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Abstract
Web-scale pre-training datasets are the cor-001
nerstone of LLMs’ success. However, text002
data curated from the internet inevitably con-003
tains random noise caused by decoding errors004
or unregulated web content. In contrast to005
previous works that focus on low quality or006
synthetic data, our study provides the first007
systematic investigation into such random008
noise through a cohesive “What-Why-How”009
framework. Surprisingly, we observed that010
the resulting increase in next-token prediction011
(NTP) loss was significantly lower than the012
proportion of random noise. We provide a013
theoretical justification for this phenomenon,014
which also elucidates the success of multilin-015
gual models. On the other hand, experiments016
show that the model’s performance in down-017
stream tasks is not based solely on the NTP018
loss, which means that random noise may re-019
sult in degraded downstream performance. To020
address the potential adverse effects, we in-021
troduce a novel plug-and-play Local Gradient022
Matching loss, which explicitly enhances the023
denoising capability of the downstream task024
head by aligning the gradient of normal and025
perturbed features without requiring knowledge026
of the model’s parameters. Additional experi-027
ments on 8 language and 14 vision benchmarks028
further validate its effectiveness.029

1 Introduction030

Large language models (LLMs), particularly the031

GPT series (Radford et al., 2019; Brown, 2020;032

OpenAI, 2023), have fundamentally transformed033

the research landscape in natural language process-034

ing. The remarkable performance of these autore-035

gressive models is largely attributed to pre-training036

on extensive datasets, which are gathered by crawl-037

ing text from the whole internet. Given the sheer038

volume of these datasets, they inevitably encom-039

pass a wide variety of noise (Longpre et al., 2024;040

Elazar et al., 2024). Consequently, it is imper-041

ative to understand its impact, as the quality of042
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Figure 1: Overview of the study and methodology. (a)
The common scenario in which a GPT model, pre-
trained on filtered data P c, demonstrates robust per-
formance. (b) When the pre-training dataset is contam-
inated with random noise Pn, the resultant language
model may exhibit unpredictable behavior. (c) Our ap-
proach focuses on the effective fine-tuning of black-box
noisy models for downstream tasks P d.

pre-training data plays a decisive role in the effec- 043

tiveness of LLMs (Touvron et al., 2023). Allen- 044

Zhu and Li (2024a); Xie et al. (2023b) highlight 045

that low-quality data can significantly diminish a 046

model’s knowledge capacity and performance. Shu- 047

mailov et al. (2024); Seddik et al. (2024) demon- 048

strate that recursively training LLMs with synthetic 049

data can lead to model collapse. 050

However, little attention has been paid to the 051

impact of random noise within datasets. Due to 052

anti-crawling mechanisms (Gao et al., 2023), de- 053

coding errors1, and tremendous amounts of unmain- 054

tained websites2, the raw data obtained through 055

1
https://stackoverflow.com/questions/62499600/

gibberish-text-output-because-of-encoding-in-web-scraping
2
https://community.cloudflare.com/t/

website-showing-garbage-text

1

https://stackoverflow.com/questions/62499600/gibberish-text-output-because-of-encoding-in-web-scraping
https://stackoverflow.com/questions/62499600/gibberish-text-output-because-of-encoding-in-web-scraping
https://community.cloudflare.com/t/website-showing-garbage-text
https://community.cloudflare.com/t/website-showing-garbage-text


web crawling inevitably contains a substantial056

amount of random noise (Zhou et al., 2024; Chen057

et al., 2022; Kang et al., 2023). Although the-058

oretically it may not be challenging to remove059

such noise, practical limitations in computational060

resources often result in incomplete data clean-061

ing(Albalak et al., 2024; Soldaini et al., 2024). For062

example, it is observed that the Chinese corpus063

used to train the GPT-4o tokenizer contains a con-064

siderable amount of nonsensical data. 3 Therefore,065

it is of great importance to gain a thorough under-066

standing of the effects of such random noise.067

We conduct extensive experiments based on the068

OpenWebText dataset (Gokaslan et al., 2019) used069

to pre-train language models with the same archi-070

tecture and parameter size as GPT-2. Specifically,071

to simulate random noise shown in Figure 1, we072

randomly generate, with proportions of 1%, 5%073

and 20%, a sequence of integers within the range074

of 0 to 50256, according to the vocabulary size075

of GPT-2’s tokenizer, to simulate the tokenization076

outcome of nonsensical text found on the internet.077

Interestingly, we observe that the presence of ran-078

dom noise does not lead to a catastrophic failure079

in model training; instead, its effect on autore-080

gressive loss is disproportionately small, e.g., the081

increase in loss is only about 1% even with 20% of082

the dataset being noisy. We provide a theoretical083

analysis to explain these phenomena, which also084

sheds light on the success of multilingual models085

(where one language may appear as “noise” to an-086

other) and large speech models (Chen et al., 2022),087

indicating the broader implications of studying the088

effects of random noise.089

On the other hand, further experiments reveal090

that a model that exhibits a lower NTP loss experi-091

ences a 1.5% decrease in accuracy on downstream092

tasks. This indicates that performance on down-093

stream tasks is not solely rely upon the NTP loss.094

Given the common practice of fine-tuning a pre-095

trained foundation model rather than undergoing096

a full pre-training process from scratch, we opt to097

follow the work of Chen et al. (2024) by explor-098

ing how to efficiently fine-tune language models099

only using extracted features for downstream tasks100

when the pre-training data and model weights are101

not accessible, which reflects real-world applica-102

tion scenarios for LLMs. To mitigate the potential103

adverse effects of noise, we propose a novel plug-104

and-play Local Gradient Matching (LGM) loss.105

3
https://github.com/jiangyy/gpt-tokens

This method involves artificially adding noise to 106

the output features and minimizing the gradient 107

difference between the noisy and original features. 108

We also provide a theoretical analysis of the LGM 109

loss. Interestingly, when applying the LGM loss to 110

fine-tune clean models such as Llama-3 or ViT-L 111

on 8 language and 14 vision datasets, we observe 112

an unexpected improvement in accuracy, which 113

effectively demonstrates the versatility and broad 114

applicability of the LGM loss beyond its original 115

intent of addressing noise-related issues. 116

The remaining part is arranged as follows. In 117

Section 2, we summarize related works. In Section 118

3 and 4, we follow a logical structure based on 119

“What-Why-How”: 120

• What: What is the effect of random noise? 121

In Section 3, we demonstrate through exper- 122

iments how random noise impacts NTP loss. 123

124• Why: Why does it have this effect? The sec- 125

tion further explores the underlying reasons 126

by providing a rigorous theoretical analysis. 127

• How: How do we mitigate the potentially 128

harmful effect on downstream tasks? In Sec- 129

tion 4, We introduce the LGM loss and pro- 130

vide a theoretical explanation. 131

Section 4 further provides evidence of the novelty 132

and effectiveness of the LGM loss by conducting 133

extensive experiments on 22 downstream tasks. 134

In summary, our contributions are as follows: 135

(1) We investigate the underexplored problem of 136

random noise in pre-training datasets for language 137

models. (2) We pre-train multiple GPT-2 models 138

and the empirical results show that the influence of 139

random noise on NTP loss is insignificant. Then 140

we provide a theoretical analysis, extending our 141

findings to other domains and thus highlighting 142

the significance of this research direction. (3) We 143

propose a novel blackbox fine-tuning LGM loss 144

for downstream tasks, supported by comprehensive 145

experimental and theoretical analysis that confirm 146

its efficacy. Code, data, and model checkpoint 147

weights are available at this repo. 148

2 Related Works 149

Pre-training Data Analysis for Language Model 150

Training. Elazar et al. (2024) analyzed open- 151

source datasets like The Pile and C4, uncovering 152

significant amounts of low-quality content in these 153

datasets. Allen-Zhu and Li (2024a); Seddik et al. 154

(2024) highlighted the negative impact of such data 155

2

https://github.com/jiangyy/gpt-tokens
https://anonymous.4open.science/r/lmn-acl-E9D3
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Figure 2: Next-token prediction loss on the clean OpenWebText validation set for GPT-2 models pre-trained on
synthetic OpenWebText datasets with varying levels of random noise. (a) Trend of NTP loss as training proceeds.
(b) Difference in NTP loss between the noisy and clean models after the same number of training iterations. (c)
Difference in loss values after undergoing the same number of training iterations on clean OpenWebText data.

on training. Despite these remarkable contribu-156

tions, there remains a lack of understanding regard-157

ing the specific effects of random noise on language158

model performance. This paper aims to address this159

gap.160

Noisy Model Learning. Our work draws sig-161

nificant inspiration from Noisy Model Learning162

(NML) proposed by Chen et al. (2024). In NML,163

the authors introduce noise into large datasets like164

ImageNet by randomly altering labels, then pre-165

train neural networks on these noisy datasets. The166

study reveals that moderate label noise enhances167

in-distribution (ID) sample classification, while out-168

of-distribution (OOD) performance deteriorates169

with increasing noise. This paper extends the con-170

cept of NML, presenting theoretical insights and171

methodologies that are applicable across multiple172

modalities and various problems.173

Due to space limitations, the detailed related174

works are provided in Appendix C.175

3 Revealing the Effect of Random Noise176

in Language Model Pre-training177

In this section, we first pre-train multiple GPT-2178

models on synthetic noisy OpenWebText corpus to179

investigate the impact of random noise in the pre-180

training data. We then provide a theoretical anal-181

ysis of the results and validate our theory through182

experiments. Finally, we demonstrate that the in-183

sights gained from our investigation have broader184

applicability beyond the immediate scope of our185

study. In summary, Section 3 focuses on under-186

standing the impact of random noise by presenting187

detailed experiments and theoretical analyses. We188

delve into how random noise affects NTP loss and189

introduce insights into why these effects occur. It190

sets the foundation for our investigation.191

The frequently used notation and their descrip-192

tions are shown in Appendix A. 193

3.1 Experimental Design 194

Preliminary. Let L denote the maximum con- 195

text length of the language model and let W rep- 196

resent the model’s vocabulary with size V = 197

|W|. We define X as the set of all discrete 198

sentences that the model can represent, where 199

X = ∪L
i=1{0, 1, . . . , V − 1}i = ∪L

i=1W i and 200

{0, 1, . . . , V − 1}i represents prefixes of length 201

i. For any discrete set A, let ∆A denote the set of 202

all probability distributions defined on A. Given 203

that next-token prediction (NTP) is actually a clas- 204

sification task given the prefix, we define joint prob- 205

ability distributions P c, Pn, Pm ∈ ∆X×W where 206

P c represents the distribution of clean data, Pn 207

represents the distribution of noise data, and Pm 208

represents the distribution of the mixed pre-training 209

dataset which contains both clean and noise data. 210

Since the noisy dataset can be viewed as the con- 211

catenation of clean data and random noise, it can 212

be formalized by the Huber contamination model 213

(Fang et al., 2022) as follows: 214

Pm = αPn + (1− α)P c (1) 215

where we use α to represent the noise proportion. 216

An explanation of Equation (1) can be found in 217

Appendix B.1. For any joint probability distribu- 218

tion P ∈ ∆X×W , let PX ∈ ∆X and P·|X ∈ ∆W 219

represent the marginal and conditional distribution 220

of P over X and W . 221

We use H to denote the hypothesis space (e.g., 222

all possible parameter configurations given the 223

transformer architecture ). Define h : X → RV ∈ 224

H as the language model and ph
·|x(w) as the w-th 225

component of the probability distribution induced 226

by h(x). The next-token prediction loss can be 227

3
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Figure 3: Validation experiments. (a) Loss trends on the random noise in the training set of the model trained on the
dataset with 5% random noise. (b) Comparison of the loss between 5% random noise and Gaussian noise. (c) The
loss difference on the clean OpenWebText validation set compared to the baseline for models trained on datasets
with 5% random noise and 5% Gaussian noise, respectively.

expressed as follows:228

Lntp(P, h) = Ex∼PX
Ew∼P·|x

[
− log(ph

·|x(w))
]
.

