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CTSR: CONTROLLABLE FIDELITY-REALNESS
TRADE-OFF DISTILLATION FOR REAL-WORLD IM-
AGE SUPER RESOLUTION

Anonymous authors
Paper under double-blind review

Fidelity Realness

30.98/0.3736 30.88/0.3697 30.87/0.3691 30.79/0.3662 30.75/0.3574 30.65/0.3490

(a) Controllable super-resolution results, on 4× realworld image SR task 

(b) Comparison of performance and effciency (c) Comparison over different metrics 

t=1.0 t=0.8 t=0.6 t=0.4 t=0.2 t=0.0

SUPIR DiffBIR

StableSR

OSEDiff
SinSR

ResShift
PASD

InvSR

Ou
rs
-0
.0

Ou
rs
-0
.2

Ou
rs
-0
.4

Ou
rs
-0
.6

Ou
rs
-0
.8

Ou
rs
-1
.0

Figure 1: (a) Controllable trade-off of our proposed CTSR, which could be adjusted freely between
better fidelity and realness. (b) Comparison of current state-of-the-art (SOTA) real-world image SR
methods and CTSR on performance and efficiency. Larger bubble indicates longer inference time.
The closer the bubble of a method is to the top-right corner of the figure, the better its performance
in both fidelity and realness. For our controllable method, we select six different states and present
their performance. The purple curve shows continuously adjusted trade-off points, all of which
exhibit performance advantages. (c) Comparison on multiple metrics with current SOTA methods
and CTSR. All results are done on DIV2K validation set, 4× SR with realworld degradation.

ABSTRACT

Real-world image super-resolution is a critical image processing task, where two
key evaluation criteria are the fidelity to the original image and the visual realness
of the generated results. Although existing methods based on diffusion models ex-
cel in visual realness by leveraging strong priors, they often struggle to achieve an
effective balance between fidelity and realness. In our preliminary experiments,
we observe that a linear combination of multiple models outperforms individual
models, motivating us to harness the strengths of different models for a more ef-
fective trade-off. Based on this insight, we propose a distillation-based approach
that leverages the geometric decomposition of both fidelity and realness, alongside
the performance advantages of multiple teacher models, to strike a more balanced
trade-off. Furthermore, we explore the controllability of this trade-off, enabling
a flexible and adjustable super-resolution process, which we call CTSR (Control-
lable Trade-off Super-Resolution). Experiments conducted on several real-world
image super-resolution benchmarks demonstrate that our method surpasses ex-
isting state-of-the-art approaches, achieving superior performance across both fi-
delity and realness metrics.
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Fidelity
constraint

Realness distribution manifold

Initial point

Possible solutions with 
trade-off

Model with better fidelity
Model with better realness

Linear combination

Figure 2: Illustration for vector decomposition
in the image SR process. It shows the simple
linear combination approach, which serves as
the motivation of our proposed CTSR.

Table 1: Results of the linear combination on Re-
alSR Cai et al. (2019) Nikon sub-testset. α is mul-
tiplied with ResShift Yue et al. (2023), and (1−α)
with OSEDiff Wu et al. (2024a). By adding SR
results from two models, the performance for both
fidelity and realness is improved. Best and second-
best results shown in red and blue.

Settings PSNR↑ LPIPS↓ Inference time (s)
α = 0 24.54 0.3575 0.7546
α = 0.2 24.84 0.3525 0.9196
α = 0.4 25.25 0.3633 0.9196
α = 0.6 25.34 0.3742 0.9196
α = 0.8 25.10 0.3857 0.9196
α = 1.0 24.88 0.3915 0.1791

Ours 25.45 0.3411 0.1791

1 INTRODUCTION

Image restoration, particularly image super-resolution (SR), is both a critical and challenging task
in image processing. Early research Yang et al. (2010); Kim & Kwon (2010); Wang et al. (2015)
typically focused on fixed degradation operators, such as downsampling and blur kernels, modeled
as y = Ax + n, where x represents the original image, A is the fixed degradation operator, n is
random noise, and y is the degraded result. As the field has advanced, more recent work has shifted
its focus to real-world degradation scenarios, where A turns to a complex and random combina-
tion of various degradations, with unknown degradation types and parameters. The evaluation of
image super-resolution is mainly based on two metrics: fidelity, which measures the consistency
between the super-resolved image and the degraded image, and realness, which assesses how well
the super-resolved image conforms to the prior distribution of natural images, as well as its visual
quality Mentzer et al. (2020); Zhou & Wang (2022); Zhang et al. (2022). The early methods pri-
marily used architectures based on GAN Goodfellow et al. (2014) and MSE, trained on pairs of
original and degraded images Dong et al. (2015); Liang et al. (2021); Wang et al. (2018); Guo et al.
(2022). These approaches excelled in achieving good fidelity in super-resolved results but often suf-
fered from over-smoothing and detail loss Chen et al. (2024). The introduction of diffusion models
brought powerful visual priors to the SR task, significantly improving the realness and visual quality
of super-resolved images. However, these models frequently struggle with maintaining consistency
between the super-resolved and degraded images. Achieving a satisfactory balance between fidelity
and realness remains a challenge, with most methods failing to strike an effective trade-off.

The core challenge of real-world image super-resolution lies in addressing an inherent multi-
objective optimization problem. Given a low-resolution observation y, the goal is to recover a high-
resolution x̂ that simultaneously satisfies two conflicting criteria: fidelity, where x̂ should be close
to the ground-truth image xGT , typically quantified by minimizing a distortion measure D(x̂,xGT )
such as MSE, and realness, where x̂ should appear natural and conform to the statistical distri-
bution of real-world images, pdata(x). Foundational work in image restoration has established that
these objectives are bound by an unavoidable “Perception-Distortion (P-D) Tradeoff”. No algorithm
can simultaneously achieve zero distortion and perfect perceptual quality. All optimally achievable
solutions form a Pareto Front, which manifests as a convex curve in the P-D plane.

Our initial exploratory experiments in Tab. 1 revealed an interesting phenomenon: a linear com-
bination of outputs from a high-fidelity model Gf and a high-realness model Gr, denoted as
x̂c = αx̂f +(1−α)x̂r , could surpass either individual model on certain metrics. However, the P-D
tradeoff theory reveals the fundamental limitation of this naive linear approach. Assuming x̂f and
x̂r correspond to two distinct points (Df , Pf ) and (Dr, Pr) on the Pareto-optimal curve, any linear
interpolation x̂c in the image space will almost certainly yield a point (Dc, Pc) that lies below the
chord connecting the two initial points, and thus within the sub-optimal region enclosed by the con-
vex Pareto front. This implies that for any solution obtained via linear combination, a theoretically
superior solution x∗ exists on the Pareto curve that is strictly better in at least one metric.

