
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

AUTOPBO: LLM-POWERED OPTIMIZATION FOR LO-
CAL SEARCH PBO SOLVERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Pseudo-Boolean Optimization (PBO) provides a powerful framework for mod-
eling combinatorial problems through pseudo-Boolean (PB) constraints. Local
search solvers have shown excellent performance in PBO solving, and their ef-
ficiency is highly dependent on their internal heuristics to guide the search. Still,
their design often requires significant expert effort and manual tuning in prac-
tice. While Large Language Models (LLMs) have demonstrated potential in au-
tomating algorithm design, their application to optimizing PBO solvers remains
unexplored. In this work, we introduce AutoPBO, a novel LLM-powered frame-
work to automatically enhance PBO local search solvers. We conduct experiments
on a broad range of four public benchmarks, including one real-world bench-
mark, a benchmark from PB competition, an integer linear programming opti-
mization benchmark, and a crafted combinatorial benchmark, to evaluate the per-
formance improvement achieved by AutoPBO and compare it with six state-of-
the-art competitors, including two local search PBO solvers NuPBO and OraSLS,
two complete PB solvers PBO-IHS and RoundingSat, and two mixed integer pro-
gramming (MIP) solvers Gurobi and SCIP. AutoPBO demonstrates significant im-
provements over previous local search approaches, while maintaining competitive
performance compared to state-of-the-art competitors. The results suggest that
AutoPBO offers a promising approach to automating local search solver design.

1 INTRODUCTION

Pseudo-Boolean Optimization (PBO) plays an important role in solving a wide range of combina-
torial problems Boros & Hammer (2002), which seeks an assignment of values to a set of Boolean
variables that optimizes a linear objective function under Pseudo-Boolean (PB) constraints. Due to
its powerful expressiveness and the convenience to make use of properties of boolean variables,
PBO has demonstrated broad applicability across various domains, including VLSI design, eco-
nomic modeling, computer vision, and manufacturing optimization Wille et al. (2011); Zhang et al.
(2011); Roussel & Manquinho (2021).

Along with the wide usages of the PBO problem in industrial and application domains, solving the
PBO is then a non-negligible topic. However, the solving of PBO is a challenging task as the problem
is NP-hard Buss & Nordström (2021). In previous studies, the solving methods can be divided into
two classes: complete methods and incomplete methods. The complete methods solves the problem
to optimal and proves the optimality, while incomplete methods do not guarantee to compute the
optimal assignment but try to compute good solutions in a short time.

Research on complete methods for solving PBO has developed multiple approaches. First, since
PB constraints can be naturally treated as 0-1 linear constraints, mixed-integer programming (MIP)
solvers such as SCIP Bestuzheva et al. (2021) and Gurobi Gurobi Optimization, LLC (2021) can
be directly applied to solve PBO problems. Second, by translating PB constraints into conjunctive
normal form (CNF), the problem can be solved using SAT solvers based on Conflict-Driven Clause
Learning (CDCL), including MINISAT+ Eén & Sörensson (2006), Open-WBO Martins et al. (2014),
and NaPS Sakai & Nabeshima (2015). Beyond these, advanced methods have been developed for
more efficient PBO solving. The cutting planes technique, which goes beyond the resolution power
of CDCL, is implemented in solvers like sat4j Le Berre & Parrain (2010) and RoundingSat Elffers &

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Nordström (2018; 2020); Devriendt et al. (2021). Additionally, the implicit hitting set (IHS) method
has been successfully adapted to PBO in solvers such as PBO-IHS Smirnov et al. (2021; 2022).

Complete algorithms often struggle with large-scale instances, leading to the development of incom-
plete approaches, among which local search stands out as a representative strategy Lei et al. (2021);
Chu et al. (2023b); Zhou et al. (2023). The first notable solver LS-PBO Lei et al. (2021) introduced
a weighting scheme and a scoring function that jointly handle hard and soft constraints. Several
key extensions followed: DeciLS-PBO Jiang et al. (2023) enhanced the framework by incorporating
unit propagation; NuPBO Chu et al. (2023b) proposed enhanced scoring functions and weighting
schemes; and DLS-PBO Chen et al. (2024) implemented dynamic scoring functions. Additionally,
OraSLS Iser et al. (2023) utilizes an oracle mechanism to guide the local search approach in PBO.

The efficiency of local search solvers heavily relies on internal heuristics to guide the search process.
In the past, many works on designing different algorithmic components such as weighting scheme
and score functions have been proposed, as in Thornton (2005); Cai & Su (2013); Cai et al. (2014);
Cai & Lei (2020); Lei et al. (2021); Chu et al. (2023a; 2024). However, those works are based on
human-designed techniques and designing these heuristics often demands substantial expert effort
and manual tuning in practice. On the other hand, recent developments on the LLM-based algorithm
design start a new paradigm of algorithm design and show the capability of large language models
(LLMs) in automating algorithm design. However, the application of LLMs to building PBO solvers
remains unexplored, presenting a promising direction for future research.