(2)229

230 Data setup. We utilize the OpenWebText dataset231

(Gokaslan et al., 2019) which comprises 8 billion232

tokens as an alternative to the original WebText233

dataset used to train GPT-2 124M models (Rad-234

ford et al., 2019). Concretely, to mimic the unpre-235

dictable nature of garbage noise after it has been236

tokenized, we first generate a sequence of integers237

where each integer follows a uniform distribution238

over [0, 50256) (recall that 50256 is the vocabulary239

size of GPT-2’s tokenizer). Furthermore, we notice240

that beyond uniform distribution, certain tokens241

appeare with significantly higher frequency in real-242

world random noise. To reflect this phenomenon,243

approximately 100 tokens in [0, 50256) are ran-244

domly selected and their frequencies increase ac-245

cordingly. The overall distribution of the data can246

be referred to in Figure 8. The generated noise is247

then added to the clean dataset such that α is 1%,248

5%, and 20% respectively. Each synthetic noisy249

dataset is used to pre-train a GPT-2 model. We ar-250

gue that given the vast diversity of websites on the251

internet, it is inevitable that datasets used for train-252

ing large models will inadvertently include such253

garbled text as shown in Figure 1. This kind of254

noise is not just theoretical; it is a practical issue255

encountered during web crawling and data collec-256

tion processes.257

We set the context length L to be 1024 and the258

batch size to be 640. All models are trained for259

300,000 iterations. To evaluate the performance,260

the resulting model checkpoints are tested on the261

clean OpenWebText validation set, measuring the262

NTP loss for comparison. Further details regarding263

datasets and experimental parameters can be found264

in Appendix D. 265

3.2 Results 266

In Figure 2, we illustrate the evolution of the NTP 267

loss throughout the training process. Although ran- 268

dom noise has a negative effect on the model’s per- 269

formance as expected, experimental results yield 270

two intriguing insights: 271

(1) In contrast to the low-quality or synthetic 272

data, the presence of random noise does not lead 273

to training collapse, even when the noise level 274

reaches 20%. While increasing training time on 275

low quality or synthetic data typically degrades 276

model performance (Allen-Zhu and Li, 2024a; Shu- 277

mailov et al., 2024), extending the training duration 278

continues to drive down the model’s loss in the case 279

of random noise. 280

(2) The impact of random noise on the loss 281

is disproportionately small. For instance, 5% 282

of random noise only results in a 0.2% increase 283

in the NTP loss. This discrepancy becomes even 284

smaller if the noisy models are calibrated to match 285

the number of training iterations with the baselines 286

trained on clean datasets. 287

These positive experimental outcomes further 288

corroborate the robustness of language models and 289

provide insights into why pre-training on large- 290

scale datasets that inevitably contain significant 291

amounts of noise can still yield high-performing 292

models. These somewhat unexpected findings nat- 293

urally prompt us to explore the underlying reasons. 294

3.3 Theoretical Analysis 295

In the analysis below, we focus on the impact of 296

random noise on NTP loss, as pre-training loss is 297

crucial for the performance on downstream tasks 298

(Saunshi et al., 2021; Wei et al., 2021; Liu et al., 299

2023; Zheng et al., 2023a). Specifically, we are 300

4
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Figure 4: Loss and its difference across different types and levels of noise within the ArXiv and Wikipedia corpora.

interested in the difference of NTP Loss between301

a model h∗ trained on a noise-free dataset and a302

model h trained with a noisy dataset. We begin303

by noting that sampling from the clean distribution304

should not yield random gibberish and vice versa.305

Mathematically, this implies that for any prefix r306

sampled from Pn
X , the probability under the clean307

distribution P c
X(r) is zero. Thus, we make the308

following assumption:309

Assumption 1. P c and Pn have disjoint support310

sets, i.e., supp(P c) ∩ supp(Pn) = ∅.311

The subsequent proposition demonstrates that the312

error ϵ introduced to the loss due to random noise313

is less than the proportion α of random noise in the314

dataset.315

Proposition 1. Under Assumption 1, let h∗ be316

a model trained on P c, with Lntp(P
c, h∗) =317

− log pc and Lntp(P
n, h∗) = − log pn. When the318

model h is trained on a mixed distribution Pm319

which includes noise, it attempts to fit Pn, leading320

to an increase in the loss on the clean distribu-321

tion P c, such that Lntp(P
c, h) = − log(pc − ϵ)322

and Lntp(P
n, h) = − log(pn + ϵ/k) for some323

ϵ > 0 (k can be shown to be Ω(eLntp(Pn,h))). Let324

η = αpc − (1− α)kpn. We arrive at the following325

conclusions:326

(1) If α ≤ kpn
pc+kpn

, then for any 0 < ϵ < pc, we327

have Lntp(P
m, h) ≥ Lntp(P

m, h∗). This means328

that when α is sufficiently small, the global mini-329

mum on Pm will not be affected by noise.330

(2) If α > kpn
pc+kpn

, then for ϵ < η, it holds331

that Lntp(P
m, h) < Lntp(P

m, h∗). This suggests332

that if α is large enough, the impact on the optimal333

hypothesis is at least as much as αpc− (1−α)kpn.334

(3) When α < 1
3 and k > α(1−3α)pc

(1−α)(2−3α)pn
, for335

ϵ ≥ 3η we get Lntp(P
m, h∗) < Lntp(P

m, h). Sim-336

ilarly, it can be shown that ϵ does not exceed 2η337

when α > max
(

kpn
pc+kpn

, 12

)
and k > (2α−1)pc

2(1−α)pn
.338

This indicates that when k is sufficiently large, the339

effect of noise is at most O(αpc − (1− α)kpn).340

The proof can be found in Appendix B.2. Propo-341

sition 1 primarily investigates the performance gap 342

between models trained on Pm and those on P c. 343

It is proved that when α is small enough, the 344

presence of noise has no impact on the optimal 345

model on Pm. Even as α approaches 1
3 or even 346

1
2 , as long as k is large enough (the analysis re- 347

garding k and other parameters is detailed in Ap- 348

pendix B.3), the loss induced by noise, ϵ, does 349

not exceed O(αpc − (1− α)kpn). Given that k is 350

much greater than 1, this implies ϵ is much smaller 351

than αpc. This explains the observed experimental 352

results. 353

With these theoretical results in hand, we then 354

conduct multiple experiments to substantiate their 355

validity. First, we plot the trend of NTP loss on 356

random noise within the training set throughout 357

the learning process, as shown in Figure 3(a). It is 358

evident that the loss on random noise decreases at a 359

very slow rate, indicating that the model struggles 360

to efficiently learn the distribution of random noise. 361

Next, we add 5% Gaussian-distributed noise 362

to the training dataset and compare the results 363

with models trained on 5% random noise. Specif- 364

ically, we replace the uniform distribution men- 365

tioned above with a Gaussian distribution charac- 366

terized by a mean of 25128 and standard deviation 367

of 500. As depicted in Figure 3(b), the loss on 368

Gaussian noise is lower than that on the random 369

noise. According to Proposition 1, since the Gaus- 370

sian distribution corresponds to a high pn, we can 371

predict that a model trained on Gaussian noise will 372

exhibit a lower loss on P c. Figure 3(c) confirms our 373

prediction, thus further validating the proportions. 374

3.4 Experiments on Other Text Corpus 375

To further investigate the impact of random noise 376

on model generalization, we evaluate the next- 377

token prediction loss of the trained models on data 378

crawled from arXiv and Wikipedia. The results are 379

illustrated in Figure 4. Surprisingly, models trained 380

with added noise outperformed those trained on P c. 381

This counterintuitive finding aligns with previous 382
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SST-2 SST-fine 20newsgroup CR Avg
Linear MLP Linear MLP Linear MLP Linear MLP Linear MLP

OpenAI’s GPT-2∗ 87.4 / 49.2 / 63.7 / 86.8 / 71.75 /
0% 86.71 ± 0.85 87.36 ± 0.33 49.19 ± 0.32 49.18 ± 0.02 63.12 ± 0.37 62.70 ± 0.86 85.65 ± 0.88 84.86 ± 0.36 71.16 71.02

0% + Lgm 87.42 ± 0.73 87.86 ± 0.04 49.72 ± 0.27 49.81 ± 0.97 63.69 ± 0.59 62.95 ± 0.13 86.58 ± 0.22 86.45 ± 0.73 71.85 71.76
1% 87.25 ± 0.79 87.53 ± 0.27 49.32 ± 0.72 49.45 ± 0.56 63.71 ± 0.02 64.65 ± 0.06 84.86 ± 0.98 84.59 ± 0.59 71.28 71.55

1% + Lgm 87.64 ± 0.91 87.25 ± 0.44 49.59 ± 0.73 50.01 ± 0.05 63.92 ± 0.65 64.72 ± 0.76 85.12 ± 0.07 85.25 ± 0.29 71.56 71.80
5% 86.92 ± 0.98 87.23 ± 0.41 49.04 ± 0.11 50.09 ± 0.53 63.27 ± 0.79 62.09 ± 0.28 85.30 ± 0.63 84.32 ± 0.78 71.13 70.93

5% + Lgm 87.19 ± 1.02 87.61 ± 0.51 49.82 ± 0.17 48.95 ± 0.89 63.78 ± 0.93 62.37 ± 0.56 85.57 ± 0.43 84.19 ± 0.69 71.59 70.78
20% 86.60 ± 1.28 86.60 ± 0.81 49.45 ± 0.78 49.63 ± 0.01 63.47 ± 0.64 64.16 ± 0.92 85.32 ± 0.60 85.45 ± 0.86 71.26 71.26

20% + Lgm 87.2 ± 0.99 86.87 ± 0.78 49.68 ± 0.55 50.40 ± 0.46 63.58 ± 0.08 64.21 ± 0.78 85.25 ± 0.90 85.52 ± 0.24 71.42 71.75
Gaussian 85.22 ± 0.24 86.82 ± 0.72 46.15 ± 0.51 49.59 ± 0.76 63.72 ± 0.35 64.40 ± 0.76 84.06 ± 0.74 83.53 ± 0.70 69.78 71.08

Gaussian + Lgm 85.94 ± 0.55 87.25 ± 0.36 48.23 ± 0.69 50.29 ± 0.70 64.06 ± 0.73 64.29 ± 0.94 84.46 ± 0.33 83.29 ± 0.47 70.67 71.45

Table 1: Accuracy on 4 text classification benchmark. 0% represents a model trained on P c, 1% and so on denote
the proportion of random noise, and Gaussian refers to Gaussian noise. ∗ cited from Saunshi et al. (2021).

