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Abstract

The extension of convolutional neural networks (CNNs) to non-Euclidean geometries has
led to multiple frameworks for studying manifolds. Many of those methods have shown
design limitations resulting in poor modelling of long-range associations, as the general-
isation of convolutions to irregular surfaces is non-trivial. Motivated by the success of
attention-modelling in computer vision, we translate convolution-free vision transformer
approaches to surface data, to introduce a domain-agnostic architecture to study any sur-
face data projected onto a spherical manifold. Here, surface patching is achieved by rep-
resenting spherical data as a sequence of triangular patches, extracted from a subdivided
icosphere. A transformer model encodes the sequence of patches via successive multi-head
self-attention layers while preserving the sequence resolution. We validate the performance
of the proposed Surface Vision Transformer (SiT ) on the task of phenotype regression from
cortical surface metrics derived from the Developing Human Connectome Project (dHCP).
Experiments show that the SiT generally outperforms surface CNNs, while performing
comparably on registered and unregistered data. Analysis of transformer attention maps
offers strong potential to characterise subtle cognitive developmental patterns.

Keywords: Vision Transformer, Cortical Analysis, Deep Learning, Neuroimaging, Attent-
ion-based Modelling.
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1. Introduction

Over recent years, attention-based transformer models have dominated the �eld of natural
language processing (NLP) through supporting the learning of long-distance associations
within sequences (Vaswani et al., 2017; Radford et al., 2018; Devlin et al., 2019). Since
thorough understanding of context within images is essential for most computer vision task,
Dosovitskiy et al. 2020 proposed the vision transformer (ViT ) to adapt NLP transformer
architectures (Vaswani et al., 2017) to the natural imaging domain, by processing images as
sequences of patches. In doing so, they showed that pure transformer models were capable
of outperforming CNNs for image classi�cation, while addressing some of their limitations
in terms of their inductive bias towards local features, lack of scalability and low parameter-
e�ciency.

As there is no generic deep learning method for studying non-Euclidean data, there
has also been an emerging interest in translating attention-based mechanisms to irregular
geometries, as a way to improve the learning of long-range associations and feature ex-
pressiveness. The transformer architecture has been used with some successes in graph
domain (Yang et al., 2021; Dwivedi and Bresson, 2021), or for sequences of 3D meshes and
point-clouds (Sarasua et al., 2021; Zhao et al., 2021; Guo et al., 2021), while He et al. 2021
introduced a self-attention mechanism for general manifolds to ensure gauge equivariance.
However, to date, there has been no application of vision transformers to generic func-
tions on surfaces, which are an important data structure across many distinct disciplines
(Boomsma and Frellsen, 2017; Jiang et al., 2019; De�errard et al., 2020), particularly in
medical imaging (Gopinath et al., 2019; Kong and Shadden, 2021; Ma et al., 2021; Lebrat
et al., 2021).

In this paper, we therefore seek to adapt the data e�cient image transformer (DeiT )
model (Touvron et al., 2020) to surface domains by projecting data onto a sphere and patch-
ing surfaces using a regular icospheric tessellation. The methodology of surface patching is
general and the proposedSiT may be adapted for any genus-zero surface. One challenging
area, which stands to particularly bene�t from this style of analysis is the study of the
cerebral cortex, since traditional approaches for brain image analysis based on registration,
have historically been unable to fully capture the heterogeneity of cortical organisation
across individuals, not only for vulnerable groups (Ciarrusta et al., 2020), but also within
healthy populations (Fischl et al., 2008; Frost and Goebel, 2012; Glasser et al., 2016; Kong
et al., 2019). We therefore evaluate our approach by comparing our model against a range
of convolutional geometric deep learning frameworks on the task of developmental pheno-
type regression from cortical metric data derived from the Developing Human Connectome
Project (dHCP). 1 The main contributions of this work can be summarised as follows:

ˆ This paper proposes translation of vision transformers (Dosovitskiy et al., 2020; Tou-
vron et al., 2020) to any data associated with genus-zero surfaces.

