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Abstract

Even when applied to 2D images, natural lan-001
guage describes a fundamentally 3D world.002
We present the Voxel-informed Language003
Grounder (VLG), a language grounding model004
that leverages 3D geometric information in005
the form of voxel maps derived from the vi-006
sual input using a volumetric reconstruction007
model. We show that VLG significantly im-008
proves grounding accuracy on SNARE (Thoma-009
son et al., 2021), an object reference game010
task. At the time of writing, VLG holds the011
top place (anonymized) on the SNARE leader-012
board1, achieving SOTA results with a 1.7%013
overall improvement on all descriptions.014

1 Introduction015

Embodied robotic agents hold great potential for016

providing assistive technologies in home environ-017

ments (Pineau et al., 2003), and natural language018

provides an intuitive interface for users to interact019

with such systems (Andreas et al., 2020). For these020

systems to be effective, they must be able to re-021

liably ground language in perception (Bisk et al.,022

2020; Bender and Koller, 2020).023

Despite typically being paired with 2D images,024

natural language that is grounded in vision de-025

scribes a fundamentally 3D world. For example,026

consider the grounding task in Figure 1, where the027

agent must select a target chair against a distrac-028

tor given the description “the swivel chair with 6029

wheels.” Although the agent is provided with multi-030

ple images revealing all of the wheels on each chair,031

it must be able to properly aggregate information032

across images to successfully differentiate them,033

something that requires reasoning about their 3D034

geometry at some level.035

In this work we show how language grounding036

performance may be improved by leveraging 3D037

prior knowledge. Our model, Voxel-informed Lan-038

guage Grounder (VLG), extracts 3D voxel maps us-039

1https://github.com/snaredataset/snareleaderboard
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Figure 1: Voxel-informed Language Grounder. Our
VLG model leverages explicit 3D information by infer-
ring volumetric voxel maps from input images, allowing
the agent to reason jointly over the geometric and visual
properties of objects when grounding.

ing a pre-trained volumetric reconstruction model, 040

which it fuses with multimodal features from a 041

large-scale vision and language model in order to 042

reason jointly over the visual and 3D geometric 043

properties of objects. 044

We focus our investigation within the context 045

of SNARE (Thomason et al., 2021), an object ref- 046

erence game where an agent must ground natural 047

language describing common household objects 048

by their geometric and visual properties, showing 049

that grounding accuracy significantly improves by 050

incorporating information from predicted 3D vol- 051

umes of objects. At the time of writing, VLG 052

achieves SOTA performance on SNARE, attain- 053

ing an absolute improvement of 1.7% over the next 054

closest baseline. 055

2 Related Work 056

Prior work has studied deriving structured represen- 057

tations from images to scaffold language ground- 058

ing. However, a majority of systems use represen- 059

tations such as 2D regions of interest (Anderson 060

et al., 2018; Wang et al., 2020) or symbolic graph- 061

based representations (Hudson and Manning, 2019; 062

Kulkarni et al., 2013), which do not encode 3D 063
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Figure 2: VLG Architecture. (Left) Our VLG model consists of a visiolinguistic module which produces a joint
embedding for text and images using CLIP and a voxel-language module for jointly embedding language and
volumetric maps. (Right) The voxel-language module uses a cross modal transformer to fuse word embeddings
from CLIP with voxelmap factors extracted from LegoFormer (Yagubbayli et al., 2021). During training, gradients
only flow through solid lines.