BBC Balanced COPA MRPC WiC Avg
Linear MLP Linear MLP Linear MLP Linear MLP Linear MLP

Llama-3-8B 96.90 ± 0.40 97.50 ± 0.20 69.00 ± 0.20 65.60 ± 0.50 72.00 ± 0.81 67.53 ± 0.93 64.14 ± 0.56 59.07 ± 0.34 75.51 72.42
Llama-3-8B + Lgm 98.00 ± 0.50 98.20 ± 0.40 70.80 ± 1.70 64.80 ± 0.20 74.89 ± 0.40 74.14 ± 1.49 64.71 ± 0.94 64.21 ± 0.83 77.10 75.33

Llama-3-8B-Instruct 96.80 ± 0.70 96.90 ± 0.30 87.80 ± 0.70 88.80 ± 0.60 72.57 ± 0.26 71.42 ± 0.13 65.92 ± 0.53 61.85 ± 0.59 80.77 79.74
Llama-3-8B-Instruct + Lgm 97.70 ± 0.20 97.80 ± 0.40 88.40 ± 0.90 89.60 ± 0.50 77.79 ± 0.58 76.81 ± 0.20 68.64 ± 0.26 67.71 ± 0.51 83.13 82.98

Llama-3.2-3B-Instruct 97.30 ± 0.60 97.20 ± 0.80 80.40 ± 0.90 79.60 ± 0.20 77.79 ± 0.52 72.57 ± 0.31 64.07 ± 0.82 57.50 ± 0.35 79.89 76.71
Llama-3.2-3B-Instruct + Lgm 97.60 ± 0.10 97.80 ± 0.30 81.60 ± 1.00 79.40 ± 0.10 78.43 ± 0.78 76.57 ± 1.12 64.35 ± 0.62 62.64 ± 0.07 80.49 79.10

Qwen2.5-1.5B-Instruct 97.00 ± 0.30 96.60 ± 0.70 80.80 ± 0.70 82.20 ± 0.50 74.49 ± 0.71 73.39 ± 0.90 65.92 ± 0.45 61.64 ± 0.20 79.55 78.45
Qwen2.5-1.5B-Instruct + Lgm 97.40 ± 0.10 97.20 ± 0.80 84.00 ± 0.90 83.40 ± 0.30 79.65 ± 0.62 78.37 ± 0.84 67.71 ± 0.49 66.92 ± 0.55 82.19 81.47

Qwen2.5-7B-Instruct 96.30 ± 0.30 96.70 ± 0.50 94.60 ± 0.90 95.80 ± 0.40 83.71 ± 0.92 76.81 ± 0.51 68.92 ± 0.41 64.92 ± 0.18 85.88 83.55
Qwen2.5-7B-Instruct + Lgm 97.10 ± 0.80 97.40 ± 0.20 95.60 ± 0.50 96.00 ± 0.80 84.98 ± 0.12 83.13 ± 0.49 72.28 ± 0.98 70.14 ± 0.94 87.49 86.66

Table 2: Accuracy of LLMs on 4 natural language understanding benchmark.

work in visual domains (Zada et al., 2022), suggest-383

ing that incorporating random noise into training384

sets might enhance model robustness. Addition-385

ally, we observe that the performance of models386

subjected to Gaussian noise varies across differ-387

ent datasets. These observations warrant further388

investigation.389

3.5 Broader Impact of the Results390

In addition to providing explanations regarding the391

impact of random noise on pre-training language392

models, we aim to extend our proposed theory to393

other areas, therefore demonstrating the practical394

value of our research findings.395

One immediate direction is the training of multi-396

lingual models (Pires et al., 2019; Chi et al., 2020;397

Yang et al., 2024a). Clearly, tokens corresponding398

to different languages are distinct, and their distri-399

butions naturally satisfy Assumption 1. For exam-400

ple, in an English-French bilingual model, let P c401

represent English and Pn represent French. Sup-402

posing the pre-training corpus consists of an equal403

distribution of English and French, and given that404

the two distributions are similar, we can assume405

that pc ≈ pn, leading to ϵ ≈ 0. This provides a the-406

oretical foundation for the success of multilingual407

models. See Appendix D.3 for more details.408

Beyond language modality, random white noise409

has received increased attention in the speech410

domain (Chen et al., 2022, 2021; Yang et al.,411

2024c, 2023b). Since our theory applies to any412

cross-entropy-like loss, it can also explain why 413

speech models pre-trained on very noisy large-scale 414

datasets, such as Gigaspeech (Chen et al., 2021), 415

which contain significant background noise and 416

prolonged silence at the beginning and end of a few 417

samples, still perform remarkably well. 418

4 Reducing the Noise with Local 419

Gradient Matching 420

In Section 3, we know that the influence of noise on 421

NTP loss is rather small. However, Figure 3(c) and 422

Table 1 show that the Gaussian noise-trained model 423

with lower NTP loss suffers a 1.5% decrease in ac- 424

curacy in downstream tasks. Although this might 425

be mitigated during the pre-training phase, consid- 426

ering that most practitioners fine-tune pre-trained 427

models rather than training them from scratch, 428

we propose a novel black-box fine-tuning method 429

termed Local Gradient Matching loss to tame the 430

influence. Extensive experiments across 8 natural 431

language understanding and 14 image classifica- 432

tion benchmark datasets further demonstrate that 433

the proposed method consistently enhances perfor- 434

mance across different backbones and modalities. 435

We also provide a theoretical analysis. 436

4.1 Method 437

In the preceding analysis, we demonstrate that the 438

population-level loss function is only marginally 439

affected by random noise. However, during the 440

SGD training process, its presence introduces cer- 441
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Model EfficientNet-B3 ResNetv2-152x2 Swin-L ConvNext-L ViT-L
Pre-training Data JFT-300M ImageNet-21K ImageNet-21K Laion-2B Laion-2B

Fine-tuning Method Linear MLP Linear MLP Linear MLP Linear MLP Linear MLP
w/o Lgm 73.27 76.62 78.14 79.60 81.43 84.19 82.89 85.71 86.86 89.12
w/ Lgm 74.02 75.90 79.49 79.94 82.70 84.42 84.07 86.27 88.03 89.31

Table 3: Average accuracy of 5 vision backbone models on 14 commonly-used vision datasets.

Blackbox
Encoder

Question: What is 
the sentiment of 

this review? 
Review: ... Answer:

Text Data

Image Data

Add

Noise

Linear/
MLP

Linear/
MLP

Shared Weights

Figure 5: Overview of the proposed Local Gradient
Mathcing scheme.

tain noise into the gradients. Prior studies (Chen442

et al., 2023; Xie et al., 2021c) have shown that arti-443

ficially added gradient noise can hurt the model’s444

generalization. Therefore, inspired by Sharpness-445

Aware Minimization (SAM) (Foret et al., 2021;446

Zhang et al., 2023; Zhao et al., 2022; Wen et al.,447

2023) and noise-robust fine-tuning methods (Hua448

et al., 2023, 2021; Jiang et al., 2020), we propose449

explicitly enhancing the denoising capabilities of450

the downstream task head by aligning local gradi-451

ents.452

Specifically, let C denote the number of classes453

in the downstream task, and let gθ : Rd → RC454

represent the linear or MLP classification head pa-455

rameterized by θ. Let t∗ be the feature extracted456

by h∗, t be the feature extracted by h, and y be the457

corresponding label. Let ℓ(ŷ, y) be the loss func-458

tion(typically cross-entropy), and Lce(D, gθ) =459

E(t,y)∼Dℓ(gθ(t), y) be the population-level loss460

where D represents the joint distribution of down-461

stream features and labels. Due to the additional462

randomness introduced by h as a result of noise,463

t can be viewed as t∗ perturbed by minor distur-464

bances. If both t∗ and t were known, their dis-465

tribution could be aligned to achieve denoising.466

However, in practical applications, it is challenging467

to obtain t∗. To construct contrastive sample pairs468

without t∗, we add Gaussian noise to t to obtain t̂:469

t̂ = t+ γ · δ (3)470

where δ ∼ N (0, In) denotes the standard normal471

distribution noise. Our objective is to minimize the472

discrepancy between the distributions of gθ(t) and473

gθ(t̂). Instead of the conventional regularization474

term ||gθ(t) − gθ(t̂)||2, we propose to align the475

gradient difference:476

Lgm(θ) = ||E(t,y)∼D∇θℓ(gθ(t), y)

− E(t̂,y)∼D̂∇θℓ(gθ(t̂), y)||2
(4)477

RTE MRPC CoLA STS-B
L2-SP∗ 70.58 87.74 60.54 89.38

L2-SP + Lgm 71.25 87.62 61.79 89.62
SMART∗ 72.23 87.86 63.16 90.11

SMART + Lgm 72.94 88.61 63.28 90.42
LNSR∗ 73.31 88.50 63.35 90.23

LNSR + Lgm 73.95 89.42 63.82 90.47

Table 4: Evaluation of our method combined with SOTA
fine-tuning techniques utilizing BERT-Large as the back-
bone model across 4 datasets. ∗ cited from Hua et al.
(2021)

