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Abstract

Even when applied to 2D images, natural lan-
guage describes a fundamentally 3D world.
We present the Voxel-informed Language
Grounder (VLG), a language grounding model
that leverages 3D geometric information in
the form of voxel maps derived from the vi-
sual input using a volumetric reconstruction
model. We show that VLG significantly im-
proves grounding accuracy on SNARE (Thoma-
son et al., 2021), an object reference game
task. At the time of writing, VLG holds the
top place (anonymized) on the SNARE leader-
board!, achieving SOTA results with a 1.7%
overall improvement on all descriptions.

1 Introduction

Embodied robotic agents hold great potential for
providing assistive technologies in home environ-
ments (Pineau et al., 2003), and natural language
provides an intuitive interface for users to interact
with such systems (Andreas et al., 2020). For these
systems to be effective, they must be able to re-
liably ground language in perception (Bisk et al.,
2020; Bender and Koller, 2020).

Despite typically being paired with 2D images,
natural language that is grounded in vision de-
scribes a fundamentally 3D world. For example,
consider the grounding task in Figure 1, where the
agent must select a target chair against a distrac-
tor given the description “the swivel chair with 6
wheels.” Although the agent is provided with multi-
ple images revealing all of the wheels on each chair,
it must be able to properly aggregate information
across images to successfully differentiate them,
something that requires reasoning about their 3D
geometry at some level.

In this work we show how language grounding
performance may be improved by leveraging 3D
prior knowledge. Our model, Voxel-informed Lan-
guage Grounder (VLG), extracts 3D voxel maps us-
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Figure 1: Voxel-informed Language Grounder. Our
VLG model leverages explicit 3D information by infer-
ring volumetric voxel maps from input images, allowing
the agent to reason jointly over the geometric and visual
properties of objects when grounding.

ing a pre-trained volumetric reconstruction model,
which it fuses with multimodal features from a
large-scale vision and language model in order to
reason jointly over the visual and 3D geometric
properties of objects.

We focus our investigation within the context
of SNARE (Thomason et al., 2021), an object ref-
erence game where an agent must ground natural
language describing common household objects
by their geometric and visual properties, showing
that grounding accuracy significantly improves by
incorporating information from predicted 3D vol-
umes of objects. At the time of writing, VLG
achieves SOTA performance on SNARE, attain-
ing an absolute improvement of 1.7% over the next
closest baseline.

2 Related Work

Prior work has studied deriving structured represen-
tations from images to scaffold language ground-
ing. However, a majority of systems use represen-
tations such as 2D regions of interest (Anderson
et al., 2018; Wang et al., 2020) or symbolic graph-
based representations (Hudson and Manning, 2019;
Kulkarni et al., 2013), which do not encode 3D
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Figure 2: VLG Architecture. (Left) Our VLG model consists of a visiolinguistic module which produces a joint
embedding for text and images using CLIP and a voxel-language module for jointly embedding language and
volumetric maps. (Right) The voxel-language module uses a cross modal transformer to fuse word embeddings
from CLIP with voxelmap factors extracted from LegoFormer (Yagubbayli et al., 2021). During training, gradients

only flow through solid lines.

properties of objects.

Most prior work tying language to 3D repre-
sentations has largely focused on generating 3D
structures conditioned on language, either at the
scene (Chang et al., 2014, 2015a), pose (Ahuja and
Morency, 2019; Lin et al., 2018), or object (Chen
et al., 2018) level. In contrast, in this work we
focus on augmenting language grounding using
structured 3D representations derived from 2D im-
ages. For the task of visual language navigation,
prior work has shown how a persistent 3D semantic
map may be used as an intermediate representation
to aid in selecting navigational waypoints (Chap-
lot et al., 2020; Blukis et al., 2021). The semantic
maps, however, represent entire scenes with voxels
representing object categories, rather than their ge-
ometric properties. In this work, we show how a
more granular occupancy map representing objects’
geometry can improve language grounding.

