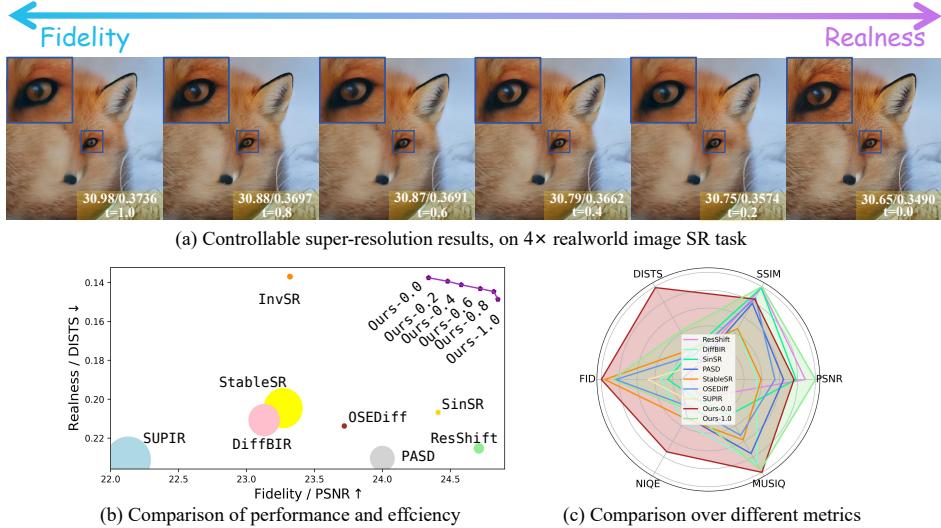


000 CTSR: CONTROLLABLE FIDELITY-REALNESS 001 TRADE-OFF DISTILLATION FOR REAL-WORLD IM- 002 AGE SUPER RESOLUTION

003 **Anonymous authors**

004 Paper under double-blind review



029 Figure 1: (a) Controllable trade-off of our proposed CTSR, which could be adjusted freely between
030 better fidelity and realness. (b) Comparison of current state-of-the-art (SOTA) real-world image SR
031 methods and CTSR on performance and efficiency. Larger bubble indicates longer inference time.
032 The closer the bubble of a method is to the top-right corner of the figure, the better its performance
033 in both fidelity and realness. For our controllable method, we select six different states and present
034 their performance. The purple curve shows continuously adjusted trade-off points, all of which
035 exhibit performance advantages. (c) Comparison on multiple metrics with current SOTA methods
036 and CTSR. All results are done on DIV2K validation set, 4x SR with realworld degradation.

ABSTRACT

039 Real-world image super-resolution is a critical image processing task, where two
040 key evaluation criteria are the fidelity to the original image and the visual realness
041 of the generated results. Although existing methods based on diffusion models ex-
042 cel in visual realness by leveraging strong priors, they often struggle to achieve an
043 effective balance between fidelity and realness. In our preliminary experiments,
044 we observe that a linear combination of multiple models outperforms individual
045 models, motivating us to harness the strengths of different models for a more ef-
046 fective trade-off. Based on this insight, we propose a distillation-based approach
047 that leverages the geometric decomposition of both fidelity and realness, alongside
048 the performance advantages of multiple teacher models, to strike a more balanced
049 trade-off. Furthermore, we explore the controllability of this trade-off, enabling
050 a flexible and adjustable super-resolution process, which we call CTSR (Control-
051 lable Trade-off Super-Resolution). Experiments conducted on several real-world
052 image super-resolution benchmarks demonstrate that our method surpasses ex-
053 isting state-of-the-art approaches, achieving superior performance across both fi-
054 delity and realness metrics.

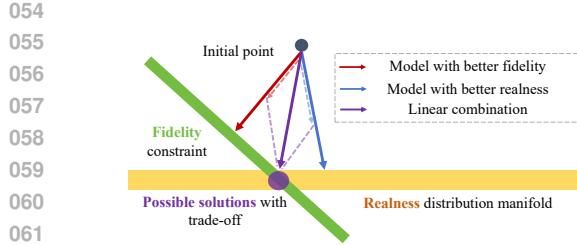


Figure 2: Illustration for vector decomposition in the image SR process. It shows the simple linear combination approach, which serves as the **motivation** of our proposed CTSR.

1 INTRODUCTION

Image restoration, particularly image super-resolution (SR), is both a critical and challenging task in image processing. Early research Yang et al. (2010); Kim & Kwon (2010); Wang et al. (2015) typically focused on fixed degradation operators, such as downsampling and blur kernels, modeled as $\mathbf{y} = \mathbf{Ax} + \mathbf{n}$, where \mathbf{x} represents the original image, \mathbf{A} is the fixed degradation operator, \mathbf{n} is random noise, and \mathbf{y} is the degraded result. As the field has advanced, more recent work has shifted its focus to real-world degradation scenarios, where \mathbf{A} turns to a complex and random combination of various degradations, with unknown degradation types and parameters. The evaluation of image super-resolution is mainly based on two metrics: fidelity, which measures the consistency between the super-resolved image and the degraded image, and realness, which assesses how well the super-resolved image conforms to the prior distribution of natural images, as well as its visual quality Mentzer et al. (2020); Zhou & Wang (2022); Zhang et al. (2022). The early methods primarily used architectures based on GAN Goodfellow et al. (2014) and MSE, trained on pairs of original and degraded images Dong et al. (2015); Liang et al. (2021); Wang et al. (2018); Guo et al. (2022). These approaches excelled in achieving good fidelity in super-resolved results but often suffered from over-smoothing and detail loss Chen et al. (2024). The introduction of diffusion models brought powerful visual priors to the SR task, significantly improving the realness and visual quality of super-resolved images. However, these models frequently struggle with maintaining consistency between the super-resolved and degraded images. Achieving a satisfactory balance between fidelity and realness remains a challenge, with most methods failing to strike an effective trade-off.

The core challenge of real-world image super-resolution lies in addressing an inherent multi-objective optimization problem. Given a low-resolution observation \mathbf{y} , the goal is to recover a high-resolution $\hat{\mathbf{x}}$ that simultaneously satisfies two conflicting criteria: *fidelity*, where $\hat{\mathbf{x}}$ should be close to the ground-truth image \mathbf{x}_{GT} , typically quantified by minimizing a distortion measure $D(\hat{\mathbf{x}}, \mathbf{x}_{GT})$ such as MSE, and *realness*, where $\hat{\mathbf{x}}$ should appear natural and conform to the statistical distribution of real-world images, $p_{data}(\mathbf{x})$. Foundational work in image restoration has established that these objectives are bound by an unavoidable ‘Perception-Distortion (P-D) Tradeoff’. No algorithm can simultaneously achieve zero distortion and perfect perceptual quality. All optimally achievable solutions form a **Pareto Front**, which manifests as a convex curve in the P-D plane.

Our initial exploratory experiments in Tab. 1 revealed an interesting phenomenon: a linear combination of outputs from a high-fidelity model \mathbf{G}_f and a high-realness model \mathbf{G}_r , denoted as $\hat{\mathbf{x}}_c = \alpha \hat{\mathbf{x}}_f + (1 - \alpha) \hat{\mathbf{x}}_r$, could surpass either individual model on certain metrics. However, the P-D tradeoff theory reveals the fundamental limitation of this naive linear approach. Assuming $\hat{\mathbf{x}}_f$ and $\hat{\mathbf{x}}_r$ correspond to two distinct points (D_f, P_f) and (D_r, P_r) on the Pareto-optimal curve, any linear interpolation $\hat{\mathbf{x}}_c$ in the image space will almost certainly yield a point (D_c, P_c) that lies *below* the chord connecting the two *initial* points, and thus within the sub-optimal region enclosed by the convex Pareto front. This implies that for any solution obtained via linear combination, a theoretically superior solution \mathbf{x}^* exists on the Pareto curve that is strictly better in at least one metric.

Therefore, our initial observation should not be interpreted as a viable solution, but rather as a crucial insight: an optimal trade-off point exists in the solution space between these two experts, but it does not lie on the linear path connecting them. This leads to the core motivation of our work: **Can we design a framework to train a single, efficient student model \mathcal{S} that learns to operate directly on**

Table 1: Results of the linear combination on RealSR Cai et al. (2019) Nikon sub-testset. α is multiplied with ResShift Yue et al. (2023), and $(1 - \alpha)$ with OSEDiff Wu et al. (2024a). By adding SR results from two models, the performance for both fidelity and realness is improved. Best and second-best results shown in **red** and **blue**.

Settings	PSNR \uparrow	LPIPS \downarrow	Inference time (s)
$\alpha = 0$	24.54	0.3575	0.7546
$\alpha = 0.2$	24.84	0.3525	0.9196
$\alpha = 0.4$	25.25	0.3633	0.9196
$\alpha = 0.6$	25.34	0.3742	0.9196
$\alpha = 0.8$	25.10	0.3857	0.9196
$\alpha = 1.0$	24.88	0.3915	0.1791
Ours	25.45	0.3411	0.1791

108 **the Pareto-optimal curve of the P-D tradeoff, rather than interpolating on a sub-optimal linear**
 109 **path?** To address this, we propose CTSR, a controllable trade-off real-world image super-resolution
 110 method based on fidelity-realness distillation. The core idea is to leverage high-fidelity and high-
 111 realness teacher models not for their outputs, but as “expert guides” providing gradient signals from
 112 different optimization directions Chung et al. (2022); Soh et al. (2019). This guides the student
 113 model to discover a new, superior operating point on the Pareto front. Furthermore, to achieve a
 114 continuous and controllable trade-off, we further distill the model using a flow-matching-inspired
 115 technique Lipman et al. (2024); Zhu et al. (2024c); Fischer et al. (2023), enabling it to traverse the
 116 learned optimal path and freely adjust between fidelity and realness. As demonstrated in Fig. 1,
 117 our CTSR enables fine-grained control over the SR results. To summarize, our contributions are
 118 three-fold:
 119

- 120 We propose a real-world image super-resolution method based on fidelity-realness distillation,
 effectively achieving a trade-off between fidelity and realness.
- 121 We further introduce a continuous and controllable trade-off approach through another distillation
 process, enabling the model to freely adjust the balance between fidelity and realness, thus providing
 123 practical user flexibility and advancing the optimization of image SR tasks.
- 124 Experiments on real-world image SR benchmarks demonstrate the superior performance of our
 125 proposed CTSR method, along with efficient inference sampling steps and reduced trainable param-
 126 eter count.

128 2 RELATED WORK

131 **Diffusion-based SR with Fixed Degradation** Earlier works on image SR Lin & Shum (2004);
 132 Farsiu et al. (2004); Elad & Aharon (2006); Elad & Feuer (1997); Zeyde et al. (2010); Jiji et al.
 133 (2004; 2007) usually use gradient-based methods to optimize image matrix Sun et al. (2008; 2010),
 134 which inspires the following diffusion-based approaches to use LR input as guidance for diffusion
 135 sampling iteration. As diffusion models have developed, their strong visual priors have also been
 136 applied to image super-resolution tasks. SR3 Saharia et al. (2022) first proposes a diffusion model
 137 for the SR task, which uses LR input as a condition of diffusion sampling, thus requiring training
 138 for the UNet. Further methods like DDRM Kawar et al. (2022), DDNM Wang et al. (2023b) and
 139 DPS Chung et al. (2023) use classifier-free guidance Ho & Salimans (2022), which takes LR input
 140 as the guidance of original diffusion sampling; thus, these methods are training-free. However, all
 141 of these methods are on a fixed degradation setting, where the degradation type and parameters are
 142 known.