Current works on automated algorithm design for combinatorial optimization problems are mainly
on designing evolutionary algorithms for specific problems or optimizing heuristics in simple
solvers. FunSearch Romera-Paredes et al. (2024) pioneered the integration of pretrained LLMs with
evolutionary search, initiating heuristic discovery through iterative code generation. Then, EoH Liu
et al. (2024) extends this paradigm through dual-representation evolution, and ReEvo Ye et al. (2024)
introduces a structured reflection mechanism to guide evolutionary search. What is more, AutoSAT
Sun et al. (2024; 2025) focus on optimizing heuristics in SAT solvers, AlphaEvolve Novikov et al.
(2025) pushes the paradigm further by ensembling LLMs with automated evaluators in an evolu-
tionary loop, enabling the discovery of entire algorithmic codebases.

The works on automated heuristic design for the general form problem (i.e. problems with general
constraints types, such as Integer Programming, Pseudo Boolean Optimization, etc) is rare, and
current approaches of designing heuristics for specific types of problems face critical limitations in
this scenario: 1) the general-problem solver usually have complex structure with various algorithm
components, and thus results in long-context of source codes, being much more sophisticated than
evolutionary algorithms for specific types of problems; 2) A general form problem usually allows a
wide range of types of constraints rather than specific types of problems normally has quite limited
and known types of constraints, making the heuristics design for these two scenarios quite different.
Thus, the algorithm design for the general form optimization problem is still challenging, and to our
knowledge, there is no prior work on the LLM-driven automated design for PBO solver.

We consider the automated optimization for local search solvers of the PBO problem. Specifically,
we consider to enhance the existing state-of-the-art local search solver for PBO by leveraging the
power of LLM. We try to address the above challenges by designing methods from three consider-
ations:1) Enhancing LLMs’ comprehension of solver codes with complex structures; 2) Reducing
errors or invalid modifications during code generation; 3) Improving the solver’s efficiency by opti-
mizing its algorithm as a composition that involves multiple functions.

In this work, we design a novel LLM-powered framework to automatically enhance PBO local
search solvers. We propose a multi-agent system integrated with a greedy search strategy, enabling
closed-loop, feedback-driven optimization. Furthermore, we introduce a structuralized local search
PBO solver StructPBO, with a clearer structure of codes, that could be used as an input for automatic
optimization frameworks. This design helps LLMs to effectively comprehend and optimize PBO-
specific search algorithms and was adopted in our system.

Bring the above ideas together, we design our AutoPBO framework to automatically enhancing local
search solvers of PBO. Experimental results demonstrate that AutoPBO significantly improves the
performance of local search PBO solvers, offering a promising approach to automating local search
solver design.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 PRELIMINARIES

2.1 PSEUDO-BOOLEAN OPTIMIZATION

A linear pseudo-Boolean (PB) constraint is expressed as:
∑n

j=1 aj lj▷b, where aj , b ∈ Z are integer
coefficients, b is the threshold, ▷ ∈ {=, >,≥, <,≤} is a relational operator, and each lj is a literal
(either a Boolean variable xi or its negation ¬xi).

In this work, we assume all PB constraints are in the normalized form
∑n

j=1 aj lj ≥ b with aj , b ∈
N+

0 (non-negative integers). This assumption is without loss of generality since all PB constraints
can be converted to this form by expressing equalities as inequality pairs and applying the identity
xi = 1− ¬xi to ensure non-negative coefficients Roussel & Manquinho (2021).

An assignment α is a mapping from variables to {0, 1}. A PB constraint c is satisfied under α if the
inequality

∑n
j=1 aj lj ≥ b holds; otherwise, c is violated. The violation degree of c under α, denoted

viol(c), quantifies how far c is from being satisfied: viol(c) = max
(
0, b−

∑n
j=1 aj lj

)
, which is

zero if c is satisfied, and otherwise measures the shortfall. A PB formula F is a conjunction of PB
constraints, and an assignment that satisfies all constraints in F is called a feasible solution.

A pseudo-Boolean optimization (PBO) instance consists of a PB formula F together with a linear
Boolean objective function

∑n
j=1 ej lj+d, where ej ∈ N+ and d ∈ Z. Since all PB constraints must

hold, they are treated as hard constraints. For any assignment α, its objective value is denoted as
obj(α). A feasible solution α1 is considered superior to another solution α2 if obj(α1) < obj(α2).
The objective of PBO is to identify a feasible assignment α that minimizes obj(α).

