3.4 or 3.3. Then, for any w ∈ Rd′ , a(i)µ (w) satisfies the following
conditions:

•
∣∣∣a(i)µ (w)

∣∣∣ ≤ cl
λ̄1

=: Ba

•
∥∥∥∇wa

(i)
µ (w)

∥∥∥
2
≤ clcR

λ̄1
=: Ra

•
∥∥∥∇2

wa
(i)
µ (w)

∥∥∥
op

≤ clcL
λ̄1

=: La

Proof. In the case of |∂1li(z, y)| ≤ cl, Lemma A.2 yields∣∣∣a(i)µ (w)
∣∣∣ = 1

λ̄a
|Eρ[∂1li(fi(x; aµ, µ), y)h(x;w)]|

=
cl
λ̄a
.

In the case of l(z, y) = 1
2 (z − y)2 and |yi| ≤ cl, Lemma A.3 yields∣∣∣a(i)µ (w)

∣∣∣ = ∣∣T ∗(TT ∗ + λ̄a Id)
−1ȳi

∣∣
=

∣∣∣∣∫ h(x;w)[(TT ∗ + λ̄a Id)
−1ȳi](x)dρ(x)

∣∣∣∣
≤ ∥h(x;w)∥L2(ρ)

∥∥(TT ∗ + λ̄a Id)
−1ȳi

∥∥
L2(ρ)

≤
∥∥(TT ∗ + λ̄a Id)

−1ȳi
∥∥
L2(ρ)

.

Here, the last inequality follows from |h(x;w)| ≤ 1. Since the operator norm of (TT ∗ + λ̄a Id)
−1 is bounded by 1/λ̄a, we

have ∥∥(TT ∗ + λ̄a Id)
−1ȳi

∥∥
L2(ρ)

≤ 1

λ̄a
∥ȳi∥L2(ρ)

≤ cl
λ̄a
.

Thus, we have the first assertion.

In a similar way, we have ∥∥∥∇wa
(i)
µ (w)

∥∥∥
2
=

1

λ̄a
∥Eρ[∂1li(fi(x; aµ, µ), y)∇wh(x;w)]∥

≤ cl
λ̄a

E[∥∇wh(x;w)∥]

≤ clcR
λ̄a

,

in the case of |∂1li(z, y)| ≤ cl. In addition, for a squared loss, we have∥∥∥∇a(i)µ (w)
∥∥∥
2
=

∥∥∥∥∫ h(x;w)[(TT ∗ + λ̄a Id)
−1ȳi](x)dρ(x)

∥∥∥∥
2

≤ ∥∥∇wh(x;w)∥2∥L2(ρ)

∥∥(TT ∗ + λ̄a Id)
−1ȳi

∥∥
L2(ρ)

≤ clcR
λ̄a

.

Thus, we have the second assertion.
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Furthermore, we have ∥∥∥∇2
wa

(i)
µ (w)

∥∥∥
op

=
1

λ̄a

∥∥Eρ[∂1li(fi(x; aµ, µ), y)∇2
wh(x;w)]

∥∥
op

≤ cl
λ̄a

E[
∥∥∇2

wh(x;w)
∥∥
op
]

≤ clcL
λ̄a

,

in the case of |∂1li(z, y)| ≤ cl. On the other hand, in the case of li is a squared loss, we have∥∥∥∇2
wa

(i)
µ (w)

∥∥∥
op

=

∥∥∥∥∫ ∇2
wh(x;w)[(TT

∗ + λ̄a Id)
−1ȳi](x)dρ(x)

∥∥∥∥
op

≤
∥∥∥∥∥∇2

wh(x;w)
∥∥
op

∥∥∥
L2(ρ)

∥∥(TT ∗ + λ̄a Id)
−1ȳi

∥∥
L2(ρ)

≤ clcL
λ̄a

.

This completes the proof.

Lemma A.5. Assume that each li satisfies Assumption 3.4 or 3.3. Then, we have∣∣∣∣δUδµ (µ)(w)

∣∣∣∣ ≤ λ̄a
2
B2
a∥∥∥∥∇w

δU

δµ
(µ)(w)

∥∥∥∥
2

≤ λ̄aRaBa,∥∥∥∥∇w∇⊤
w

δU

δµ
(µ)(w)

∥∥∥∥
op

≤ λ̄a(R
2
a +BaLa).

for any w ∈ Rd′ .

Proof. From Theorem 3.1, we have

δU(µ)

δµ
(w) = − λ̄a

2T

T∑
i=1

a(i)µ (w)2.

Thus, Lemma A.4 yields ∣∣∣∣δUδµ (µ)(w)

∣∣∣∣ ≤ λ̄a
2
B2
a,∥∥∥∥∇w

δU

δµ
(µ)(w)

∥∥∥∥
2

≤ λ̄aBaRa,∥∥∥∥∇w∇⊤
w

δU

δµ
(µ)(w)

∥∥∥∥
op

≤ λ̄a(R
2
a +BaLa),

which completes the proof.

Lemma A.6. Assume that each li satisfies Assumption 3.4 or 3.3. We have∣∣∣∣δ2Uδµ2
(µ)(w,w′)

∣∣∣∣ ≤ B2
a∥∥∥∥∇w

δ2U

δµ2
(µ)(w,w′)

∥∥∥∥
2

≤ 2RaBa,∥∥∥∥∇w∇w′
δ2U

δµ2
(µ)(w,w′)

∥∥∥∥
op

≤ 4R2
a.

for any w,w′ ∈ Rd′ .
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Proof. Let l̄′′i (x
′) := Eρ[∂21 li(f(x), yi) | x = x′]. Define Λ,Λ1/2 : L2(ρ) → L2(ρ) by

Λi(f)(x) = f(x)l̄′′i (x),

Λ
1/2
i (f)(x) = f(x)l̄′′i (x)

1/2,

and A(i)(w) ∈ L2(ρ) by

A(i)(w)(x) = a(i)µ (w)h(x;w)l̄′′(x)1/2

for a given w ∈ Rd′ . Note that Λ,Λ1/2.A are well-defined since l̄′′i (x) ≥ 0 from the convexity of li with respect to the first
argument.

The second variation of U(µ) is given by

δ

δµ

δU(µ)

δµ
(w,w′) = − λ̄a

T

T∑
i=1

a(i)µ (w)
δa

(i)
µ (w)

δµ
(w′).

Taking the first variation of the both sides of the optimality condition on a(i)µ (w) for a given w, we have

Eρ[l′′i (f(x; aµ, µ), y)

(
a(i)µ (w′)h(x;w′) +

∫
δa

(i)
µ (w′′)

δµ
(w′)h(x;w′′)dµ(w′′)

)
h(x;w)] + λ̄a

δa
(i)
µ (w)

δµ
(w′)

=

[
(T ∗ΛiT + λ̄a Id)

δa
(i)
µ (·)
δµ

(w′)

]
(w) +

[
T ∗Λ

1/2
i A(i)(w′)

]
(w)

= 0.

Thus, we obtain

δ

δµ

δU(µ)

δµ
= − λ̄a

T

T∑
i=1

a(i)µ (w)
δa

(i)
µ (w)

δµ
(w′)

= − λ̄a
T

T∑
i=1

a(i)µ (w)(T ∗ΛiT + λ̄a Id)
−1
[
T ∗Λ

1/2
i A(i)(w′)

]
(w)

= − λ̄a
T

T∑
i=1

a(i)µ (w)
[
T ∗Λ

1/2
i (Λ1/2TT ∗Λ

1/2
i + λ̄a Id)

−1A(i)(w′)
]
(w)

= − λ̄a
T

T∑
i=1

a(i)µ (w)

∫ [
(Λ

1/2
i TT ∗Λ

1/2
i + λ̄a Id)

−1A(i)(w′)
]
(x)h(x;w)l̄′′(x)1/2dρ(x)

= − λ̄a
T

T∑
i=1

∫ [
(Λ

1/2
i TT ∗Λ

1/2
i + λ̄a Id)

−1A(w′)
]
(x)A(w)(x)dρ(x)

= − λ̄a
T

T∑
i=1

⟨A(i)(w), (Λ
1/2
i TT ∗Λ

1/2
i + λ̄a Id)

−1A(i)(w′)⟩

The second equality follows from the equality A(A∗A+ Id)−1 = (AA∗ + Id)−1A for any operator A such that (A∗A+
Id), (AA∗ + Id) are invertible.
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First, we bound
∥∥∥∥∇wA