143 **Diffusion-based SR with Real-world Settings** As these training-free methods use gradient guid-
 144 ance to correct the diffusion sampling process, methods such as DiffBIR Xinqi et al. (2024) and
 145 GDP Fei et al. (2023) try to leverage the gradient to update the parameters of the degradation oper-
 146 ator, and in this case the degradation parameters are unknown. The current diffusion-based image
 147 SR methods focus mainly on the real-world scenario, where the degradation is unknown and com-
 148 plex Wang et al. (2024a); Xie et al. (2024); Wu et al. (2024b); Wang et al. (2024b); Wu et al. (2024a);
 149 Yue et al. (2023); Yang et al. (2024); Yu et al. (2024). StableSR Wang et al. (2024a) proposes an SR
 150 method based on Stable Diffusion Rombach et al. (2022), using an adapter to introduce the LR guid-
 151 ance for diffusion sampling. However, such an approach requires multiple steps to obtain the SR
 152 result, which is time-consuming. ResShift Yue et al. (2023) designs a special sampling, accelerating
 153 the overall sampling in 15 steps. Currently, some methods try to distill the diffusion-based methods
 154 into one step, including AddSR Xie et al. (2024), SinSR Wang et al. (2024b) and OSEDiff Yu et al.
 155 (2024). Some papers also explore the controllability of diffusion-based SR, including PiSA-SR Sun
 156 et al. (2025) and OFTSR Zhu et al. (2024c).

157 3 METHOD

158 3.1 MOTIVATION

159 In diffusion-based methods, some approaches excel in fidelity, such as ResShift Yue et al. (2023) and
 160 SinSR Wang et al. (2024b), while others prioritize realness metrics, like OSEDiff Wu et al. (2024a)

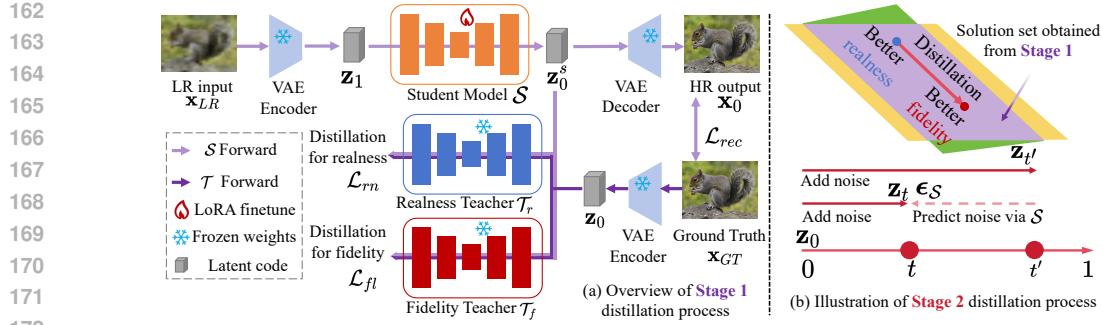


Figure 3: Illustration of our proposed CTSR. (a) At the first stage, we distill student model via two teacher models, one with better fidelity performance, and one with better realness performance. (b) At the second stage, we distill model obtained from first stage, to a continuous mapping to SR results with different trade-offs between fidelity and realness.

and StableSR Wang et al. (2024a). Combining the strengths of these methods can facilitate an effective trade-off between the two. One straightforward approach is to linearly combine the super-resolved outputs of different models. For example, by multiplying the image tensor of ResShift by α and OSEDiff by $(1 - \alpha)$, and then summing them, both fidelity and realness metrics can be improved by adjusting the coefficients. We validate this on the Nikon test subset of RealSR Cai et al. (2019), with the results shown in Tab. 1. We further interpret this linear combination method as the sum of vectors corresponding to different SR methods in the image space, as illustrated in Fig. 2.

However, the performance of the above linear combination method is limited and its inference speed is slower because of the need to run two models. To address these issues and enhance the model’s representation capability, we extend it to a more general framework. Inspired by the success of knowledge distillation Liu et al. (2020); Shao et al. (2023) in image SR Hui et al. (2019); Zhang et al. (2021b; 2024b); Zhu et al. (2024a), we distill the model output to the intersection of consistency constraints and high-quality image distribution manifolds, striking a trade-off of fidelity and realness. To further enable controllability of the trade-off between fidelity and realness, we distill the diffusion sampling process of the model into a transformation from realness to fidelity, allowing for a flexible, controllable adjustment between the two. As a result, users can freely adjust these two properties according to their preferences in practical scenarios.

3.2 OVERVIEW

Our model is an one-step diffusion-based SR approach finetuned from OSEDiff Wu et al. (2024a). The training scheme consists of two stages. In the first stage, as shown in Fig. 3(a), we select an SR model with good realness as the student model \mathcal{S} . This model is distilled via LoRA Hu et al. (2022) using two teacher models: one with high fidelity (denoted as \mathcal{T}_f) and another with good realness (denoted as \mathcal{T}_r). The teacher model \mathcal{T}_f guides the student model \mathcal{S} with gradient directions for fidelity, while \mathcal{T}_r ensures that the student model retains its original generative capability. As a result, the super-resolution process of the model receives gradient corrections in the fidelity direction, and converges to the intersection of the fidelity constraint and the realness distribution manifold.

In the second stage, as shown in Fig. 3(b), we further distill \mathcal{S} within the solution set obtained from the first stage. Since the diffusion model can be viewed as a distribution transformation mapping from the initial input to the final output, we set the starting point as the super-resolved result from the first stage, with the target transformation being the solution with better fidelity within the solution set. This distribution transformation is achieved through distillation. As the time step t of the diffusion model is continuous, we can controllably select the appropriate trade-off state, allowing us to achieve better and more diverse super-resolution results. An illustration of our proposed CTSR is shown in Fig. 3.

3.3 STAGE 1: DISTILLATION VIA DUAL-TEACHER LEARNING

Motivated by the insight in Sec. 3.1, we propose a distillation-based method, where two super-resolution models with good fidelity \mathcal{T}_f and realness \mathcal{T}_r , are used to distill the original model \mathcal{S} . Our training objective consists of two components:

216 **Reconstruction Loss.** The output of the student model should be consistent with the original model
 217 in terms of both consistency and visual quality. We choose L_2 loss and LPIPS loss as the recon-
 218 struction loss terms:

$$\mathcal{L}_{rec} = \lambda_{l2} \|\mathcal{S}(\mathbf{x}_{LR}) - \mathbf{x}_{GT}\|_2^2 + \lambda_{lp} \ell(\mathcal{S}(\mathbf{x}_{LR}), \mathbf{x}_{GT}) \quad (1)$$

221 , where \mathbf{x}_{LR} is input LR image, \mathbf{x}_{GT} is ground-truth image, ℓ is LPIPS loss, λ_{l2} and λ_{lp} are balanc-
 222 ing hyper-parameters.

223 **Dual Teacher Distillation Loss.** For ease of implementation, we use the same model for both the
 224 realness teacher \mathcal{T}_r and the student model \mathcal{S} . This allows us to divide the distillation process into two
 225 parts: (1) The fidelity teacher model \mathcal{T}_f guides the gradients of \mathcal{S} , adjusting its output distribution
 226 in a more faithful direction. (2) The realness teacher model \mathcal{T}_r regulates the student model, ensuring
 227 that the directional correction in (1) does not deviate from the manifold of the true image distribution
 228 achieved by \mathcal{T}_r . The specific formula for \mathcal{L}_{fl} is as follows:

$$\begin{aligned} \mathcal{L}_{fl} = & \|\epsilon_{\mathcal{T}_f}(\mathbf{z}_t^s, t, c) - \epsilon_{\mathcal{S}}(\mathbf{z}_t^s, t, c)\|_2^2 \\ & + \gamma_{time} \|\epsilon_{\mathcal{T}_f}(\mathbf{z}_t^s, t, c) - \epsilon_{\mathcal{T}_f}(\mathbf{z}_t, t, c)\|_2^2, \end{aligned} \quad (2)$$

229 where $\epsilon_{\mathcal{T}_f}$ and $\epsilon_{\mathcal{S}}$ represent the denoising UNet of \mathcal{T}_f and \mathcal{S} , respectively; c is the prompt em-
 230 bedding; \mathbf{z}_t and \mathbf{z}_t^s are the latent codes of ground-truth \mathbf{x}_{GT} and the student model's SR re-
 231 sult \mathbf{x}_0 , obtained via VAE encoder \mathcal{E} , each added with the noise at timestep t in the forward
 232 process of the diffusion model; γ_{time} is the hyperparameter to balance the two terms. The
 233 first term $\epsilon_{\mathcal{T}_f}(\mathbf{z}_t^s, t, c) - \epsilon_{\mathcal{S}}(\mathbf{z}_t^s, t, c)$ aligns the output of \mathcal{S} with the teacher model \mathcal{T}_f , en-
 234 abling the student model to learn the distribution information from the teacher. The second term,
 235 $\epsilon_{\mathcal{T}_f}(\mathbf{z}_t^s, t, c) - \epsilon_{\mathcal{T}_f}(\mathbf{z}_t, t, c)$, leverages the teacher model's prior to align the SR result \mathbf{x}_0 with \mathbf{x}_{GT} .
 236 Since alignment in the second term is achieved by adding noise to the latent codes of \mathbf{x}_0 and \mathbf{x}_{GT}
 237 separately, and calculating the difference in the predicted noise of \mathcal{T}_f , it reflects the distributional
 238 difference between them in the image space. As a result, compared to directly using L_2 loss, this
 239 approach better captures the distributional differences between the student model and the ground
 240 truth, avoiding issues like over-smoothing and loss of detail typically introduced by L_2 loss, while
 241 preserving the semantic details of the original image. We show the detailed calculation process of
 242 \mathcal{L}_{fl} in Fig. 6 of Appendix.

243 This design is similarly applied for the distillation of \mathcal{T}_r :

$$\begin{aligned} \mathcal{L}_{rn} = & \|\epsilon_{\mathcal{T}_r}(\mathbf{z}_t^s, t, c) - \epsilon_{\mathcal{S}}(\mathbf{z}_t^s, t, c)\|_2^2 \\ & + \gamma_{time} \|\epsilon_{\mathcal{T}_r}(\mathbf{z}_t^s, t, c) - \epsilon_{\mathcal{T}_r}(\mathbf{z}_t, t, c)\|_2^2, \end{aligned} \quad (3)$$

244 By combining these losses, the student model \mathcal{S} can achieve improved fidelity without sacrificing its
 245 original performance. As a result, the linear combination method discussed in Sec. 3.1 is extended
 246 to a more general approach, where the student's convergence direction evolves from a simple vector
 247 sum to a more precise optimal solution direction. This distillation mechanism is inspired by the
 248 SDS Poole et al. (2022) and VSD Wang et al. (2023c); Dong et al. (2024) losses, which regulate the
 249 student model using both the teacher model and the ground truth.