Closest to our work is that of Prabhudesai et al.
(2020), which presents a method for mapping
language to 3D features within scenes from the
CLEVR (Johnson et al., 2017) dataset. Their sys-
tem generates 3D feature maps inferred from im-
ages and then grounds language directly to 3D
bounding boxes or coordinates. Their system as-
sumes, however, that dependency trees are pro-
vided for the natural language, and it is trained with
supervised alignments between tree constituents
and the 3D representations.

3 Voxel-informed Language Grounder

We consider a task where an agent must cor-
rectly predict a target object v’ against a dis-
tractor v¢ given a natural language description
w' = {wi,...,wy,} of the target. For each ob-
ject, the agent is provided with n 2D views v =
{21, .0y}, 2 € RWXH,

An agent for this task is represented by a scoring
function s(v,w) € [0, 1], computing the compat-
ibility between the target description and the 2D
views of an object. We first use unimodal encoders
to encode the language description into e,, = h(w)
and the object view images into a single aggregate
visual embedding e, = g(v) before fusing them
with a visiolinguistic module €., = fyw ([€v; €w])-
Prior approaches to this problem directly input this
fused representation to a scoring module to pro-
duce a score s(€eyy ). They do not explicitly reason
about the 3D properties of the observed objects,
requiring the models to learn them implicitly.

In contrast, our Voxel-informed Language
Grounder augments the scoring function s with
explicit 3D volumetric information e, = o(v) ex-
tracted from a pre-trained multiview reconstruc-
tion model o(v). The volumetric information (in
the form of a voxel occupancy map in RW *H*D)
is first fused into a joint representation with the
language using a multimodal voxel-language mod-
ule €0y, = fow([€o; €w])- The scoring function
then produces a score based on all three modalities

8([61)111; eow])-



VALIDATION TEST
Model | Visual Blind All Visual Blind All
ViLBERT | 89.5 76.6 83.1 80.2 73 76.6
MATCH | 89.2(0.9) 752(0.7)  82.2(0.4) 83.9(0.5) 68.7(0.9) 76.5(0.5)
MATCH* | 90.6 (0.004) 75.7(0.01)  83.2 (0.006) - - -
LAGOR | 89.8(0.4) 753(0.7)  82.6(0.4) 84.3(04) 69.4(0.5) 77.0(0.5)
LAGOR* | 89.6(0.003) 74.9 (0.003) 82.3(0.0) - - -
VLG (Ours) | 91.6 (0.008)  78.50.002) 85.21(0.004) | 85.8 71.3 78.7

Table 1: SNARE Benchmark Performance. Object reference game accuracy on the SNARE task across validation
and test sets. Performance on models with an asterisk are our replications of the baselines in (Thomason et al.,
2021). MATCH*, LAGOR*, and VLG performances are averaged over 3 seeds. Standard deviations are shown in
parentheses. Our VLG model achieves the best overall performance. Due to leaderboard submission restrictions, we
were not able to get test set results for the MATCH* and LAGOR* replications. { denotes statistical significance in

improvement over the next best model (with p < 0.05).

3.1 Model Architecture

Visiolinguistic Module. The architecture of our
visiolinguistic module f,,, (on left panel, Figure 2)
largely mirrors the architecture of MATCH from
(Thomason et al., 2021). A pre-trained CLIP-
ViT (Radford et al., 2021) model is used to en-
code the language description and view images
into vectors in R%'2. The image embeddings are
max-pooled and concatenated to the description
embedding before being passed into an MLP which
generates a fused representation.