(i)(w)
∥∥
2

∥∥
L2(ρ)

and
∥∥A(i)(w)

∥∥
L2(ρ)

. From Lemma A.4, we have∥∥∥∥∥∥∇wA
(i)(w)

∥∥∥
2

∥∥∥
L2(ρ)

=
∥∥∥∥∥∥∇wa

(i)
µ (w)h(x;w) + a(i)µ (w)∇wh(x;w)

∥∥∥
2
l̄′′(x)1/2

∥∥∥
L2(ρ)

≤
∥∥∥∥∥∥∇wa

(i)
µ (w)

∥∥∥
2
l̄′′(x)1/2

∥∥∥
L2(ρ)

+
∥∥∥∣∣∣a(i)µ (w)

∣∣∣∥∇h(x;w)∥2 l̄
′′(x)1/2

∥∥∥
L2(ρ)

≤ 2Ra,∥∥∥A(i)(w)
∥∥∥
L2(ρ)

=
∥∥∥a(i)µ (w)h(x;w)l̄′′(x)1/2

∥∥∥
L2(ρ)

≤ Ba

since we have assumed that 0 ≤ ∂21 li(x, y) ≤ 1. The first assertion follows immediately from the above inequality and∥∥∥(Λ1/2
i TT ∗Λ

1/2
i + λ̄a Id)

−1
∥∥∥
op

≤ 1/λ̄a.

Then,
∥∥∥∇w

δ2U(µ)
δµ2 (w,w′)

∥∥∥ is bounded as follows:

∥∥∥∥∇w
δ2U(µ)

δµ2
(w,w′)

∥∥∥∥ ≤ λ̄a
T

T∑
i=1

∫
dρ(x)

∥∥∥∇wA
(i)(w)(x)

∥∥∥
2

∣∣∣[(Λ1/2TT ∗Λ1/2 + λ̄a Id)
−1A(i)(w′)](x)

∣∣∣
≤ λ̄a

T

T∑
i=1

∥∥∥∥∥∥∇wA
(i)(w)(x)

∥∥∥
2

∥∥∥
L2(ρ)

∥∥∥(Λ1/2TT ∗Λ1/2 + λ̄a Id)
−1A(i)(w′)

∥∥∥
L2(ρ)

≤ λ̄a
T

T∑
i=1

∥∥∥∥∥∥∇wA
(i)(w)(x)

∥∥∥
2

∥∥∥
L2(ρ)

∥∥∥(Λ1/2TT ∗Λ1/2 + λ̄a Id)
−1
∥∥∥
op

∥∥∥A(i)(w′)
∥∥∥
L2(ρ)

≤ 2RaBa

Finally,
∥∥∥∇w∇⊤

w′
δ2U(µ)
δµ2 (w,w′)

∥∥∥
2

is bounded as follows:

∥∥∥∥∇w∇⊤
w′
δ2U(µ)

δµ2
(w,w′)

∥∥∥∥
op

≤ λ̄a
T

T∑
i=1

tr[

∫ ∫
dρ(x)dρ(x′)∇wA

(i)(w)(x)

(Λ1/2TT ∗Λ1/2 + λ̄a Id)
−1(x, x′)∇⊤

w′A(i)(w′)(x′)]

≤ λ̄a
T

T∑
i=1

∫ ∫
dρ(x)dρ(x′)

∥∥∥∇wA
(i)(w)(x)

∥∥∥
(Λ1/2TT ∗Λ1/2 + λ̄a Id)

−1(x, x′)
∥∥∥∇⊤

w′A(i)(w′)(x′)
∥∥∥

≤ λ̄a
T

T∑
i=1

∥∥∥∥∥∥∇wA
(i)(w)(x)

∥∥∥∥∥∥2
L2(ρ)

∥∥∥(Λ1/2TT ∗Λ1/2 + λ̄a Id)
−1
∥∥∥
L2(ρ)

≤ 4R2
a.

B. Proofs for Section 3
B.1. Proof of Theorem 3.1

First, we derive the expression of the first variation of G(µ). The envelope theorem implies that

δG(µ)

δµ
(w) =

∂F (aµ, µ)

∂µ
(w) =

∂L(aµ, µ)

∂µ
(w) + λr(aµ(w), w).
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In addition, the first variations of L w.r.t. µ and a are given by

∂L(aµ, µ)

∂µ
=

1

T

T∑
i=1

Eρ[∂1li(fi(x; a, µ), y)h(x;w)]a(i)µ (w),

∂L(aµ, µ)

∂a(i)
=

1

T
Eρ[∂1li(fi(x; a, µ), y)h(x;w)]µ(w),

respectively. Therefore, we have

∂L(aµ, µ)

∂µ
(w) =

T∑
i=1

a
(i)
µ (w)

µ(w)

∂L(aµ, µ)

∂a(i)
(w).

The first-order optimality condition on aµ yields

∂L(aµ, µ)

∂a(i)
(w) = −λ∂r(aµ(w), w)

∂a(i)
µ(w), (4)

which implies

∂L(aµ, µ)

∂µ
(w) = −λ

T∑
i=1

∂r(aµ(w), w)

∂a(i)
a(i)µ (w)

= −λ⟨∇ar(aµ(w), w), aµ(w)⟩.

Combining above arguments, we arrive at

δG(µ)

δµ
(w) = −λ⟨∇ar(aµ(w), w), aµ(w)⟩+ λr(aµ(w), w) (5)

= λ

(
− λa
2T

∥aµ(w)∥22 +
λw
2
∥w∥22

)
.

Next, we prove the convexity of G(µ). From the convexity of L(a, µ) w.r.t. a, we have

L(aµ1
, µ1) +

∫ T∑
i=1

∂L(aµ1
, µ1)

∂a(i)
(w)

(
µ2(w)

µ1(w)
a(i)µ2

(w)− a(i)µ1
(w)

)
dw ≤ L

(
µ2(w)

µ1(w)
aµ2

, µ1

)
= L(aµ2

, µ2)

for any µ1, µ2 ∈ P . Therefore, it holds that

G(µ1) +

∫ T∑
i=1

∂L(aµ1 , µ1)

∂a(i)
(w)

(
µ2(w)

µ1(w)
a(i)µ2

(w)− a(i)µ1
(w)

)
dw

+ λr(aµ2
(w), w)µ2(w)− λr(aµ1

(w), w)µ1(w)dw

≤ G(µ2).

Thus, it is sufficient to show that

δG(µ1)

δµ
(w)(µ2(w)− µ1(w)) ≤

T∑
i=1

∂L(aµ1 , µ1)

∂a(i)
(w)

(
µ2(w)

µ1(w)
a(i)µ (w)− a(i)µ1

(w)

)
dw

+ λr(aµ2
(w), w)µ2(w)− λr(aµ1

(w), w)µ1(w)

for any w. To simplify the notation, we denote the LHS by ρ1(w) and the RHS by ρ2(w). Substituting Eq. (5) to ρ1(w), we
have

ρ1(w) = λ[−⟨∇ar(aµ1
(w), w), aµ1

(w)⟩+ r(aµ1
(w), w)] (µ2(w)− µ1(w)).

18
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On the other hand, substituting Eq. (4) to ρ2(w), we have

ρ2(w) = −λ⟨∇ar(aµ1(w), w)(µ2(w)aµ2(w)− aµ1(w)µ1(w))⟩+ λr(aµ2(w), w)µ2(w)− λr(aµ1(w), w)µ1(w).

Therefore,

ρ2(w)− ρ1(w) = λµ2(w)[⟨−∇ar(aµ1
(w), w)(aµ2

(w)− aµ1
(w))⟩+ r(aµ2

(w), w)− r(aµ1
(w), w)]

≥ 0.

The last inequality follows from the convexity of r(a,w) w.r.t. a. This completes the proof.

B.2. Proof of Lemma 3.5

Using Eq. (3), we have

pµ(w) ∝ exp

(
− 1

λ

δG

δµ

)
= exp

(
λa
2T

∥a(w)∥22 −
λw
2
∥w∥22

)
.