2.2 LOCAL SEARCH FOR PBO

The local search is a general algorithmic paradigm fo solving combinatorial optimization problems.
It typically begins with an initial solution and iteratively explores the neighborhood of the current
solution, seeking an improved candidate solution. If such a solution is found, it replaces the current
one; otherwise, the search either terminates or employs strategies to escape local optima. The process
continues until a stopping criterion is met, such as reaching a maximum number of iterations, a time
limit, or a satisfactory solution quality threshold.

In a typical local search process of PBO, given an instance F , the local search algorithm starts
from an initial solution α, then iteratively modifies α by selecting variables heuristically and ap-
plying corresponding operators (e.g., the flip operator in pseudo-Boolean optimization) until a
feasible solution is found. An operation is obtained when an operator is specified with a variable,
and it is easy to see there could be multiple operations for generating a new solution. During this
process, scoring functions evaluate candidate operations, prioritizing operations that are likely to
improve solution quality. An important factor normally included in scoring functions is the weights
of constraints. A weighting scheme is adopted to compute the weights of constraints in the scoring
function, representing the importance of the constraints.

In general, for greedy variable flipping, PBO local search (LS) algorithms employ a scoring function
integrated with the weights of constraints. Let w(c) denote the weight of a hard constraint c, and
w(o) denote the weight of the objective function o. For instance, in LS-PBO, the penalty for a
constraint c is defined as penalty(c) = w(c) × viol(c), and the penalty for the objective function
under the current assignment α is penalty(o) = w(o) × obj(α). In NuPBO, a smoothed penalty
method is proposed to balance the viol values across constraints. Specifically, for a hard constraint
c, the penalty function is redefined as: penalty(c) = w(c)×viol(c)

smooth(c) where smooth(c) represents a
smoothing coefficient derived from constraint properties. Similarly, for the objective function o, the
penalty is adjusted to: penalty(o) = w(o)×obj(α)

smooth(o) ; with smooth(o) often calculated as the average of
the objective function’s coefficients. Across these algorithms, the hard score hscore(x) of a variable
x quantifies the reduction in the total penalty of all hard constraints when x is flipped. The soft score
oscore(x) measures the reduction in the objective function’s penalty after flipping x. The scoring
function of x is defined as score(x) = hscore(x) + oscore(x), a linear combination of the hard
and soft scores.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 THE AUTOMATED OPTIMIZATION FRAMEWORK

In
p

u
t: s

tru
c

tia
liz

e
d

 S
o

lv
e

r

O
u

tp
u

t: B
e

tte
r S

o
lv

e
r

Convergence to Optimal Solution
LLM-based Multi-agent

Framework

Code Editor

Write Code

Run Code

Refine Code

Code Planner

Analyze Code

Generate Reco

mmendations

Modification

Evaluator

Evaluate Code

Give Feedback

Search Better Functions

G
re

e
d

y

Functions 1

Functions 2

Functions 3

Functions 4

M
u

lti-a
g

e
n

t F
ra

m
e
w

o
rk

+

Multi-agent Framework

1

2

3

Local Search PBO Solver

void Solver::LocalSearch{…)

{

 while(!SatisfyEndCondition(…))

 {

 InitializeLocalSearch(…);

if(FindBetterSolution(…))UpdateBestRe

sult{…);

 CalculateScore(…);

 if(!NoBetterFlip(…)}PickBetterFlip(…);

 else

 {

 UpdateWeights(…);

 PickEscapeFlip(…};

 }

 Flipvar(…);

 }

}

void Solver::SatisfyEndCondition{…){…}

void Solver::InitializeLocalSearch(…){…}

void Solver::FindBetterSolution(…){…}

void Solver::UpdateBestResult(…}{…}

void Solver::CalculateScore(…}{…}

void Solver::NoBetterFlip(…){…}

void Solver::PickBetterFlip(…){…}

void Solver::UpdateWeights(…){…}

void Solver::PickEscapeFlip(…){…}

void Solver::Flipvar(…){…}

Local Search

Running

Code

Figure 1: Architecture of AutoPBO. With a structuralized local search PBO solver as input, Au-
toPBO implements greedy strategy to optimize heuristic functions iteratively. For each iteration,
AutoPBO employs the original solver code to instantaneously create an understanding and rec-
ommendations for heuristic functions, subsequently engages in code generation and performance
assessment by three agents. Upon completion, AutoPBO returns the optimal solver code.

For automating the optimization of codes for local search solver of PBO, we propose a LLM-based
multi-agent framework, named AutoPBO. Our framework is based on three types of agents and a
greedy-based iterative method to achieve a better performance solver.