250 The loss function for distillation in the first stage is:

$$\mathcal{L}_{s1} = \mathcal{L}_{rec} + \lambda_{rn} \mathcal{L}_{rn} + \lambda_{fl} \mathcal{L}_{fl}, \quad (4)$$

251 where λ_{rn} and λ_{fl} are balancing weights.

252 In short, our proposed distillation method guides the student model \mathcal{S} toward the intersection of the
 253 fidelity constraint and the realness distribution. The distilled SR model then serves as the teacher
 254 model in the following second stage, providing SR solutions with fidelity-realness trade-off.

255 3.4 STAGE 2: DISTILLATION FOR CONTROLLABILITY

256 The first stage of our method yields a student model, which we now denote as \mathcal{S}_1 , that is optimized
 257 to produce a single, high-quality solution on the Perception-Distortion (P-D) Pareto front. The goal
 258 of our second stage is to endow this model with controllability, allowing a user to navigate along
 259 this optimal front. To achieve this in a principled manner, we reformulate this stage based on the

270
271
272
273
Table 2: Quantitative comparison of the state-of-the-art methods with superior performance on *fidelity*. t is the timestep set in ours CTSR. The best and second-best results of each metric are
274 highlighted in **red** and **blue**. M-IQ for MUSIQ, M-IQA for MANIQA and C-IQA for CLIPQA.

Datasets	Method	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	DISTS \downarrow	FID \downarrow	NIQE \downarrow	M-IQ \uparrow	M-IQA \uparrow	C-IQA \uparrow
DRealSR	RealESRGAN Wang et al. (2021)	28.62	0.8052	0.5428	0.2374	171.79	7.8675	54.26	0.5202	0.4515
	ResShift Yue et al. (2023)	28.69	0.7874	0.3525	0.2541	176.77	7.8762	52.40	0.4756	0.5413
	SinSR Wang et al. (2024b)	28.38	0.7497	0.3669	0.2484	172.72	6.9606	55.03	0.4904	0.6412
	CTSR ($t=0.8$) (ours)	28.47	0.8056	0.3561	0.2369	161.24	7.8462	58.76	0.5453	0.6745
RealSR	RealESRGAN Wang et al. (2021)	25.69	0.7614	0.3266	0.1646	168.02	4.0146	60.36	0.3934	0.4495
	ResShift Yue et al. (2023)	26.39	0.7567	0.3158	0.2432	149.59	6.8746	60.22	0.5419	0.5496
	SinSR Wang et al. (2024b)	26.27	0.7351	0.3217	0.2341	137.59	6.2964	60.76	0.5418	0.6163
	CTSR ($t=0.2$) (ours)	26.29	0.7211	0.3210	0.1620	127.67	4.2979	66.84	0.6314	0.6435
DIV2K-Val	RealESRGAN Wang et al. (2021)	24.29	0.6372	0.3570	0.1621	46.31	3.4591	61.05	0.3830	0.5276
	ResShift Yue et al. (2023)	24.71	0.6234	0.3473	0.2253	42.01	6.3615	60.63	0.5283	0.5962
	SinSR Wang et al. (2024b)	24.41	0.6018	0.3262	0.2068	35.55	5.9981	62.95	0.5430	0.6501
	CTSR ($t=0.2$) (ours)	24.45	0.6098	0.3384	0.1394	24.75	3.6803	69.25	0.5826	0.6726

282
283
284
285
Table 3: Quantitative comparison of methods with better performance on *realness*. t is the timestep
of set in our CTSR. The best and second-best results of each metric are highlighted in **red** and **blue**.

Datasets	Method	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	DISTS \downarrow	FID \downarrow	NIQE \downarrow	MUSIQ \uparrow	MANIQA \uparrow	CLIPQA \uparrow
DRealSR	StableSR Wang et al. (2024a)	28.04	0.7454	0.3279	0.2272	144.15	6.5999	58.53	0.5603	0.6250
	DiffBIR Xinqi et al. (2024)	25.93	0.6525	0.4518	0.2761	177.04	6.2324	65.66	0.6296	0.6860
	SUPIR Yu et al. (2024)	25.09	0.6460	0.4243	0.2795	169.48	7.3918	58.79	0.5471	0.6749
	PASD Yang et al. (2024)	27.79	0.7495	0.3579	0.2524	171.03	6.7661	63.23	0.5919	0.6242
	InvSR Yue et al. (2024)	26.75	0.6870	0.4178	0.2144	142.98	6.7030	63.92	0.5439	0.6791
	OSEDiff Wu et al. (2024a)	27.35	0.7610	0.3177	0.2365	141.93	7.3053	63.56	0.5763	0.7053
RealSR	CTSR ($t=0.0$) (ours)	27.38	0.7767	0.3423	0.1937	142.52	6.6438	64.70	0.6412	0.7060
	StableSR Wang et al. (2024a)	24.62	0.7041	0.3070	0.2156	128.54	5.7817	65.48	0.6223	0.6198
	DiffBIR Xinqi et al. (2024)	24.24	0.6650	0.3469	0.2300	134.56	5.4932	68.35	0.6544	0.6961
	SUPIR Yu et al. (2024)	23.65	0.6620	0.3541	0.2488	130.38	6.1099	62.09	0.5780	0.6707
	PASD Yang et al. (2024)	25.68	0.7273	0.3144	0.2304	134.18	5.7616	68.33	0.6323	0.5783
	InvSR Yue et al. (2024)	24.50	0.7262	0.2872	0.1624	148.16	4.2189	67.45	0.6636	0.6918
DIV2K-Val	OSEDiff Wu et al. (2024a)	23.94	0.6736	0.3172	0.2363	125.93	6.3822	67.52	0.6187	0.7001
	CTSR ($t=0.0$) (ours)	25.70	0.6962	0.3058	0.1530	121.30	4.0662	67.94	0.6367	0.6495
	StableSR Wang et al. (2024a)	23.27	0.5722	0.3111	0.2046	24.95	4.7737	65.78	0.6164	0.6753
	DiffBIR Xinqi et al. (2024)	23.13	0.5717	0.3469	0.2108	33.93	4.6056	68.54	0.6360	0.7125
DIV2K-Val	SUPIR Yu et al. (2024)	22.13	0.5279	0.3919	0.2312	31.40	5.6767	63.86	0.5903	0.7146
	PASD Yang et al. (2024)	24.00	0.6041	0.3779	0.2305	39.12	4.8587	67.36	0.6121	0.6327
	InvSR Yue et al. (2024)	23.32	0.5901	0.3657	0.1370	28.85	3.0567	68.97	0.6122	0.7198
	OSEDiff Wu et al. (2024a)	23.72	0.6109	0.3058	0.2138	26.34	5.3903	65.27	0.5838	0.6558
DIV2K-Val	CTSR ($t=0.0$) (ours)	24.34	0.6093	0.3377	0.1377	24.56	3.5455	69.52	0.5894	0.6741

300
301 Rectified Flow framework (Lipman et al., 2024), correcting the mathematical inconsistencies in our
302 initial approach. Rectified Flow provides a powerful and theoretically sound method for learning a
303 direct, efficient mapping between two data distributions, π_0 and π_1 . It models this transformation
304 as an Ordinary Differential Equation (ODE), $d\mathbf{z}_t = v(\mathbf{z}_t, t)$, where $v(\mathbf{z}_t, t)$ is a velocity vector field
305 learned by a neural network. The core insight of Rectified Flow is to train this velocity field to
306 transport samples along straight-line paths, simplifying both training and inference. We adapt this
307 framework to our specific task by defining the source and target distributions for the desired P-D
308 trajectory:

309 **Source Distribution π_0 :** This is the distribution of high-quality SR images generated by Stage 1
310 model, \mathbf{S}_1 . For any given LR input \mathbf{x}_{LR} , a sample from this distribution is $\mathbf{x}_0 = \mathcal{S}_1(\mathbf{x}_{LR})$. This
311 represents our optimal starting point on the Pareto front, corresponding to $t = 0$.

312 **Target Distribution π_1 :** This is the distribution of high-fidelity SR images generated by the fidelity
313 teacher model, \mathcal{T}_f . For the same input \mathbf{x}_{LR} , a sample is $\mathbf{x}_1 = \mathcal{T}_f(\mathbf{x}_{LR})$. This defines the endpoint
314 of our trajectory, corresponding to $t = 1$.

315 Our objective is to learn a velocity field v_S that can transport an image from the distribution π_0
316 to π_1 in a single conceptual step. We operate in the latent space of the VAE. Let $\mathbf{z}_0 = \mathcal{E}(\mathbf{x}_0)$
317 and $\mathbf{z}_1 = \mathcal{E}(\mathbf{x}_1)$ be the latent representations of the source and target images, where \mathcal{E} is the VAE
318 encoder. The straight-line path connecting these points is parameterized as $\mathbf{z}_t = (1-t)\mathbf{z}_0 + t\mathbf{z}_1$ for
319 $t \in [0, 1]$. The target velocity vector along this path is constant and given by the simple difference
320 $v_{target} = \frac{d\mathbf{z}_t}{dt} = \mathbf{z}_1 - \mathbf{z}_0$. The training objective for our student model \mathcal{S} in this stage is to learn
321 a velocity predictor v_S that accurately estimates this target velocity for any point \mathbf{z}_t along the path.
322 This is formulated as a simple mean squared error loss:

$$\mathcal{L}_{s2} = \mathbb{E}_{\mathbf{x}_{LR}, t \sim [0, 1]} \|(\mathbf{z}_1 - \mathbf{z}_0) - v_S((1-t)\mathbf{z}_0 + t\mathbf{z}_1, t, c)\|_2^2 \quad (5)$$

Figure 4: Visualized results of evaluation on the RealSR testset, with our proposed CTSR ($t = 0.0$) and compared methods.

Figure 5: Detailed comparison on RealSR validation set, zoom in for more details.

where c represents prompt embeddings. This objective directly trains the student network to predict the direction of the full trajectory from the balanced solution to the high-fidelity solution.

This new formulation provides a clear and direct mechanism for control at inference. The parameter t now represents the desired position along the learned trajectory. Given input \mathbf{x}_{LR} , we first compute the start-point latent $\mathbf{z}_0 = \mathcal{E}(\mathcal{S}_1(\mathbf{x}_{LR}))$. To generate a super-resolved image at a specific trade-off level t_{infer} , we approximate the solution to the learned ODE with a single Euler step:

$$\mathbf{z}_{out}(t_{infer}) = \mathbf{z}_0 + t_{infer} \cdot v_{\mathcal{S}}(\mathbf{z}_0, 0, c) \quad (6)$$

The final image is then produced by the VAE decoder: $\hat{\mathbf{x}}_t = \mathcal{D}(\mathbf{z}_{out}(t_{infer}))$. As t_{infer} increases towards 1, the output is progressively shifted along the learned vector field towards the high-fidelity domain. This provides an efficient, one-step, and theoretically grounded method for achieving a continuous and controllable fidelity-realness trade-off.

4 EXPERIMENTS

4.1 SETTINGS

Datasets We merge the training sets from DIV2K Agustsson & Timofte (2017), LSDIR Li et al. (2023), DRealSR Wei et al. (2020), ImageNet Deng et al. (2009), and RealSR Cai et al. (2019) as our training dataset, and evaluate our method on the validation sets of DIV2K, DRealSR, and RealSR. The degraded images are generated using the real-world degradation operator from RealESRGAN Wang et al. (2021). For the SR process, we first up-sample the degraded images in the scaling factor of $\times 4$, then input them into our proposed SR framework, so the size of the degraded input and the obtained output are matched. The task real-world image super-resolution here is not limited to up-sampling image to a larger size, but also includes other restoration process, like removal of alias, blur, and noise, to improve the visual quality of input image.