The distribution p0(w) ∝ exp
(
−λw

2 ∥w∥22
)

satisfies the LSI with constant α = λw since λw

2 ∥w∥22 is λw-strongly con-

vex (Bakry & Émery, 1985). Thus, Lemma A.1 implies that pµ satisfies the LSI with constant α = λw

exp(4∥B∥∞)
, where

B(w) = λa

2T ∥aµ(w)∥
2
2. From Lemma A.4, we have

∣∣∣a(i)µ (w)
∣∣∣ ≤ cl

λ̄a
for any w. Therefore, ∥B(w)∥∞ ≤ c2l λa

2λ̄2
a

. This
completes the proof.

B.3. Proof of Theorem 3.7

The continuous time result follows from Lemma 3.5, Theorem 3.1, and the result in Nitanda et al. (2022).

For the discretized time result, we follow the framework in Suzuki et al. (2023a). First, we prove the following lemma.

Lemma B.1. For any w ∈ Rd′ , U(µ) satisfies the following conditions:

•
∥∥∥∇ δU

δµ (µ)(w)−∇ δU
δµ (µ

′)(w′)
∥∥∥ ≤ LU (W2(µ, µ

′)+∥w − w′∥),
∣∣∣ δ2U(µ)

δµ2 (w,w′)
∣∣∣ ≤ LU for LU = 4R2

a+ λ̄a(BaLa+

R2
a) +B2

a.

•
∥∥∥∇ δU

δµ (µ)(w)
∥∥∥ ≤ RU for RU = λ̄aBaRa.

Proof. From Lemma A.5 and A.6, we have∥∥∥∥∇2
w

δU(µ)

δµ
(w)

∥∥∥∥
op

≤ λ̄a(BaLa +R2
a),∣∣∣∣δ2Uδµ2

(w,w′)

∣∣∣∣ ≤ B2
a

for any w,w′ ∈ Rd′ . Thus, δU(µ)
δµ (w) is λ̄a(BaLa +R2

a)-smooth and it holds that∥∥∥∥∇δU

δµ
(µ)(w)−∇δU

δµ
(µ)(w′)

∥∥∥∥
2

≤ λ̄a(BaLa +R2
a)∥w − w′∥2.

Let µt = tµ+ (1− t)µ′. Then, we have∥∥∥∥∇δU

δµ
(µ)(w)−∇δU

δµ
(µ′)(w)

∥∥∥∥
2

≤
∫ 1

0

∥∥∥∥∇w
d

dt

δU

δµ
(µt)(w)

∥∥∥∥
2

dt

=

∫ 1

0

∥∥∥∥∫ ∇w
δ2U

δµ2
(µt)(w,w

′)(µ′(w′)− µ(w′))dw′
∥∥∥∥
2

dt
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From the definition of W1, for any ε > 0, there exists a coupling π of µ and µ′ such that∫
∥w − w′∥2dπ(w,w

′) ≤W1(µ, µ
′) + ε ≤W2(µ, µ

′) + ε.

Thus, we have∥∥∥∥∫ ∇w
δ2U

δµ2
(µt)(w,w

′)(µ′(w′)− µ(w′))dw′
∥∥∥∥
2

=

∥∥∥∥∫ (∇w
δ2U

δµ2
(µt)(w,w

′′)−∇w
δ2U

δµ2
(µt)(w,w

′)

)
dπ(w,w′)

∥∥∥∥
2

≤
∫ ∥∥∥∥∇w

δ2U

δµ2
(µt)(w,w

′′)−∇w
δ2U

δµ2
(µt)(w,w

′)

∥∥∥∥
2

dπ(w,w′)

≤
∫

4R2
a∥w′′ − w′∥2dπ(w,w

′)

≤ 4R2
aW2(µ, µ

′) + 4R2
aε.

The second inequality follows from the Lipschitz continuity of ∇w
δ2U
δµ2 (µt)(w,w

′) from Lemma A.6. Since ε is arbitrary,
we have ∥∥∥∥∇δU

δµ
(µ)(w)−∇δU

δµ
(µ′)(w)

∥∥∥∥ ≤
∫ 1

0

∥∥∥∥∫ ∇w
δ2U

δµ2
(µt)(w,w

′)(µ′(w′)− µ(w′))dw′
∥∥∥∥dt

≤ 4R2
aW2(µ, µ

′).

This completes the proof.

Combining the above lemma and Theorem 3 in Suzuki et al. (2023a), we have for any λαη ≤ 1/2 and η ≤ 1/4,

1

N
E[GN (µ

(N)
k )]− G(µ∗) ≤ exp(−λαηk)

(
1

N
E[GN (µ

(N)
k )]− G(µ∗)

)
+

2

λα
L̄2C1(λη + η2) +

2Cλ
λαN

,

where R̄2 = E
[∥∥∥w(0)

i

∥∥∥
2

]
+ 1

λ̄w

[(
1
4 + 1

λ̄w

)
R2
U + λd′

]
, L̄ = LU + λ̄w, C1 = 8[R2

U + λ̄wR̄
2 + d′], and Cλ = 2λLUα +

2λ2L2
U R̄

2.

B.4. Proof of Proposition 3.8

As shown in Lemma 3 in Suzuki et al. (2023a), we have

W 2
2 (µ

(N)
k , µ∗N ) ≤ 2

λα
(GN (µ

(N)
k )−NG(µ∗)).

Let γ be a coupling of µ(N)
k and µ∗N . Then, for (W,W ∗) ∼ γ, we have

(k(x, y)µW
− k(x, y)µ∗)2 ≤ 2(kµW

(x, y)− kµW∗ (x, y))
2 + 2(kµW∗ (x, y)− kµ∗(x, y))2.

Let k(x, y;w) := h(x;w)h(y;w). This is 2cR-Lipschitz continuous with respect to w for any (x, y) ∈ S × S. Then, for
the first term in the right hand side, we have

(kµW
(x, y)− kµW∗ (x, y))

2 ≤

(
1

N

N∑
i=1

k(x, y;wi)− k(x, y;w∗
i )

)2

≤ 1

N

N∑
i=1

(k(x, y;wi)− k(x, y;w∗
i ))

2

≤ 1

N

N∑
i=1

4c2R∥wi − w∗
i ∥

2
2

≤ 1

N
4c2R∥W −W ∗∥2F
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for any (x, y) ∈ S × S. For the second term, we have

P

(
sup

(x,y)∈S×S
|kµW∗ (x, y)− kµ∗(x, y)| ≥ 2Eσ,W∗

[
sup

(x,y)∈S×S

∣∣∣∣∣ 1N
N∑
i=1

σik(x, y;wi)

∣∣∣∣∣+
√

2t

N

])
≤ exp(−t)

for any t > 0 by the same argument in Lemma 2 in Suzuki et al. (2023b). From the relation between Gaussian complexity
and Rademacher complexity, and contraction inequality in Bartlett & Mendelson (2001), we have

E

[
sup

(x,y)∈S×S

∣∣∣∣∣ 1N
N∑
i=1

σik(x, y;wi)

∣∣∣∣∣
]
≤ ccRE

 sup
(x,y)∈S×S

∣∣∣∣∣∣ 1N
N∑
i=1

d′∑
j=1

εijwij

∣∣∣∣∣∣


≤ E

ccR
N

√√√√ N∑
i=1

∥wi∥22


≤ ccR√

N

√
Eµ[∥w∥22],

where εij is a Gaussian random variable with mean 0 and variance 1, and c is a universal constant. From the optimality of
µ∗, we have λ̄w

2 Eµ∗ [∥w∥22] ≤ G(µ∗) ≤ G(µ0). Thus, we have

E

[
sup

(x,y)∈S×S

∣∣∣∣∣ 1N
N∑
i=1

σik(x, y;wi)

∣∣∣∣∣
]
≤ ccR√

N

√
2G(µ0)

λ̄w

and

P

( sup
(x,x′)∈S×S

|kµW∗ (x, y)− kµ∗(x, y)|

)2

− 4c2G(µ0)c
2
R

λ̄wN
≥ 4t

N

 ≤ exp(−t)

Thus, it holds that

E

( sup
(x,x′)∈S×S

|kµW∗ (x, y)− kµ∗(x, y)|

)2
− 4c2G(µ0)c

2
R

λ̄wN

≤
∫ ∞

0

P

( sup
(x,x′)∈S×S

|kµW∗ (x, y)− kµ∗(x, y)|

)2

− 4c2G(µ0)c
2
R

λ̄wN
≥ τ

dτ
≤
∫ ∞

0

exp(−Nτ/4)dt = 4

N
.