Therefore, our initial observation should not be interpreted as a viable solution, but rather as a crucial
insight: an optimal trade-off point exists in the solution space between these two experts, but it does
not lie on the linear path connecting them. This leads to the core motivation of our work: Can we
design a framework to train a single, efficient student model S that learns to operate directly on
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the Pareto-optimal curve of the P-D tradeoff, rather than interpolating on a sub-optimal linear
path? To address this, we propose CTSR, a controllable trade-off real-world image super-resolution
method based on fidelity-realness distillation. The core idea is to leverage high-fidelity and high-
realness teacher models not for their outputs, but as “expert guides” providing gradient signals from
different optimization directions Chung et al. (2022); Soh et al. (2019). This guides the student
model to discover a new, superior operating point on the Pareto front. Furthermore, to achieve a
continuous and controllable trade-off, we further distill the model using a flow-matching-inspired
technique Lipman et al. (2024); Zhu et al. (2024c); Fischer et al. (2023), enabling it to traverse the
learned optimal path and freely adjust between fidelity and realness. As demonstrated in Fig. 1,
our CTSR enables fine-grained control over the SR results. To summarize, our contributions are
three-fold:

❑ We propose a real-world image super-resolution method based on fidelity-realness distillation,
effectively achieving a trade-off between fidelity and realness.

❑ We further introduce a continuous and controllable trade-off approach through another distillation
process, enabling the model to freely adjust the balance between fidelity and realness, thus providing
practical user flexibility and advancing the optimization of image SR tasks.

❑ Experiments on real-world image SR benchmarks demonstrate the superior performance of our
proposed CTSR method, along with efficient inference sampling steps and reduced trainable param-
eter count.

2 RELATED WORK

Diffusion-based SR with Fixed Degradation Earlier works on image SR Lin & Shum (2004);
Farsiu et al. (2004); Elad & Aharon (2006); Elad & Feuer (1997); Zeyde et al. (2010); Jiji et al.
(2004; 2007) usually use gradient-based methods to optimize image matrix Sun et al. (2008; 2010),
which inspires the following diffusion-based approaches to use LR input as guidance for diffusion
sampling iteration. As diffusion models have developed, their strong visual priors have also been
applied to image super-resolution tasks. SR3 Saharia et al. (2022) first proposes a diffusion model
for the SR task, which uses LR input as a condition of diffusion sampling, thus requiring training
for the UNet. Further methods like DDRM Kawar et al. (2022), DDNM Wang et al. (2023b) and
DPS Chung et al. (2023) use classifier-free guidance Ho & Salimans (2022), which takes LR input
as the guidance of original diffusion sampling; thus, these methods are training-free. However, all
of these methods are on a fixed degradation setting, where the degradation type and parameters are
known.

Diffusion-based SR with Real-world Settings As these training-free methods use gradient guid-
ance to correct the diffusion sampling process, methods such as DiffBIR Xinqi et al. (2024) and
GDP Fei et al. (2023) try to leverage the gradient to update the parameters of the degradation oper-
ator, and in this case the degradation parameters are unknown. The current diffusion-based image
SR methods focus mainly on the real-world scenario, where the degradation is unknown and com-
plex Wang et al. (2024a); Xie et al. (2024); Wu et al. (2024b); Wang et al. (2024b); Wu et al. (2024a);
Yue et al. (2023); Yang et al. (2024); Yu et al. (2024). StableSR Wang et al. (2024a) proposes an SR
method based on Stable Diffusion Rombach et al. (2022), using an adapter to introduce the LR guid-
ance for diffusion sampling. However, such an approach requires multiple steps to obtain the SR
result, which is time-consuming. ResShift Yue et al. (2023) designs a special sampling, accelerating
the overall sampling in 15 steps. Currently, some methods try to distill the diffusion-based methods
into one step, including AddSR Xie et al. (2024), SinSR Wang et al. (2024b) and OSEDiff Yu et al.
(2024). Some papers also explore the controllability of diffusion-based SR, including PiSA-SR Sun
et al. (2025) and OFTSR Zhu et al. (2024c).

3 METHOD

3.1 MOTIVATION

In diffusion-based methods, some approaches excel in fidelity, such as ResShift Yue et al. (2023) and
SinSR Wang et al. (2024b), while others prioritize realness metrics, like OSEDiff Wu et al. (2024a)

3
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Figure 3: Illustration of our proposed CTSR. (a) At the first stage, we distill student model via two
teacher models, one with better fidelity performance, and one with better realness performance. (b)
At the second stage, we distill model obtailed from first stage, to a continuous mapping to SR results
with different trade-offs between fidelity and realness.

and StableSR Wang et al. (2024a). Combining the strengths of these methods can facilitate an
effective trade-off between the two. One straightforward approach is to linearly combine the super-
resolved outputs of different models. For example, by multiplying the image tensor of ResShift by α
and OSEDiff by (1−α), and then summing them, both fidelity and realness metrics can be improved
by adjusting the coefficients. We validate this on the Nikon test subset of RealSR Cai et al. (2019),
with the results shown in Tab. 1. We further interpret this linear combination method as the sum of
vectors corresponding to different SR methods in the image space, as illustrated in Fig. 2.

However, the performance of the above linear combination method is limited and its inference speed
is slower because of the need to run two models. To address these issues and enhance the model’s
representation capability, we extend it to a more general framework. Inspired by the success of
knowledge distillation Liu et al. (2020); Shao et al. (2023) in image SR Hui et al. (2019); Zhang
et al. (2021b; 2024b); Zhu et al. (2024a), we distill the model output to the intersection of consis-
tency constraints and high-quality image distribution manifolds, striking a trade-off of fidelity and
realness. To further enable controllability of the trade-off between fidelity and realness, we distill
the diffusion sampling process of the model into a transformation from realness to fidelity, allowing
for a flexible, controllable adjustment between the two. As a result, users can freely adjust these two
properties according to their preferences in practical scenarios.

3.2 OVERVIEW

Our model is an one-step diffusion-based SR approach finetuned from OSEDiff Wu et al. (2024a).
The training scheme consists of two stages. In the first stage, as shown in Fig. 3(a), we select an SR
model with good realness as the student model S. This model is distilled via LoRA Hu et al. (2022)
using two teacher models: one with high fidelity (denoted as Tf ) and another with good realness
(denoted as Tr). The teacher model Tf guides the student model S with gradient directions for
fidelity, while Tr ensures that the student model retains its original generative capability. As a result,
the super-resolution process of the model receives gradient corrections in the fidelity direction, and
converges to the intersection of the fidelity constraint and the realness distribution manifold.