properties of objects.064

Most prior work tying language to 3D repre-065

sentations has largely focused on generating 3D066

structures conditioned on language, either at the067

scene (Chang et al., 2014, 2015a), pose (Ahuja and068

Morency, 2019; Lin et al., 2018), or object (Chen069

et al., 2018) level. In contrast, in this work we070

focus on augmenting language grounding using071

structured 3D representations derived from 2D im-072

ages. For the task of visual language navigation,073

prior work has shown how a persistent 3D semantic074

map may be used as an intermediate representation075

to aid in selecting navigational waypoints (Chap-076

lot et al., 2020; Blukis et al., 2021). The semantic077

maps, however, represent entire scenes with voxels078

representing object categories, rather than their ge-079

ometric properties. In this work, we show how a080

more granular occupancy map representing objects’081

geometry can improve language grounding.082

Closest to our work is that of Prabhudesai et al.083

(2020), which presents a method for mapping084

language to 3D features within scenes from the085

CLEVR (Johnson et al., 2017) dataset. Their sys-086

tem generates 3D feature maps inferred from im-087

ages and then grounds language directly to 3D088

bounding boxes or coordinates. Their system as-089

sumes, however, that dependency trees are pro-090

vided for the natural language, and it is trained with091

supervised alignments between tree constituents092

and the 3D representations.093

3 Voxel-informed Language Grounder 094

We consider a task where an agent must cor- 095

rectly predict a target object vt against a dis- 096

tractor vc given a natural language description 097

wt = {w1, ..., wm} of the target. For each ob- 098

ject, the agent is provided with n 2D views v = 099

{x1, ..., xn}, xi ∈ R3×W×H . 100

An agent for this task is represented by a scoring 101

function s(v, w) ∈ [0, 1], computing the compat- 102

ibility between the target description and the 2D 103

views of an object. We first use unimodal encoders 104

to encode the language description into ew = h(w) 105

and the object view images into a single aggregate 106

visual embedding ev = g(v) before fusing them 107

with a visiolinguistic module evw = fvw ([ev; ew]). 108

Prior approaches to this problem directly input this 109

fused representation to a scoring module to pro- 110

duce a score s(evw). They do not explicitly reason 111

about the 3D properties of the observed objects, 112

requiring the models to learn them implicitly. 113

In contrast, our Voxel-informed Language 114

Grounder augments the scoring function s with 115

explicit 3D volumetric information eo = o(v) ex- 116

tracted from a pre-trained multiview reconstruc- 117

tion model o(v). The volumetric information (in 118

the form of a voxel occupancy map in RW×H×D) 119

is first fused into a joint representation with the 120

language using a multimodal voxel-language mod- 121

ule eow = fow([eo; ew]). The scoring function 122

then produces a score based on all three modalities 123

s([evw; eow]). 124
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VALIDATION TEST
Model Visual Blind All Visual Blind All

ViLBERT 89.5 76.6 83.1 80.2 73 76.6
MATCH 89.2 (0.9) 75.2 (0.7) 82.2 (0.4) 83.9 (0.5) 68.7 (0.9) 76.5 (0.5)
MATCH∗ 90.6 (0.004) 75.7 (0.01) 83.2 (0.006) - - -
LAGOR 89.8 (0.4) 75.3 (0.7) 82.6 (0.4) 84.3 (0.4) 69.4 (0.5) 77.0 (0.5)
LAGOR∗ 89.6 (0.003) 74.9 (0.003) 82.3 (0.0) - - -

VLG (Ours) 91.6 (0.008) 78.5†(0.002) 85.2†(0.004) 85.8 71.3 78.7

Table 1: SNARE Benchmark Performance. Object reference game accuracy on the SNARE task across validation
and test sets. Performance on models with an asterisk are our replications of the baselines in (Thomason et al.,
2021). MATCH∗, LAGOR∗, and VLG performances are averaged over 3 seeds. Standard deviations are shown in
parentheses. Our VLG model achieves the best overall performance. Due to leaderboard submission restrictions, we
were not able to get test set results for the MATCH∗ and LAGOR∗ replications. † denotes statistical significance in
improvement over the next best model (with p < 0.05).