Combining above arguments, we arrive at

Eγ

[
sup

(x,y)∈S×S
(k(x, y)µW

− k(x, y)µ∗)2

]
≤ 8

N
c2REγ [∥W −W ∗∥2F] +

4

N
+

4c2G(µ0)c
2
R

λ̄wN
.

By taking the infimum of the coupling γ, we have

E
W∼µ(N)

k

[
sup

(x,y)∈S×S
(k(x, y)µW

− k(x, y)µ∗)2

]
≤ 2

N
c2RW

2
2 (µ

(N)
k , µ∗N ) +

4

N
+

4c2G(µ0)c
2
R

λ̄wN
= O

(
∆

N

)
.

For any f ∈ L2(ρX), we have

|(ΣµW
− Σµ∗)(f)(x)| =

∫
(kµW

(x, x′)− kµ∗(x, x′))f(x′)dρX(x′)

≤

√∫
(kµW

(x, x′)− kµ∗(x, x′))2dρX(x′)∥f∥L2(ρX),
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which yields

∥(ΣµW
− Σµ∗)(f)∥2L2(ρX) ≤ ∥f∥2L2(ρX)

∫
(kµW

(x, x′)− kµ∗(x, x′))2dρX(x′)dρX(x).

This implies ∥ΣµW
− Σµ∗∥2op ≤ Ex,x′ [(kµW

(x, x′) − kµ∗(x, x′))2] ≤ ∆/N . Since fi(x;µ) is the optimal so-

lution of minf∈Hµ
Eρ[li(f(x), y)] + λ̄a

2 ∥f∥Hµ
, where li is the squared loss, fi(x;µ) = Σµ(Σµ + λ̄a Id)

−1ȳ =∫
k(x, x′)α(x′)dρX(x′), where αµ(x) = (Σµ + λ̄a Id)

−1ȳ. From the identity A−1 − A′−1 = −A−1(A − A′)A′−1

for any invertible operator A,A′, we have

∥αµW
− αµ∗∥2ρX =

∥∥(ΣµW
+ λ̄a Id)

−1(ΣµW
− Σµ∗)(Σµ∗ + λ̄a Id)

−1ȳ
∥∥2
L2(ρX)

≤
c20∥ΣµW

− Σµ∗∥2op
λ̄4a

.

Thus, for any x ∈ S, we have

(fi(x;µW )− fi(x;µ
∗))2 ≤ 2

(∫
kµ′

W
(x, x′)αµW

(x′)− kµ∗(x, x′)αµW
(x′)dρX(x′)

)2

+ 2

(∫
kµ∗(x, x′)αµW

(x′)− kµ∗(x, x′)αµ∗(x′)dρX(x′)

)2

≤ 2 sup
x,x′∈S×S

(kµW
(x, x′)− kµ∗(x, x′))2∥αµW

∥2L2(ρX)

+ 2∥αµW
− αµ∗∥2ρX

≤
2c20 supx,x′∈S×S(kµW

(x, x′)− kµ∗(x, x′))2

λ̄2a
+

2c20∥ΣµW
− Σµ∗∥2op
λ̄4a

.

By taking the supremum over x and expectation over W , we obtain the result.

C. Proofs for Section 4
C.1. Lemmas for Section 4

Lemma C.1. For a given δ, τ > 0, we have

|tanh(τz)− (1[z ≥ 0]− 1[z < 0])| ≤ 2e−2τ |z|

for any z ∈ R.

Proof. From the definition of tanh, we have, for any z ≥ 0,

|tanh(τz)− (1[z ≥ 0]− 1[z < 0])| = 1− eτz − e−τz

eτz + e−τz

=
2e−τz

eτz + e−τz

≤ 2e−2τz.

Similarly, for z < 0, we have

|tanh(τz)− (1[z ≥ 0]− 1[z < 0])| = 1 +
eτz − e−τz

eτz + e−τz

=
2eτz

eτz + e−τz

≤ 2e2τz.

Combining above arguments, we obtain the result.
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Lemma C.2. Let ρX be the uniform distribution on [0, 1]d and S :=
{
sin(2πw · x) | w ∈ {0, 1}d, ∥w∥1 = k

}
be a subset

of L2(ρX). Furthermore, for any fixed basis functions {hj}nj=1 ⊂ L2(ρX), let Hn be a span of {hj}nj=1. Then, for any
ε ∈ [0, 1], we have

sup
ψ∈S

d(ψ,Hn) ≥ ε

if n ≤ N(1− ε), where N = |S| =
(
d
k

)
.

Proof. Assume that d(ψ,Hn) < ε for any ψ ∈ S. From Theorem 1 in Hsu (2021), we have n > N(1− ε) since S is an
orthonormal system in L2(ρX) and |S| = N . This contradicts n ≤ N(1− ε), which completes the proof.

Lemma C.3. For ε, r, rx > 0, let λw = 1, h(x;w) = tanh(x · u+ b) (w = (u, b)). Then, for any u◦ ∈ Rd and
f̃ : R → R which is 1-Lipschitz continuous and differentiable almost everywhere, there exists µ, a such that KL(ν | µ) =
O
(
r2

ε2 + d log drrx
ε

)
, ∥a∥L2(µ) = r and∣∣∣∣f̃(w◦ · x)−

[
f(x; a, µ) +

1

2
(f̃(r) + f̃(−r))

]∣∣∣∣ ≤ ε

for any x ∈ Rd such that |u◦ · x| ≤ r and ∥x∥ ≤ rx
√
d.

Proof. Let a(u, b) = rã(b/τ) for ã(b) : R → R, ∥ã∥∞ ≤ 1 and µ(w) = µ(u, b) := µ(u)µ(b), where µ(u) =
N(τu◦, σ2I), µ(b) = υ([−τr, τr]) for τ, σ > 0. In addition, let ḡ(x) = Eb∼µτ

[rã(b/τ) tanh(τx · w◦ + b)]. Then,
we have

|ḡ(x)− f(x; a, µ)| ≤
∫

|rã(b/τ)||tanh(x · u+ b)− tanh(τx · u◦ + b)|dµ(ũ, b)

≤
∫

|rã(b/τ)||x · u− τxu◦|dµ(ũ, b)

≤ r

√∫
|x · (u− τu◦)|2dµ(u)

≤ r

√∫
∥x∥2∥u− τu◦∥2dµ(u)

≤ rrx
√
dσ.

Let g̃(x; a) :=
∫ 0

−k
1
2 ã(b

′)(1[u◦ · x+ b′ ≥ 0]− 1[u◦ · x+ b′ < 0])db′. Since

ḡ(x; a) =

∫
rã(b/τ) tanh(τx · u◦ + b)dµ(b)

=

∫ τr

−τr

1

2τ
ã(b/τ) tanh(τx · u◦ + b)db

=

∫ r

−r

1

2
ã(b′) tanh(τ(x · u◦ + b′))db′,

it holds that

|ḡ(x)− g̃(x)| ≤
∫ r

−r

1

2
|ã(b)||tanh(τ(x · u◦ + b′))− (1[x · u◦ + b′ ≥ 0]− 1[x · u◦ + b′ < 0])|db′

≤
∫ ∞

−∞

1

2
|tanh(τ(x · u◦ + b′))− (1[x · u◦ + b′ ≥ 0]− 1[x · u◦ + b′ < 0])|db′

≤
∫ ∞

0

e−2τzdz

= 1/(2τ)
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where we used Lemma C.1 for the last inequality. Since −r ≤ u◦ · x ≤ r, we have

g̃(x) =
1

2

[∫ r

−r
ã(b′)1[u◦ · x+ b′ ≥ 0]db′ −

∫ r

−r
ã(b′)1[u◦ · x+ b′ < 0]db′

]
=

1

2

[∫ r

−u◦·x
ã(b′)db′ −

∫ −u◦·x

−r
ã(b′)db′

]
.

By letting

ã(b) =

{
f̃ ′(−b) if b ∈ [−r, r]
0 otherwise

,

we obtain

g̃(x; ã) =
1

2

[∫ r

−w◦·x
f̃ ′(−b′)db′ −

∫ −w◦·x

−r
f̃ ′(−b′)db′

]

=
1

2

[∫ w◦·x

−r
f̃ ′(b′)db′ −

∫ r

w◦·x
f̃ ′(b′)db′

]

= f̃(w◦ · x)− 1

2

[
f̃(r) + f̃(−r)

]
.