As illustrated in Figure 1, our framework begins by loading a local search PBO solver, then a num-
ber of iterative code optimizing rounds are launched. In each round, we perform several distinct
and independent code modifications work, each modification work is realized by the three LLM
agents collaboratively. After an optimization round, several versions of code are generated and then
a greedy-based selection strategy is applied to select the most effective version for the next iteration.
By repeating, the framework ultimately generates the resulting solver.

3.1 OPTIMIZATION BY MULTIPLE AGENTS

There are three specialized LLM agents in our framework, each of which has its own functionality
and distinct roles, i.e., the Code Optimization Planner, Code Editor, and Modification Evaluator.
Each of them serves different functionalities in our framework as follows:

• Code Optimization Planner: Analyze key code segments to recognize the function targeted
for modification and generate modification plans.

• Code Editor: Realize the code modification to improve the code, following the advice gen-
erated by the Code Optimization Planner.

• Modification Evaluator: Evaluate the modified code and generate advice for future im-
provement.

Those three agents operate through an automated cycle of modification plan generation, code edit
iteration, and dynamic evaluation.

A code optimization round consists two phases: the planning phase and the editing phase. In the
planning phase, the Code Optimization Planner Agent identifies possible optimization ways and
generates preliminary improvement plans, such as ”Dynamic Score Ratios: Adjust h score ratio and
s score ratio dynamically based on the current state of the search (e.g., increase the weight of hard
constraints when the solution is infeasible”, ”Include a term that considers the age of the variable

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

(time since last flip) to encourage diversification and escape local optima”, etc. The details of the
implementations of the Code Optimization Planner is presented in Section 4.2.

The editing phase is built by interactions of the Code Editor and the Modification Evaluator, for
multiple times. The Code Editor Agent performs the actual work of code modifications and runs for
multiple times in the editing phase. Initially, it modifies the code modifications with the optimization
plans provided by the Code Optimization Planner as input, and generates the first version of the code.
It identifies if the modification has actual significant meanings, by excluding trivial modifications
such as variable re-naming, parameter changing, etc. An actual compilation and running of the code
is also performed at this time, to collect information such as the existence of compilation errors or
running information.

The running information and the evaluation results from the Modification Evaluator will then be sent
to the code Editor as feedback for the next modification. This interaction will be performed by the
Code Editor, Modification Evaluator several times, resulting in a final version of code for the current
code optimization round.

In the following, we will first present the implementation of different agents, then introduce the
greedy-based iterative methods on top of code optimization rounds, which jointly form our whole
optimization framework for PBO local search solver.

3.2 PROMPT ENGINEERING

Agent Tasks Tips

Code
Optimization

Planner

1. Comprehensively analyzing all key code
segments
2. Proposing possible modification manners

1. Complete review of all relevant code sections
2. Generation of both practical and theoretically promising proposals
3. Strict JSON format adherence

Code Editor

Phase 1:
1. Precise interpretation of Planner's
description
2. Directional suggestions for code changes
Phase 2:
1. Analyze experimental outcomes
2. Produce superior code versions

Phase 1:
1. Preserve original function signatures
2. Prevent undefined variable introduction
3. Guarantee differentiation from previous codes
Phase 2:
1. Maintain code formatting
2. Avoid redundant modifications

Code
Modification

Evaluator
1. Evaluation and classification of outputs

1. Thorough syntax verification
2. Comparative analysis for meaningful improvements
3. Categorical classification

Table 1: Agent Tasks and Tips Overview

The three agents are implemented by different prompt, which are designed following the princi-
ples proposed by OpenAI’s foundational guidelinesOpenAI (2023), we have developed a structured
prompt to implement different functionalities for them.

Our prompt includes A Role set to the agent, the Tasks definitions, the Tips to provide suggestions
and the complete PBO solver code appended at the end to ensure all agents share the same context.
All three agents share a common Role configuration as a solver researcher attempting to improve the
heuristics in a PBO solver. This foundational Role description establishes the professional identity
and overarching objective for each agent in the optimization process. Tasks and Tips of every agent
are shown in Table 1.

3.3 CONVERGENCE TO OPTIMAL SOLUTION

As illustrated in Figure 1, we implement an iterative greedy algorithm that progressively constructs
the improved solver through three steps:

• Code Optimization Round: Agents optimize one function at a time, while keeping oth-
ers functions fixed. For example, we first generate multiple optimized versions of the Up-
dateWeights function through LLM agents, then select the best-performing version before
proceeding to optimize CalculateScore. Implementation Process is that the LLM agents
first generate multiple optimized versions of the function as illustrated in 3.1. Then our

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

framework automates the following workflow: it constructs solver instances for each func-
tion version, runs these solvers in parallel on certain dataset, and automatically collects
their outputs—including feasibility status (Feasible or Infeasible) and objective values(obj)
across all test instances. Finally, the framework determines the best-performing version
through automatic comparison by tallying the total feasible solutions (Feasible count) and
the number of instances where a solver’s obj outperforms StructPBO (Win count), selecting
the version that achieves the highest count on both metrics.