Evaluation Metrics We assess both fidelity and realness for evaluation. For fidelity, we use PSNR and SSIM Wang et al. (2004); for realness, we use LPIPS Zhang et al. (2018), DISTS Ding et al. (2020), and FID Heusel et al. (2017), which require reference images, and NIQE Zhang et al. (2015), MUSIQ Ke et al. (2021), CLIPQA Wang et al. (2023a), and MANIQA Yang et al. (2022), which are reference-free. LPIPS uses VGG Simonyan & Zisserman (2014) weights following Dong et al. (2024), and MANIQA uses PIPAL Jinjin et al. (2020) weights by default.

Implementation Details For the teacher model selection, we choose OSEDiff Wu et al. (2024a) as \mathcal{T}_r , due to its advantage in realness, and ResShift Yue et al. (2023) as \mathcal{T}_r , due to its better fidelity performance. The pretrained version of Stable Diffusion Rombach et al. (2022) used is 2.1-base. The default image input size for the models is 512×512 . All images are processed at their original size, and for images larger than 512×512 , we use patch splitting and apply VAE tiling to avoid block artifacts. In both the first and second stages of training, we use the AdamW Loshchilov & Hutter

378
 379
 380
 381
 382
 Table 4: Ablation of training with different
 teachers, and without dual teacher distillation
 loss. Best and second-best results are shown in
 red and blue. C-IQA and M-IQA are short for
 CLIPQA and MANIQA.

Teacher T_{fl}	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	C-IQA \uparrow	M-IQA \uparrow
w/o distill	26.71	0.6743	0.4552	0.5439	0.5775
SinSR	25.71	0.6734	0.3552	0.6036	0.6065
ResShift (Ours)	25.70	0.6962	0.3058	0.6495	0.6367

Table 5: Our distillation applied in low-light enhancement task evaluated on LOL-v2-syn Chen et al. (2018) testset, which brings fidelity preservation and realness improvement. “Para.” is short for parameters. Best results in red.

Method	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	Para. (M) \downarrow
GSAD Hou et al. (2023)	28.67	0.9444	0.0487	17.17
Reti-Diff He et al. (2023)	27.53	0.9512	0.0349	26.11
GSAD (Distilled)	28.69	0.9507	0.0336	17.17

(2017) optimizer with $\beta_1=0.9$, $\beta_2=0.999$, and a learning rate of 5e-5, with 20,000 training steps in the first stage and 50,000 in the second stage. The batch size is set to 1. Distillation in both stages is performed using LoRA Hu et al. (2022) fine-tuning, with a rank of 4. In the inference process, the prompt is obtained from a pre-trained RAM Zhang et al. (2024a) module, following current state-of-the-art methods Wu et al. (2024a); Sun et al. (2025). For the loss balancing coefficients in \mathcal{L}_{s1} , λ_{rn} is set to 1, λ_{fl} to 2, and γ_{time} to 5.5. In \mathcal{L}_{rec} , λ_{l2} and λ_{lp} are set to 1 and 2 respectively. For the timestep t in our CTSR, we set it as 0.0 for comparison with methods with better *realness*, and set t to values greater than 0 for methods with better *fidelity*. Settings of compared methods are set as their default choice, and the final timestep t of diffusion-based methods are 0. All experiments are conducted on SR task with a scaling factor of 4, using an NVIDIA A6000 GPU.

4.2 COMPARISON WITH STATE-OF-THE-ARTS

Comparison Methods. We select methods for comparison based on two performance metrics: fidelity and realness, and group them accordingly. For fidelity, we choose ResShift Yue et al. (2023), SinSR Wang et al. (2024b), and RealESRGAN Wang et al. (2021); for realness, we select StableSR Wang et al. (2024a), DiffBIR Xinqi et al. (2024), SUPIR Yu et al. (2024), SinSR Wang et al. (2024b), PASD Yang et al. (2024), InvSR Yue et al. (2024), and OSEDiff Wu et al. (2024a).

Table 6: Ablation for λ_{rn} , λ_{fl} and λ_{time} . It is shown that our choice (in **bold**) leads to a better trade-off for both fidelity and realness. Best and second-best results shown in red and blue.

λ_{rn}	PSNR \uparrow	LPIPS \downarrow	λ_{fl}	PSNR \uparrow	LPIPS \downarrow	γ_{time}	PSNR \uparrow	LPIPS \downarrow
0.6	25.07	0.3487	1.6	25.81	0.3377	4.5	25.08	0.3481
0.8	24.81	0.3185	1.8	25.62	0.3365	5.0	25.60	0.3166
1.0	25.70	0.3058	2.0	25.70	0.3058	5.5	25.70	0.3058
1.2	25.66	0.3376	2.2	25.44	0.3149	6.0	24.82	0.3212
1.4	25.62	0.3317	2.4	25.19	0.3226	6.5	27.07	0.3490

Timestep t	PSNR \uparrow	LPIPS \downarrow	NIQE \downarrow	MUSIQ \uparrow
0.0	24.34	0.3377	3.5455	69.52
0.2	24.45	0.3384	3.6803	69.25
0.4	24.58	0.3397	3.8114	69.00
0.6	24.72	0.3409	3.9368	68.60
0.8	24.82	0.3423	4.0234	68.25
1.0	24.85	0.3437	4.0438	67.96

Table 8: Comparison of computational complexity and number of parameters across diffusion-based methods. Best and second-best results are shown in red and blue. Numbers in parentheses after method name is diffusion sampling steps. “Infer.” is short for inference time (seconds), and “Para.” for trainable parameters (M).

	StableSR(200)	DiffBIR(50)	SUPIR(50)	PASD(20)	ResShift(15)	InvSR(1)	SinSR(1)	OSEDiff(1)	Ours(1)
Infer.	12.4151	7.9637	16.8704	4.8441	0.7546	0.1416	0.1424	0.1791	0.1791
Para.	150.0	380.0	1331.2	625.0	118.6	33.8	118.6	8.5	8.5

Quantitative Comparison. We use RealESRGAN as a simulation of real-world degradation and compare the performance on the DIV2K, RealSR, and DRealSR validation sets. Tab. 2 and Tab. 3 present the quantitative comparison results.

Tab. 2 compares our method with existing methods that excel in terms of fidelity, showing that our method is comparable in terms of PSNR and SSIM, while significantly outperforming others in realness metrics such as DISTS, FID, and others. The comparison with RealESRGAN further demonstrates that diffusion-based methods generally achieve higher scores on no-reference metrics (NIQE, MANIQA, CLIPQA, MUSIQ), suggesting that diffusion models are better suited to provide visual priors for super-resolution tasks. Tab. 3 compares our method with existing methods that excel in realness. The results show that our method is competitive in realness metrics while also achieving significant performance gains in fidelity.

Qualitative Comparison. Fig. 4 presents the results of comparison experiments on RealSR testset. The figure shows that our method provides better visual quality and consistency with the original image compared to the other methods, proving that our CTSR achieves better image quality, PSNR and DISTS metrics, as well as natural and vivid details. It is also notable that both OSEDiff Wu et al. (2024a), the previous best method, and our CTSR exhibit a hue different from that of other earlier methods, like ResShift Yue et al. (2023), which is possibly due to different color fix settings.

Efficiency Comparison. To evaluate the efficiency and complexity of CTSR, we compare these properties with the SOTA methods in Tab. 8, which shows that CTSR requires fewer inference steps, achieves a comparable inference time, and has fewer trainable parameters.

4.3 ABLATION STUDY

Necessity of Teacher Distillation Loss. A natural question arises: “why do we need two teacher models to achieve the trade-off, given that many methods use L_2 loss and LPIPS loss to balance fidelity and realness?” From a theoretical standpoint, the L_2 -norm, when used as a fidelity constraint, is too sparse and lacks the smoothness necessary to capture the detailed semantic information of the LR input. On the other hand, regularization losses, such as LPIPS, struggle to effectively represent the distribution of natural images. By training SR models on a diffusion prior with various strategies, we can obtain better guidance for balancing fidelity and realness, thereby advancing the Pareto frontier of SR tasks. To further support this, we present results with and without the distillation loss in Tab. 4. The comparison shows that, without the distillation loss, the method reverts to the behavior of earlier GAN-based approaches, achieving better fidelity but suffering a significant decline in realness and visual quality. Since multiple SOTA SR models excel in fidelity performance, to find the best choice for \mathcal{T}_{fl} , we also experiment with SinSR Wang et al. (2024b) as the teacher model for dual teacher distillation. The results are presented in Tab. 4.

Selection of Coefficients λ_{fl} , λ_{rn} and γ_{time} . For the balancing coefficients among the loss function terms, we employ a grid search to determine the values that yield the best overall performance. The results of this selection process are shown in Tab. 6.

4.4 EVALUATION OF CONTROLLABILITY AND EXTENDABILITY

Controllability. Here, we introduce a controllable image super-resolution method enabled by the proposed second stage distillation. Specifically, the controllability of CTSR is determined by the input time step t of the diffusion model, where $t = 0$ corresponds to the best realness and $t = 1$ to fidelity. The input t can be sampled between 0 and 1, allowing user to adjust the balance between these two properties. We evaluate the performance on the DIV2K validation set, with the results presented in Tab. 7. As the input timestep t increases from 0 to 1, fidelity metrics such as PSNR and SSIM improve, while realness metrics like LPIPS begin to decrease. Visual results are shown in Fig. 1(a) and Fig. 7 in **Appendix**.

Extension to Image Enhancement. To demonstrate the generalization and versatility of our proposed fidelity-realness distillation method from Sec. 3.3, we extend it to the low-light enhancement (LLE) task, showcasing the performance improvement achieved by this approach. We select two diffusion-based LLE methods: GSAD Hou et al. (2023), which excels in fidelity, and Reti-Diff He et al. (2023), which excels in realness, and apply a training strategy similar to our CTSR. The results, presented in Tab. 5, show that our proposed distillation strategy preserves the fidelity advantage of GSAD while leveraging the model prior from Reti-Diff to enhance realness performance.

5 CONCLUSION

This paper proposes CTSR, a distillation-based real-world image super-resolution method that leverages multiple teacher models to strike a trade-off between realness and fidelity. Furthermore, inspired by the working principle of flow matching, to enable controllability between fidelity and realness, this paper explores a controllable trade-off effect by distilling the output distributions of the aforementioned models, enabling a controllable image super-resolution method that is able to be adjusted via input timestep. Experiments on several real-world image super-resolution benchmarks demonstrate the superior performance of CTSR, compared to other competing methods. Additionally, the proposed fidelity-realness distillation approach can be extended to other tasks, such as low-light enhancement, for performance improvement.

486 REFERENCES
487

488 Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge on single image super-resolution:
489 Dataset and study. In *Proceedings of the IEEE conference on computer vision and pattern recog-*
490 *nition workshops*, pp. 126–135, 2017.