Combining above results, we have∣∣∣f̃(w◦ · x)− f(x; a, µ)
∣∣∣ ≤ ∣∣∣f̃(w◦ · x)− ḡ(x)

∣∣∣+ |ḡ(x)− g̃(x)|

≤ rrx
√
dσ

2
+

1

2τ
≤ ε

by letting τ = 1/ε, σ = ε/(rrx
√
d).

Finally, we show that f(x; a, µ) is in BM and ∥f∥BM
≤ R. Since u, b is independent each other when (u, b) ∼ µ, we have

KL(ν | µ) = KL
(
N(0, I) | N(τu◦, σ2I)

)
+KL (N(0, 1) | u([−rτ, rτ ])).

For the first term, we have

KL
(
N(0, I) | N(τu◦, σ2I)

)
=

1

2

[
d log

1

σ2
− d+ ∥τu◦∥2 + dσ2

]
≤ 1

2

[
d log

r2r2xd

ε
− d+

r2

ε2
+

ε

r2r2x

]
= O

(
d log

drrx
ε

+
r2

ε2

)
For the second term, we have

KL (N(0, 1) | u([−rτ, rτ ])) ≤
∫ rτ

−rτ
log

1/(2rτ)
1√
2π
e−b2/2

1/(2rτ)db

=
(rτ)2

6
+

1

2
log(2π)− log(2rτ)

= O

(
r2

ε2

)
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Thus, it follows that

KL(ν | µ) = O

(
r2

ε2
+ d log

drrx
ε

)

In addition, ∥a∥∞ ≤ r yields ∥a∥L2(µ) ≤ r. This completes the proof.

C.2. Proof of Lemma 4.3

Since Rademacher complexity is smaller than Gaussian complexity (Wainwright, 2019), it suffices to bound the Gaussian
complexity G(F) := Eεit∼N(0,1)

[
supf∈F

1
nT

∑n
i=1

∑T
t=1 εitft(xi)

]
. Let Zt(w) := 1√

n

∑n
i=1 εith(xi;w). Note that

Zt(w) follows a Gaussian distribution with mean 0 and variance σ(w)2 := 1
n

∑n
i=1 h(xi;w)

2 ≤ 1 independently. Then, we
have

G(FM,R) := Eε

[
sup

f∈FR,M

1

nT

T∑
t=1

n∑
i=1

εitf(xi)

]

= Eε

 sup
KL(ν|µ)≤M

sup
1
T

∑T
t=1 ∥a(t)∥2

L2(µ)
≤R

1

nT

T∑
i=1

n∑
i=1

εit

∫
a(t)(w)h(xi;w)dµ(w)


=

1√
n
Eε

 sup
KL(ν|µ)≤M

sup
1
T

∑T
t=1 ∥a(t)∥2

L2(µ)
≤R

1

T

T∑
t=1

∫
a(t)(w)Zt(w)dµ(w)


≤ 1√

n
Eε

 sup
KL(ν|µ)≤M

sup
1
T

∑T
t=1 ∥a(t)∥2

L2(µ)
≤R

1

T

T∑
t=1

∥∥∥a(t)(w)∥∥∥
L2(µ)

∥Zt(w)∥L2(µ)


≤ 1√

n
Eε

 sup
KL(ν|µ)≤M

sup
1
T

∑T
t=1 ∥a(t)∥2

L2(µ)
≤R

√√√√ 1

T

T∑
t=1

∥∥a(t)(w)∥∥2
L2(µ)

√√√√ 1

T

T∑
t=1

∥Zt(w)∥2L2(µ)


=

√
R

n
Eε

 sup
KL(ν|µ)≤M

√√√√ 1

T

T∑
t=1

∥Zt(w)∥2L2(µ)


≤
√
R

n

√√√√Eε

[
sup

KL(ν|µ)≤M

∫
1

T

T∑
t=1

Zt(w)2dµ(w)

]
(6)

For the last inequality, we used the fact that
√
· is monotonically increasing and Jensen’s inequality. From the Donsker-

Varadhan duality formula of the KL-divergence, we have

1

γ
Eε

[
sup

KL(ν|µ)≤M
γ

∫
1

T

T∑
t=1

Zt(w)
2dµ(w)

]
≤ 1

γ

{
M + Eε

[
log

∫
exp

(
γ

T

T∑
t=1

Zt(w)
2

)
dν(w)

]}

≤ 1

γ

{
M + log

∫
Eε

[
exp

(
γ

T

T∑
t=1

Zt(w)
2

)]
dν(w)

}

≤ 1

γ

{
M + log

∫
Eε

T∏
t=1

[
exp
( γ
T
Zt(w)

2
)]

dν(w)

}
(7)
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for any γ > 0. Since Zt(w) ∼ N(0, σ(w)2), we have

EZ∼N(0,σ(w)2)

[
exp
( γ
T
Z2
)]

=
1√

2πσ(w)2

∫
e

γ
T Z

2

e
− Z2

2σ(w)2 dZ

=
1√

2πσ(w)2

∫
e
−
[

1
2σ(w)2

− γ
T

]
Z2

dZ

=
1√

2πσ(w)2

√
π

1
2σ(w)2 − γ

T

=

√
1

1− 2 γT σ(w)
2
.

By letting γ = T
4 , we have

EZ
[
exp
(
γZ2

)]
=

√
1

1− σ(w)2/2
≤

√
2. (8)

since σ(w)2 ≤ 1. Combining Eq. (6), (7), and (8), we have

G(FR,M ) ≤
√
R

n

√√√√Eεi

[
sup

KL(ν|µ)≤M

∫
1

T

T∑
t=1

Zt(w)2dµ(w)

]

≤
√
R

n

√√√√ 1

γ

{
M + log

∫ T∏
t=1

Eε[exp(γZt(w)2)]dν(w)

}

≤
√
R

n

√
1

γ

{
M + log

∫ √
2
T
dν(w)

}
≤
√
R

n

√
4
{
M/T + log

√
2
}
.

This completes the proof.

C.3. Proof of Theorem 4.4

From the definition of BM , there exists µ◦ ∈ PM and a◦ ∈ L2(µ)(∥a◦∥2L2(µ) ≤ R) such that f◦(x) = f(x; a◦, µ◦). Let
â = aµ̂. Then, from the optimality of µ̂ and â, we have

G(µ̂) = L(â, µ̂) + λ

(
λa
2
∥â∥2L2(µ̂) +KL(ν | µ̂)

)
≤ G(µ◦)

= L(a◦, µ◦) + λ

(
λa
2
∥aµ◦∥2L2(µ◦) +KL(ν | µ◦)

)
≤ 2λM

since we set λa = 2M/R. Thus, it holds that

∥aµ̂∥2L2(µ̂) ≤ 2R,

KL(ν | µ̂) ≤ 2M.

From Lemma 4.3, Rademacher complexity of F2R,2M is bounded as follows:

R(F2R,2M ) = O

(√
R(M + 1)

n

)
.
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For any f =
∫
a(w)h(x;w)dµ(w) ∈ F2R,2M , we have

∥f∥∞ ≤
∫

|a(w)|dµ(w)

≤ ∥a∥L2(µ)

≤
√
2R.

Thus, for any f ∈ F2R,2M , l(f(x), y) = l(f(x), f◦(x)) ≤ 4R and |l′(f(x), y)| ≤ 2
√
2R. Let F ′ =

{(x, y) 7→ l(f(x), y) | f ∈ F2R,2M}. Utilizing the standard uniform bound (Wainwright, 2019), for any δ ∈ [0, 1], we have

sup
g∈F ′

{
Eρ[g(x, y)]−

1

n

n∑
i=1

g(x(i), y(i))

}
≤ 2R(F ′) + 12R

√
log 2/δ

2n
,

with probability at least 1−δ over the choice of n i.i.d. samples
{
(x(i), y(i))

}n
i=1

∼ ρ. From the contraction lemma (Maurer,
2016), we have

R(F ′) = Eσ

[
sup

f∈F2R,2M

n∑
i=1

σil(f(xi), yi)

]
≤ 2

√
2RR(F2R,2M )

= O

(
R

√
(M + 1)

n

)
,

since l(·, yi) is 2
√
2R-Lipschitz continuous in [−

√
2R,

√
2R]. Combining above arguments, we arrive at

L̄(aµ̂, µ) ≤ L(aµ̂, µ̂) + 2R(F ′) + 12R

√
log 2/δ

2n

= O

(√
M

n
+R

√
(M + 1)

n
+R

√
log 1/δ

n

)

= O

(
(R+ 1)

(√
(M + 1)

n
+

√
log 1/δ

n

))

= O

(
(R+ 1)

√
(M + 1) + log 1/δ

n

)
,

since we set λ = 1/
√
n. This completes the proof.