Intuitively, if the gradients with respect to t and 478

t̂ can be perfectly aligned, then the classification 479

head is insensitive to small perturbations in the in- 480

put, suggesting that it possesses some denoising 481

capability. Consequently, it should be able to miti- 482

gate the noise in t, bringing it closer to t∗. 483

4.2 Theoretical Analysis 484

To theoretically support the proposed method, we 485

investigate the properties of Equation (4) and find 486

that it can be upper bounded by the smoothness, 487

input flatness, and loss function value at θ. Con- 488

cretely, since we set γ in Equation (3) to be small, 489

the perturbation can be considered to distribute 490

within an open ball B(0, ρ). Consequently, we 491

have the following result: 492

Proposition 2. Suppose ℓ(gθ(t), y) is β-smooth 493

with ρ-input flatness Rρ(θ) (c.f. Appendix B.4), for 494

any θ ∈ Θ: 495

Lgm(θ) ≤ 2β + 2Lce(D, gθ) +Rρ(θ). (5) 496

497Proposition 2 demonstrates that Lgm is closely 498

associated with the smoothness of the loss function 499

in both the parameter space and the input space. 500

As a flat minima is widely acknowledged to benefit 501

the generalization of neural networks (Xie et al., 502

2021b; Baldassi et al., 2021), it explains the effec- 503

tiveness of Lgm. The final loss function is: 504

L = Lce + λLgm (6) 505

4.3 Experiments 506

We first conduct extensive experiments using 507

trained GPT-2 models. Then, to further validate the 508

novelty and effectiveness of the LGM loss, we con- 509

duct additional experiments using Llama-3 (Dubey 510
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(c) With Lgm.
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Figure 6: Visualization of input sensitivity for models trained with (a) no (b) L2 (c) Lgm regularization. We
randomly select a sample and introduce perturbations on a two-dimensional hyperplane, where different colors
represent different labels, and green indicates the correct label.

et al., 2024) and vision models. These experiments511

are intended to showcase the generalizability of512

our approach beyond the specific context of GPT-513

2, demonstrating its applicability across different514

types of models and tasks. While these experiments515

enrich our study, they are not the core focus but516

rather supplementary evidence supporting the517

broader applicability of our proposed solution. De-518

tails can be found in Appendix E.519

We validate the performance of Lgm on mod-520

els pre-trained with noisy data using four com-521

monly used classification datasets: SST-2, SST-522

fine, 20newsgroup, and CR. The training hyper-523

parameters follow those of Saunshi et al. (2021),524

where γ = 0.01 and λ = 0.15 apply to all four525

experiments. In line with the approach described526

by Chen et al. (2024), we freeze the model param-527

eters and only fine-tune a linear or MLP classifier528

head. As shown in Table 1, our model achieves529

competitive results without reaching the number of530

training iterations of GPT-2, and Lgm consistently531

boosts performance.532

Results in Table 2 indicate that our method pro-533

vides a 3% improvement across multiple NLU534

datasets with LLM backbone. In addition, we se-535

lect five commonly used backbone models in the536

visual domain and conduct experiments on four-537

teen datasets. The results are shown in Table 3. It538

can be seen that our method is equally applicable to539

visual tasks, achieving a performance improvement540

of more than 1% under the linear probe setting.541

Furthermore, we visualize the sensitivity of dif-542

ferent regularization terms to input perturbations,543

as illustrated in Figure 6. Compared with other reg-544

ularization methods, our loss function can increase545

the size of the region for correct decisions, thereby546

enhancing the model’s robustness to input pertur-547

bations. We also carry out ablation studies and pa-548

Method
SST-2

Linear MLP
0% 86.71 87.36

0% + ||∇θℓ(gθ(t), y)||2 87.04 87.24
0% + cos(∇θℓ(gθ(t), y),∇θℓ(gθ(t̂), y)) 86.89 87.52

0% + Lgm 87.42 87.86

Table 5: Ablation Study. To investigate the effects of
reducing Lgm, experiments are conducted to examine
the impact of separately reducing the norm versus in-
creasing the cosine similarity.

γ λ
DTD

Linear MLP
0.001 0.001 76.31 78.54
0.05 0.05 76.54 79.51
0.1 0.1 76.43 79.12

Table 6: Hyperparameter sensitivity experiments on
DTD with ConvNext as the backbone.

rameter sensitivity analyses, with results presented 549

in Table 5 and Table 6, which all demonstrate the 550

effectiveness and robustness of LGM. 551

5 Conclusion 552

In this paper, we investigate the random noise 553

present in language model pre-training datasets, 554

which is inevitable in real-world scenarios but re- 555

ceives little attention. We pre-train multiple GPT-2 556

models under varying noise levels and find that ran- 557

dom noise has a minor impact on the pre-training 558

loss. We then provide a theoretical explanation 559

for this phenomenon and discover that our the- 560

ory can elucidate the success of multilingual mod- 561

els. Interestingly, we observe that slight noise can 562

sometimes enhance a model’s generalization ability. 563

Then, building on the noisy model learning setup, 564

we propose a novel local gradient matching loss. 565

Extensive experiments across multiple datasets in 566

both language and vision tasks, as well as with var- 567

ious backbone models, validate the effectiveness of 568

our proposed method. We hope this work inspires 569

more researchers to focus on data-centric AI. 570
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Limitations571

In this section, we discuss the limitations of this572

paper.573

Firstly, due to limitations in computational re-574

sources and costs, we pre-train only the GPT-2575

124M and 774M model(see Appendix D.5) on the576

OpenWebText dataset. Compared to today’s large577

language models, both the scale of OpenWebText578

and that of GPT-2 are relatively small. Additionally,579

the types of noise considered are limited to uni-580

form and Gaussian distributions. However, based581

on Proposition 1, we argue that training GPT-2 on582

the Synthetic OpenWebText dataset is sufficient to583

uncover the essence of the issue, as Proposition 1584

makes no assumptions about data distribution or585

model architecture.586

Secondly, on the theoretical front, we consider587

neural networks as black boxes and focus on an-588

alyzing the properties of global minima. Due to589

limited mathematical skills, we do not delve into590

the dynamical aspects to specifically examine how591

random noise within datasets influences model gra-592

dients, nor do we explore the differences between593

global and local minima obtained through stochas-594

tic gradient descent. However, experimental results595

indicate that neural networks trained with stochas-596

tic gradient descent do not suffer from significant597

disturbances.598
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A Notations1346

The commonly used notations and their descriptions are as follows.

Notation Description
L context length
d embedding dimension
W vocabulary of words

V = |W| vocabulary size
X = ∪L

i=1W i model input space
H model space

h : X → RV ∈ H language model
∆A distribution defined on a discrete set A

P c ∈ ∆X×W distribution of clean data
Pn ∈ ∆X×W distribution of pure noise data
Pm ∈ ∆X×W distribution of mixed noisy data

α proportion of noise in training data
PX marginal distribution of the joint distribution P

P·|X conditional distribution of the joint distribution P

ph
·|x(w) the w-th dimension of the probability distribution corresponding to h(x)

supp(P c) support of distribution P c

Lntp(P, h) next-token prediction loss of model h on the distribution P

gθ : Rd → RC downstream classification head
θ ∈ Θ parameters of g
t ∈ T feature of downstream task data extracted by backbone model
y ∈ Y label of downstream task data
C = |Y| number of classes of the downstream task
ℓ(ŷ, y) downstream task loss function, typically cross-entropy
D joint distribution of downstream feature and label

Lce(D, gθ) population-level loss with downstream data distribution D and head gθ

Table 7: Nomenclature.

1347

B Proofs1348

B.1 Explanation of Equation (1)1349

Let M be a measurable space, and let P1 and P2 be probability measures defined on this space. We assume1350

that N1 samples are drawn from P1 and N2 samples from P2. Define µ = N1
N1+N2

, so that 1−µ = N2
N1+N2

.1351

We aim to show that this collection of N1 + N2 samples can be regarded as drawn from a mixed
distribution

P3 = µP1 + (1− µ)P2

First, define a new probability measure P3 as P3(A) = αP1(A)+(1−α)P2(A) for any measurable set1352

A ⊆ M. Here, P3 is a convex combination of P1 and P2, and thus P3 is also a valid probability measure1353

(Le Gall, 2022).1354

For any measurable set A ⊆ M, we examine the probability that a single sample point falls in A by1355

law of total probability:1356

• A sample from P1 is selected with probability µ, and within this case, the probability of landing in A1357

is P1(A).1358

• A sample from P2 is selected with probability 1− µ, and the probability of it falling in A is P2(A).1359
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Thus, the probability of any given sample point falling in A is

µP1(A) + (1− µ)P2(A) = P3(A)

Since N1 samples are drawn from P1 and N2 samples from P2, these samples collectively follow the 1360

distribution P3 as each individual sample’s probability of being in any measurable set A is consistent with 1361

P3(A). Therefore, drawing N1 +N2 samples in this manner is equivalent to drawing N1 +N2 samples 1362

from P3. 1363

B.2 Proof of Proposition 1 1364

Before procedding to the proof, we first establish a useful lemma. 1365

Lemma 1. If Assumption 1 holds, then for any h ∈ H, we have

Lntp(P
m, h) = αLntp(P

n, h) + (1− α)Lntp(P
c, h)

Proof. Let xi, i = 1, 2, . . . , |X | denote all prefixes, and wj , j = 1, 2, . . . , V denote all tokens. For all 1366

x ∈ X , by Equation (1), we have: 1367

Pm
X (x) =

V∑
j=1

Pm(x,wj) =

V∑
j=1

αPn(x,wj) + (1− α)P c(x,wj) 1368

= α
V∑
j=1

Pn(x,wj) + (1− α)
V∑
j=1

P c(x,wj) = αPn
X(x) + (1− α)P c

X(x) (7) 1369

This indicates that the marginal distribution possesses additivity. Consequently, 1370

Lntp(P
m, h) = Ex∼Pm

X
Ew∼Pm

·|x
− log(ph

·|x(w)) =

|X |∑
i=1

Pm
X (xi) · Ew∼Pm

·|xi
− log(ph

·|xi
(w)) 1371

=

|X |∑
i=1

[(1− α)P c
X(xi) + αPn

X(xi)] · Ew∼Pm
·|xi

− log(ph
·|xi

(w)) (Equation (7)) 1372

= (1− α)

|X |∑
i=1

P c
X(xi)Ew∼Pm

·|xi
− log(ph

·|xi
(w)) + α

|X |∑
i=1

Pn
X(xi)Ew∼Pm

·|xi
− log(ph

·|xi
(w))

(8)

1373

The conditional distributions do not generally exhibit a linear relationship:

Pm
·|x(w|x) =

Pm(x,w)

Pm
X (x)

=
(1− α)P c(x,w) + αPn(x,w)

(1− α)P c
X(x) + αPn

X(x)
̸= P c

·|x(w|x) ̸= Pn
·|x(w|x)

However, if supp(P c) ∩ supp(Pn) = ∅, it immediately follows that:

Pm
·|x(w|x) =

(1− α)P c(x,w) + αPn(x,w)

(1− α)P c
X(x) + αPn

X(x)
=

{
P c
·|x(w|x) if (x,w) ∈ supp(P c),

Pn
·|x(w|x) if (x,w) ∈ supp(Pn).