ˆ Validation of the model on the task of neurodevelopmental phenotype regression
demonstrates competitive performance relative to spectral and spatial geometric deep
learning frameworks (Cohen et al., 2018; Monti et al., 2016; De�errard et al., 2017;
Kipf and Welling, 2017; Zhao et al., 2019).

1. The code is available at https://github.com/metrics-lab/surface-vision-transformers
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ˆ Visualisation of attention weights highlights that the model attends to well-character-
ised spatiotemporal patterns of perinatal cortical development (Dubois et al., 2008;
Doria et al., 2010; Eyre et al., 2021).

2. Related work

Attention-based modelling and Transformers. Attention was �rst introduced by
Bahdanau et al. 2016 as a tool for modelling long-range dependencies, in recurrent networks
trained for machine translation tasks. To increase context modelling in long-sequences,
Vaswani et al. 2017 introduced the self-attention mechanism - learning attention between
elements in a sequence - with the transformer architecture. When paired with pre-training
on very large datasets, this led to powerful language models such as BERT or GPT (Devlin
et al., 2019; Radford et al., 2018), that are transferable to many downstream tasks. While
CNNs have proven to be sample-e�cient architectures for image understanding, most ar-
chitectures saturate in performance when presented with very large datasets, and struggle
to relate distant elements within images. This is partly due to the inherent inductive biases
(locality and translational equivariance) of the CNN architecture. As a result, inspired by
the success of attention mechanisms, e�orts have been made to incorporate attention-based
operations into CNNs (Jaderberg et al., 2016; Wang et al., 2018a; Hu et al., 2019), includ-
ing for medical imaging (Wang et al., 2018b; Schlemper et al., 2019), as a way to increase
the learning of contextual information. However, these have been limited by the heavy
cost of pixel-level attention and so computation was mostly restricted to low-resolution fea-
ture maps. More recently, vision transformer architectures have been introduced to adapt
the sequence-modelling of NLP in the context of computer vision. Dosovitskiy et al. 2020
introduced a patching strategy consisting of splitting RGB images into patches of shape
16 � 16 � 3. By doing so, the attention is computed at the patch level, and contextual
information from the entire image is available already from early layers. These have been
shown to outperform CNNs for a range of computer vision tasks including image classi-
�cation and segmentation (Dosovitskiy et al., 2020; Touvron et al., 2020; d'Ascoli et al.,
2021), object detection (Xu et al., 2021) and video classi�cation (Liu et al., 2021), achieving
state-of-the-art performance without relying on strong spatial priors. In medical imaging
tasks, modelling long-range dependencies is critical, for instance for anomaly detection or
image segmentation, but limited by most of the current convolution-based models. There-
fore, hybrid and pure vision transformers have also been translated with success for medical
image segmentation (Pinaya et al., 2021; Chen et al., 2021a; Karimi et al., 2021; Zhang
et al., 2021a; Gao et al., 2021), medical image registration (Chen et al., 2021b; Zhang et al.,
2021b; van Tulder et al., 2021) or medical image reconstruction (Feng et al., 2021).

Geometric Deep Learning. A prominent approach for studying cortical surfaces relies
on geometric deep learning (gDL) methods (Gopinath et al., 2019; Arya et al., 2020; Kim
et al., 2021) that aim to adapt Euclidean CNNs to irregular manifolds (Bronstein et al.,
2016, 2021). While many frameworks for surface and graph convolutions exist, typically
these frameworks struggle to learn rotationally equivariant, expressive features, without
prohibitively high computational cost (Bruna et al., 2013; Cohen et al., 2018). These lim-
itations have been stressed in a recent benchmarking paper (Fawaz et al., 2021), which
evaluated geometric deep learning techniques in the context of cortical analysis.