• Modification Propagating: The selected optimal function (e.g., improved UpdateWeights)
is immediately integrated into StructPBO. Subsequent optimizations (e.g., CalculateScore
refinement) are then performed on this updated StructPBO.

• Iterative Improvement: This process repeats until all target functions are optimized.

This approach addresses the inherent dependency between functions. Consider the interaction be-
tween UpdateWeights and CalculateScore: The scoring function in CalculateScore must reflect the
latest clause weights from UpdateWeights to properly prioritize constraint satisfaction. If we inde-
pendently optimize both functions and combine their best versions, the scoring mechanism might
ignore updated weight distributions, leading to inconsistent optimization behavior. Our greedy strat-
egy prevents such conflicts by enforcing sequential adaptation - the improved CalculateScore auto-
matically adapts to the newly integrated UpdateWeights through Modification Propagating.

Together with these three steps and the three agents involved, we iteratively improve our code, trying
to get a better performance solver.

3.4 A NEW STRUCTURALIZED LOCAL SEARCH PBO SOLVER: StructPBO

As we mentioned in Section 1, previous studies on automated algorithm design usually focus on
combinatorial optimization problems with known types and simple-architecture algorithms, which
are quite different from general problem solvers with complex structures. Notably, state-of-the-art
Local Search PBO solvers typically involve advanced programming techniques and multiple al-
gorithmic components to achieve high efficiency. This makes it challenging for LLMs to directly
process or optimize such solvers.

In our preliminary experiments, using LLMs to generate a PBO solver from scratch under the EoH
mechanism resulted in only simplistic local search algorithms with basic scoring functions and ran-
dom perturbations (see Appendix C). Moreover, when attempting to optimize existing Local Search
PBO solvers through established solver optimization frameworks, the high complexity and tight cou-
pling of the codebase led to frequent syntactic errors and logical inconsistencies in LLM-generated
code.

To address these issues, we propose a predefined, structured Local Search PBO framework named
StructPBO. Aligning with the basic components of local search, we define the major functionalities
of a solver and build a structuralized solver StructPBO, following the design of the state-of-the-art
NuPBO Chu et al. (2023b).

The overall workflow of StructPBO is summarized in Algorithm 1, where the solver iteratively
maintains a complete assignment, updates the best solution, and employs a heuristic-driven variable
selection mechanism. The key idea is to balance constraint satisfaction and objective optimization
through a composite scoring function, where dynamic penalty weights adaptively shift the search
focus according to the current search status. This enables effective navigation of the search space
while avoiding stagnation in local optima.

Implementation details, including the line-by-line description of Algorithm 1, the formulation of
scoring functions, the weight adaptation strategy, and the modular decomposition into seven inde-
pendent functions, are provided in Appendix C.

4 EXPERIMENTS

In this section, we introduce the experimental settings and present extensive experiments on 4 PBO
benchmarks. First, we evaluate the effectiveness of AutoPBO as a framework for enhancing baseline

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Algorithm 1: the structPBO solver
Input: PBO instance F , cutoff time cutoff .
Output: The best solution α∗ found and its objective function value obj∗, or “No solution

found”.
1 α∗ := ∅, obj∗ := +∞;
2 α := InitializeAssignment();
3 while elapsed time < cutoff do
4 if α is feasible and obj(α) < obj∗ then

// Update best solution and its objective function value
5 α∗ := α, obj∗ := obj(α);
6 for each variable x do
7 hscore(x) := ∆Penaltyhard(x);
8 oscore(x) := ∆Penaltyobj(x);
9 score(x) := CalculateScore(hscore(x), oscore(x));

10 if D := {x|Score(x) > 0} ̸= ∅ then
// A variable is picked accordingly

11 x := PickBestVariable(D);
12 else

// Stuck in a local optimum
13 UpdateWeights(F);

// A variable is picked according to local-optima-escaping
heuristics

14 x := PickEscapeVariable(F);
15 α := α with x flipped;
16 if α∗ ̸= ∅ then return α∗ and obj∗;
17 else return No solution found;

solvers, demonstrating that it consistently improves performance across multiple benchmarks. Sec-
ond, we compare AutoPBO with state-of-the-art PBO solvers to highlight its strong competitiveness.
Finally, in Appendix A we provide variance analysis through repeated experiments to demonstrate
the statistical stability of AutoPBO’s performance.