Consequently, 1374

|X |∑
i=1

P c
X(xi)Ew∼Pm

·|xi
− log(ph

·|xi
(w)) =

|X |∑
i=1

P c
X(xi)Ew∼P c

·|xi
− log(ph

·|xi
(w)) = Lntp(P

c, h) (9) 1375

Similarly, 1376

|X |∑
i=1

Pn
X(xi)Ew∼Pm

·|xi
− log(ph

·|xi
(w)) = Lntp(P

n, h) (10) 1377

By substituting Equation (9) and Equation (10) into Equation (8), the proof is completed. 1378
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Now we can prove Proposition 1.1379

Proposition 1. Under Assumption 1, let h∗ be a model trained on P c, with Lntp(P
c, h∗) = − log pc1380

and Lntp(P
n, h∗) = − log pn. When the model h is trained on a mixed distribution Pm which includes1381

noise, it attempts to fit Pn, leading to an increase in the loss on the clean distribution P c, such that1382

Lntp(P
c, h) = − log(pc − ϵ) and Lntp(P

n, h) = − log(pn + ϵ/k) for some ϵ > 0 (k can be shown to be1383

Ω(eLntp(Pn,h))). Let η = αpc − (1− α)kpn. We arrive at the following conclusions:1384

(1) If α ≤ kpn
pc+kpn

, then for any 0 < ϵ < pc, we have Lntp(P
m, h) ≥ Lntp(P

m, h∗). This means that1385

when α is sufficiently small, the global minimum on Pm will not be affected by noise.1386

(2) If α > kpn
pc+kpn

, then for ϵ < η, it holds that Lntp(P
m, h) < Lntp(P

m, h∗). This suggests that if α1387

is large enough, the impact on the optimal hypothesis is at least as much as αpc − (1− α)kpn.1388

(3) When α < 1
3 and k > α(1−3α)pc

(1−α)(2−3α)pn
, for ϵ ≥ 3η we get Lntp(P

m, h∗) < Lntp(P
m, h). Similarly,1389

it can be shown that ϵ does not exceed 2η when α > max( kpn
pc+kpn

, 12) and k > (2α−1)pc
2(1−α)pn

. This indicates1390

that when k is sufficiently large, the effect of noise is at most O(αpc − (1− α)kpn).1391

Proof. We first establish that k is Ω(eLntp(Pn,h)), thereby ensuring that η ≪ αpc. Note that1392

ϵ =
1

eLntp(P c,h)
− 1

eLntp(P c,h)
=

eLntp(P c,h)−Lntp(P c,h) − 1

eLntp(P c,h)
(11)1393

ϵ

k
=

1

eLntp(Pn,h)
− 1

eLntp(Pn,h)
=

eLntp(Pn,h)−Lntp(Pn,h) − 1

eLntp(Pn,h)
(12)1394

Therefore1395

k =
ϵ
ϵ
k

= eLntp(Pn,h)−Lntp(P c,h) · e
Lntp(P c,h)−Lntp(P c,h) − 1

eLntp(Pn,h)−Lntp(Pn,h) − 1
1396

> eLntp(Pn,h)−Lntp(P c,h) · Lntp(P
c, h)− Lntp(P

c, h)

eLntp(Pn,h)−Lntp(Pn,h)
1397

= eLntp(Pn,h) · Lntp(P
c, h)− Lntp(P

c, h)

eLntp(P c,h)
(13)1398

where Lntp(P c,h)−Lntp(P c,h)

eLntp(P
c,h) only depends on P c, h and h. It is worth noting that when Pn is random1399

noise, eLntp(Pn,h)−Lntp(Pn,h) − 1 is close to 0, which leads to k exceeding the lower bound established in1400

Equation (13). Then:1401

(1) If α ≤ kpn
pc+kpn

, we have:1402

Lntp(P
m, h∗)− Lntp(P

m, h) = (1− α)(Lntp(P
c, h∗)− Lntp(P

c, h)) + α(Lntp(P
n, h∗)− Lntp(P

n, h))1403

= (1− α) log
pc − ϵ

pc
+ α log

pn + ϵ
k

pn
(14)1404

≤ (1− α) · −ϵ

pc
+ α ·

ϵ
k

pn
(log(1 + t) ≤ t)1405

= ϵ[
(α− 1)

pc
+

α

kpn
] = ϵ

αpc − (1− α)kpn
kpcpn

(15)1406

As α ≤ kpn
pc+kpn

⇐⇒ αpc − (1− α)kpn ≤ 0, for ϵ > 0 we have Lntp(P
m, h∗) ≤ Lntp(P

m, h).1407
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(2)when α > kpn
pc+kpn

and ϵ < αpc − (1− α)kpn, we have 1408

Lntp(P
m, h∗)− Lntp(P

m, h) = (1− α) log
pc − ϵ

pc
+ α log

pn + ϵ
k

pn
(Equation (14)) 1409

≥ (1− α)
−ϵ

pc − ϵ
+ α

ϵ
k

pn + ϵ
k

(log t ≥ 1− 1
t ) 1410

= ϵ(
α− 1

pc − ϵ
+

α

kpn + ϵ
) 1411

=
ϵ

(pc − ϵ)(kpn + ϵ)
[α(pc − ϵ)− (1− α)(kpn + ϵ)] 1412

=
ϵ

(pc − ϵ)(kpn + ϵ)
[αpc − (1− α)kpn − ϵ] (16) 1413

As ϵ < αpc − (1− α)kpn < αpc < pc, by Equation (16) we have Lntp(P
m, h)− Lntp(P

m, h) > 0. 1414

(3) Let 1415

f(ϵ) = (1− α) log
pc − ϵ

pc
+ α log

pn + ϵ
k

pn

p′n=kpn
= (1− α) log

pc − ϵ

pc
+ α log

p′n + ϵ

p′n
(17) 1416

Take the derivative of f(ϵ): 1417

f ′(ϵ) = (1− α)
− 1

pc

1− ϵ
pc

+ α

1
p′n

1 + ϵ
p′n

= (1− α)
1

ϵ− pc
+ α

1

p′n + ϵ
=

[αpc − (1− α)p′n]− ϵ

(pc − ϵ)(p′n + ϵ)
(18) 1418

Without loss of generality, assume η > 0, then f(ϵ) is monotonically increasing on [0, η) and monoton- 1419

ically decreasing on (η, pc). Therefore, to prove that Lntp(P
m, h∗) < Lntp(P

m, h) for ϵ ≥ 3η, we only 1420

need to show f(3η) < 0 when k > α(1−3α)pc
(1−α)(2−3α)pn

. Notice that 1421

f(3η) = (1− α) log(1− 3αpc − 3(1− α)p′n
pc

) + α log(1 +
3αpc − 3(1− α)p′n

p′n
) 1422

= (1− α) log(1− 3α+
3(1− α)

pc
p′n

) + α log(3α− 2 + 3α
pc
p′n

) (19) 1423

Let 1424

g3(t) = (1− α) log(1− 3α+
3(1− α)

t
) + α log(3α− 2 + 3αt) (20) 1425

Take the derivative: 1426

g′3(t) = (1− α)
1

1− 3α+ 3(1−α)
t

3(α− 1)

t2
+ α

3α

3α− 2 + 3αt
(21) 1427

=
−3(1− α)2

(1− 3α)t2 + (1− α)t
+

3α2

3α− 2 + 3αt
(22) 1428

=
−3(1− α)2(3α− 2 + 3αt) + 3α2[(1− 3α)t2 + (1− α)t]

[(1− 3α)t2 + (1− α)t](3α− 2 + 3αt)
(23) 1429

=
[αt+ (α− 1)][3α(1− 3α)t+ 3(1− α)(3α− 2)]

[(1− 3α)t2 + (1− α)t](3α− 2 + 3αt)
(24) 1430

First, consider the denominator. Since α < 1
3 , it is clear that (1 − 3α)t2 + (1 − α)t > 0. Given that 1431

t = pc
p′n

> 1−α
α (because η > 0), it follows that 3α − 2 + 3αt > 1 > 0. Therefore, the denominator 1432

is always positive. Next, we consider the numerator. Since η > 0, it follows that αt + (α − 1) > 0. 1433

Therefore, when t = pc
p′n

= pc
kpn

< (1−α)(2−3α)
α(1−3α) , we have g′3(t) < 0. This means that g3(t) is monotonically 1434

decreasing on (1−α
α , (1−α)(2−3α)

α(1−3α) ]. Consequently, f(3η) = g3(t) ≤ g3
(
1−α
α

)
= 0. 1435
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Figure 7: Visualization of k and Lntp(P
m, h∗) − Lntp(P

m, h). (a) The trend of k as it changes with training,
plotted using the model trained on P c as h∗. (b) Visualization of Lntp(P

m, h) when the parameter settings are
consistent with the experiment.

Following the same line of reasoning, when α > 1
2 , we have1436

f(2η) = (1− α) log(1− 2αpc − 2(1− α)p′n
pc

) + α log(1 +
2αpc − 2(1− α)p′n

p′n
)1437

= (1− α) log(1− 2α+
2(1− α)

pc
p′n

) + α log(2α− 1 + 2α
pc
p′n

) (25)1438

Let1439

g2(t) = (1− α) log(1− 2α+
2(1− α)

t
) + α log(2α− 1 + 2αt) (26)1440

Take the derivative:1441

g′2(t) = (1− α)
1

1− 2α+ 2(1−α)
t

2(α− 1)

t2
+ α

2α

2α− 1 + 2αt
(27)1442

=
−2(1− α)2

(1− 2α)t2 + 2(1− α)t
+

2α2

2α− 1 + 2αt
(28)1443

=
2(1− 2α)(αt+ 1− α)2

[(1− 2α)t2 + 2(1− α)t](2α− 1 + 2αt)
(29)1444

Therefore, when 1−α
α < t < 2(1−α)

2α−1 , we have g′2(t) < 0, which implies that f(2η) < 0.1445

1446

B.3 Justification of Proposition 11447

We plot the trend of k in Figure 7(a). We compare checkpoints trained for the same iterations on both P c1448

and Pm, where pc is calculated based on the loss of the model trained on P c, and pn is determined by the1449

loss of a model trained for 10,000 iterations on Pm when evaluated on Pn. It can be observed that the1450

value of k corresponding to random noise is significantly greater than one, which supports the rationality1451

of the assumption made in Proposition 1.1452

On the other hand, to extend the proposed theory beyond uniformly distributed random noise (for1453

instance, in multilingual models or Gaussian noise), it is necessary to ensure that k does not become too1454

small in these scenarios. This means that Lntp(P
n, h∗) = − log pn should not be close to log V . One1455

trivial way to increase pn is to decrease V, the size of vocabulary. Apart from this, we provide two lines of1456

reasoning to justify why pn can be made large:1457

(1) Numerous studies on compressing large language models, such as pruning (Wang et al., 2020;1458