C.4. Proof of Theorem 4.5

Let S :=
{
sin(2πu · x) | u ∈ {0, 1}d, ∥u∥1 = k

}
be a subset of L2(ρX). Note that S is an orthonormal system in L2(ρX).

Assume that

sup
f∈BM ,∥f∥2

BM
≤R

d(f,Hn) < 1/4.

Then, from Lemma C.3, for any ψ = sin(2πu · x) ∈ S (∥u∥1 = k), there exists a, µ such that KL(ν | µ) = O(d log dk +
k2), ∥a∥L2(µ) = k, and

|ψ(x)− f(x)| ≤ 1/4

for any x ∈ [0, 1]d since |u · x| ≤ ∥u∥1∥x∥∞ ≤ k and sin(2πk) = sin(−2πk) = 0. Therefore, we have

d(ψ,Hn) ≤ ∥ψ − f∥L2(ρX) + d(f,Hn)

< 1/4 + 1/4 = 1/2.

This contradicts Lemma C.2. Thus, we obtain the result.
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D. Proofs for Section 5
D.1. Lemmas for Section 5

Lemma D.1. Assume that li is the l2-loss and Assumption 4.1 with σ = 0. Then, we have

Uρ̂(µ) =
λ̄a
2T

T∑
i=1

Y ⊤
i (Σ̂ + nλ̄aI)

−1Yi,

Uρ(µ) =
λ̄a
2T

T∑
i=1

⟨f◦i , (Σ + λ̄a Id)
−1f◦i ⟩.

Proof. From Lemma A.3, we have

Uρ̂(µ) =
1

2nT

T∑
i=1

∥∥∥Yi − Σ̂(Σ̂ + nλ̄aI)
−1Yi

∥∥∥2
2
+
λ̄a
2T

T∑
i=1

Y ⊤
i (Σ̂ + nλaI)

−1Σ̂(Σ̂ + nλ̄aI)
−1Yi

=
nλ̄2a
2T

T∑
i=1

∥∥∥(Σ̂ + nλ̄aI)
−1Yi

∥∥∥2
2
+
λ̄a
2T

T∑
i=1

Y ⊤
i (Σ̂ + nλ̄aI)

−1Σ̂(Σ̂ + nλ̄aI)
−1Yi

=
λ̄a
2T

T∑
i=1

Y ⊤
i (Σ̂ + nλ̄aI)

−1Yi,

Uρ(µ) =
1

2nT

T∑
i=1

∥∥f◦i − Σ(Σ + λ̄a Id)
−1f◦i

∥∥2
L2(ρX)

+
λ̄a
2T

T∑
i=1

⟨f◦i , (Σ + λa Id)
−1Σ(Σ + λ̄a Id)

−1f◦i ⟩

=
λ̄2a
2T

T∑
i=1

∥∥(Σ + λ̄a Id)
−1f◦i

∥∥2
L2(ρX)

+
λ̄a
2T

T∑
i=1

⟨f◦i , (Σ + λa Id)
−1Σ(Σ + λ̄a Id)

−1f◦i ⟩

=
λ̄a
2T

T∑
i=1

⟨f◦i , (Σ̂ + λ̄a Id)
−1f◦i ⟩.

Lemma D.2. Assume that li is the l2-loss and Assumption 4.1 with σ = 0. Let Â′(µ) =
f◦(X)⊤Σ̂µf

◦(X)

∥f◦(X)∥2
2

and A′(µ) =

E[f◦(x)k(x,x′)f◦(x′)]

∥f◦∥2
L2(ρX )

. Then, we have

Â(µ) ≥ Â′(µ) ≥
λ̄a∥f◦(X)∥2L2(ρ)

2nUρ̂(µ̂)
− λ̄a,

A(µ) ≥ A′(µ) ≥
λ̄a∥f◦∥2L2(ρ)

2U(µ)
− λ̄a.

Proof. Since
∥∥∥Σ̂µ∥∥∥ ≤ n and E[k(x, x′)2] ≤ 1 from |h(x;w)| ≤ 1, we have Â(µ) ≥ Â′(µ) and A(µ) ≥ A′(µ). Let

T =
∑∞
i=1 µieifi be the singular value decomposition of T , where em, fm are the orthonormal basis of L2(ρ), L2(µ),

respectively. Then, there exists (αi)i≥1 such that
∑
i α

2
i = 1 and f◦ = ∥f◦∥L2(ρ)αiei. Utilizing this expression, we have

Uρ(µ) =
λ̄a
2
∥f◦∥2L2(ρ)

∑
i

α2
i

µi + λ̄a

≥ λ̄a
2
∥f◦∥2L2(ρ)

1∑
i α

2
i (µi + λ̄a)

≥ λ̄a
2
∥f◦∥2L2(ρ)

1

A′(µ) + λ̄a
.
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The second inequality follows from the convexity of 1/x and Jensen’s inequality. By the same argument, we have

Uρ(µ) ≥
λ̄a
2
∥f◦∥2L2(ρ)

1

nÂ′(µ) + nλ̄a
.

By transposition of the above inequalities, we obtain the results.

Lemma D.3. Assume that li is the l2-loss and Assumption 4.1 holds. Then, we have

Eε[Uρ̂(µ)] =
λ̄a
2T

T∑
i=1

f◦i (X)⊤(Σ̂ + nλ̄aI)
−1f◦i (X) +

λ̄aσ
2

6n
(n− dλ̄a

(µ)).

Proof.

Eε[Uρ̂(µ)] =
λ̄a
2T

T∑
i=1

Eε[(f◦i (X) + εi)
⊤(Σ̂ + nλ̄aI)

−1(f◦i (X) + εi)]

=
λ̄a
2T

T∑
i=1

f◦i (X)⊤(Σ̂ + nλ̄aI)
−1f◦i (X) +

λ̄aσ
2

6
tr
(
(Σ̂ + nλ̄aI)

−1
)

=
λ̄a
2T

T∑
i=1

f◦i (X)⊤(Σ̂ + nλ̄aI)
−1f◦i (X) +

λ̄aσ
2

6n
(n− dλ̄a

(µ)).

D.2. Proof of Theorem 5.4

For r > 0, let

f̃r(z) =


f̃(z) if |z| ≤ r

f̃(r)− sgn(f̃(r))(z − r) if r ≤ z ≤ r +
∣∣∣f̃(r)∣∣∣

f̃(−r)− sgn(f̃(−r))(r − z) if − r −
∣∣∣f̃(−r)∣∣∣ ≤ z ≤ −r

0 otherwise

.

This is continuous, differentiable almost everywhere and its derivative satisfies
∣∣∣f̃ ′r(x)∣∣∣ ≤ 1 a.s. From Lemma C.3, there

exists f :=
∫
a(w)h(x;w)dµ(w) such that KL(ν | µ) = O(r2/ε2 + d log drrx

ε ), ∥a∥L2(µ) = O(r) and∣∣∣f̃r(u◦ · x)− f(x)
∣∣∣ ≤ ε

for any x ∈ Rd such that |u◦ · x| ≤ r, ∥x∥2 ≤ rx
√
d. Since f◦(x) = f̃(u◦ · x) = f̃r(u

◦ · x) for |u◦ · x| ≤ r, we have

|f◦(x)− f(x)| ≤ ε

for any x ∈ Rd such that ∥x∥ ≤ rx
√
d and |u · x| ≤ r. From the tail bound on Gaussian and chi-squared distribution (Wain-

wright, 2019), we have

P

(
1

d
∥x∥2 ≥ r2x

d
, |u · x| ≥ r

)
≤ 2 exp

(
−r2/2

)
+ 2 exp

(
−d(r2x − 1)/8

)
.