3



Dahan Fawaz Williams Yang Coalson Glasser Edwards Rueckert Robinson

3. Methods

3.1. Data

Data in this work comes from the publicly available third release of the Developing Human
Connectome Project (dHCP)2 (Hughes et al., 2017) and contains cortical surface meshes and
metrics (sulcal depth, curvature, cortical thickness and T1w/T2w myelination) derived from
T1 and T2-weighted magnetic resonance images (MRI), processed according to Makropoulos
et al. 2018 and references therein (Kuklisova-Murgasova et al., 2012; Schuh et al., 2017;
Hughes et al., 2017; Cordero-Grande et al., 2018; Makropoulos et al., 2018). We included a
total of 588 images acquired from term (born� 37 weeks gestational age, GA) and preterm
(< 37 weeks GA) neonatal subjects, scanned between 24 and 45 weeks postmenstrual age
(PMA). Some of the preterm neonates were scanned twice: once after birth and again
around term-equivalent age.

Figure 1: Surface Vision Transformer (SiT ) architecture. The cortical data is �rst resam-
pled, using barycentric interpolation, from its template resolution (32492 vertices) to a sixth
order icosphere (mesh of 40962 equally spaced vertices). The regular icosphere is divided
into triangular patches of equal vertex count (b, c) that fully cover the sphere (not shown),
which are attened into feature vectors (d), and then fed into the transformer model.

The proposed framework was benchmarked on two phenotype regression tasks: predic-
tion of postmenstrual age (PMA) at scan, and gestational age (GA) at birth. Since the
objective is to model PMA and GA as markers of healthy development, all preterms' sec-
ond scans were excluded from the PMA prediction task, and their �rst scans were excluded
from the GA regression task. This resulted in 530 neonatal subjects for the PMA prediction
task (419 term/111 preterm), and 514 neonatal subjects (419 term/95 preterm) for the GA

2. http://www.developingconnectome.org .
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Models Layers Heads Hidden sizeD MLP size Params.
SiT-tiny 12 3 192 768 5M
SiT-small 12 6 384 1536 22M
SiT-base 12 12 768 3072 86M

Table 1: All SiT models preserve a hidden size of 64 per attention head.

prediction task. In all instances, the proposed transformer networks are compared against
the best performing surface CNNs reported in Fawaz et al. 2021: Spherical UNet (Zhao
et al., 2019), MoNet (Monti et al., 2016), GConvNet (Kipf and Welling, 2017), ChebNet
(De�errard et al., 2017) and S2CNN (Cohen et al., 2018); on cortical surface data following
the same pre-processing pipeline as in Fawaz et al. 2021. Therefore, experiments were run
on both template-aligned data and non-registered (native) data, and train/test/validation
splits parallel those used in Fawaz et al. 2021. See Appendix A.3 for more details on im-
age preprocessing and registration pipelines, and Appendix A.4 for training details of gDL
methods.

3.2. Surface Vision Transformer

Architecture. The proposedSiT model builds upon three variants of the data e�cient
image transformer orDeiT (Touvron et al., 2020): DeiT-Tiny , DeiT-Small, DeiT-Base. For
more details about theSiT model architectures see Table 1. In general terms, for any vision
transformer, the high-resolution grid of the input domain X , is reshaped into a sequence of
N attened patches eX =

h
eX (0)

1 ; :::; eX (0)
N

i
2 RN � (V C) (V vertices, C channels). This initial

sequence is �rst projected onto a sequence of dimensionD with a trainable linear layer; an
extra token for regression is concatenated to the patch sequence, then a positional embed-
ding is added to the patch embeddings, such that the input sequence of the transformer
is X (0) =

h
X (0)

0 ; :::; X (0)
N

i
2 R(N +1) � D (see details in Appendix C.2). For the SiT, this is

implemented by imposing a low-resolution triangulated grid, on the input mesh, using a
regularly tessellated icosphere (Fig 1). This generates 320 patches, per hemisphere, and per
channel. In all cases, before extracting patches, the right hemisphere is ipped to mirror
the left orientation. Since there are four input channels (myelin, sulcal depth, curvature
and cortical thickness) and the number vertices per patch is 153, the total dimension per
patch is V C = 612. The architecture is made of L transformer blocks, each composed of
a multi-head self-attention layer (MSA), implementing the self-attention mechanism across
the sequence, and a feed-forward network (FFN), which expands then reduces the sequence
dimension (see details in Appendix C.1). In short, for every transformer block at layerl,

the input sequenceX (l ) =
h
X (l )