Kurtic et al., 2022; Zhang et al., 2024), quantization (Zhao et al., 2024; Jin et al., 2024; Liu et al., 2024),1459
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and distillation (Dasgupta et al., 2023; Hinton, 2015), have demonstrated that there exists a significant 1460

amount of redundancy within the parameters of large models. Therefore, we could first train a model 1461

on P c and then compress it, fine-tuning the surplus parameters on Pn. This approach would allow us to 1462

improve pn without altering pc. 1463

(2) A small proportion of data corresponding to Pn can be introduced into P c, making sure that α 1464

is extremely small. According to domain adaptation theory (Ben-David et al., 2010), this would only 1465

slightly increase Lntp(P
c). However, existing results (Shliazhko et al., 2024; Pires et al., 2019; Chi et al., 1466

2020) indicate that pre-trained models like BERT or GPT on English text can exhibit strong multilingual 1467

capabilities with just a very limited amount of data. Consequently, compared to a model trained solely on 1468

P c, the resulting model has a minor difference in pc but a relatively higher pn. 1469

Both thought experiments above demonstrate that there exist a lot of models within the parameter space 1470

H can perform well on P c while yielding non-trivial outcomes on Pn. Thus, we can ensure that models 1471

trained on mixed data distributions will have a sufficiently large k. 1472

Additionally, in Figure 7(b), we illustrate how Lntp(P
m) varies with changes in ϵ, under settings 1473

identical to those used during pre-training. The results depicted in the figure are consistent with our 1474

theoretical derivations. 1475

B.4 Omitted Details in Section 4.2 1476

Definition 1 (β-smooth (Zheng et al., 2023b)). A loss function ℓ(gθ(t), y) is β-smooth, if for any (t, y) ∈ 1477

T × Y and any θ, θ′ ∈ Θ, 1478

||∇θℓ(gθ(t), y)−∇θ′ℓ(gθ′(t), y)||2 ≤ β||θ − θ′||2 (30) 1479

Definition 2 (ρ-input flatness). The ρ-input flatness Rρ(θ) of loss function ℓ(gθ(t), y) is defined as: 1480

Rρ(θ) = E(t,y)∼D sup
δ′∈B(0,ρ)

ℓ(gθ(t+ δ′), y)− ℓ(gθ(t), y) (31) 1481

where B(0, ρ) = {δ′ : ||δ′||2 < ρ} is a open ball. 1482

Lemma 2. If the loss function ℓ(gθ(t), y) is β-smooth, then 1483

||∇θℓ(gθ(t), y)||22 ≤ 4βℓ(gθ(t), y) (32) 1484

Proof. See Lemma 3.1 in Srebro et al. (2010). 1485

Proposition 2. Suppose ℓ(gθ(t), y) is β-smooth with ρ-input flatness Rρ(θ), for any θ ∈ Θ: 1486

Lgm(θ) ≤ 2β + 2Lce(D, gθ) +Rρ(θ) (33) 1487

Proof.

Lgm(θ) = ||E(t,y)∼D∇θℓ(gθ(t), y)− E(t̂,y)∼D̂∇θℓ(gθ(t̂), y)||2 (34) 1488

≤ ||E(t,y)∼D∇θℓ(gθ(t), y)||2 + ||E(t̂,y)∼D̂∇θℓ(gθ(t̂), y)||2 (Triangle Inequality) 1489

≤ E(t,y)∼D||∇θℓ(gθ(t), y)||2 + E(t̂,y)∼D̂||∇θℓ(gθ(t̂), y)||2 (Jensen’s Inequality) 1490

≤ E(t,y)∼D2
√
βℓ(gθ(t), y) + E(t̂,y)∼D̂2

√
βℓ(gθ(t̂), y) (Lemma 2) 1491

≤ E(t,y)∼D(β + ℓ(gθ(t), y)) + E(t̂,y)∼D̂(β + ℓ(gθ(t̂), y)) (AM-GM Inequality) 1492

= 2β + 2E(t,y)∼Dℓ(gθ(t), y) + (E(t̂,y)∼D̂ℓ(gθ(t̂), y)− E(t,y)∼Dℓ(gθ(t), y)) (35) 1493

≤ 2β + 2Lce(D, gθ) +Rρ(θ) (36) 1494

where the last inequality holds because t̂− t ∈ B(0, ρ). 1495
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C Detailed Related Works1496

Data selection for language model training. LLMs (Yang et al., 2023c; Zhuang et al., 2024c,d; Xie1497

et al., 2024; Pan et al., 2024; Weng et al., 2025; Fan et al., 2024c) have fundamentally change the landsape1498

of current AI research (Pan et al., 2023; Fan et al., 2024a; Zhuang et al., 2024a,e; Yang et al., 2023a,1499

2024b). Large text corpora form the backbone of language models, with data quality being fundamental1500

to their success and safety (Yang et al., 2023e,f). Elazar et al. (2024) conducted a systematic analysis1501

of open-source text datasets such as The Pile (Gao et al., 2020) (used to train Pythia), C4 (Raffel et al.,1502

2020) (used to train T5) and RedPajama (used to train LLaMA), revealing that they contain a significant1503

amount of duplicate, toxic, synthetic, and low-quality content. Therefore, it is of great importance to1504

thoroughly understand the impact of low-quality data within these pre-training datasets on the model’s1505

performance, reliability, and safety. Allen-Zhu and Li (2024a,b) systematically investigated the effect1506

of low-quality data and found that such data can significantly reduce the model’s knowledge capacity,1507

sometimes by up to 20 times. Another research direction primarily focuses on the synthetic data of large1508

language models, specifically examining the impacts of using data generated by LLMs for recursive1509

training. The study by Shumailov et al. (2024) was the first to explore this issue and introduced the concept1510

of "model collapse", indicating that recursive training can lead to the loss of information in tail tokens,1511

ultimately resulting in the model producing nonsensical content. Seddik et al. (2024) mainly provided1512

a theoretical explanation for why model collapse occurs, supporting their arguments with experimental1513

evidence. Consequently, the importance of data selection cannot be overstated. Given that data selection1514

is an NP-hard problem in terms of combinatorial optimization (Xiao et al., 2022), numerous heuristic1515

algorithms have been proposed to expedite the process. Longpre et al. (2024) provided a comprehensive1516

study on pre-training data selection and optimal ratios, offering practical recommendations. Yang et al.1517

(2023d) proposed dataset pruning, an approach that assesses the impact of omitting training samples on1518

model generalization and creates a minimal training subset with a controlled generalization gap. Chai et al.1519

(2024) evaluated the impact of individual training samples on the dynamics of GPT model training. Li et al.1520

(2024b) introduced the Instruction-Following Difficulty metric to assess the quality of instruction-tuning1521

data. Xie et al. (2023b) employed importance resampling for data selection. Xie et al. (2023a); Lee1522

et al. (2023) advocated for optimizing data composition and diversity. Despite these notable studies on1523

data selection, they generally acknowledge that dataset noise degenerates model performance but lack1524

a detailed understanding of how and to what extent, particularly in the case of random noise which is1525

inevitable in large-scale datasets. Although Cherepanova and Zou (2024) investigated the influence of1526

gibberish input, the random noise within the pre-training dataset is still underexplored. This paper aims to1527

bridge the gap.1528

Learning from Noisy Distributions. The majority of machine learning algorithms assume that training1529

and test samples are independently and identically distributed (i.i.d.), a condition that is often not met in1530

real-world scenarios. For instance, LLMs are pre-trained on datasets with all kinds of noise while their1531

performance is evaluated by the user whose distribution is usually clean and meets real-world scenarios,1532

which violates the i.i.d. assumption. Domain adaptation (Li et al., 2024a; Meng et al., 2022; Ma et al.,1533

2023) addresses this issue when the distribution of the training data differs from that of the test data.1534

Although domain adaptation methods attempt to reduce the statistical distribution discrepancy (Du and1535

Li, 2023; Wu et al., 2024) or employ adversarial training (Li et al., 2021; Ru et al., 2024) to minimize1536

the gap between source and target domains, they typically require access to unlabeled test data under a1537

semi-supervised learning setup, which is impractical for LLM training. Another reason domain adaptation1538

cannot be directly applied here is that domain adaptation theory (Ben-David et al., 2010) focuses on the1539

performance of a model trained on one distribution when it is applied to another different but related1540

distribution. This kind of bounds can be easily derived by Lemma 1. However, what we aim to investigate1541

here is the extent of performance loss when comparing a model trained on one distribution (noisy dataset)1542

to a model trained on another distribution (clean dataset).1543

Apart from domain adaptation, there has been extensive research directly investigating noisy training1544

sets. Noisy label learning Song et al. (2022); Lukasik et al. (2020) have explored the impact of incorrect1545

labels on model performance. Regarding input feature noise, Smilkov et al. (2017) added perturbations1546
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Figure 8: The prior distribution of tokens in the data from (a) OpenWebText, (b) random noise, and (c) Gaussian
noise.

to individual image inputs to enhance model interpretability, and Zada et al. (2022) added white noise 1547

image into the training dataset to tackle the class imbalance problem. However, most of these efforts have 1548

concentrated on image classification and do not consider the pre-training paradigm. 1549

Fine-tuning Pre-trained Models. The approach of initially pre-training model weights on large-scale 1550

datasets and subsequently fine-tuning them with downstream data has become the de facto standard in the 1551

fields of computer vision (Ye and Gao, 2024; Zhuang et al., 2025b; Fan et al., 2024b; Zhuang et al., 2025a), 1552

natural language processing (Wei et al., 2021; Xie et al., 2021a; Zhuang et al., 2024f; Tang et al., 2024) 1553

and audio processing (Yang et al., 2023b; Zhuang et al., 2024b, 2025c). For instance, Hua et al. (2023, 1554

2021) proposed enhancing the performance of models by increasing their resistance to minor perturbations 1555

in intermediate layers. Meanwhile, Jiang et al. (2020) improved model robustness by adding regularization 1556

terms. Besides full-parameter fine-tuning, numerous parameter-efficient fine-tuning algorithms have 1557

been extensively studied. Zhang et al. (2021) introduced adapters into the original model architecture, 1558

optimizing only these parameters during fine-tuning. Zhou et al. (2022b,a) efficiently fine-tuned CLIP 1559

models (Radford et al., 2021) using learnable soft prompts. Hu et al. (2022) optimized models through 1560

learning low-rank residual weights. These methods achieved performance close to that of full-parameter 1561

fine-tuning while maintaining the generalization ability of the original models. However, they all require 1562

access to the model’s weights and loading them into GPU memory, which can be challenging for today’s 1563

large models, especially when state-of-the-art models’ parameters are not publicly available. Therefore, in 1564

this paper, we follow the NML setup and explore efficient ways to fine-tune the downstream task head 1565

under a black-box scenario. 1566

Implicit Regularization and Sharpness-aware Minimization. Achieving good generalization in 1567

neural networks optimized using gradient descent algorithms has long been a research focus in deep 1568

learning theory. Barrett and Dherin (2021) explored the properties of stochastic gradient descent (SGD), 1569

finding that SGD implicitly constrains the gradient norm. Based on this observation, Sharpness-aware 1570

minimization (SAM) (Zhang et al., 2023; Foret et al., 2021; Wen et al., 2023; Xie et al., 2023c) improves 1571

generalization by incorporating the gradient norm as a regularization term. Our method can be seen as 1572

drawing inspiration from SAM but differs in that our optimization objective is the model’s resilience to 1573

input noise rather than seeking flat minima in the parameter space. 1574

D Experiments in Section 3 1575

D.1 Pre-training Dataset 1576

OpenWebText Dataset. The OpenWebText dataset (Gokaslan et al., 2019) is a large-scale corpus of 1577