491 Jianrui Cai, Hui Zeng, Hongwei Yong, Zisheng Cao, and Lei Zhang. Toward real-world single
492 image super-resolution: A new benchmark and a new model. In *Proceedings of the IEEE/CVF*
493 *international conference on computer vision*, pp. 3086–3095, 2019.

494 Wei Chen, Wang Wenjing, Yang Wenhan, and Liu Jiaying. Deep retinex decomposition for low-light
495 enhancement. In *British Machine Vision Conference*, 2018.

496 Yixin Chen, Huiqian Du, and Min Xie. Ccir: high fidelity face super-resolution with controllable
497 conditions in diffusion models. *Signal, Image and Video Processing*, 18(12):8707–8721, 2024.

498 Hyungjin Chung, Byeongsu Sim, and Jong Chul Ye. Improving diffusion models for inverse prob-
499 lems using manifold constraints. In *Proceedings of the Advances in Neural Information Process-
500 ing Systems (NeurIPS)*, 2022.

501 Hyungjin Chung, Jeongsol Kim, Michael Thompson Mccann, Marc Louis Klasky, and Jong Chul
502 Ye. Diffusion posterior sampling for general noisy inverse problems. In *Proceedings of the*
503 *International Conference on Learning Representations (ICLR)*, 2023.

504 Quan Dao, Hao Phung, Binh Nguyen, and Anh Tran. Flow matching in latent space. *arXiv preprint*
505 *arXiv:2307.08698*, 2023.

506 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
507 hierarchical image database. In *Proceedings of the IEEE Conference on Computer Vision and*
508 *Pattern Recognition (CVPR)*, 2009.

509 Keyan Ding, Kede Ma, Shiqi Wang, and Eero P Simoncelli. Image quality assessment: Unifying
510 structure and texture similarity. *IEEE transactions on pattern analysis and machine intelligence*,
511 44(5):2567–2581, 2020.

512 Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Image super-resolution using
513 deep convolutional networks. *IEEE Transactions on Pattern Analysis and Machine Intelligence*
514 (*TPAMI*), 2015.

515 Linwei Dong, Qingnan Fan, Yihong Guo, Zhonghao Wang, Qi Zhang, Jinwei Chen, Yawei Luo,
516 and Changqing Zou. Tsd-sr: One-step diffusion with target score distillation for real-world image
517 super-resolution. *arXiv preprint arXiv:2411.18263*, 2024.

518 Michael Elad and Michal Aharon. Image denoising via sparse and redundant representations over
519 learned dictionaries. *IEEE Transactions on Image processing*, 15(12):3736–3745, 2006.

520 Michael Elad and Arie Feuer. Restoration of a single superresolution image from several blurred,
521 noisy, and undersampled measured images. *IEEE transactions on image processing*, 6(12):1646–
522 1658, 1997.

523 Sina Farsiu, M Dirk Robinson, Michael Elad, and Peyman Milanfar. Fast and robust multiframe
524 super resolution. *IEEE transactions on image processing*, 13(10):1327–1344, 2004.

525 Ben Fei, Zhaoyang Lyu, Liang Pan, Junzhe Zhang, Weidong Yang, Tianyue Luo, Bo Zhang, and
526 Bo Dai. Generative diffusion prior for unified image restoration and enhancement. In *Proceedings*
527 *of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2023.

528 Johannes S Fischer, Ming Gui, Pingchuan Ma, Nick Stracke, Stefan A Baumann, and Björn Ommer.
529 Boosting latent diffusion with flow matching. *arXiv preprint arXiv:2312.07360*, 2023.

530 Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
531 Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In *Proceedings of the Advances*
532 *in Neural Information Processing Systems (NeurIPS)*, 2014.

540 Baisong Guo, Xiaoyun Zhang, Haoning Wu, Yu Wang, Ya Zhang, and Yan-Feng Wang. Lar-sr: A lo-
 541 cal autoregressive model for image super-resolution. In *Proceedings of the IEEE/CVF conference*
 542 *on computer vision and pattern recognition*, pp. 1909–1918, 2022.

543

544 Chunming He, Chengyu Fang, Yulun Zhang, Tian Ye, Kai Li, Longxiang Tang, Zhenhua Guo, Xiu
 545 Li, and Sina Farsiu. Reti-diff: Illumination degradation image restoration with retinex-based la-
 546 tent diffusion model. In *Proceedings of the International Conference on Learning Representations*
 547 (*ICLR*), 2023.

548 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
 549 Gans trained by a two time-scale update rule converge to a local nash equilibrium. In *Advances*
 550 *in neural information processing systems (NeurIPS)*, volume 30, 2017.

551

552 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In *Proceedings of the Advances*
 553 *in Neural Information Processing Systems (NeurIPS) Workshop*, 2022.

554

555 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *Proceed-*
 556 *ings of the Advances in Neural Information Processing Systems (NeurIPS)*, 2020.

557

558 Jinhui Hou, Zhiyu Zhu, Junhui Hou, Hui Liu, Huanqiang Zeng, and Hui Yuan. Global structure-
 559 aware diffusion process for low-light image enhancement. In *Advances in Neural Information*
 560 *Processing Systems (NeurIPS)*, volume 36, pp. 79734–79747, 2023.

561

562 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 563 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. In *Proceedings of the*
 564 *International Conference on Learning Representations (ICLR)*, 2022.

565

566 Vincent Tao Hu, Wei Zhang, Meng Tang, Pascal Mettes, Deli Zhao, and Cees Snoek. Latent space
 567 editing in transformer-based flow matching. In *Proceedings of the AAAI conference on artificial*
 568 *intelligence*, pp. 2247–2255, 2024.

569

570 Zheng Hui, Xinbo Gao, Yunchu Yang, and Xiumei Wang. Lightweight image super-resolution with
 571 information multi-distillation network. In *Proceedings of the 27th ACM international conference*
 572 *on multimedia*, pp. 2024–2032, 2019.

573

574 Chung Hyungjin, Lee Suhyeon, and Ye Jong Chul. Decomposed diffusion sampler for accelerat-
 575 ing large-scale inverse problems. In *Proceedings of the International Conference on Learning*
 576 *Representations (ICLR)*, 2024.

577

578 Daisuke Ito, Satoshi Takabe, and Tadashi Wadayama. Trainable ista for sparse signal recovery. *IEEE*
 579 *Transactions on Signal Processing*, 67(12):3113–3125, 2019.

580

581 CV Jiji, Manjunath V Joshi, and Subhasis Chaudhuri. Single-frame image super-resolution using
 582 learned wavelet coefficients. *International journal of Imaging systems and Technology*, 14(3):
 583 105–112, 2004.

584

585 CV Jiji, Subhasis Chaudhuri, and Priyam Chatterjee. Single frame image super-resolution: should
 586 we process locally or globally? *Multidimensional Systems and Signal Processing*, 18:123–152,
 587 2007.

588

589 Gu Jinjin, Cai Haoming, Chen Haoyu, Ye Xiaoxing, Jimmy S Ren, and Dong Chao. Pipal: a large-
 590 scale image quality assessment dataset for perceptual image restoration. In *Proceedings of the*
 591 *European Conference on Computer Vision (ECCV)*, pp. 633–651. Springer, 2020.

592

593 Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming Song. Denoising diffusion restoration
 594 models. In *Proceedings of the Advances in Neural Information Processing Systems (NeurIPS)*,
 595 2022.

596

597 Junjie Ke, Qifei Wang, Yilin Wang, Peyman Milanfar, and Feng Yang. Musiq: Multi-scale im-
 598 age quality transformer. In *Proceedings of the IEEE/CVF international conference on computer*
 599 *vision*, pp. 5148–5157, 2021.

594 Kwang In Kim and Younghée Kwon. Single-image super-resolution using sparse regression and
 595 natural image prior. *IEEE transactions on pattern analysis and machine intelligence*, 32(6):1127–
 596 1133, 2010.

597 Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham, Alejandro
 598 Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-realistic sin-
 599 gle image super-resolution using a generative adversarial network. In *Proceedings of the IEEE*
 600 *Conference on Computer Vision and Pattern Recognition (CVPR)*, 2017.

601 Yawei Li, Kai Zhang, Jingyun Liang, Jiezhang Cao, Ce Liu, Rui Gong, Yulun Zhang, Hao Tang, Yun
 602 Liu, Denis Demandolx, et al. Lsdir: A large scale dataset for image restoration. In *Proceedings of*
 603 *the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 1775–1787, 2023.

604 Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc Van Gool, and Radu Timofte. Swinir:
 605 Image restoration using swin transformer. In *Proceedings of the IEEE/CVF International Confer-
 606 ence on Computer Vision Workshops (ICCVW)*, 2021.

607 Zhouchen Lin and Heung-Yeung Shum. Fundamental limits of reconstruction-based superreso-
 608 lution algorithms under local translation. *IEEE transactions on pattern analysis and machine
 609 intelligence*, 26(1):83–97, 2004.

610 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 611 for generative modeling. In *Advances in neural information processing systems (NeurIPS)*, 2024.

612 Xingchao Liu, Chengyue Gong, et al. Flow straight and fast: Learning to generate and transfer data
 613 with rectified flow. In *Proceedings of the International Conference on Learning Representations
 614 (ICLR)*, 2023.

615 Yuang Liu, Wei Zhang, and Jun Wang. Adaptive multi-teacher multi-level knowledge distillation.
 616 *Neurocomputing*, 415:106–113, 2020.

617 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint
 618 arXiv:1711.05101*, 2017.

619 Sérgolène Martin, Anne Gagneux, Paul Hagemann, and Gabriele Steidl. Pnp-flow: Plug-and-play
 620 image restoration with flow matching. *arXiv preprint arXiv:2410.02423*, 2024.

621 Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik Kingma, Stefano Ermon, Jonathan Ho, and
 622 Tim Salimans. On distillation of guided diffusion models. In *Proceedings of the IEEE/CVF
 623 Conference on Computer Vision and Pattern Recognition*, pp. 14297–14306, 2023.

624 Fabian Mentzer, George D Toderici, Michael Tschannen, and Eirikur Agustsson. High-fidelity gen-
 625 erative image compression. In *Advances in neural information processing systems*, volume 33,
 626 pp. 11913–11924, 2020.

627 Xingang Pan, Xiaohang Zhan, Bo Dai, Dahua Lin, Chen Change Loy, and Ping Luo. Exploiting
 628 deep generative prior for versatile image restoration and manipulation. *IEEE Transactions on
 629 Pattern Analysis and Machine Intelligence (TPAMI)*, 2021.

630 Yohan Poirier-Ginter and Jean-François Lalonde. Robust unsupervised stylegan image restora-
 631 tion. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
 632 (CVPR)*, 2023.

633 Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d
 634 diffusion. *arXiv preprint arXiv:2209.14988*, 2022.

635 Haoyu Ren, Amin Kheradmand, Mostafa El-Khamy, Shuangquan Wang, Dongwoon Bai, and Jung-
 636 won Lee. Real-world super-resolution using generative adversarial networks. In *Proceedings of
 637 the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops*, pp. 436–437,
 638 2020.

639 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 640 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF Con-
 641 ference on Computer Vision and Pattern Recognition (CVPR)*, 2022.