0 ; :::; X (l )
N

i
is processed as follows:

Z (l ) = MSA (X (l ) ) + X (l )

X (l+1) = FFN (Z (l ) ) + Z (l )

=
h
X (l+1)

0 ; :::; X (l+1)
N

i
2 R(N +1) � D

(1)

Following standard practice in transformers, LayerNorm (Ba et al., 2016) is used prior
to each MSA and FFN layer (omitted for clarity in Eq 1) and residual connections are
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added thereafter. The MSA used in transformers runs multiple self-attention in parallel at
each layer, referred asHeads in Table 1. In practice, it means that the input sequence of
dimension D is divided into sub-parts of dimensionDh = D=h. After being run in parallel,
the self-attention heads are concatenated. The regression patch of the �nal sequenceX (L )

is used as input of an MLP head for prediction (see Fig 1).

Attention maps. Unlike CNNs, the vision transformer model learns associations be-
tween patches within a sequence thanks to a self-attention mechanism inherited from NLP
Transformer (Vaswani et al., 2017). Attention maps can be visualised on the input space
by propagating the attention weights across layers and heads from the regression token of
the last transformer block (details in Appendix C.3). As each transformer head is running
in parallel, they should attend to di�erent parts of the input sequence.

Pre-training. Previous works pointed the necessity to pre-train vision transformers on
large-scale datasets to mitigate the lack of inductive biases in the architecture (Dosovitskiy
et al., 2020; Steiner et al., 2021; Beal et al., 2021). Lately, the need for large pretraining
has been reviewed as alternative training strategies such as Knowledge Distillation have
emerged (Touvron et al., 2020). This is relevant for medical imaging tasks, as datasets are
usually smaller than in natural imaging, and can bene�t from pretraining before transferring
to downstream tasks. Therefore, in this paper we evaluate di�erent training strategies, to
explore: 1) training from scratch; 2) initialising from ImageNet weights (to support training
on small datasets through incorporation of some spatial priors) and 3) �ne-tuning after a
self-supervision learning pretraining task (SSL). For ImageNet, we used pretrained models
from the timm open-source library3, where models were pretrained on ImageNet2012 (1
million images, 1000 classes) on patches of size 16� 16� 3. For self-supervision, we adapted
the masked patch predictiontask (MPP) for self-supervision used in BERT (Devlin et al.,
2019), which consists of corrupting at random some input patches in the sequence; then
training the network to learn how to reconstruct the full corrupted patches. In this setting,
we corrupt at random 50% of the input patches, either replacing them with a learnable mask
token (80%), another patch embedding from the sequence at random (10%) or keeping their
original embeddings (10%). To optimise the reconstruction, the mean square error (MSE)
loss is computed only for the patches in the sequence that were masked. Pretraining was
performed with template (registered) training data only, as adding unregistered data to the
pre-training did not seem to improve results (see Appendix B.1).

4. Results & Discussion

Test results for the tasks of postmenstrual age (PMA) at scan and gestational age (GA) at
birth are reported in Table 2 for the three training strategies: training from scratch, from
ImageNet weights and from SSL weights and compared against best gDL methods in Fawaz
et al. 2021. OverallSiT models consistently outperformed two of the gDL methods (Cheb-
Net and GConvNet) and were competitive compared to the three best performing geometric
models (S2CNN, Spherical UNet and MoNet). Spherical UNet obtained excellent perfor-
mances on template space for both tasks in Fawaz et al. 2021, but greatly underperformed
on native space, since it builds no transformation equivariance into its model. AllSiT

3. pretrained models on ImageNet available at http://github.com/rwightman/pytorch-image-models/
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Methods ImageNet MPP
PMA GA - deconfounded