In the second stage, as shown in Fig. 3(b), we further distill S within the solution set obtained from
the first stage. Since the diffusion model can be viewed as a distribution transformation mapping
from the initial input to the final output, we set the starting point as the super-resolved result from the
first stage, with the target transformation being the solution with better fidelity within the solution
set. This distribution transformation is achieved through distillation. As the time step t of the
diffusion model is continuous, we can controllably select the appropriate trade-off state, allowing us
to achieve better and more diverse super-resolution results. An illustration of our proposed CTSR is
shown in Fig. 3.

3.3 STAGE 1: DISTILLATION VIA DUAL-TEACHER LEARNING

Motivated by the insight in Sec. 3.1, we propose a distillation-based method, where two super-
resolution models with good fidelity Tf and realness Tr, are used to distill the original model S. Our
training objective consists of two components:
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Reconstruction Loss. The output of the student model should be consistent with the original model
in terms of both consistency and visual quality. We choose L2 loss and LPIPS loss as the recon-
struction loss terms:

Lrec = λl2||S(xLR)− xGT ||22 + λlpℓ(S(xLR),xGT ) (1)

, where xLR is input LR image, xGT is ground-truth image, ℓ is LPIPS loss, λl2 and λlp are balanc-
ing hyper-parameters.

Dual Teacher Distillation Loss. For ease of implementation, we use the same model for both the
realness teacher Tr and the student model S. This allows us to divide the distillation process into two
parts: (1) The fidelity teacher model Tf guides the gradients of S, adjusting its output distribution
in a more faithful direction. (2) The realness teacher model Tr regulates the student model, ensuring
that the directional correction in (1) does not deviate from the manifold of the true image distribution
achieved by Tr. The specific formula for Lfl is as follows:

Lfl = ||ϵTf
(zst , t, c)− ϵS (zst , t, c) ||22

+ γtime||ϵTf
(zst , t, c)− ϵTf

(zt, t, c) ||22,
(2)

where ϵTf
and ϵS represent the denoising UNet of Tf and S, respectively; c is the prompt em-

bedding; zt and zst are the latent codes of ground-truth xGT and the student model’s SR re-
sult x0, obtained via VAE encoder E , each added with the noise at timestep t in the forward
process of the diffusion model; γtime is the hyperparameter to balance the two terms. The
first term ϵTf

(zst , t, c) − ϵS (zst , t, c) aligns the output of S with the teacher model Tf , en-
abling the student model to learn the distribution information from the teacher. The second term,
ϵTf

(zst , t, c)− ϵTf
(zt, t, c), leverages the teacher model’s prior to align the SR result x0 with xGT .

Since alignment in the second term is achieved by adding noise to the latent codes of x0 and xGT

separately, and calculating the difference in the predicted noise of Tf , it reflects the distributional
difference between them in the image space. As a result, compared to directly using L2 loss, this
approach better captures the distributional differences between the student model and the ground
truth, avoiding issues like over-smoothing and loss of detail typically introduced by L2 loss, while
preserving the semantic details of the original image. We show the detailed calculation process of
Lfl in Fig. 6 of Appendix.

This design is similarly applied for the distillation of Tr:

Lrn = ||ϵTr
(zst , t, c)− ϵS (zst , t, c) ||22

+ γtime||ϵTr
(zst , t, c)− ϵTr

(zt, t, c) ||22,
(3)

By combining these losses, the student model S can achieve improved fidelity without sacrificing its
original performance. As a result, the linear combination method discussed in Sec. 3.1 is extended
to a more general approach, where the student’s convergence direction evolves from a simple vector
sum to a more precise optimal solution direction. This distillation mechanism is inspired by the
SDS Poole et al. (2022) and VSD Wang et al. (2023c); Dong et al. (2024) losses, which regulate the
student model using both the teacher model and the ground truth.

The loss function for distillation in the first stage is:

Ls1 = Lrec + λrnLrn + λflLfl, (4)

where λrn and λrn are balancing weights.

In short, our proposed distillation method guides the student model S toward the intersection of the
fidelity constraint and the realness distribution. The distilled SR model then serves as the teacher
model in the following second stage, providing SR solutions with fidelity-realness trade-off.

3.4 STAGE 2: DISTILLATION FOR CONTROLLABILITY

The first stage of our method yields a student model, which we now denote as S1 , that is optimized
to produce a single, high-quality solution on the Perception-Distortion (P-D) Pareto front. The goal
of our second stage is to endow this model with controllability, allowing a user to navigate along
this optimal front. To achieve this in a principled manner, we reformulate this stage based on the
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Table 2: Quantitative comparison of the state-of-the-art methods with superior performance on fi-
delity. t is the timestep set in ours CTSR. The best and second-best results of each metric are
highlighted in red and blue. M-IQ for MUSIQ, M-IQA for MANIQA and C-IQA for CLIPIQA.

Datasets Method PSNR ↑ SSIM ↑ LPIPS ↓ DISTS ↓ FID ↓ NIQE ↓ M-IQ ↑ M-IQA ↑ C-IQA ↑
RealESRGAN Wang et al. (2021) 28.62 0.8052 0.5428 0.2374 171.79 7.8675 54.26 0.5202 0.4515

ResShift Yue et al. (2023) 28.69 0.7874 0.3525 0.2541 176.77 7.8762 52.40 0.4756 0.5413
SinSR Wang et al. (2024b) 28.38 0.7497 0.3669 0.2484 172.72 6.9606 55.03 0.4904 0.6412DRealSR

CTSR (t=0.8) (ours) 28.47 0.8056 0.3561 0.2369 161.24 7.8462 58.76 0.5453 0.6745
RealESRGAN Wang et al. (2021) 25.69 0.7614 0.3266 0.1646 168.02 4.0146 60.36 0.3934 0.4495

ResShift Yue et al. (2023) 26.39 0.7567 0.3158 0.2432 149.59 6.8746 60.22 0.5419 0.5496
SinSR Wang et al. (2024b) 26.27 0.7351 0.3217 0.2341 137.59 6.2964 60.76 0.5418 0.6163RealSR

CTSR (t=0.2) (ours) 26.29 0.7211 0.3210 0.1620 127.67 4.2979 66.84 0.6314 0.6435
RealESRGAN Wang et al. (2021) 24.29 0.6372 0.3570 0.1621 46.31 3.4591 61.05 0.3830 0.5276

ResShift Yue et al. (2023) 24.71 0.6234 0.3473 0.2253 42.01 6.3615 60.63 0.5283 0.5962
SinSR Wang et al. (2024b) 24.41 0.6018 0.3262 0.2068 35.55 5.9981 62.95 0.5430 0.6501DIV2K-Val

CTSR (t=0.2) (ours) 24.45 0.6098 0.3384 0.1394 24.75 3.6803 69.25 0.5826 0.6726

Table 3: Quantitative comparison of methods with better performance on realness. t is the timestep
of set in our CTSR. The best and second-best results of each metric are highlighted in red and blue.