648 Leonid I Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation based noise removal
 649 algorithms. *Physica D: nonlinear phenomena*, 60(1-4):259–268, 1992.
 650

651 Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J Fleet, and Mohammad
 652 Norouzi. Image super-resolution via iterative refinement. *IEEE Transactions on Pattern Analysis
 653 and Machine Intelligence (TPAMI)*, 2022.

654 Renrong Shao, Wei Zhang, Jianhua Yin, and Jun Wang. Data-free knowledge distillation for fine-
 655 grained visual categorization. In *Proceedings of the IEEE/CVF International Conference on Com-
 656 puter Vision*, pp. 1515–1525, 2023.

657

658 Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
 659 recognition. *arXiv preprint arXiv:1409.1556*, 2014.

660 Jae Woong Soh, Gu Yong Park, Junho Jo, and Nam Ik Cho. Natural and realistic single image
 661 super-resolution with explicit natural manifold discrimination. In *Proceedings of the IEEE/CVF
 662 conference on computer vision and pattern recognition*, 2019.

663

664 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In *Pro-
 665 ceedings of the International Conference on Learning Representations (ICLR)*, 2021.

666 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 667 Poole. Score-based generative modeling through stochastic differential equations. In *Proceedings
 668 of the International Conference on Learning Representations (ICLR)*, 2020.

669

670 Jian Sun, Zongben Xu, and Heung-Yeung Shum. Image super-resolution using gradient profile prior.
 671 In *2008 IEEE conference on computer vision and pattern recognition*, pp. 1–8. IEEE, 2008.

672 Jian Sun, Zongben Xu, and Heung-Yeung Shum. Gradient profile prior and its applications in image
 673 super-resolution and enhancement. *IEEE Transactions on Image Processing*, 20(6):1529–1542,
 674 2010.

675

676 Lingchen Sun, Rongyuan Wu, Zhiyuan Ma, Shuaizheng Liu, Qiaosi Yi, and Lei Zhang. Pixel-
 677 level and semantic-level adjustable super-resolution: A dual-lora approach. In *Proceedings of the
 678 IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2025.

679 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, AidanN. Gomez,
 680 Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Proceedings of the Advances in
 681 Neural Information Processing Systems (NeurIPS)*, 2017.

682

683 Jianyi Wang, Kelvin CK Chan, and Chen Change Loy. Exploring clip for assessing the look and feel
 684 of images. In *Proceedings of the AAAI Conference on Artificial Intelligence*, 2023a.

685 Jianyi Wang, Zongsheng Yue, Shangchen Zhou, Kelvin C.K. Chan, and Chen Change Loy. Ex-
 686 ploiting diffusion prior for real-world image super-resolution. *International Journal of Computer
 687 Vision (IJCV)*, 2024a.

688

689 Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Yu Qiao, and Chen
 690 Change Loy. Esrgan: Enhanced super-resolution generative adversarial networks. In *Proceedings
 691 of the European Conference on Computer Vision Workshops (ECCVW)*, 2018.

692

693 Xintao Wang, Liangbin Xie, Chao Dong, and Ying Shan. Real-esrgan: Training real-world blind
 694 super-resolution with pure synthetic data. In *Proceedings of the International Conference on
 Computer Vision Workshops (ICCVW)*, 2021.

695

696 Yinhuai Wang, Jiwen Yu, and Jian Zhang. Zero-shot image restoration using denoising diffusion
 697 null-space model. In *Proceedings of the Eleventh International Conference on Learning Repre-
 698 sentations (ICLR)*, 2023b.

699

700 Yufei Wang, Wenhan Yang, Xinyuan Chen, Yaohui Wang, Lanqing Guo, Lap-Pui Chau, Ziwei Liu,
 701 Yu Qiao, Alex C Kot, and Bihan Wen. Sinsr: diffusion-based image super-resolution in a single
 702 step. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
 (CVPR)*, 2024b.

702 Zhaowen Wang, Ding Liu, Jianchao Yang, Wei Han, and Thomas Huang. Deep networks for im-
 703 age super-resolution with sparse prior. In *Proceedings of the IEEE international conference on*
 704 *computer vision*, pp. 370–378, 2015.

705 Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and Jun Zhu. Prolif-
 706 ic dreamer: High-fidelity and diverse text-to-3d generation with variational score distillation. In
 707 *Advances in Neural Information Processing Systems*, 2023c.

708 Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
 709 from error visibility to structural similarity. *IEEE transactions on image processing*, 13(4):600–
 710 612, 2004.

711 Pengxu Wei, Ziwei Xie, Hannan Lu, Zongyuan Zhan, Qixiang Ye, Wangmeng Zuo, and Liang
 712 Lin. Component divide-and-conquer for real-world image super-resolution. In *Computer Vision–*
 713 *ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part*
 714 *VIII 16*, pp. 101–117. Springer, 2020.

715 Rongyuan Wu, Lingchen Sun, Zhiyuan Ma, and Lei Zhang. One-step effective diffusion network
 716 for real-world image super-resolution. In *Proceedings of the Advances in Neural Information*
 717 *Processing Systems (NeurIPS)*, 2024a.

718 Rongyuan Wu, Tao Yang, Lingchen Sun, Zhengqiang Zhang, Shuai Li, and Lei Zhang. Seesr:
 719 Towards semantics-aware real-world image super-resolution. In *Proceedings of the IEEE/CVF*
 720 *Conference on Computer Vision and Pattern Recognition (CVPR)*, 2024b.

721 Rui Xie, Chen Zhao, Kai Zhang, Zhenyu Zhang, Jun Zhou, Jian Yang, and Ying Tai. Addsr: Acceler-
 722 ating diffusion-based blind super-resolution with adversarial diffusion distillation. *arXiv preprint*
 723 *arXiv:2404.01717*, 2024.

724 Lin Xinqi, He Jingwen, Chen Ziyan, Lyu Zhaoyang, Dai Bo, Yu Fanghua, Ouyang Wanli, Qiao Yu,
 725 and Chao Dong. Diffbir: Towards blind image restoration with generative diffusion prior. In
 726 *Proceedings of the European Conference on Computer Vision (ECCV)*, 2024.

727 Jianchao Yang, John Wright, Thomas S Huang, and Yi Ma. Image super-resolution via sparse
 728 representation. *IEEE transactions on image processing*, 19(11):2861–2873, 2010.

729 Sidi Yang, Tianhe Wu, Shuwei Shi, Shanshan Lao, Yuan Gong, Mingdeng Cao, Jiahao Wang, and
 730 Yujiu Yang. Maniq: Multi-dimension attention network for no-reference image quality assess-
 731 ment. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*
 732 *(CVPR)*, 2022.

733 Tao Yang, Rongyuan Wu, Peiran Ren, Xuansong Xie, and Lei Zhang. Pixel-aware stable diffusion
 734 for realistic image super-resolution and personalized stylization. In *Proceedings of the European*
 735 *Conference on Computer Vision (ECCV)*, 2024.

736 Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T Freeman,
 737 and Taesung Park. One-step diffusion with distribution matching distillation. In *Proceedings of*
 738 *the IEEE/CVF conference on computer vision and pattern recognition*, pp. 6613–6623, 2024.

739 Wang Yinhuai, Hu Yujie, Yu Jiwen, and Zhang Jian. Gan prior based null-space learning for con-
 740 sistent super-resolution. In *Proceedings of the AAAI Conference on Artificial Intelligence (AAAI)*,
 741 2023.

742 Fanghua Yu, Jinjin Gu, Zheyuan Li, Jinfan Hu, Xiangtao Kong, Xintao Wang, Jingwen He, Yu Qiao,
 743 and Chao Dong. Scaling up to excellence: Practicing model scaling for photo-realistic image
 744 restoration in the wild. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 745 *Pattern Recognition (CVPR)*, 2024.

746 Zongsheng Yue, Jianyi Wang, and Chen Change Loy. Resshift: Efficient diffusion model for im-
 747 age super-resolution by residual shifting. In *Proceedings of the Advances in Neural Information*
 748 *Processing Systems (NeurIPS)*, 2023.

749 Zongsheng Yue, Kang Liao, and Chen Change Loy. Arbitrary-steps image super-resolution via
 750 diffusion inversion. *arXiv preprint arXiv:2412.09013*, 2024.

756 Roman Zeyde, Michael Elad, and Matan Protter. On single image scale-up using sparse-
 757 representations. In *International conference on curves and surfaces*, pp. 711–730. Springer, 2010.
 758

759 Kai Zhang, Jingyun Liang, Luc Van Gool, and Radu Timofte. Designing a practical degradation
 760 model for deep blind image super-resolution. In *Proceedings of the IEEE/CVF International*
 761 *Conference on Computer Vision (ICCV)*, 2021a.

762 Keke Zhang, Tiesong Zhao, Weiling Chen, Yuzhen Niu, and Jinsong Hu. Spqe: Structure-and-
 763 perception-based quality evaluation for image super-resolution. *arXiv preprint arXiv:2205.03584*,
 764 2022.

765 Lin Zhang, Lei Zhang, and Alan C Bovik. A feature-enriched completely blind image quality
 766 evaluator. *IEEE Transactions on Image Processing*, 24(8):2579–2591, 2015.
 767

768 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
 769 effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE conference on*
 770 *computer vision and pattern recognition*, pp. 586–595, 2018.

771 Yiman Zhang, Hanting Chen, Xinghao Chen, Yiping Deng, Chunjing Xu, and Yunhe Wang. Data-
 772 free knowledge distillation for image super-resolution. In *Proceedings of the IEEE/CVF Conference*
 773 *on Computer Vision and Pattern Recognition*, pp. 7852–7861, 2021b.
 774

775 Youcai Zhang, Xinyu Huang, Jinyu Ma, Zhaoyang Li, Zhaochuan Luo, Yanchun Xie, Yuzhuo Qin,
 776 Tong Luo, Yaqian Li, Shilong Liu, et al. Recognize anything: A strong image tagging model.
 777 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 778 1724–1732, 2024a.

779 Yuehan Zhang, Seungjun Lee, and Angela Yao. Pairwise distance distillation for unsupervised
 780 real-world image super-resolution. In *European Conference on Computer Vision*, pp. 429–446.
 781 Springer, 2024b.

782 Wei Zhou and Zhou Wang. Quality assessment of image super-resolution: Balancing deterministic
 783 and statistical fidelity. In *Proceedings of the 30th ACM international conference on multimedia*,
 784 pp. 934–942, 2022.

785 Han Zhu, Zhenzhong Chen, and Shan Liu. Information bottleneck based self-distillation: Boosting
 786 lightweight network for real-world super-resolution. *IEEE Transactions on Circuits and Systems*
 787 *for Video Technology*, 2024a.