4.1 SETTINGS

4.1.1 ENVIRONMENT

Our PBO solver is implemented in C++, while the interface for interacting with LLMs is developed
in Python. The solver is compiled using g++ 9.4.0. All experiments are performed on an Ubuntu
20.04.4 LTS server, which is equipped with two AMD EPYC 7763 processors. Each processor
operates at a base frequency of 2.45 GHz. The server is configured with 1TB of RAM. For all
experiments, the DeepSeek1 LLM is employed.

4.1.2 BENCHMARKS AND DATASETS

We evaluate AutoPBO on four widely-used PBO benchmarks: PB16, MIPLIB, CRAFT, and Real-
world, comprising 47 datasets in total. All benchmarks are randomly split into training and testing
sets with a 1:1 ratio. Training sets are used to generate optimized solvers, while testing sets are
reserved for evaluation. Full dataset descriptions and sources are provided in Appendix D.1.

4.1.3 STATE-OF-THE-ART COMPETITORS

We compare AutoPBO with 6 state-of-the-art solvers, including 2 incomplete solver (i.e., NuPBO
and OraSLS) and 4 complete solvers. The 4 complete solvers include 2 PB solvers (i.e., PBO-IHS

1We utilize the DeepSeek-R1 as default in this paper.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Benchmark
StructPBO AutoPBO

#win avg score #win avg score

Real-world 17 0.9962 29 0.9998
CRAFT 488 0.9472 513 0.9474
MIPLIB 101 0.8450 112 0.8598
PB16 697 0.8272 775 0.8447
Total 1303 0.8738 1429 0.8849

Table 2: AutoPBO vs StructPBO Performance Comparison (By Benchmark)

Gurobi SCIP PBO-IHS-Tuned RoundingSat-Tuned OraSLS-Tuned NuPBO-Tuned AutoPBO
Benchmark#winavg score#winavg score#winavg score#win avg score #winavg score#winavg score#winavg score
Real-world 3 0.5050 0 0.1417 0 0.3311 4 0.4508 2 0.3221 16 0.9649 23 0.9671
CRAFT 479 0.9783 289 0.8337 277 0.7959 451 0.9690 406 0.9620 454 0.9447 460 0.9449
MIPLIB 101 0.8378 62 0.5653 55 0.7044 48 0.7616 52 0.7246 71 0.8212 70 0.8347
PB16 626 0.8456 314 0.6115 463 0.7537 428 0.7135 464 0.8016 548 0.8181 572 0.8195
Total 1209 0.8834 665 0.6740 795 0.7548 931 0.8004 924 0.8398 1089 0.8653 1125 0.8674

Table 3: Multi-Solver Performance Comparison (By Benchmark)

and RoundingSat) and 2 MIP solvers (i.e., Gurobi and SCIP).Detailed solver information is listed in
Appendix D.2.

4.1.4 PERFORMANCE METRICS

In our experiments, AutoPBO first generates optimization strategies on the training set with a 60-
second cutoff time. Then, each solver performs one run within a given cutoff time (300 seconds)
on every instance in the testing set for evaluation. We record the cost of the best solution found by
solver Sj on instance Ik, denoted as solSjIk . The cost of the best solution found among all solvers
in the same table on instance Ik is denoted as bestIk .

Following previous research on PBO, we measure the performance of each solver using two metrics:

• #win: the number of instances where the corresponding bestIk can be obtained by solver
S on Bi (i.e., the number of winning instances).

• avg score: in our experiments, the competition score of solver Sj on instance Ik is repre-
sented by scoreSjIk =

bestIk+1

solSjIk
+1 , which measures the gap between solSjIk and bestIk . If

solver Sj could not report a solution on instance Ik, then scoreSjIk = 0. We use avg score
to denote the average competition score of a solver on a dataset.

For each of the above two metrics, if a solver obtains a larger metric value on a dataset, then the
solver exhibits better performance on the dataset. The results highlighted in bold indicate the best
performance for the corresponding metric.

4.2 RESULTS

4.2.1 IMPROVEMENTS OF LOCAL SEARCH PBO SOLVER

We first evaluate AutoPBO on top of StructPBO across 47 datasets from 4 benchmarks. Figures 2 and
3 present the datasets with changes in #win and avg score respectively along with the magnitude
of these changes. AutoPBO demonstrates consistent performance gains: improving #win on 24
datasets and avg score on 23 datasets, with only a single case of marginal degradation in avg score.
This consistent non-negative trend confirms that AutoPBO not only avoids harming performance but
also delivers significant gains on nearly half of the datasets across all benchmarks.