Datasets Method PSNR ↑ SSIM ↑ LPIPS ↓ DISTS ↓ FID ↓ NIQE ↓ MUSIQ ↑ MANIQA ↑ CLIPIQA ↑
StableSR Wang et al. (2024a) 28.04 0.7454 0.3279 0.2272 144.15 6.5999 58.53 0.5603 0.6250
DiffBIR Xinqi et al. (2024) 25.93 0.6525 0.4518 0.2761 177.04 6.2324 65.66 0.6296 0.6860

SUPIR Yu et al. (2024) 25.09 0.6460 0.4243 0.2795 169.48 7.3918 58.79 0.5471 0.6749
PASD Yang et al. (2024) 27.79 0.7495 0.3579 0.2524 171.03 6.7661 63.23 0.5919 0.6242
InvSR Yue et al. (2024) 26.75 0.6870 0.4178 0.2144 142.98 6.7030 63.92 0.5439 0.6791

OSEDiff Wu et al. (2024a) 27.35 0.7610 0.3177 0.2365 141.93 7.3053 63.56 0.5763 0.7053

DRealSR

CTSR (t=0.0) (ours) 27.38 0.7767 0.3423 0.1937 142.52 6.6438 64.70 0.6412 0.7060
StableSR Wang et al. (2024a) 24.62 0.7041 0.3070 0.2156 128.54 5.7817 65.48 0.6223 0.6198
DiffBIR Xinqi et al. (2024) 24.24 0.6650 0.3469 0.2300 134.56 5.4932 68.35 0.6544 0.6961

SUPIR Yu et al. (2024) 23.65 0.6620 0.3541 0.2488 130.38 6.1099 62.09 0.5780 0.6707
PASD Yang et al. (2024) 25.68 0.7273 0.3144 0.2304 134.18 5.7616 68.33 0.6323 0.5783
InvSR Yue et al. (2024) 24.50 0.7262 0.2872 0.1624 148.16 4.2189 67.45 0.6636 0.6918

OSEDiff Wu et al. (2024a) 23.94 0.6736 0.3172 0.2363 125.93 6.3822 67.52 0.6187 0.7001

RealSR

CTSR (t=0.0) (ours) 25.70 0.6962 0.3058 0.1530 121.30 4.0662 67.94 0.6367 0.6495
StableSR Wang et al. (2024a) 23.27 0.5722 0.3111 0.2046 24.95 4.7737 65.78 0.6164 0.6753
DiffBIR Xinqi et al. (2024) 23.13 0.5717 0.3469 0.2108 33.93 4.6056 68.54 0.6360 0.7125

SUPIR Yu et al. (2024) 22.13 0.5279 0.3919 0.2312 31.40 5.6767 63.86 0.5903 0.7146
PASD Yang et al. (2024) 24.00 0.6041 0.3779 0.2305 39.12 4.8587 67.36 0.6121 0.6327
InvSR Yue et al. (2024) 23.32 0.5901 0.3657 0.1370 28.85 3.0567 68.97 0.6122 0.7198

OSEDiff Wu et al. (2024a) 23.72 0.6109 0.3058 0.2138 26.34 5.3903 65.27 0.5838 0.6558

DIV2K-Val

CTSR (t=0.0) (ours) 24.34 0.6093 0.3377 0.1377 24.56 3.5455 69.52 0.5894 0.6741

Rectified Flow framework (Lipman et al., 2024), correcting the mathematical inconsistencies in our
initial approach. Rectified Flow provides a powerful and theoretically sound method for learning a
direct, efficient mapping between two data distributions, π0 and π1. It models this transformation
as an Ordinary Differential Equation (ODE), dzt

= v(zt, t), where v(zt, t) is a velocity vector field
learned by a neural network. The core insight of Rectified Flow is to train this velocity field to
transport samples along straight-line paths, simplifying both training and inference. We adapt this
framework to our specific task by defining the source and target distributions for the desired P-D
trajectory:

Source Distribution π0: This is the distribution of high-quality SR images generated by Stage 1
model, S1. For any given LR input xLR, a sample from this distribution is x0 = S1(xLR). This
represents our optimal starting point on the Pareto front, corresponding to t = 0.

Target Distribution π1: This is the distribution of high-fidelity SR images generated by the fidelity
teacher model, Tf . For the same input xLR, a sample is x1 = Tf (xLR). This defines the endpoint
of our trajectory, corresponding to t = 1.

Our objective is to learn a velocity field vS that can transport an image from the distribution π0

to π1 in a single conceptual step. We operate in the latent space of the VAE. Let z0 = E(x0)
and z1 = E(x1) be the latent representations of the source and target images, where E is the VAE
encoder. The straight-line path connecting these points is parameterized as zt = (1− t)z0 + tz1 for
t ∈ [0, 1]. The target velocity vector along this path is constant and given by the simple difference
vtarget = dzt

dt = z1 − z0. The training objective for our student model S in this stage is to learn
a velocity predictor vS that accurately estimates this target velocity for any point zt along the path.
This is formulated as a simple mean squared error loss:

Ls2 = ExLR,t∼[0,1]||(z1 − z0)− vS((1− t)z0 + tz1, t, c)||22 (5)
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26.21/0.1126
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27.51/0.1219

SinSR
26.28/0.1297
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27.60/0.0942
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Figure 4: Visualized results of evaluation on the RealSR testset, with our proposed CTSR (t = 0.0)
and compared methods.

Input LR OSEDiff Ours Input LR OSEDiff Ours

Figure 5: Detailed comparison on RealSR validation set, zoom in for more details.

where c represents prompt embeddings. This objective directly trains the student network to predict
the direction of the full trajectory from the balanced solution to the high-fidelity solution.