Thus, ∥f◦ − f∥L2(ρX) is evaluated as follows:

∥f◦ − f∥2L2(ρX) ≤ (∥f◦∥∞ + ∥f∥∞)2P (∥x∥ ≥
√
drx, |w · x| ≥ r) +

∫
∥x∥≤

√
d,|w·x|≤r

(f◦(x)− f(x))2dρX(x)

≤ (∥a∥L2(µ) + 1)2P

(
1

n
∥x∥2 ≥ r2x

n
, |u · x| ≥ r

)
+ ε2

≤ 1/16 := ε̄2
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by setting ε to a sufficiently small constant and r, rx sufficiently large constants which are independent of d. Thus, there
exists M = O(d log d), R = O(1) such that ∥f◦ − f∥2L2(ρX), where f ∈ FR,M . By the same argument in the proof of
Theorem 4.4, we have

Lρ̂(a, µ) ≤ Lρ(a, µ) +O

(
R

√
(M + 1) + log 1/δ

n

)

with probability at least 1− δ over the choice of training data. Thus, by setting n ≥ c′3(d log d+ log 1/δ) for sufficiently
large c′3, we have

Lρ̂(a, µ) ≤ Lρ(a, µ) + ε̄2 ≤ 2ε̄2

From the optimality of µ̂ and â = aµ̂, we have

Gρ̂(µ̂) = L(â, µ̂) +
λ̄a
2
∥â∥2L2(µ̂) + λKL(ν | µ̂)

≤ G(a, µ)
≤ 2ε̃2 + 2λM

≤ 3ε̃2,

by setting λ = ϵ̄2/2M and λa =M/R. Thus, it holds that

∥â∥2L2(µ̂) ≤ 12R,

KL(ν | µ̂) ≤ 6M.

Then, by the same reasoning as in the proof of Theorem 4.4, we have

Uρ(µ̂) ≤ Eρ[l(f(x; µ̂), y)] +
λ̄a
2
∥aµ̂∥2L2(µ)

≤ Eρ̂[l(f(x; µ̂), y)] +
λ̄a
2
∥aµ̂∥2L2(µ) +O

(
(R+ 1)

√
M + 1 + log 1/δ

n

)

≤ Gρ̂(µ̂) +O

(
(R+ 1)

√
M + 1 + log 1/δ

n

)

≤ 3ε̄2 +O

(
(R+ 1)

√
M + 1 + log 1/δ

n

)
≤ 4ε̄2

by setting n = c3(d log d+ log 1/δ) for a sufficiently large constant c3 ≥ c′3 with probability at least 1− δ over the choice
of training data. Therefore, it holds that

A(µ̂) ≥ A′(µ̂) ≥ λ̄a
2U(µ̂)

− λ̄a

≥ ε̄2/(2R)

8ε̄2
− ε̄2/2R

≥ 1− 8ϵ̄2

16R
= Ω(1).

Let {ui}di=1 (u1 = u) be an orthonormal basis of Rd. Then, the symmetry of µ0 = ν implies that
∫ ⟨ui,w⟩2

∥w∥2
2

dµ0(w) is equal

for any i. Since
∑d
i=1

∫ ⟨ui,w⟩2

∥w∥2
2

dµ0(w) = 1, we have
∫ ⟨u,w⟩2

∥w∥2
2

dµ0(w) = 1/d. In addition let fi(x) = f̃(ui · x). Then, we
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have Eρ[fi(x)fj(x)] = 0 for i ̸= j. Thus, we have

EρX

[
d∑
i=1

fi(x)k(x, x
′)fi(x

′)

]
≤

√√√√√EρX

( d∑
i=1

fi(x)fi(x′)

)2
√Eρ[k(x, x′)2]

=

√√√√ d∑
i=1

Eρ[fi(x)2fi(x′)2]
√

Eρ[k(x, x′)2]

=
√
d∥f◦(x)∥2L2(ρX)

√
Eρ[k(x, x′)2].

Since ρX and µ0 are rotationally invariant, it holds that

Eρ

[
d∑
i=1

fi(x)kµ0
(x, x′)fi(x

′)

]
= dEρ[f1(x)kµ0

(x, x′)f1(x
′)]

= dEρ[f◦(x)kµ0
(x, x′)f◦(x′)].

Thus, the kernel alignment at the initialization can be evaluated as follows:

A(µ0) =
Eρ[f◦(x)kµ0

(x, x′)f◦(x′)]

∥f◦(x)∥2L2(ρX)

√
Eρ[k(x, x′)2]

≤ 1√
d
.

Let u = u∥ + u⊥ and x = x∥ + x⊥ be the orthogonal decomposition of u and x with respect to the space spanned by the
rows of u◦. Then, we have

Eρ[yh(x;w)] =
∫
f̃(u◦ · x)h̃(x · u+ b)dρX(x)

=

∫
f̃(u◦ · x∥)h̃(u · x∥ + u · x⊥ + b)dρX(x).

Here, x∥ and x⊥ follows the normal distributionN(0, Ik), N(0, Id−k) independently. In addition, u·x⊥ followsN(0,
∥∥u⊥∥∥).

Therefore, we have

Eρ[yh(x;w)] =
∫
f̃(u◦ · x∥)h̃∥u⊥∥(u

∥ · x∥ + τ)dνk(x
∥).

where h̃τ (x) = Ez∼ν [h̃(x+ τz)]. For h̃τ , we have the following lemma.

Lemma D.4. For any τ ∈ R, we have the following results

• h̃τ is Lτ -Lipschitz continuous with Lτ = min
{
1, 4

πτ

}
.

Proof. From the definition of h̃τ , we have

h̃′τ (x) = Ez∼N(0,1)[tanh
′(x+ τz)]

=
1√
2π

∫ ∞

−∞
tanh′(x+ τz)e−z

2/2dz

=
1√
2π

∫ ∞

−∞
tanh′(τz)e−(z−x/τ)2/2dz.
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Thus, h̃′′τ (x) is given by

h̃′′τ (x) =
1√
2πτ

∫ ∞

−∞
(z − x/τ) tanh′(τz)e−(z−x/τ)2/2dz

=
1√
2πτ

∫ ∞

−∞
z tanh′(x+ τz)e−z

2/2dz

=
1√
2πτ

∫ ∞

0

ze−z
2/2

cosh2(x+ τz)
− ze−z

2/2

cosh2(x− τz)
dz.

From the symmetry of cosh, we have

1

cosh2(x+ τz)
− 1

cosh2(x− τz)
≤ 0

for any x ≥ 0. Thus, we have h̃′′τ (x) ≤ 0 for any x ≥ 0, that is, h̃τ (x) is monotonically decreasing in [0,∞]. From the
symmetry of h̃′τ (x) and h̃′τ (x) ≥ 0 for any x, h̃τ (0) ≥

∣∣∣h̃τ (x)∣∣∣ for any x. Thus, it suffices to evaluate h̃′τ (0). Here, we have

h̃′τ (0) = Ez∼ν [h̃′(bz)]

=
1√
2π

∫ ∞

−∞

4

(ebz + e−bz)2
exp

(
−z

2

2

)
dz

≤ 8√
2π

∫ ∞

0

e−2bz exp

(
−z

2

2

)
dz

≤ 8√
2π
e2τ

2

∫ ∞

0

exp

(
− (z + 2τ)2

2

)
dz

≤ 8√
2π
e2τ

2

∫ ∞

2τ

exp

(
−z

′2

2

)
dz′

≤ 8√
2π
e2τ

2

∫ ∞

2τ

exp

(
−z

′2

2

)
dz′

≤ 8√
2π
e2τ

2

P (Z ′ > 2τ)

≤ 8√
2π
e2τ

2

√
1

2π

e−2τ2

2τ

=
2

πτ
.

For the last inequality, we used Mill’s inequality. Obviously, h̃′τ (0) ≤ 1. This completes the proof.
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Utilizing the above lemma, we have

|Eρ[f◦(x)h(x;w)]|2 ≤
∣∣∣∣∫ f̃(u◦ · x∥)h̃∥u⊥∥(u

∥ · x∥ + τ)dνk(x
∥)

∣∣∣∣2
≤
∣∣∣∣∫ f̃(u◦ · x∥)

[
h̃τ (τ) + (h̃τ (u

∥ · x∥ + τ)− h̃τ (τ))
]
dνk(x

∥)

∣∣∣∣2
≤
∣∣∣∣∫ f̃(u◦ · x∥)(h̃τ (u∥ · x∥ + τ)− h̃τ (τ))dνk(x

∥)

∣∣∣∣2
≤ ∥f◦∥2L2(ρX)

∫
(h̃τ (u

∥ · x∥ + τ)− h̃τ (τ))
2dν(z1)

≤ ∥f◦∥2L2(ρX)

∫
(Lτu

∥ · x∥)2dνk(x∥)

≤ ∥f◦∥2L2(ρX)

∫ (
Lτ

∥∥∥u∥∥∥∥z)2dν(z)
≤ ∥f◦∥2L2(ρX)L

2
τ

∥∥∥u∥∥∥∥2
≤ ∥f◦∥2L2(ρX)

8
∥∥u∥∥∥2

π2∥u⊥∥2
.