788 Qiwen Zhu, Yanjie Wang, Shily Cai, Liqun Chen, Jiahuan Zhou, Luxin Yan, Sheng Zhong, and
 789 Xu Zou. Perceptual-distortion balanced image super-resolution is a multi-objective optimization
 790 problem. In *Proceedings of the 32nd ACM International Conference on Multimedia*, pp. 7483–
 791 7492, 2024b.
 792

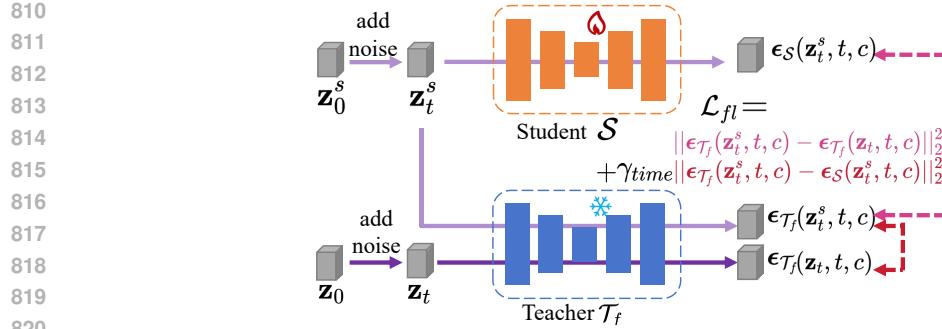
793 Yuzanzhi Zhu, Ruiqing Wang, Shilin Lu, Junnan Li, Hanshu Yan, and Kai Zhang. Oftsr: One-
 794 step flow for image super-resolution with tunable fidelity-realism trade-offs. *arXiv preprint*
 795 *arXiv:2412.09465*, 2024c.

797 A APPENDIX

800 In the supplementary materials, we demonstrate additional experimental results, implementation
 801 details, discussion, and analysis as follows.

803 A.1 PRELIMINARIES

804 **Diffusion Probabilistic Models** Ho et al. (2020); Song et al. (2021; 2020) are a class of generative
 805 models with strong visual prior. The key idea is to model the data distribution by simulating a forward
 806 noise-adding process and a reverse denoising process. Let \mathbf{x}_0 represent the original image, \mathbf{x}_t be the data at the t -th step of the forward process. The forward process can
 807 be described as: $q(\mathbf{x}_t | \mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{1 - \beta_t} \mathbf{x}_{t-1}, \beta_t \mathbf{I})$, where β_t controls the noise added at
 808 each step, and $\mathcal{N}(\cdot, \mu, \sigma^2 \mathbf{I})$ represents Gaussian distribution with mean μ and co-variance matrix
 809

Figure 6: Visualized calculation process of \mathcal{L}_{fl} .

$\sigma^2 \mathbf{I}$. The reverse process aims to reconstruct the original data \mathbf{x}_0 by predicting \mathbf{x}_{t-1} from \mathbf{x}_t : $p_\theta(\mathbf{x}_{t-1}|\mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_\theta(\mathbf{x}_t, t), \sigma^2 \mathbf{I})$, where $\boldsymbol{\mu}_\theta(\mathbf{x}_t, t)$ is the predicted mean parameterized by a neural network.

The training of the diffusion model needs a reconstruction loss of the difference between added noise in forward process, and predicted noise in reverse process, formulated as $L = \sum_{t=1}^T [\|\epsilon_\theta(\mathbf{x}_t, t) - \epsilon\|^2]$, where $\epsilon_\theta(\mathbf{x}_t, t)$ is the model's prediction of the noise ϵ added at each timestep.

Flow matching Liu et al. (2023); Lipman et al. (2024) is a generative modeling technique similar to diffusion models Meng et al. (2023). It can model and learn the mapping from one data distribution to another through a noise-adding and denoising process, similar to diffusion models. Such distribution transformation process can be applied to tasks such as image reconstruction and style transfer Martin et al. (2024); Dao et al. (2023); Hu et al. (2024); Yin et al. (2024).

Convex Optimization for Image Restoration Image restoration, when modeled as $\mathbf{y} = \mathbf{Ax} + \mathbf{n}$, is also known as image inverse problem. The target for image restoration is as $\arg \min_{\mathbf{x}} \|\mathbf{y} - \mathbf{Ax}\|_2^2 + \lambda \mathcal{R}(\mathbf{x})$, where $\mathcal{R}(\mathbf{x})$ is the regularization term, like L_1 norm or total variation Rudin et al. (1992); Zhu et al. (2024b). This convex optimization problem can be solved via algorithms like gradient descent and ISTA Ito et al. (2019), in an iterative process. Take gradient descent step as an example: $\mathbf{x}_{k+1} = \mathbf{x}_k + \rho \nabla_{\mathbf{x}} (\mathbf{y} - \mathbf{Ax}_k)$, where \mathbf{x}_k and \mathbf{x}_{k+1} is the restoration result in k and $k+1$ step, and ρ is the learning rate. Diffusion-based image SR methods, like DPS Chung et al. (2023) and DDS Hyungjin et al. (2024), are inspired via such process, taking iterative sampling in diffusion as optimization steps.

A.2 MORE IMPLEMENTATION DETAILS

A.2.1 MORE DETAILS OF LOSS FUNTION

We provide a detailed loss calculation process for Stage 1 in the main paper, as shown in Fig. 6.

A.2.2 PSEUDOCODE OF OUR PROPOSED CTSR METHOD

The overall training process for first and second stage is shown in Algo. 1 and Algo. 2.

A.3 MORE EXPERIMENTAL RESULTS

A.3.1 MORE ABLATION RESULTS

Ablation of Stage 2 Distillation Ablation results for two-stage training are shown below in Tab. 9. Better results in **bold**. It is shown that with second stage of training, our proposed method could also have better performance.

864
865
866
867
868

Algorithm 1: Fidelity-Realness Distillation in Stage 1

870 **Input:** Ground truth \mathbf{x}_{GT} , input LR image \mathbf{x}_{LR} , student model \mathcal{S} , teacher model \mathcal{T}_{fl} and \mathcal{T}_{rn} ,
871 VAE encoder \mathcal{E} , VAE decoder \mathcal{D} , embedding of prompt c , loss balancing
872 hyper-parameters λ_{time} , λ_{fl} , λ_{rn} , λ_{l2} , λ_{lp}
873 **Output:** Student model \mathcal{S}
874 1 Initialize \mathcal{S} using weight of \mathcal{T}_{rn} .
875 2 **for** $epoch = 1$ **to** total epochs **do**
876 3 $\mathbf{z}_1 = \mathcal{E}(\mathbf{x}_{LR})$
877 4 $\mathbf{z}_0 = \mathcal{E}(\mathbf{x}_{GT})$
878 5 Random sample a timestep t
879 6 $\mathbf{z}_t = add_noise(\mathbf{z}_0, t)$
880 7 $\mathbf{z}_0^s = \mathcal{S}(\mathbf{z}_1)$
881 8 $\mathbf{x}_0 = \mathcal{D}(\mathbf{z}_0^s)$
882 9 $\mathbf{z}_t^s = add_noise(\mathbf{z}_0^s, t, c)$
883 10 $\mathcal{L}_{rec} = \lambda_{l2} \|\mathbf{x}_{GT} - \mathbf{x}_0\|_2^2 + \lambda_{lp} \ell(\mathbf{x}_{GT}, \mathbf{x}_0)$
884 11 $\mathcal{L}_{fl} = \|\epsilon_{\mathcal{T}_f}(\mathbf{z}_t^s, t, c) - \epsilon_{\mathcal{S}}(\mathbf{z}_t^s, t, c)\|_2^2 + \lambda_{time} \|\epsilon_{\mathcal{T}_f}(\mathbf{z}_t, t, c) - \epsilon_{\mathcal{T}_f}(\mathbf{z}_t^s, t, c)\|_2^2$
885 12 $\mathcal{L}_{rn} = \|\epsilon_{\mathcal{T}_r}(\mathbf{z}_t^s, t, c) - \epsilon_{\mathcal{S}}(\mathbf{z}_t^s, t, c)\|_2^2 + \lambda_{time} \|\epsilon_{\mathcal{T}_r}(\mathbf{z}_t, t, c) - \epsilon_{\mathcal{T}_r}(\mathbf{z}_t^s, t, c)\|_2^2$
886 13 $\mathcal{L}_{s1} = \mathcal{L}_{rec} + \lambda_{fl} \mathcal{L}_{fl} + \lambda_{rn} \mathcal{L}_{rn}$
887 14 $\mathcal{L}_{s1}.backward()$
888 15 $\mathcal{S}.update()$
889 16 **end**
890 17 **return** \mathcal{S}

890
891
892
893
894
895
896
897
898
899

Algorithm 2: Controllability Distillation in Stage 2

900 **Input:** HR output of student model \mathbf{x}_0 , student model \mathcal{S} , teacher model (weight initialized from
901 student model) $\mathcal{T}_{\mathcal{S}}$, VAE encoder \mathcal{E}
902 **Output:** Student model \mathcal{S}
903 1 **for** $epoch = 1$ **to** total epochs **do**
904 2 Randomly sample timesteps t and $t' \in (0, 1)$ /* ensure $t' > t$ */
905 3 $\mathbf{z}_t = \mathbf{z}_0 + t \epsilon_{\mathcal{T}_{\mathcal{S}}}(\mathbf{z}_0, t, c)$
906 4 $\mathbf{z}_{t'} = \mathbf{z}_t + t' \epsilon_{\mathcal{T}_{\mathcal{S}}}(\mathbf{z}_0, t, c)$
907 5 $\mathcal{L}_{ctrl_{t,t'}} = \|\mathbf{t} \epsilon_{\mathcal{T}_{\mathcal{S}}}(\mathbf{z}_t, t, c) - t' \epsilon_{\mathcal{T}_{\mathcal{S}}}(\mathbf{z}_{t'}, t', c) + (\Delta t) \epsilon_{\mathcal{S}}(\mathbf{z}_t, t, c)\|_2^2$
908 6 $\mathcal{L}_{s2} = \sum_{t,t' \in [0,1]} \mathcal{L}_{ctrl_{t,t'}}$
909 7 $\mathcal{L}_{s2}.backward()$
910 8 $\mathcal{S}.update()$
911 9 **end**
912 10 **return** \mathcal{S}

913
914
915
916
917

918
919
920 Table 9: Ablation of second stage distillation. Best results in **red**.
921
922
923

Method	PSNR	SSIM	NIQE	CLIPQA	MANIQA
w/o 2 nd stage	24.36	0.6092	3.5732	0.6737	0.5879
w/ 2 nd stage (Ours)	24.34	0.6093	3.5455	0.6741	0.5894

924
925 Table 10: More results of the controllable trade-off between fidelity and realness, with adjustable
926 properties implemented via timestep t . Test on the **DIV2K** validation set.
927
928

Timestep t	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	DISTS \downarrow	FID \downarrow	NIQE \downarrow	MUSIQ \uparrow	MANIQA \uparrow	CLIPQA \uparrow
0.0	24.34	0.6093	0.3377	0.1377	24.56	3.5455	69.52	0.5894	0.6741
0.2	24.45	0.6098	0.3384	0.1394	24.75	3.6803	69.25	0.5826	0.6726
0.4	24.58	0.6131	0.3397	0.1412	25.00	3.8114	69.00	0.5767	0.6715
0.6	24.72	0.6172	0.3409	0.1432	25.64	3.9368	68.60	0.5698	0.6684
0.8	24.82	0.6191	0.3423	0.1447	26.13	4.0234	68.25	0.5642	0.6632
1.0	24.85	0.6192	0.3437	0.1459	26.32	4.0438	67.96	0.5609	0.6585