This new formulation provides a clear and direct mechanism for control at inference. The parameter
t now represents the desired position along the learned trajectory. Given input xLR, we first compute
the start-point latent z0 = E(S1(xLR)). To generate a super-resolved image at a specific trade-off
level tinfer, we approximate the solution to the learned ODE with a single Euler step:

zout(tinfer) = z0 + tinfer · vS(z0, 0, c) (6)

The final image is then produced by the VAE decoder: x̂t = D(zout(tinfer)). As tinfer increases
towards 1, the output is progressively shifted along the learned vector field towards the high-fidelity
domain. This provides an efficient, one-step, and theoretically grounded method for achieving a
continuous and controllable fidelity-realness trade-off.

4 EXPERIMENTS

4.1 SETTINGS

Datasets We merge the training sets from DIV2K Agustsson & Timofte (2017), LSDIR Li et al.
(2023), DRealSR Wei et al. (2020), ImageNet Deng et al. (2009), and RealSR Cai et al. (2019) as
our training dataset, and evaluate our method on the validation sets of DIV2K, DRealSR, and Re-
alSR. The degraded images are generated using the real-world degradation operator from RealESR-
GAN Wang et al. (2021). For the SR process, we first up-sample the degraded images in the scaling
factor of ×4, then input them into our proposed SR framework, so the size of the degraded input and
the obtained output are matched. The task real-world image super-resolution here is not limited to
up-sampling image to a larger size, but also includes other restoration process, like removal of alias,
blur, and noise, to improve the visual quality of input image.

Evaluation Metrics We assess both fidelity and realness for evaluation. For fidelity, we use PSNR
and SSIM Wang et al. (2004); for realness, we use LPIPS Zhang et al. (2018), DISTS Ding et al.
(2020), and FID Heusel et al. (2017), which require reference images, and NIQE Zhang et al. (2015),
MUSIQ Ke et al. (2021), CLIPIQA Wang et al. (2023a), and MANIQA Yang et al. (2022), which
are reference-free. LPIPS uses VGG Simonyan & Zisserman (2014) weights following Dong et al.
(2024), and MANIQA uses PIPAL Jinjin et al. (2020) weights by default.

Implementation Details For the teacher model selection, we choose OSEDiff Wu et al. (2024a) as
Tr, due to its advantage in realness, and ResShift Yue et al. (2023) asTr, due to its better fidelity
performance. The pretrained version of Stable Diffusion Rombach et al. (2022) used is 2.1-base.
The default image input size for the models is 512×512. All images are processed at their original
size, and for images larger than 512×512, we use patch splitting and apply VAE tiling to avoid block
artifacts. In both the first and second stages of training, we use the AdamW Loshchilov & Hutter
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Table 4: Ablation of training with different
teachers, and without dual teacher distillation
loss. Best and second-best results are shown in
red and blue. C-IQA and M-IQA are short for
CLIPIQA and MANIQA.

Teacher Tfl PSNR↑ SSIM↑ LPIPS↓ C-IQA↑ M-IQA↑
w/o distill 26.71 0.6743 0.4552 0.5439 0.5775

SinSR 25.71 0.6734 0.3552 0.6036 0.6065
ResShift (Ours) 25.70 0.6962 0.3058 0.6495 0.6367

Table 5: Our distillation applied in low-light en-
hancement task evaluated on LOL-v2-syn Chen
et al. (2018) testset, which brings fidelity preser-
vation and realness improvement. “Para.” is short
for parameters. Best results in red.

Method PSNR↑ SSIM↑ LPIPS↓ Para. (M) ↓
GSAD Hou et al. (2023) 28.67 0.9444 0.0487 17.17
Reti-Diff He et al. (2023) 27.53 0.9512 0.0349 26.11

GSAD (Distilled) 28.69 0.9507 0.0336 17.17

(2017) optimizer with β1=0.9, β2=0.999, and a learning rate of 5e-5, with 20,000 training steps in
the first stage and 50,000 in the second stage. The batch size is set to 1. Distillation in both stages is
performed using LoRA Hu et al. (2022) fine-tuning, with a rank of 4. In the inference process, the
prompt is obtained from a pre-trained RAM Zhang et al. (2024a) module, following current state-
of-the-art methods Wu et al. (2024a); Sun et al. (2025). For the loss balancing coefficients in Ls1,
λrn is set to 1, λfl to 2, and γtime to 5.5. In Lrec, λl2 and λlp are set to 1 and 2 respectively. For
the timestep t in our CTSR, we set it as 0.0 for comparison with methods with better realness, and
set t to values greater than 0 for methods with better fidelity. Settings of compared methods are set
as their default choice, and the final timestep t of diffusion-based methods are 0. All experiments
are conducted on SR task with a scaling factor of 4, using an NVIDIA A6000 GPU.

4.2 COMPARISON WITH STATE-OF-THE-ARTS

Comparison Methods. We select methods for comparison based on two performance metrics: fi-
delity and realness, and group them accordingly. For fidelity, we choose ResShift Yue et al. (2023),
SinSR Wang et al. (2024b), and RealESRGAN Wang et al. (2021); for realness, we select Sta-
bleSR Wang et al. (2024a), DiffBIR Xinqi et al. (2024), SUPIR Yu et al. (2024), SinSR Wang et al.
(2024b), PASD Yang et al. (2024), InvSR Yue et al. (2024), and OSEDiff Wu et al. (2024a).

Table 6: Ablation for λrn, λfl and λtime. It is shown
that our choice (in bold) leads to a better trade-off for
both fidelity and realness. Best and second-best results
shown in red and blue.

λrn PSNR↑ LPIPS↓ λfl PSNR↑ LPIPS↓ γtime PSNR↑ LPIPS↓
0.6 25.07 0.3487 1.6 25.81 0.3377 4.5 25.08 0.3481
0.8 24.81 0.3185 1.8 25.62 0.3365 5.0 25.60 0.3166
1.0 25.70 0.3058 2.0 25.70 0.3058 5.5 25.70 0.3058
1.2 25.66 0.3376 2.2 25.44 0.3149 6.0 24.82 0.3212
1.4 25.62 0.3317 2.4 25.19 0.3226 6.5 27.07 0.3490

Table 7: Results of the controllable trade-off
with adjustable properties implemented via
timestep t, on DIV2K validation set. Best
and second-best results in red and blue.

Timestep t PSNR↑ LPIPS↓ NIQE↓ MUSIQ↑
0.0 24.34 0.3377 3.5455 69.52
0.2 24.45 0.3384 3.6803 69.25
0.4 24.58 0.3397 3.8114 69.00
0.6 24.72 0.3409 3.9368 68.60
0.8 24.82 0.3423 4.0234 68.25
1.0 24.85 0.3437 4.0438 67.96

Table 8: Comparison of computational complexity and number of parameters across diffusion-based
methods. Best and second-best results are shown in red and blue. Numbers in parentheses after
method name is diffusion sampling steps. “Infer.” is short for inference time (seconds), and “Para.”
for trainable parameters (M).