Table 2 provides a benchmark-level comparison between AutoPBO and StructPBO in terms of both
#win and score. Across all 4 benchmarks, AutoPBO demonstrates consistent improvements, rais-
ing the total number of #win and increasing the overall avg score.

These benchmark-level results highlight the generality and robustness of AutoPBO.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 2: #win differences between AutoPBO and StructPBO. Each bar represents AutoPBO’s
#win minus StructPBO’s #win. Positive values (orange bars) indicate AutoPBO’s advantage.

Figure 3: avg score differences between AutoPBO and StructPBO. Each bar represents AutoPBO’s
avg score minus StructPBO’s avg score (AutoPBO − StructPBO). Positive values (orange bars)
indicate AutoPBO’s higher avg score, while negative values (dark-blue bars) indicate StructPBO’s
higher avg score (after non-linear scaling for better visibility).

4.2.2 COMPETITIVE RESULTS OF AutoPBO

We conduct a comprehensive comparison between AutoPBO and state-of-the-art solvers, as shown
in Table 3. To ensure fair comparison, we performed parameter tuning for PBO-IHS, RoundingSat,
OraSLS, and NuPBO on each dataset. The tuning scripts and final parameter configurations are
documented in Code & Data Appendix. The experimental results demonstrate that AutoPBO outper-
forms all open-source solvers in both #win and avg score. Notably, AutoPBO shows competitive
performance compared to the commercial solver Gurobi.

At the dataset level (see Appendix A), AutoPBO achieves the highest #win on 31 out of 47 datasets
and obtains the best avg score on 32 datasets. The complete per-dataset comparison reveals that
AutoPBO consistently delivers robust performance across diverse problem types.

REFERENCES

Ksenia Bestuzheva, Mathieu Besançon, Wei-Kun Chen, Antonia Chmiela, Tim Donkiewicz, Jasper
Van Doornmalen, Leon Eifler, Oliver Gaul, Gerald Gamrath, Ambros Gleixner, et al. The scip
optimization suite 8.0. arXiv preprint arXiv:2112.08872, 2021.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Endre Boros and Peter L Hammer. Pseudo-boolean optimization. Discrete applied mathematics,
123(1-3):155–225, 2002.

Sam Buss and Jakob Nordström. Proof complexity and sat solving. In Handbook of Satisfiability,
pp. 233–350. IOS Press, 2021.

Shaowei Cai and Zhendong Lei. Old techniques in new ways: Clause weighting, unit propagation
and hybridization for maximum satisfiability. Artificial Intelligence, 287:103354, 2020.

Shaowei Cai and Kaile Su. Local search for boolean satisfiability with configuration checking and
subscore. Artificial Intelligence, 204:75–98, 2013.

Shaowei Cai, Chuan Luo, John Thornton, and Kaile Su. Tailoring local search for partial maxsat. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 28, 2014.

Zhihan Chen, Peng Lin, Hao Hu, and Shaowei Cai. Parls-pbo: A parallel local search solver for
pseudo boolean optimization. arXiv preprint arXiv:2407.21729, 2024.

Yi Chu, Shaowei Cai, and Chuan Luo. NuWLS: Improving local search for (weighted) partial
maxsat by new weighting techniques. In Proceedings of AAAI 2023, volume 37, pp. 3915–3923,
2023a.

Yi Chu, Shaowei Cai, Chuan Luo, Zhendong Lei, and Cong Peng. Towards more efficient local
search for pseudo-boolean optimization. In 29th International Conference on Principles and
Practice of Constraint Programming (CP 2023), pp. 12–1, 2023b.

Yi Chu, Chu-Min Li, Furong Ye, and Shaowei Cai. Enhancing maxsat local search via a unified soft
clause weighting scheme. In In Proceedings of SAT 2024, volume 305, pp. 8:1–8:18, 2024.

Jo Devriendt, Stephan Gocht, Emir Demirovic, Jakob Nordström, and Peter J. Stuckey. Cutting
to the core of pseudo-boolean optimization: Combining core-guided search with cutting planes
reasoning. In Proceedings of AAAI 2021, pp. 3750–3758, 2021.

Niklas Eén and Niklas Sörensson. Translating pseudo-boolean constraints into sat. Journal on
Satisfiability, Boolean Modeling and Computation, 2(1-4):1–26, 2006.

Jan Elffers and Jakob Nordström. Divide and conquer: Towards faster pseudo-boolean solving. In
Jérôme Lang (ed.), Proceedings of IJCAI 2018, pp. 1291–1299, 2018.

Jan Elffers and Jakob Nordström. A cardinal improvement to pseudo-Boolean solving. In Proceed-
ings of AAAI 2020, pp. 1495–1503, 2020.