English text data, developed to serve as an open-access alternative to proprietary dataset WebText that is 1578

utilized by OpenAI for training their GPT-2 models. This dataset originates from the analysis of outbound 1579

links clicked on Reddit, undergoing multiple stages of filtering to exclude non-English content, duplicate 1580

entries, copyrighted materials, and texts lacking in quality. These links generally direct to web pages 1581

available to the public, often shared or debated on Reddit, thereby covering a broad spectrum of subjects 1582

that mirror online popular interests and discussions. The dataset includes roughly 18 million documents, 1583

amounting to about 20GB of compressed plain text data in uint16 format. Since measures have been 1584
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Figure 9: Visualization of (a) Lntp(P
m, h∗) − Lntp(P

m, h) and (b) Lntp(P
c, h) with α = 0.55, k =

1,Lntp(P
c, h∗) = 2.9,Lntp(P

n, h∗) = 2.8.

implemented to ensure the dataset’s reliability by filtering out unsuitable content, we consider it a clean1585

and noise-free dataset. Figure 8(a) illustrates the distribution of internal tokens.1586

Random Noise. To simulate the distribution of random gibberish that crawlers might retrieve from1587

the Internet due to various reasons, we manually searched and collected a few websites containing such1588

gibberish and also opened normally functioning websites using different decoding methods to observe1589

the distribution of tokens. We found that, while the distribution of tokens appeared disorganized, their1590

prior probabilities were not evenly distributed. Instead, several tokens had notably high probabilities,1591

which is similar to that observed in the clean data as shown in Figure 8(a). Thus, on the basis of uniformly1592

distributed random noise, we increased the frequency of certain tokens and then randomized them again.1593

The resulting distribution is illustrated in Figure 8(b). It can be seen that while maintaining an overall1594

uniform distribution, the frequency of tokens with IDs ranging from 0 to 1000 is higher which closely1595

mirrors real-world scenarios.1596

Gaussian Noise. Given the diversity and unpredictability of real-world data distributions, we also1597

artificially generated random noise with a prior probability that follows a Gaussian distribution, as shown1598

in Figure 8(c). The rationale behind choosing the Gaussian distribution is that the noise in many real-world1599

systems can be approximated by it. Additionally, we set the standard deviation σ = 500 to simulate1600

scenarios where random noise exhibits sharp peaks.1601

D.2 Training Details of GPT-21602

Our work is based on the source code of nanoGPT4. Specifically, we utilized the GPT-2 tokenizer with1603

vocabulary size V = 50256 to process the OpenWebText dataset, and then appended randomly generated1604

noise to the end of the training set before commencing training. The model’s context length is set to1605

L = 1024, with an embedding dimension d = 768. The GPT-2 model consists of 12 self-attention layers,1606

totaling approximately 124 million parameters. For optimization, we employed AdamW (Loshchilov,1607

2017; Xie et al., 2022) with a learning rate of 6e-4, weight decay of 0.1, and β values of 0.9 and 0.951608

for β1 and β2, respectively. A cosine annealing scheduler was used to gradually adjust the learning rate1609

down to 6e-5. We configured the batch size to 16, with a gradient accumulation step of 40, allowing each1610

iteration to process 655,360 tokens (16 * 40 * 1024). Training proceeded for a total of 300,000 iterations.1611

D.3 Synthetic Results about Multilingual Models1612

To illustrate our theory’s explanatory power concerning multilingual models, we have plotted the sce-1613

nario where h∗ is influenced by Pn under the conditions α = 0.55, k = 1, Lntp(P
c, h∗) = 2.9, and1614

Lntp(P
n, h∗) = 2.8, as shown in Figure 9. This setup simulates a model trained on a roughly 1:11615

multilingual corpus, where the capacity of one language is affected by the data from another language.1616

As can be observed from the figure, the impact on pc does not exceed 2η = 2(αpc − (1− α)pn), which1617

4https://github.com/karpathy/nanoGPT
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translates to an increase of no more than 0.1 in Lntp(P
n, h). This finding strongly supports the success of 1618

multilingual models from a theoretical perspective. 1619

D.4 Hardware 1620

We conducted the pre-training process on a server equipped with 8 NVIDIA GeForce RTX 4090 GPUs. 1621

It takes approximately 70 hours to train one model using eight 4090 GPUs, so pre-training five GPT-2 1622

models in total requires 2,800 GPU hours. 1623

D.5 Additional Results on GPT-2 774M and BERT-base 1624

To further validate the impact of random noise, we scaled up the parameters of GPT-2 from 124M to 1625

774M and conducted pre-training on a dataset containing 5% random noise. The results are presented in 1626

Table 8. 1627

Noise Percentage 10,000 iters 50,000 iters 100,000 iters
0% 3.04 2.89 2.82
5% 3.06 2.92 2.83

Table 8: NTP loss during GPT-2 774M training

These findings sufficiently demonstrate that our conclusions can be extended to models with larger 1628

scales, as our theoretical framework does not hinge upon model performance metrics. 1629

Additionally, experiments in Section 4 involve BERT and vision models to assess the generalizability 1630

of the proposed local gradient matching function. This investigation is somewhat tangential to our 1631

primary focus—the impact of random noise on training language models using autoregressive approaches. 1632

Nonetheless, we pre-trained the BERT-base model under 5% noise conditions. The outcomes are illustrated 1633

below. These results align well with our theoretical predictions.

Noise Percentage 1M iters 5m iters 10m iters
0% 3.21 2.94 2.76
5% 3.23 2.97 2.79

Table 9: NTP loss during BERT-base training.

1634

For vision models, pre-training outcomes can be found in Chen et al. (2024). Specifically, the authors 1635

simulated label noise by randomly replacing ImageNet sample labels and tested on 14 downstream tasks. 1636

The slight decrease in accuracy further corroborates our hypothesis across different types of models and 1637

datasets, underscoring the robustness of our approach against various levels of noise. 1638

E Experiments in Section 4 1639

E.1 Detailed Setup for Downstream Natural Language Understanding Experiments 1640

E.1.1 Datasets 1641

We utilize 8 commonly-used text classification benchmark: SST-2, SST-fine, 20newsgroup, CR, BBC, 1642

Balanced COPA, MRPC, WiC. The detailed information can be found in Table 10. 1643

E.1.2 Prompts 1644

Since classification tasks can be processed as seq2seq tasks by adding prompts (Sutskever, 2014; Saunshi 1645

et al., 2021), we design a unique prompt for each dataset and task. This approach transforms the inputs 1646

into a format that large language models can process. The specific designs are shown in Table 11. 1647
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Dataset Classes Train Size Test Size
SST-2 (Socher et al., 2013) 2 6.92k 1.82k

SST-fine (Chen and Manning, 2014) 5 8.54k 2.21k
20newsgroup (Zhang et al., 2019) 20 11.3k 7.53k

CR (Hu and Liu, 2004) 2 3.39k 376
BBC (Samuels and Mcgonical, 2020) 5 1.23k 1k

Balanced COPA (Kavumba et al., 2020) 2 1k 500
MRPC (Dolan and Brockett, 2005) 2 3.67k 1.73k

WiC (Pilehvar and Camacho-Collados, 2019) 2 5.43k 1.4k

Table 10: Details of the 8 natural language understanding dataset.

Dataset Prompts
SST-2 {text} this movie is

SST-fine {text} this movie is
20newsgroup {text} This article is about

CR {text} the sentiment is
BBC Please classify the topic of the following news: {text} Answer:

Balanced COPA Given the premise: {premise} Find the most plausible alternative
for the {question}. Option 1: {choice1} Option 2: {choice2}

Which option is more plausible?
MRPC Sentence 1: {text1} Sentence 2: {text2} Is this a paraphrase?
WiC Task: Determine if the word {phrase1} has the same meaning in

the two sentences below. Sentence 1: {sentence1} Sentence 2:
{sentence2} Your answer:

Table 11: Details of the prompts applied to each dataset.

E.1.3 Hyperparameters1648

For all experiments in Section 4, we utilize a two-layer MLP with hidden dimension equals to feature1649

dimension and ReLU activation function.1650

For all experiments shown in Table 1, we set γ in Equation (3) to be 0.01 and λ in Equation (6) to be1651

0.15. Following the setup as described by Saunshi et al. (2021), for each dataset, we conduct a grid search1652

on the validation set to identify the optimal learning rate and batch size. We train for a total of ten epochs1653

with the learning rate ranging within {3e-4, 6e-4} and batch size options including {8, 12, 16, 32}. For1654

samples without a designated validation set, we randomly select 10% of the training set samples to form a1655

validation set for the purpose of selecting the best parameters.1656

For the experiments listed in Table 2, we set the batch size to 8 and the learning rate to 6e-4 for all linear1657

probe tasks. For all MLP probe tasks, the learning rate is set to 1e-4. Regarding γ and λ, we conduct a1658

grid search on the validation set to find the optimal values.1659

E.2 Detailed Setup for Downstream Vision Experiments1660

E.2.1 Datasets1661

We select 14 image classification datasets, which serve as a common benchmark for evaluating model1662

performance in the vision community (Zhou et al., 2022b; Chen et al., 2024). Specific information about1663

these 14 datasets is provided in Table 12.1664

E.2.2 Models1665

We use five pre-trained general-purpose visual backbone models that cover a variety of architectures,1666

datasets, and training methods. Detailed information is provided in Table 13.1667
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Dataset Classes Train Size Test Size
StanfordCars (Krause et al., 2013) 196 8144 8041
Caltech101 (Fei-Fei et al., 2004a) 102 3060 6084

CIFAR-10 (Krizhevsky et al., 2009) 10 50000 10000
CIFAR-100 (Krizhevsky et al., 2009) 100 50000 10000

DTD (Cimpoi et al., 2014) 47 1880 1880
EuroSAT (Helber et al., 2019) 10 21600 5400

FGVCAircraft (Maji et al., 2013) 102 6667 3333
Flowers102 (Nilsback and Zisserman, 2008) 102 2040 6149

Food101 (Fei-Fei et al., 2004b) 101 75750 25250
OxfordPet (Parkhi et al., 2012) 37 3680 3669

PatchCamelyon (Veeling et al., 2018) 2 262144 32768
RESISC45 (Cheng et al., 2017) 45 25200 6300

Rendered SST2 (Socher et al., 2013) 2 6920 1821
SVHN (Netzer et al., 2011) 10 73257 26032

Table 12: Details of the 14 vision dataset.