StableSR(200) DiffBIR(50) SUPIR(50) PASD(20) ResShift(15) InvSR(1) SinSR(1) OSEDiff(1) Ours(1)
Infer. 12.4151 7.9637 16.8704 4.8441 0.7546 0.1416 0.1424 0.1791 0.1791
Para. 150.0 380.0 1331.2 625.0 118.6 33.8 118.6 8.5 8.5

Quantitative Comparison. We use RealESRGAN as a simulation of real-world degradation and
compare the performance on the DIV2K, RealSR, and DRealSR validation sets. Tab. 2 and Tab. 3
present the quantitative comparison results.

Tab. 2 compares our method with existing methods that excel in terms of fidelity, showing that
our method is comparable in terms of PSNR and SSIM, while significantly outperforming others
in realness metrics such as DISTS, FID, and others. The comparison with RealESRGAN further
demonstrates that diffusion-based methods generally achieve higher scores on no-reference metrics
(NIQE, MANIQA, CLIPIQA, MUSIQ), suggesting that diffusion models are better suited to provide
visual priors for super-resolution tasks. Tab. 3 compares our method with existing methods that excel
in realness. The results show that our method is competitive in realness metrics while also achieving
significant performance gains in fidelity.
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Qualitative Comparison. Fig. 4 presents the results of comparison experiments on RealSR testset.
The figure shows that our method provides better visual quality and consistency with the original
image compared to the other methods, proving that our CTSR achieves better image quality, PSNR
and DISTS metrics, as well as natural and vivid details. It is also notable that both OSEDiff Wu
et al. (2024a), the previous best method, and our CTSR exhibit a hue different from that of other
earlier methods, like ResShift Yue et al. (2023), which is possibly due to different color fix settings.

Efficiency Comparison. To evaluate the efficiency and complexity of CTSR, we compare these
properties with the SOTA methods in Tab. 8, which shows that CTSR requires fewer inference steps,
achieves a comparable inference time, and has fewer trainable parameters.

4.3 ABLATION STUDY

Necessity of Teacher Distillation Loss. A natural question arises: “why do we need two teacher
models to achieve the trade-off, given that many methods use L2 loss and LPIPS loss to balance fi-
delity and realness? ” From a theoretical standpoint, the L2-norm, when used as a fidelity constraint,
is too sparse and lacks the smoothness necessary to capture the detailed semantic information of the
LR input. On the other hand, regularization losses, such as LPIPS, struggle to effectively represent
the distribution of natural images. By training SR models on a diffusion prior with various strate-
gies, we can obtain better guidance for balancing fidelity and realness, thereby advancing the Pareto
frontier of SR tasks. To further support this, we present results with and without the distillation loss
in Tab. 4. The comparison shows that, without the distillation loss, the method reverts to the behav-
ior of earlier GAN-based approaches, achieving better fidelity but suffering a significant decline in
realness and visual quality. Since multiple SOTA SR models excel in fidelity performance, to find
the best choice for Tfl, we also experiment with SinSR Wang et al. (2024b) as the teacher model for
dual teacher distillation. The results are presented in Tab. 4.

Selection of Coefficients λfl, λrn and γtime. For the balancing coefficients among the loss function
terms, we employ a grid search to determine the values that yield the best overall performance. The
results of this selection process are shown in Tab. 6.

4.4 EVALUATION OF CONTROLLABILITY AND EXTENDABILITY

Controllability. Here, we introduce a controllable image super-resolution method enabled by the
proposed second stage distillation. Specifically, the controllability of CTSR is determined by the
input time step t of the diffusion model, where t = 0 corresponds to the best realness and t = 1 to
fidelity. The input t can be sampled between 0 and 1, allowing user to adjust the balance between
these two properties. We evaluate the performance on the DIV2K validation set, with the results
presented in Tab. 7. As the input timestep t increases from 0 to 1, fidelity metrics such as PSNR
and SSIM improve, while realness metrics like LPIPS begin to decrease. Visual results are shown
in Fig. 1(a) and Fig. 7 in Appendix.

Extension to Image Enhancement. To demonstrate the generalization and versatility of our pro-
posed fidelity-realness distillation method from Sec. 3.3, we extend it to the low-light enhancement
(LLE) task, showcasing the performance improvement achieved by this approach. We select two
diffusion-based LLE methods: GSAD Hou et al. (2023), which excels in fidelity, and Reti-Diff He
et al. (2023), which excels in realness, and apply a training strategy similar to our CTSR. The results,
presented in Tab. 5, show that our proposed distillation strategy preserves the fidelity advantage of
GSAD while leveraging the model prior from Reti-Diff to enhance realness performance.

5 CONCLUSION

This paper proposes CTSR, a distillation-based real-world image super-resolution method that lever-
ages multiple teacher models to strike a trade-off between realness and fidelity. Furthermore, in-
spired by the working principle of flow matching, to enable controllability between fidelity and
realness, this paper explores a controllable trade-off effect by distilling the output distributions of
the aforementioned models, enabling a controllable image super-resolution method that is able to be
adjusted via input timestep. Experiments on several real-world image super-resolution benchmarks
demonstrate the superior performance of CTSR, compared to other competing methods. Addition-
ally, the proposed fidelity-realness distillation approach can be extended to other tasks, such as
low-light enhancement, for performance improvement.
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A APPENDIX

In the supplementary materials, we demonstrate additional experimental results, implementation
details, discussion, and analysis as follows.

A.1 PRELIMINARIES

Diffusion Probabilistic Models Ho et al. (2020); Song et al. (2021; 2020) are a class of gen-
erative models with strong visual prior. The key idea is to model the data distribution by sim-
ulating a forward noise-adding process and a reverse denoising process. Let x0 represent the
original image, xt be the data at the t-th step of the forward process. The forward process can
be described as: q(xt|xt−1) = N (xt;

√
1− βtxt−1, βtI), where βt controls the noise added at

each step, and N (·,µ, σ2I) represents Gaussian distribution with mean µ and co-variance matrix
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Figure 6: Visualized calculation process of Lfl.

σ2I. The reverse process aims to reconstruct the original data x0 by predicting xt−1 from xt:
pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ

2
t I), where µθ(xt, t) is the predicted mean parameterized by a

neural network.

The training of the diffusion model needs a reconstruction loss of the difference between added noise
in forward process, and predicted noise in reverse process, formulated as L =

∑T
t=1[||ϵθ(xt, t) −

ϵ||2], where ϵθ(xt, t) is the model’s prediction of the noise ϵ added at each timestep.