Voxel-Language Module. We use repre-
sentations extracted from a ShapeNet (Chang
et al., 2015b; Wu et al., 2015) pre-trained Lego-
FormerM (Yagubbayli et al., 2021), a multi-view
3D volumetric reconstruction model, as input to
our voxel-language module f,,,. LegoFormer? is
a transformer (Vaswani et al., 2017) based model
whose decoder generates volumetric maps factor-
ized into 12 parts. Each object factor is repre-
sented by a set of three vectors z,y,z € R32,
which we concatenate to use as input tokens for
our voxel-language module. A triple cross-product
over x, ¥y, z may be used to recover a 3D volume
Y € R32X32X32 for each factor. The full volume
for the object is generated by aggregating the factor
volumes through a sum operation. For more details
on LegoFormer, we refer the reader to (Yagubbayli
etal., 2021).

We use a cross-modal transformer (Vaswani
et al., 2017) encoder to fuse the language and ob-
ject factors (Figure 2, right). The cross-modal trans-
former takes as input language tokens, in the form
of CLIP word embeddings, and the 12 object fac-
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tors output by the LegoFormer decoder, which con-
tain the inferred geometric occupancy information
of the object. We use a CLS token as an aggregate
representation of the language and object factors.
The final scoring layer of our model is repre-
sented by an MLP which takes as input the concate-
nation of the visiolinguistic model output and the
cross-modal transformer’s CLS token.

4 Language Grounding Evaluation

We test our method on the SNARE bench-
mark (Thomason et al., 2021). SNARE is
a language grounding dataset which augments
ACRONYM (Eppner et al., 2021), a grasping
dataset built off of ShapeNetSem (Savva et al.,
2015; Chang et al., 2015a), with natural language
annotations of objects.

SNARE presents an object reference game where
an agent must correctly guess a target object against
a distractor. In each instance of the game, the agent
is provided with a language description of the tar-
get as well as multiple 2D views of each object.
SNARE differentiates between visual and blind
object descriptions. For visual descriptions, AMT
workers were primed to describe objects by name,
shape, and color (e.g. “classic armchair with white
seat"). In contrast, for blind descriptions work-
ers were primed to describe objects by shape and
parts (e.g. “oval back and vertical legs") in order to
get descriptions biased towards objects’ geometric
properties. The train/validation/test sets were gen-
erated by splitting over (207 /7 / 48) ShapeNetSem
object categories, respectively containing (6,153 /
371/ 1,357) unique object instances and (39,104
/2,304 / 8,751) object pairings with referring ex-
pressions. Renderings are provided for each object
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Model |  Visual Blind All

VGG16 |91.6 (0.004) 75.9 (0.008) 83.8 (0.006)
MLP |91.2(0.007) 77.7 (0.007) 84.5 (0.007)
no-CLIP | 67.7 (0.006) 69.0 (0.007) 68.4 (0.002)
VLG |91.6(0.008) 78.5(0.002) 85.2 (0.004)

Table 2: Ablation Study. SNARE reference game accu-
racy across ablations of our model on the validation set.
Performance is averaged over 3 seeds for each condition,
with standard deviations in parentheticals.

instance over 8 canonical viewing angles.

We compare VLG against the set of models pro-
vided with SNARE. At the time of writing, these
were the only available models for the task. All
SNARE? baselines except VILBERT use a CLIP-
ViT (Radford et al., 2021) backbone for encoding
both images and language descriptions. We refer
the reader to Appendix A.1 for details.

5 Results

We present average performance for trained models
over 3 seeds with standard deviations on the vali-
dation set. We also present test set performance for
VLG and the performance of the SNARE baselines
reported by Thomason et al. (2021) (See Appendix
A.2 for details on training procedures).

5.1 Comparison to SOTA

In Table 1 we can observe reference game perfor-
mance for all models. VLG achieves SOTA perfor-
mance with an absolute improvement on the test
set of 1.7% over LAGOR, the next best leaderboard
model. Although there is a general improvement
of 1.5% in visual reference grounding, there is an
improvement of 1.9% in blind reference grounding.
This suggests that the injected 3D information is
more useful for disambiguating between examples
referring to geometric properties of the referred
objects. Improvements on the Blind and All condi-
tions of the validation set are statistically significant
(with p < 0.05) under a Welch’s two-tailed ¢-test.