Model Pre-training Dataset Size

EfficientNet-B3 (Tan and Le, 2019)
ImageNet-1K (Deng et al., 2009)
and JFT-300M (Sun et al., 2017)

12.3M

ResNetv2-152x2 (He et al., 2016) ImageNet-21K (Ridnik et al., 2021) 321.7M
Swin-L (Liu et al., 2021) ImageNet-21K 196.7M

ConvNext-L (Woo et al., 2023)
Laion-2B (Schuhmann et al., 2022)

and ImageNet-1K
200.1M

ViT-L (Dosovitskiy, 2020) Laion-2B 428M

Table 13: Details of the 5 vision models.

E.2.3 Hyperparameters 1668

In our study, similar to the approach detailed in Chen et al. (2024), we primarily contrast our proposed 1669

method with MLP and LP tuning. For the optimization process, we employ AdamW for fine-tuning the 1670

modules over 30 epochs, utilizing a cosine learning rate scheduler. Specifically, for LP, we configure the 1671

learning rate at 0.1 without applying any weight decay. In contrast, both the MLP tuning and our method 1672

use a more conservative learning rate of 0.001 alongside a weight decay of 1e-4. 1673

E.2.4 Detailed Experimental Results 1674

In Table 3, due to space limitations, we only present the average results, while detailed results are shown 1675

in Table 14. 1676

Models
StanfordCars Caltech101 CIFAR-10

Linear MLP Linear MLP Linear MLP
ViT-L 93.38 ± 0.76 94.41 ± 1.05 92.07 ± 1.19 95.20 ± 1.12 97.99 ± 0.95 98.35 ± 0.95

ViT-L + Lgm 93.71 ± 1.37 94.56 ± 1.50 95.01 ± 0.97 95.29 ± 1.27 98.07 ± 0.74 98.48 ± 0.60
ConvNext-L 86.01 ± 1.48 88.68 ± 0.89 91.02 ± 0.79 94.47 ± 0.53 97.49 ± 1.36 98.09 ± 0.85

ConvNext-L+Lgm 86.78 ± 1.32 89.06 ± 1.19 94.11 ± 1.19 94.93 ± 0.88 97.59 ± 0.52 98.15 ± 0.71
EfficientNet-B3 56.20 ± 0.54 58.57 ± 1.11 89.43 ± 0.78 91.22 ± 1.23 94.04 ± 1.19 95.73 ± 1.07

EfficientNet-B3+Lgm 57.02 ± 1.28 58.15 ± 1.12 90.25 ± 1.43 91.55 ± 0.90 94.11 ± 0.88 95.96 ± 0.86
ResNetv2-152x2 56.95 ± 1.21 59.18 ± 1.34 91.40 ± 1.47 92.48 ± 1.30 96.28 ± 1.16 96.91 ± 0.89

ResNetv2-152x2+Lgm 58.78 ± 1.16 58.67 ± 1.27 93.83 ± 0.91 93.95 ± 0.94 96.31 ± 0.85 97.03 ± 0.53
Swin-L 68.17 ± 0.98 74.11 ± 0.60 92.58 ± 0.95 94.09 ± 1.04 98.26 ± 0.89 98.61 ± 0.78

Swin-L+Lgm 69.31 ± 1.07 73.71 ± 0.94 93.65 ± 1.42 94.62 ± 0.64 98.41 ± 0.91 98.72 ± 1.28
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CIFAR-100 EuroSAT FGVCAircraft OxfordPet
Linear MLP Linear MLP Linear MLP Linear MLP

88.07 ± 0.58 89.49 ± 0.52 97.53 ± 1.13 97.75 ± 0.61 65.76 ± 0.73 68.43 ± 0.78 91.65 ± 1.18 93.97 ± 1.50
88.06 ± 0.93 89.58 ± 0.93 97.83 ± 0.73 98.03 ± 0.60 66.63 ± 1.08 68.67 ± 1.07 93.18 ± 0.81 94.17 ± 1.10
86.76 ± 0.91 87.79 ± 1.27 95.57 ± 1.22 96.31 ± 1.11 57.18 ± 1.12 62.25 ± 0.66 94.98 ± 0.54 95.80 ± 0.75
86.46 ± 1.04 87.88 ± 1.24 96.05 ± 1.46 96.74 ± 1.27 58.35 ± 0.68 63.61 ± 0.83 95.39 ± 1.21 95.99 ± 0.92
77.34 ± 0.86 80.28 ± 1.02 94.81 ± 1.35 95.90 ± 0.88 44.73 ± 1.31 46.23 ± 0.92 93.84 ± 1.14 94.79 ± 1.14
77.16 ± 1.11 80.47 ± 1.43 95.20 ± 0.52 96.07 ± 1.18 45.33 ± 0.61 47.07 ± 0.57 94.63 ± 1.03 94.98 ± 1.14
84.30 ± 1.18 84.68 ± 1.33 97.12 ± 1.46 97.46 ± 1.28 42.03 ± 0.72 48.39 ± 0.85 91.93 ± 0.68 92.99 ± 1.40
84.28 ± 1.22 84.29 ± 1.38 97.35 ± 1.12 97.59 ± 0.72 45.69 ± 0.80 48.84 ± 0.61 92.61 ± 0.87 93.45 ± 1.32
89.68 ± 1.33 90.74 ± 0.98 97.11 ± 0.72 97.59 ± 0.63 54.96 ± 1.24 61.17 ± 1.35 92.17 ± 0.64 94.38 ± 1.21
89.79 ± 0.52 91.18 ± 1.21 97.09 ± 1.11 97.71 ± 1.08 56.10 ± 0.67 60.99 ± 0.73 93.86 ± 0.85 94.57 ± 1.11

Food101 Flowers102 DTD SVHN
Linear MLP Linear MLP Linear MLP Linear MLP

90.51 ± 1.31 91.04 ± 1.35 94.04 ± 1.13 97.83 ± 0.74 80.53 ± 1.06 83.29 ± 0.86 78.82 ± 1.25 84.74 ± 1.08
90.62 ± 1.37 91.23 ± 0.52 96.67 ± 1.41 98.06 ± 1.28 82.76 ± 0.71 83.77 ± 0.98 79.80 ± 0.88 84.59 ± 1.38
89.09 ± 1.06 90.21 ± 0.87 94.71 ± 1.31 98.78 ± 1.17 76.01 ± 1.03 78.67 ± 1.15 66.16 ± 0.87 72.76 ± 0.78
88.62 ± 0.72 90.10 ± 1.39 97.12 ± 0.95 98.99 ± 0.99 77.92 ± 0.72 80.05 ± 1.44 68.43 ± 1.37 73.18 ± 0.67
76.95 ± 0.82 81.78 ± 0.89 84.19 ± 0.61 88.97 ± 1.32 69.09 ± 1.27 73.08 ± 1.30 54.26 ± 0.87 61.38 ± 0.82
76.35 ± 0.74 81.33 ± 1.45 86.19 ± 1.08 89.42 ± 0.62 71.27 ± 1.24 73.82 ± 1.40 56.74 ± 0.73 63.56 ± 0.82
84.83 ± 1.36 84.15 ± 1.27 96.76 ± 0.88 98.27 ± 0.53 72.23 ± 0.94 76.11 ± 1.25 60.75 ± 0.89 64.87 ± 1.45
84.41 ± 0.88 84.64 ± 1.04 98.08 ± 1.23 98.84 ± 0.82 74.73 ± 1.38 77.12 ± 1.39 62.04 ± 1.01 65.06 ± 0.62
90.23 ± 0.64 92.23 ± 0.55 97.28 ± 0.92 99.51 ± 1.17 75.85 ± 0.88 80.74 ± 1.45 62.77 ± 1.42 69.53 ± 1.22
90.26 ± 1.14 92.32 ± 1.00 99.12 ± 1.05 99.60 ± 0.51 77.44 ± 1.00 80.91 ± 0.83 64.83 ± 0.98 68.97 ± 1.12

resisc45 rsst2 pcam Avg
Linear MLP Linear MLP Linear MLP Linear MLP

95.44 ± 1.41 95.79 ± 0.57 67.65 ± 1.12 73.58 ± 1.31 82.65 ± 0.57 83.92 ± 0.56 86.86 89.12
95.73 ± 1.19 95.93 ± 1.28 71.82 ± 0.55 74.24 ± 0.76 82.55 ± 1.49 83.78 ± 0.97 88.03 89.31
92.65 ± 1.25 93.09 ± 0.89 60.73 ± 1.30 66.0 ± 0.55 72.21 ± 0.72 77.08 ± 0.53 82.89 85.71
92.93 ± 0.54 93.31 ± 1.31 64.14 ± 0.99 67.49 ± 0.63 73.1 ± 1.35 78.31 ± 1.10 84.07 86.27
87.19 ± 1.05 89.01 ± 0.70 50.46 ± 1.02 50.74 ± 1.05 53.32 ± 0.59 51.10 ± 1.34 73.27 75.62
87.33 ± 0.60 89.17 ± 1.34 50.19 ± 0.74 51.07 ± 0.92 54.52 ± 1.27 50.10 ± 0.92 74.02 75.90
90.96 ± 0.81 91.19 ± 0.57 50.90 ± 0.73 49.91 ± 1.08 77.62 ± 0.85 77.86 ± 1.16 78.14 79.60
91.17 ± 0.64 91.36 ± 0.73 54.25 ± 0.69 49.92 ± 1.03 79.44 ± 0.52 78.48 ± 0.53 79.49 79.45
92.79 ± 1.25 94.09 ± 0.99 50.96 ± 1.41 53.59 ± 1.20 77.32 ± 0.68 78.38 ± 1.04 81.43 84.19
93.41 ± 1.32 94.42 ± 0.96 53.48 ± 0.89 54.96 ± 0.90 81.18 ± 1.34 79.29 ± 1.31 82.70 84.42

Table 14: Detailed accuracy of 5 vision backbone models on 14 commonly-used vision datasets.

E.3 Runtime Analysis1677

Since all our models are black-box models, we first process all samples into vector-form features and then1678

probe them. All models described in this paper can run on a single NVIDIA RTX 4090 GPU. Extracting1679

all these features requires a total of 10 GPU hours. Subsequently, training these Linear or MLP Probes1680

requires approximately 200 GPU hours in total.1681
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