From the boundedness of h, we have |Eρ[f◦(x)h(x;w)]|2 ≤ ∥f◦∥2L2(ρX). Combining above arguments, we have

|Eρ[f◦(x)h(x;w)]|2 ≤ ∥f◦∥2L2(ρX) min

{
1,

8
∥∥w∥

∥∥2
π2∥w⊥∥2

}

By the way, for any a, b, we have

min

{
1,
a2

b2

}
≤ 2

a2

a2 + b2

Therefore, it holds that

Eρ[f◦(x)h(x;w)]2 ≤ ∥f◦∥L2(ρX)

16

π2

∥∥w∥
∥∥2

∥w∥2

Recall that A′(µ) =
Eρ[f

◦(x)Eµ[h(x;w)h(x′;w)]f◦(x′)]

∥f◦∥2
L2(ρ)

=
Eµ[Eρ[f

◦(x)h(x;w)]2]

∥f◦∥2
L2(ρ)

. Thus, from the definition of P (µ), we have

P (µ̂) = E

[∥∥w∥
∥∥2

∥w∥2

]
= Ω(A′(µ̂)) = Ω(1).

D.3. Proof of Theorem 5.5

Tha label noise procedure can be regarded as a SGD-MFLD in (Suzuki et al., 2023a). Thus, as in the proof of Theorem 3.7,
we follow the framework in Suzuki et al. (2023a).
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First, we show the convexity of Ū(µ) := Eε̃[Uϵ̄(µ)]. The functional Uε̃(µ) can be written as

Uε̃(µ) =
1

T

T∑
i=1

[
1

2n

∥∥∥Yi − Σ̂µ(Σ̂µ + nλ̄aI)
−1(Yi + ε̃i)

∥∥∥2
2
+
λ̄a
2
(Yi + ε̃i)

⊤(Σ̂µ + nλ̄aI)
−1Σ̂µ(Σ̂µ + nλ̄aI)

−1(Yi + ε̃i)

]

=
1

T

T∑
i=1

[
λ̄a
2
Y ⊤
i (Σ̂µ + nλ̄aI)

−1Yi +
1

2n
ε̃⊤i (Σ̂µ + nλ̄aI)

−1Σ̂µε̃i

]

=
1

T

T∑
i=1

[
λ̄a
2
Y ⊤
i (Σ̂µ + nλ̄aI)

−1Yi −
λ̄a
2
ε̃⊤i (Σ̂µ + nλ̄aI)

−1ε̃i +
∥ε̃i∥2

2n

]
.

Taking the expectation of the above equation with respect to ε̃i, we have

Eε[Uε̃(µ)] =
1

T

T∑
i=1

λ̄a
2
Y ⊤
i (Σ̂µ + nλ̄aI)

−1Yi −
σ̃2λ̄a
6

tr
[
(Σ̂µ + nλ̄aI)

−1
]
+
σ̃2

6

=
λ̄a
6

tr
[
(Σ̂µ + nλ̄a)

−1Ỹ
]
+
σ̃2

6
,

where Ỹ = 1
T

∑T
i=1 YiY

⊤
i − σ̃2I/3. From the assumption on σ̃2, Ỹ is positive semi-definite and thus, Ū(µ) is convex.

Next, we derive an LSI constant for p̃µ ∝ exp
(
− 1
λ
δF̄ (µ)
δµ

)
. The first variation of F̄ (µ) is given by

δF̄ (µ)

δµ
(w) = − λ̄a

2
tr
[
(Σ̂µ + nλ̄a)

−1h(X;w)h(X;w)⊤(Σ̂µ + nλ̄aI)
−1Ỹ

]
+
λ̄w
2
∥w∥22.

Since
∥∥∥Ỹ ∥∥∥

2
≤ 1

T

∑T
i=1 ∥Yi∥2 ≤ nc2l , we have

∣∣∣∣ λ̄a2 tr
[
(Σ̂µ + nλ̄a)

−1h(X;w)h(X;w)⊤(Σ̂µ + nλ̄aI)
−1Ỹ

]∣∣∣∣ ≤
∥∥∥Ỹ ∥∥∥

2

2n2λ̄a
∥h(X;w)∥22 ≤ c2l

λ̄a
.

Thus, p̄µ satisfies the LSI with the same constant as in Lemma 3.5.

Let V (µ) := 1
2T

∑T
i=1 ε̃

⊤
i (Σ̂µ + nλ̄aI)

−1ε̃i. Then, V (µ) is equal to U(µ) if Yi = εi for any i ∈ [T ]. Thus, by the same
argument as in the proof of Theorem 3.7, we have

•
∥∥∥∇ δV

δµ (µ)(w)−∇ δV
δµ (µ

′)(w′)
∥∥∥ ≤ LV (W2(µ, µ

′)+∥w − w′∥),
∣∣∣ δ2U(µ)

δµ2 (w,w′)
∣∣∣ ≤ LV for LU = 4R2

a+ λ̄a(B
′
aL

′
a+

R′2
a ) +B′2

a .

•
∥∥∥∇ δV

δµ (µ)(w)
∥∥∥ ≤ RV for RV = λ̄aB

′
aR

′
a.

where we define R′
a, B

′
a, L

′
a by replacing cl in Ra, Ba, La with σ̃, respectively. Furthermore, it holds that

•
∥∥∥∇w

δV
δµ (µ)(w)

∥∥∥
2
≤ RV .

•
∥∥∥∇w∇⊤

w
δV
δµ (µ)(w)

∥∥∥
op

≤ LV ,
∥∥∥∇w∇⊤

w′∇⊤
w
δ2V
δµ2 (µ)(w,w

′)
∥∥∥
op

≤ LV .

Let LUV = LU + LV , RUV = RU +RV . Then, it holds That

•
∥∥∥∇ δUε̃

δµ (µ)(w)−∇ δV
δµ (µ

′)(w′)
∥∥∥ ≤ LUV (W2(µ, µ

′) + ∥w − w′∥),
∣∣∣ δ2U(µ)

δµ2 (w,w′)
∣∣∣ ≤ LUV ,
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•
∥∥∥∇ δUε̃

δµ (µ)(w)
∥∥∥ ≤ RUV ,

•
∥∥∥∇w

δUε̃

δµ (µ)(w)
∥∥∥
2
≤ RUV ,

•
∥∥∥∇w∇⊤

w
δUε̃

δµ (µ)(w)
∥∥∥
op

≤ LUV ,
∥∥∥∇w∇⊤

w′
δ2Uε̃

δµ2 (µ)(w,w′)
∥∥∥
op

≤ LUV .

since Uε̃(µ) = U(µ)− V (µ) + const. Combining above arguments, Theorem 3 in Suzuki et al. (2023a) yields

1

N
E[LN (µ

(N)
k )]− L(µ∗) ≤ exp(−λαηk)

(
1

N
E[LN (µ

(N)
k )]− L(µ∗)

)
+

2

λα
L̄2C1(λη + η2) +

4

λαη
Ῡ +

2Cλ
λαN

,

where R̄2 = E
[∥∥∥w(0)

i

∥∥∥
2

]
+ 1

λ̄w

[(
1
4 + 1

λ̄w

)
R2
UV + λd′

]
, L̄ = LUV + λ̄w, C1 = 8[R2

UV + λ̄wR̄
2 + d′], Cλ = 2λLUV α+

2λ2L2
UV R̄

2, and

Ῡ := 4ηδη + [RUV + λwR̄+ (LUV + λ̄w)
2](1 +

√
λ/η)η2R2

UV + (RUV + λ̄wR̄)RUV (1 +
√
λ/η)η3R2

UV .

This completes the proof.

35