5.2 Ablation Study

We present a variety of ablations on the validation
set to investigate the contributions of each piece of
our model. All results can be observed in Table 2.

VGG16 Embeddings. LegoFormer uses an Im-
ageNet (Deng et al., 2009) pre-trained VGG16 (Si-
monyan and Zisserman, 2014) as a backbone for ex-
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tracting visual representations, which is a different
dataset and pre-training task than what the CLIP-
ViT image encoder is trained on. This presents a
confounding factor which we ablate by performing
an experiment where we feed our model’s scor-
ing function VGG16 features directly instead of
LegoFormer object factors (VGG16 in Table 2).
Despite getting comparable results to VGG16 on
visual reference grounding, VLG provides a clear
improvement in blind (and therefore overall) ref-
erence performance, suggesting that the extracted
3D information is useful for grounding more ge-
ometrically based language descriptions, with the
VGG16 features being largely redundant in terms
of visual signal.

Architecture. We ablate the contribution of
our cross-modal transformer branch by compar-
ing it against an MLP mirroring the structure of
the SNARE MATCH baseline. This model (MLP
in Table 2) max-pools the LegoFormer object fac-
tors and concatenates the result to the CLIP visual
and language features before passing them to an
MLP scoring function. The MLP model overall
outperforms the SNARE baselines from Table 1,
corroborating the usefulness of the 3D informa-
tion for grounding, but does not result in as large
an improvement as the cross-modal transformer.
This suggests that the transformer is better able at
integrating information from the multi-view input.

CLIP Visual Embeddings. Finally, we evalu-
ate the contribution of the visiolinguistic branch of
the model by removing it and only using the cross-
modal transformer over language and object factors.
As may be observed, there is a large drop in per-
formance, particularly for visual references. These
results suggest that maintaining visual information
such as color and texture is critical for good perfor-
mance on this task, since the LegoFormer outputs
contain only volumetric occupancy information.

6 Discussion

We have presented the Voxel-informed Language
Grounder, a model which leverages explicit 3D in-
formation from predicted volumetric voxel maps to
improve language grounding performance. VLG
achieves SOTA results on SNARE, and ablations
corroborate the effectiveness of using this 3D in-
formation for grounding. We hope this paper may
encourage further work on integrating structured
3D representations into language grounding tasks.
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A Appendix
A.1 SNARE Baselines

Here we briefly describe the baselines provided by
SNARE. For more details, we refer the reader to
(Thomason et al., 2021).

MATCH uses a learned MLP to produce a
score over CLIP-ViT language and pooled image
embeddings.

VIiLBERT fine-tunes a 12-inl (Lu et al., 2020)
pre-trained ViLBERT(Lu et al., 2019). This
baseline is additionally provided with ground-truth
image bounding boxes during training.

LAGOR. LAGOR’s (Language Grounding
through Object Rotation) scoring function mirrors
the architecture of the MATCH module. During
training, LAGOR is augmented with an auxiliary
view-prediction loss, which tasks the agent with
predicting the canonical view angle for each image
given its embedding. LAGOR uses a separate
MLP to produce view-predictions.

A.2 Training Procedure

We train each model for 75 epochs, reporting per-
formance of the best performing checkpoint on
the validation set. For the SNARE MATCH* and
LAGOR* baselines we use the hyperparameters re-
ported by Thomason et al. (2021). For all variants
of our VLG model we use the AdamW (Loshchilov
and Hutter, 2017) optimizer with a learning rate of
le-3, linear learning rate warmup of 10K steps, and
a smoothed binary cross-entropy loss (Achlioptas
et al., 2019). We use a computing cluster with RTX
2080 GPUs to run our experiments. All code to
replicate our results will be made publicly avail-
able.
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