Flow matching Liu et al. (2023); Lipman et al. (2024) is a generative modeling technique similar
to diffusion models Meng et al. (2023). It can model and learn the mapping from one data distri-
bution to another through a noise-adding and denoising process, similar to diffusion models. Such
distribution transformation process can be applied to tasks such as image reconstruction and style
transfer Martin et al. (2024); Dao et al. (2023); Hu et al. (2024); Yin et al. (2024).

Convex Optimization for Image Restoration Image restoration, when modeled as y = Ax+n, is
also known as image inverse problem. The target for image restoration is as argmin

x
||y−Ax||22 +

λR(x), where R(x) is the regularization term, like L1 norm or total variation Rudin et al. (1992);
Zhu et al. (2024b). This convex optimization problem can be solved via algorithms like gradient
descent and ISTA Ito et al. (2019), in an iterative process. Take gradient descent step as an example:
xk+1 = xk + ρ∇x(y − Axk), where xk and xk+1 is the restoration result in k and k + 1 step,
and ρ is the learning rate. Diffision-based image SR methods, like DPS Chung et al. (2023) and
DDS Hyungjin et al. (2024), are inspired via such process, taking iterative sampling in diffusion as
optimization steps.

A.2 MORE IMPLEMENTATION DETAILS

A.2.1 MORE DETAILS OF LOSS FUNTION

We provide a detailed loss calculation process for Stage 1 in the main paper, as shown in Fig. 6.

A.2.2 PSEUDOCODE OF OUR PROPOSED CTSR METHOD

The overall training process for first and second stage is shown in Algo. 1 and Algo. 2.

A.3 MORE EXPERIMENTAL RESULTS

A.3.1 MORE ABLATION RESULTS

Ablation of Stage 2 Distillation Ablation results for two-stage training are shown below in Tab. 9.
Better results in bold. It is shown that with second stage of training, our proposed method could
also have better performance.
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Algorithm 1: Fidelity-Realness Distillation in Stage 1
Input: Ground truth xGT , input LR image xLR, student model S, teacher model Tfl and Trn,

VAE encoder E , VAE decoder D, embedding of prompt c, loss balancing
hyper-parameters λtime, λfl, λrn, λl2, λlp

Output: Student model S
1 Initialize S using weight of Trn.
2 for epoch = 1 to total epochs do
3 z1 = E(xLR)
4 z0 = E(xGT )
5 Random sample a timestep t
6 zt = add noise(z0, t)
7 zs0 = S(z1)
8 x0 = D(zs0)
9 zst = add noise(zs0, t, c)

10 Lrec = λl2||xGT − x0||22 + λlpℓ(xGT ,x0)
11 Lfl = ||ϵTf

(zst , t, c)− ϵS(z
s
t , t, c)||22 + λtime||ϵTf

(zt, t, c)− ϵTf
(zst , t, c)||22

12 Lrn = ||ϵTr (z
s
t , t, c)− ϵS(z

s
t , t, c)||22 + λtime||ϵTr (zt, t, c)− ϵTr (z

s
t , t, c)||22

13 Ls1 = Lrec + λflLfl + λrnLrn

14 Ls1.backward()
15 S.update()
16 end
17 return S

Algorithm 2: Controllability Distillation in Stage 2
Input: HR output of student model x0, student model S, teacher model (weight initalized from

student model) TS , VAE encoder E
Output: Student model S

1 for epoch = 1 to total epochs do
2 Randomly sample timesteps t and t′ ∈ (0, 1) /* ensure t′ > t */
3 zt = z0 + tϵTS (z0, t, c)
4 zt′ = zt + t′ϵTS (z0, t, c)
5 Lctrlt,t′ = ||tϵTS (zt, t, c)− t′ϵTS (zt′ , t

′, c) + (∆t)ϵS(zt, t, c)||22
6 Ls2 =

∑
t,t′∈[0,1] Lctrlt,t′

7 Ls2.backward()
8 S.update()
9 end

10 return S
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Table 9: Ablation of second stage distillation. Best results in red.

Method PSNR SSIM NIQE CLIPIQA MANIQA
w/o 2nd stage 24.36 0.6092 3.5732 0.6737 0.5879

w/ 2nd stage (Ours) 24.34 0.6093 3.5455 0.6741 0.5894

Table 10: More results of the controllable trade-off between fidelity and realness, with adjustable
properties implemented via timestep t. Test on the DIV2K validation set.

Timestep t PSNR↑ SSIM↑ LPIPS↓ DISTS↓ FID↓ NIQE↓ MUSIQ↑ MANIQA↑ CLIPIQA↑
0.0 24.34 0.6093 0.3377 0.1377 24.56 3.5455 69.52 0.5894 0.6741
0.2 24.45 0.6098 0.3384 0.1394 24.75 3.6803 69.25 0.5826 0.6726
0.4 24.58 0.6131 0.3397 0.1412 25.00 3.8114 69.00 0.5767 0.6715
0.6 24.72 0.6172 0.3409 0.1432 25.64 3.9368 68.60 0.5698 0.6684
0.8 24.82 0.6191 0.3423 0.1447 26.13 4.0234 68.25 0.5642 0.6632
1.0 24.85 0.6192 0.3437 0.1459 26.32 4.0438 67.96 0.5609 0.6585

A.3.2 MORE RESULTS OF CONTROLLABLE IMAGE SR

Here we present the controllable image SR effect on the validation sets of DIV2K, RealSR and
DRealSR. Results are shown in Tab. 10, Tab. 11 and Tab. 12 seperately.

A.3.3 MORE VISUAL RESULTS

We provide more results presenting the controllability of our proposed CTSR, which are shown in
Fig. 7. From left to right, the fidelity property is gradually changed to realness, with less smooth
and more details and better visual quality. We also provide a detailed comparison result between our
CTSR and OSEDiff Wu et al. (2024a) in Fig. 5. It is shown that output of our method have more
vivid details, like the fine wrinkles and folds on the forehead, as well as the brick textures on the
wall.