3.1 Model Architecture125

Visiolinguistic Module. The architecture of our126

visiolinguistic module fvw (on left panel, Figure 2)127

largely mirrors the architecture of MATCH from128

(Thomason et al., 2021). A pre-trained CLIP-129

ViT (Radford et al., 2021) model is used to en-130

code the language description and view images131

into vectors in R512. The image embeddings are132

max-pooled and concatenated to the description133

embedding before being passed into an MLP which134

generates a fused representation.135

Voxel-Language Module. We use repre-136

sentations extracted from a ShapeNet (Chang137

et al., 2015b; Wu et al., 2015) pre-trained Lego-138

FormerM (Yagubbayli et al., 2021), a multi-view139

3D volumetric reconstruction model, as input to140

our voxel-language module fow. LegoFormer2 is141

a transformer (Vaswani et al., 2017) based model142

whose decoder generates volumetric maps factor-143

ized into 12 parts. Each object factor is repre-144

sented by a set of three vectors x, y, z ∈ R32,145

which we concatenate to use as input tokens for146

our voxel-language module. A triple cross-product147

over x, y, z may be used to recover a 3D volume148

V ∈ R32×32×32 for each factor. The full volume149

for the object is generated by aggregating the factor150

volumes through a sum operation. For more details151

on LegoFormer, we refer the reader to (Yagubbayli152

et al., 2021).153

We use a cross-modal transformer (Vaswani154

et al., 2017) encoder to fuse the language and ob-155

ject factors (Figure 2, right). The cross-modal trans-156

former takes as input language tokens, in the form157

of CLIP word embeddings, and the 12 object fac-158

2https://github.com/faridyagubbayli/LegoFormer

tors output by the LegoFormer decoder, which con- 159

tain the inferred geometric occupancy information 160

of the object. We use a CLS token as an aggregate 161

representation of the language and object factors. 162

The final scoring layer of our model is repre- 163

sented by an MLP which takes as input the concate- 164

nation of the visiolinguistic model output and the 165

cross-modal transformer’s CLS token. 166

4 Language Grounding Evaluation 167

We test our method on the SNARE bench- 168

mark (Thomason et al., 2021). SNARE is 169

a language grounding dataset which augments 170

ACRONYM (Eppner et al., 2021), a grasping 171

dataset built off of ShapeNetSem (Savva et al., 172

2015; Chang et al., 2015a), with natural language 173

annotations of objects. 174

SNARE presents an object reference game where 175

an agent must correctly guess a target object against 176

a distractor. In each instance of the game, the agent 177

is provided with a language description of the tar- 178

get as well as multiple 2D views of each object. 179

SNARE differentiates between visual and blind 180

object descriptions. For visual descriptions, AMT 181

workers were primed to describe objects by name, 182

shape, and color (e.g. “classic armchair with white 183

seat"). In contrast, for blind descriptions work- 184

ers were primed to describe objects by shape and 185

parts (e.g. “oval back and vertical legs") in order to 186

get descriptions biased towards objects’ geometric 187

properties. The train/validation/test sets were gen- 188

erated by splitting over (207 / 7 / 48) ShapeNetSem 189

object categories, respectively containing (6,153 / 190

371 / 1,357) unique object instances and (39,104 191

/ 2,304 / 8,751) object pairings with referring ex- 192

pressions. Renderings are provided for each object 193
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Model Visual Blind All
VGG16 91.6 (0.004) 75.9 (0.008) 83.8 (0.006)

MLP 91.2 (0.007) 77.7 (0.007) 84.5 (0.007)
no-CLIP 67.7 (0.006) 69.0 (0.007) 68.4 (0.002)

VLG 91.6 (0.008) 78.5 (0.002) 85.2 (0.004)

Table 2: Ablation Study. SNARE reference game accu-
racy across ablations of our model on the validation set.
Performance is averaged over 3 seeds for each condition,
with standard deviations in parentheticals.