Avg
Template Native Avg Template Native Avg

S2CNN 7 7 0.63� 0.02 0.73� 0.25 0.68 1.35� 0.68 1.52� 0.60 1.44 1.06
ChebNet 7 7 0.59� 0.37 0.77� 0.49 0.68 1.57� 0.15 1.70� 0.36 1.64 1.16
GConvNet 7 7 0.75� 0.13 0.75� 0.26 0.75 1.77� 0.26 2.30� 0.74 2.04 1.39
Spherical UNet 7 7 0.57� 0.18 0.87� 0.50 0.72 0.85 � 0.17 2.16� 0.57 1.51 1.11
MoNet 7 7 0.57� 0.02 0.61 � 0.05 0.59 1.44� 0.08 1.58� 0.06 1.51 1.05

SiT-tiny 7 7 0.63� 0.01 0.77� 0.03 0.70 1.37� 0.03 1.66� 0.06 1.52 1.11
SiT-tiny 3 7 0.67� 0.02 0.70� 0.04 0.69 1.22� 0.05 1.69� 0.05 1.46 1.07
SiT-tiny 7 3 0.58� 0.01 0.64� 0.06 0.61 1.18� 0.07 1.61� 0.03 1.39 1.00
SiT-small 7 7 0.60� 0.02 0.76� 0.03 0.68 1.14� 0.12 1.44 � 0.03 1.29 0.99
SiT-small 3 7 0.59� 0.03 0.71� 0.02 0.65 1.15� 0.05 1.69� 0.03 1.42 1.04
SiT-small 7 3 0.55 � 0.04 0.63� 0.06 0.59 1.13� 0.02 1.47� 0.08 1.30 0.95
SiT-base 7 7 0.59� 0.01 0.68� 0.03 0.64 1.12� 0.10 1.46� 0.11 1.29 0.96
SiT-base 3 7 0.61� 0.04 0.75� 0.01 0.68 1.05� 0.11 1.52� 0.08 1.29 0.98
SiT-base 7 3 0.61� 0.04 0.70� 0.03 0.66 0.97� 0.07 1.61� 0.08 1.29 0.97

Table 2: Best M ean A bsolute Error (in weeks) and standard deviations for the three best
models are reported;SiT-tiny , SiT-small, and SiT-base are compared against surface CNN
frameworks: S2CNN, ChebNet, GConvNet, Spherical Unet and MoNet. Average results
per task and overall are displayed. Training details and experimental set-up in A.1, A.2.

models achieved similar performance to Spherical UNet on template, with improvements on
PMA (0.55 for SiT-small ), but dropped less in performance between template/native pre-
dictions: for instance SiT-tiny achieved 0.58/0.64 on PMA against 0.57/0.87 for Spherical
UNet. This seems to indicate some robustness to transformation. Generally,SiT-tiny and
SiT-small performed fairly well and consistently on both tasks, especially on �netuned mod-
els following self-supervision. Results would suggest the need of regularisation forSiT-base
(especially dropout) whereasSiT-small achieved the best performance on average (template
& native) for both tasks. Overall, almost all con�gurations of SiT achieved better average
performances (on both tasks) than gDL methods, that were optimised with various data
augmentation techniques in Fawaz et al. 2021.

Birth age task. The task of GA prediction is arguably more complicated than the PMA
task, as it is run on scans acquired around term-equivalent age (� 37 weeks GA) for both
term and preterm neonates, and therefore is highly correlated to PMA at scan. Therefore,
a deconfounding strategy of PMA at scan for the task of birth age prediction was employed
and described in details in Appendix B.2. SiT models achieved good performances without
major drops in performance between template and native for this task, a trend that can be
seen acrossSiT versions. For details of deconfounding of gDL methods see Appendix A.4.

Training methods. For the task of PMA at scan, while comparing the three training
strategies, training from ImageNet often underperformed training from scratch, while train-
ing after the MPP task achieved the best performance withSiT-tiny and SiT-small. Self-
supervision pretraining appeared to improve training quality, for nearly all con�gurations
and both tasks. This is consistent with results in natural imaging. As a vision transformer
is a more general (less inductive biases) architecture than a CNN, it seems natural that
pretraining is bene�cial to compensate for the lack of geometric prior.
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