934
935 A.3.2 MORE RESULTS OF CONTROLLABLE IMAGE SR
936937 Here we present the controllable image SR effect on the validation sets of DIV2K, RealSR and
938 DRealSR. Results are shown in Tab. 10, Tab. 11 and Tab. 12 seperately.
939940 A.3.3 MORE VISUAL RESULTS
941942 We provide more results presenting the controllability of our proposed CTSR, which are shown in
943 Fig. 7. From left to right, the fidelity property is gradually changed to realness, with less smooth
944 and more details and better visual quality. We also provide a detailed comparison result between our
945 CTSR and OSEDiff Wu et al. (2024a) in Fig. 5. It is shown that output of our method have more
946 vivid details, like the fine wrinkles and folds on the forehead, as well as the brick textures on the
947 wall.
948949 A.4 MORE RELATED WORK AND DISCUSSION
950951 A.4.1 MORE RELATED WORK ON IMAGE SR
952953 **GAN-based and MSE-oriented Image SR Methods** Earlier work mainly use GAN Goodfellow
954 et al. (2014) and MSE-oriented Vaswani et al. (2017); Dong et al. (2015) networks to implement
955 the image SR task Ren et al. (2020); Wang et al. (2021); Pan et al. (2021); Wang et al. (2018);
956 Yinhuai et al. (2023); Poirier-Ginter & Lalonde (2023). SRGAN Ledig et al. (2017) first uses the
957 GAN network to image SR task, optimized via both GAN and perceptual losses, to improve vi-
958 sual quality. Based on this observation, ESRGAN Wang et al. (2018) improved detail recovery
959 by incorporating a relativistic average discriminator. Methods like BSRGAN Zhang et al. (2021a)
960 and Real-ESRGAN Wang et al. (2021) follow the complexities of real-world degradation, allowing
961 the ISR approaches to effectively tackle uncertain degradation, thus improving the flexibility of the
962 model. Although GAN-based methods can inject more realistic detail into images, they struggle
963
964965 Table 11: More results of the controllable trade-off between fidelity and realness, with adjustable
966 properties implemented via timestep t . Test on the **RealSR** testset.
967
968

Timestep t	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	DISTS \downarrow	FID \downarrow	NIQE \downarrow	MUSIQ \uparrow	MANIQA \uparrow	CLIPQA \uparrow
0.0	25.70	0.6962	0.3058	0.1530	121.30	4.0662	67.94	0.6367	0.6495
0.2	26.29	0.7211	0.3210	0.1620	127.67	4.2979	66.84	0.6314	0.6435
0.4	26.61	0.7203	0.3178	0.1594	134.38	4.2320	66.33	0.6355	0.6340
0.6	26.62	0.7204	0.3191	0.1605	145.21	4.2561	65.29	0.6340	0.6333
0.8	26.65	0.7208	0.3206	0.1614	148.86	4.2708	62.64	0.6327	0.6240
1.0	26.72	0.7213	0.3220	0.1628	156.38	4.3209	61.08	0.6304	0.6209

972
973
974
975 Table 12: More results of the controllable trade-off between fidelity and realness, with adjustable
976 properties implemented via timestep t . Test on the **DRealSR** testset.

977

Timestep t	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	DISTS \downarrow	FID \downarrow	NIQE \downarrow	MUSIQ \uparrow	MANIQA \uparrow	CLIPQA \uparrow
0.0	27.38	0.7767	0.3423	0.1937	142.52	6.6438	64.70	0.6412	0.7060
0.2	27.53	0.7794	0.3446	0.1402	147.25	7.7594	63.52	0.6408	0.7042
0.4	27.99	0.8023	0.3513	0.1687	150.39	7.5088	63.35	0.5654	0.6958
0.6	28.22	0.8043	0.3528	0.2195	156.36	7.5306	62.99	0.5642	0.6930
0.8	28.47	0.8056	0.3561	0.2369	161.24	7.8462	58.76	0.5453	0.6745
1.0	28.68	0.8152	0.3697	0.2371	164.46	7.9699	57.85	0.5974	0.6664

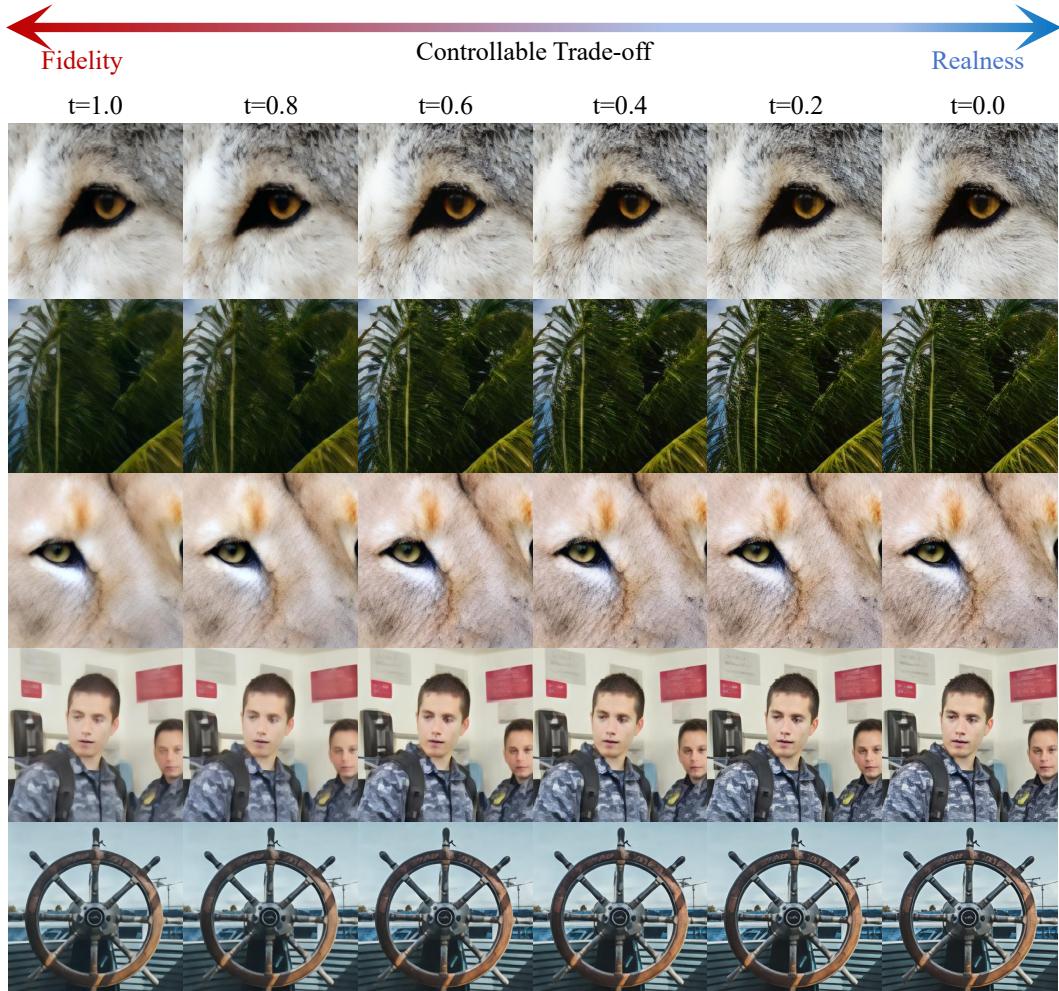


Figure 7: Visualized results of controllable image SR.

1026 with challenges such as training instability. For MSE-oriented methods, SwinIR Liang et al. (2021)
 1027 introduces a strong baseline model for image restorations, which includes image super-resolution
 1028 (including known degradation and real-world types), image denoising, and JPEG compression arti-
 1029 facts. As this method is also trained in an end-to-end manner, it also faces problems like over-smooth
 1030 and detail missing.

1031

1032 A.4.2 MORE DISCUSSION OF CONTROLLABLE IMAGE SR APPROACHES

1033

1034 Recent works such as PiSA-SR Sun et al. (2025) and OFTSR Zhu et al. (2024c) have explored
 1035 diffusion-based approaches for real-world image super-resolution (SR), which is controllable be-
 1036 between fidelity and realness. Here we discuss the difference between our CTSR and these approaches
 1037 briefly.

1038

1039 **Comparison with PiSA-SR.** Our proposed method differs from PiSA-SR in both formulation and
 1040 implementation. Specifically, we adopt a flow-matching training strategy that fine-tunes the initial-
 1041 stage SR model to establish a continuous mapping within the solution space, from high-fidelity
 1042 outputs to those with improved perceptual realness. This enables controllable super-resolution by
 1043 navigating along the learned flow. In contrast, PiSA-SR explicitly decouples fidelity and realness
 1044 into separate objectives at the pixel and semantic levels, respectively. It fine-tunes two dedicated
 1045 LoRA modules to address each aspect and leverages different LoRA weightings to balance fidelity
 1046 and realness. This leads to a fundamentally different control mechanism compared to our continuous
 1047 and unified flow-based strategy.

1048

1049 **Comparison with OFTSR.** While both OFTSR and our method leverage flow-based models for
 1050 controllable SR, there are significant differences in both conceptual framework and practical imple-
 1051 mentation. From the perspective of domain optimal transport via flow matching, OFTSR distills
 1052 denoising trajectories directly from an initial latent point toward the high-fidelity and high-realness
 1053 domains. The trajectory direction is implicitly controlled by selecting different timesteps, and the
 1054 entire distillation process is completed in a single stage. In contrast, our CTSR method decomposes
 1055 this process into two stages: in the first stage, we obtain a strong SR model via dual-teacher dis-
 1056 tillation process that simultaneously enhances both fidelity and realness, serving as a unified initial
 1057 trajectory endpoint aligned with the targets of OFTSR. In the second stage, we further refine the
 1058 mapping along a constrained subspace, learning a directional flow from fidelity to realness. This
 1059 staged decomposition provides finer control over the trade-off between fidelity and realness, and
 1060 reflects a key difference between our approach and OFTSR.

1061

1062 Moreover, OFTSR assumes a known and fixed degradation operator, which limits its applicability to
 1063 synthetic or well-characterized degradation settings. In contrast, our CTSR framework is designed
 1064 for real-world SR scenarios, where degradation types and parameters are unknown and potentially
 1065 diverse. This makes CTSR more suitable for practical applications where the degradation process is
 1066 complex and not explicitly defined.

1067

1068 A.4.3 MORE DISCUSSION OF DISTRIBUTION DISTILLATION AND KNOWLEDGE 1069 DISTILLATION

1070

1071 Although motivated by the success of knowledge distillation in image SR task, our method dif-
 1072 fers from these distillation methods in both objective and distillation design. Traditional knowl-
 1073 edge distillation methods targets at tasks like classification, via techniques including adaptive multi-
 1074 teacher fusion and multi-level supervision. Ours distillation is inspired from Score Distribution Sam-
 1075 pling Poole et al. (2022) and Variational Score Distillation Wang et al. (2023c); Wu et al. (2024a),
 1076 which use pre-trained generation prior to regulate the generation process of student model, making
 1077 the distribution of generated result closer to the distribution of pre-trained generation model. Also,
 1078 our CTSR tackles real-world image super-resolution instead of typical knowledge distillation task.

1079

A.5 LLM USAGE DECLARATION

1076 In the preparation of this document, we utilized Large Language Model (LLM) to enhance the qual-
 1077 ity of the writing. Its application is focused on text polishing, grammar correction, and improving
 1078 clarity. All content generated with the assistance of the LLM was rigorously reviewed, revised, and
 1079 ultimately approved by the authors to ensure its accuracy and originality.