instance over 8 canonical viewing angles.194

We compare VLG against the set of models pro-195

vided with SNARE. At the time of writing, these196

were the only available models for the task. All197

SNARE3 baselines except ViLBERT use a CLIP-198

ViT (Radford et al., 2021) backbone for encoding199

both images and language descriptions. We refer200

the reader to Appendix A.1 for details.201

5 Results202

We present average performance for trained models203

over 3 seeds with standard deviations on the vali-204

dation set. We also present test set performance for205

VLG and the performance of the SNARE baselines206

reported by Thomason et al. (2021) (See Appendix207

A.2 for details on training procedures).208

5.1 Comparison to SOTA209

In Table 1 we can observe reference game perfor-210

mance for all models. VLG achieves SOTA perfor-211

mance with an absolute improvement on the test212

set of 1.7% over LAGOR, the next best leaderboard213

model. Although there is a general improvement214

of 1.5% in visual reference grounding, there is an215

improvement of 1.9% in blind reference grounding.216

This suggests that the injected 3D information is217

more useful for disambiguating between examples218

referring to geometric properties of the referred219

objects. Improvements on the Blind and All condi-220

tions of the validation set are statistically significant221

(with p < 0.05) under a Welch’s two-tailed t-test.222

5.2 Ablation Study223

We present a variety of ablations on the validation224

set to investigate the contributions of each piece of225

our model. All results can be observed in Table 2.226

VGG16 Embeddings. LegoFormer uses an Im-227

ageNet (Deng et al., 2009) pre-trained VGG16 (Si-228

monyan and Zisserman, 2014) as a backbone for ex-229

3https://github.com/snaredataset/snare

tracting visual representations, which is a different 230

dataset and pre-training task than what the CLIP- 231

ViT image encoder is trained on. This presents a 232

confounding factor which we ablate by performing 233

an experiment where we feed our model’s scor- 234

ing function VGG16 features directly instead of 235

LegoFormer object factors (VGG16 in Table 2). 236

Despite getting comparable results to VGG16 on 237

visual reference grounding, VLG provides a clear 238

improvement in blind (and therefore overall) ref- 239

erence performance, suggesting that the extracted 240

3D information is useful for grounding more ge- 241

ometrically based language descriptions, with the 242

VGG16 features being largely redundant in terms 243

of visual signal. 244

Architecture. We ablate the contribution of 245

our cross-modal transformer branch by compar- 246

ing it against an MLP mirroring the structure of 247

the SNARE MATCH baseline. This model (MLP 248

in Table 2) max-pools the LegoFormer object fac- 249

tors and concatenates the result to the CLIP visual 250

and language features before passing them to an 251

MLP scoring function. The MLP model overall 252

outperforms the SNARE baselines from Table 1, 253

corroborating the usefulness of the 3D informa- 254

tion for grounding, but does not result in as large 255

an improvement as the cross-modal transformer. 256

This suggests that the transformer is better able at 257

integrating information from the multi-view input. 258

CLIP Visual Embeddings. Finally, we evalu- 259

ate the contribution of the visiolinguistic branch of 260

the model by removing it and only using the cross- 261

modal transformer over language and object factors. 262

As may be observed, there is a large drop in per- 263

formance, particularly for visual references. These 264

results suggest that maintaining visual information 265

such as color and texture is critical for good perfor- 266

mance on this task, since the LegoFormer outputs 267

contain only volumetric occupancy information. 268

6 Discussion 269

We have presented the Voxel-informed Language 270

Grounder, a model which leverages explicit 3D in- 271

formation from predicted volumetric voxel maps to 272

improve language grounding performance. VLG 273

achieves SOTA results on SNARE, and ablations 274

corroborate the effectiveness of using this 3D in- 275

formation for grounding. We hope this paper may 276

encourage further work on integrating structured 277

3D representations into language grounding tasks. 278
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A Appendix435

A.1 SNARE Baselines436

Here we briefly describe the baselines provided by437

SNARE. For more details, we refer the reader to438

(Thomason et al., 2021).439

MATCH uses a learned MLP to produce a 440

score over CLIP-ViT language and pooled image 441

embeddings. 442

ViLBERT fine-tunes a 12-in1 (Lu et al., 2020) 443

pre-trained ViLBERT(Lu et al., 2019). This 444

baseline is additionally provided with ground-truth 445

image bounding boxes during training. 446

LAGOR. LAGOR’s (Language Grounding 447

through Object Rotation) scoring function mirrors 448

the architecture of the MATCH module. During 449

training, LAGOR is augmented with an auxiliary 450

view-prediction loss, which tasks the agent with 451

predicting the canonical view angle for each image 452

given its embedding. LAGOR uses a separate 453

MLP to produce view-predictions. 454

A.2 Training Procedure 455

We train each model for 75 epochs, reporting per- 456

formance of the best performing checkpoint on 457

the validation set. For the SNARE MATCH∗ and 458

LAGOR∗ baselines we use the hyperparameters re- 459

ported by Thomason et al. (2021). For all variants 460

of our VLG model we use the AdamW (Loshchilov 461

and Hutter, 2017) optimizer with a learning rate of 462

1e-3, linear learning rate warmup of 10K steps, and 463

a smoothed binary cross-entropy loss (Achlioptas 464

et al., 2019). We use a computing cluster with RTX 465

2080 GPUs to run our experiments. All code to 466

replicate our results will be made publicly avail- 467

able. 468
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