A.4 MORE RELATED WORK AND DISCUSSION

A.4.1 MORE RELATED WORK ON IMAGE SR

GAN-based and MSE-oriented Image SR Methods Earlier work mainly use GAN Goodfellow
et al. (2014) and MSE-oriented Vaswani et al. (2017); Dong et al. (2015) networks to implement
the image SR task Ren et al. (2020); Wang et al. (2021); Pan et al. (2021); Wang et al. (2018);
Yinhuai et al. (2023); Poirier-Ginter & Lalonde (2023). SRGAN Ledig et al. (2017) first uses the
GAN network to image SR task, optimized via both GAN and perceptual losses, to improve vi-
sual quality. Based on this observation, ESRGAN Wang et al. (2018) improved detail recovery
by incorporating a relativistic average discriminator. Methods like BSRGAN Zhang et al. (2021a)
and Real-ESRGAN Wang et al. (2021) follow the complexities of real-world degradation, allowing
the ISR approaches to effectively tackle uncertain degradation, thus improving the flexibility of the
model. Although GAN-based methods can inject more realistic detail into images, they struggle

Table 11: More results of the controllable trade-off between fidelity and realness, with adjustable
properties implemented via timestep t. Test on the RealSR testset.

Timestep t PSNR↑ SSIM↑ LPIPS↓ DISTS↓ FID↓ NIQE↓ MUSIQ↑ MANIQA↑ CLIPIQA↑
0.0 25.70 0.6962 0.3058 0.1530 121.30 4.0662 67.94 0.6367 0.6495
0.2 26.29 0.7211 0.3210 0.1620 127.67 4.2979 66.84 0.6314 0.6435
0.4 26.61 0.7203 0.3178 0.1594 134.38 4.2320 66.33 0.6355 0.6340
0.6 26.62 0.7204 0.3191 0.1605 145.21 4.2561 65.29 0.6340 0.6333
0.8 26.65 0.7208 0.3206 0.1614 148.86 4.2708 62.64 0.6327 0.6240
1.0 26.72 0.7213 0.3220 0.1628 156.38 4.3209 61.08 0.6304 0.6209
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Table 12: More results of the controllable trade-off between fidelity and realness, with adjustable
properties implemented via timestep t. Test on the DRealSR testset.

Timestep t PSNR↑ SSIM↑ LPIPS↓ DISTS↓ FID↓ NIQE↓ MUSIQ↑ MANIQA↑ CLIPIQA↑
0.0 27.38 0.7767 0.3423 0.1937 142.52 6.6438 64.70 0.6412 0.7060
0.2 27.53 0.7794 0.3446 0.1402 147.25 7.7594 63.52 0.6408 0.7042
0.4 27.99 0.8023 0.3513 0.1687 150.39 7.5088 63.35 0.5654 0.6958
0.6 28.22 0.8043 0.3528 0.2195 156.36 7.5306 62.99 0.5642 0.6930
0.8 28.47 0.8056 0.3561 0.2369 161.24 7.8462 58.76 0.5453 0.6745
1.0 28.68 0.8152 0.3697 0.2371 164.46 7.9699 57.85 0.5974 0.6664

Fidelity Realness

t=1.0 t=0.8 t=0.6 t=0.4 t=0.2 t=0.0

Controllable Trade-off

Figure 7: Visualized results of controllable image SR.
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with challenges such as training instability. For MSE-oriented methods, SwinIR Liang et al. (2021)
introduces a strong baseline model for image restorations, which includes image super-resolution
(including known degradation and real-world types), image denoising, and JPEG compression arti-
facts. As this method is also trained in an end-to-end manner, it also faces problems like over-smooth
and detail missing.

A.4.2 MORE DISCUSSION OF CONTROLLABLE IMAGE SR APPROACHES

Recent works such as PiSA-SR Sun et al. (2025) and OFTSR Zhu et al. (2024c) have explored
diffusion-based approaches for real-world image super-resolution (SR), which is controllable be-
tween fidelity and realness. Here we discuss the difference between our CTSR and these approaches
briefly.
Comparison with PiSA-SR. Our proposed method differs from PiSA-SR in both formulation and
implementation. Specifically, we adopt a flow-matching training strategy that fine-tunes the initial-
stage SR model to establish a continuous mapping within the solution space, from high-fidelity
outputs to those with improved perceptual realness. This enables controllable super-resolution by
navigating along the learned flow. In contrast, PiSA-SR explicitly decouples fidelity and realness
into separate objectives at the pixel and semantic levels, respectively. It fine-tunes two dedicated
LoRA modules to address each aspect and leverages different LoRA weightings to balance fidelity
and realness. This leads to a fundamentally different control mechanism compared to our continuous
and unified flow-based strategy.

Comparison with OFTSR. While both OFTSR and our method leverage flow-based models for
controllable SR, there are significant differences in both conceptual framework and practical imple-
mentation. From the perspective of domain optimal transport via flow matching, OFTSR distills
denoising trajectories directly from an initial latent point toward the high-fidelity and high-realness
domains. The trajectory direction is implicitly controlled by selecting different timesteps, and the
entire distillation process is completed in a single stage. In contrast, our CTSR method decomposes
this process into two stages: in the first stage, we obtain a strong SR model via dual-teacher dis-
tillation process that simultaneously enhances both fidelity and realness, serving as a unified initial
trajectory endpoint aligned with the targets of OFTSR. In the second stage, we further refine the
mapping along a constrained subspace, learning a directional flow from fidelity to realness. This
staged decomposition provides finer control over the trade-off between fidelity and realness, and
reflects a key difference between our approach and OFTSR.

Moreover, OFTSR assumes a known and fixed degradation operator, which limits its applicability to
synthetic or well-characterized degradation settings. In contrast, our CTSR framework is designed
for real-world SR scenarios, where degradation types and parameters are unknown and potentially
diverse. This makes CTSR more suitable for practical applications where the degradation process is
complex and not explicitly defined.

A.4.3 MORE DISCUSSION OF DISTRIBUTION DISTILLATION AND KNOWLEDGE
DISTILLATION

Although motivated by the success of knowledge distillation in image SR task, our method dif-
fers from these distillation methods in both objective and distillation design. Traditional knowl-
edge distillation methods targets at tasks like classification, via techniques including adaptive multi-
teacher fusion and multi-level supervision. Ours distillation is inspired from Score Distribution Sam-
pling Poole et al. (2022) and Variational Score Distillation Wang et al. (2023c); Wu et al. (2024a),
which use pre-trained generation prior to regulate the generation process of student model, making
the distribution of generated result closer to the distribution of pre-trained generation model. Also,
our CTSR tackles real-world image super-resolution instead of typical knowledge distillation task.

A.5 LLM USAGE DECLARATION

In the preparation of this document, we utilized Large Language Model (LLM) to enhance the qual-
ity of the writing. Its application is focused on text polishing, grammar correction, and improving
clarity. All content generated with the assistance of the LLM was rigorously reviewed, revised, and
ultimately approved by the authors to ensure its accuracy and originality.
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