Gerald Gamrath, Daniel Anderson, Ksenia Bestuzheva, Wei-Kun Chen, Leon Eifler, Maxime Gasse,
Patrick Gemander, Ambros Gleixner, Leona Gottwald, Katrin Halbig, Gregor Hendel, Christo-
pher Hojny, Thorsten Koch, Pierre Le Bodic, Stephen J. Maher, Frederic Matter, Matthias Mil-
tenberger, Erik Mühmer, Benjamin Müller, Marc E. Pfetsch, Franziska Schlösser, Felipe Serrano,
Yuji Shinano, Christine Tawfik, Stefan Vigerske, Fabian Wegscheider, Dieter Weninger, and Jakob
Witzig. The SCIP Optimization Suite 7.0. Technical report, Optimization Online, March 2020.
URL http://www.optimization-online.org/DB HTML/2020/03/7705.html.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2021. URL https://www.gurobi.
com.

Markus Iser, Jeremias Berg, and Matti Järvisalo. Oracle-based local search for pseudo-boolean
optimization. In ECAI 2023, pp. 1124–1131. IOS Press, 2023.

Luyu Jiang, Dantong Ouyang, Qi Zhang, and Liming Zhang. Decils-pbo: an effective local search
method for pseudo-boolean optimization. arXiv preprint arXiv:2301.12251, 2023.

Daniel Le Berre and Anne Parrain. The sat4j library, release 2.2. Journal on Satisfiability, Boolean
Modeling and Computation, 7(2-3):59–64, 2010.

Zhendong Lei, Shaowei Cai, Chuan Luo, and Holger Hoos. Efficient local search for pseudo boolean
optimization. In Theory and Applications of Satisfiability Testing–SAT 2021: 24th International
Conference, Barcelona, Spain, July 5-9, 2021, Proceedings 24, pp. 332–348. Springer, 2021.

10

http://www.optimization-online.org/DB_HTML/2020/03/7705.html
https://www.gurobi.com
https://www.gurobi.com

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Fei Liu, Tong Xialiang, Mingxuan Yuan, Xi Lin, Fu Luo, Zhenkun Wang, Zhichao Lu, and Qingfu
Zhang. Evolution of heuristics: Towards efficient automatic algorithm design using large language
model. In the 41st International Conference on Machine Learning, 2024.

Ruben Martins, Vasco Manquinho, and Inês Lynce. Open-wbo: A modular maxsat solver. In Inter-
national Conference on Theory and Applications of Satisfiability Testing, pp. 438–445. Springer,
2014.

Alexander Novikov, Ngân Vũ, Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt
Wagner, Sergey Shirobokov, Borislav Kozlovskii, Francisco JR Ruiz, Abbas Mehrabian, et al.
AlphaEvolve: A coding agent for scientific and algorithmic discovery. arXiv preprint
arXiv:2506.13131, 2025.

OpenAI. Openai api documentation, 2023. URL https://platform.openai.com/docs.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang, Omar
Fawzi, et al. Mathematical discoveries from program search with large language models. Nature,
625(7995):468–475, 2024.

Olivier Roussel and Vasco Manquinho. Pseudo-boolean and cardinality constraints. In Handbook
of satisfiability, pp. 1087–1129. IOS Press, 2021.

Masahiko Sakai and Hidetomo Nabeshima. Construction of an ROBDD for a PB-constraint in band
form and related techniques for pb-solvers. IEICE Transactions on Information & Systems, 98-D
(6):1121–1127, 2015.

Pavel Smirnov, Jeremias Berg, and Matti Järvisalo. Pseudo-boolean optimization by implicit hitting
sets. In 27th International Conference on Principles and Practice of Constraint Programming
(CP 2021), pp. 51–1. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

Pavel Smirnov, Jeremias Berg, and Matti Järvisalo. Improvements to the implicit hitting set approach
to pseudo-boolean optimization. In Proceedings of SAT 2022, pp. 13:1–13:18, 2022.

Yiwen Sun, Furong Ye, Xianyin Zhang, Shiyu Huang, Bingzhen Zhang, Ke Wei, and Shaowei Cai.
Autosat: Automatically optimize sat solvers via large language models. arXiv preprint, 2024.

Yiwen Sun, Furong Ye, Zhihan Chen, Ke Wei, and Shaowei Cai. Automatically discovering heuris-
tics in a complex sat solver with large language models. arXiv preprint arXiv:2507.22876, 2025.

John Thornton. Clause weighting local search for sat. Journal of Automated Reasoning, 35:97–142,
2005.

Robert Wille, Hongyan Zhang, and Rolf Drechsler. Atpg for reversible circuits using simulation,
boolean satisfiability, and pseudo boolean optimization. In 2011 IEEE Computer Society Annual
Symposium on VLSI, pp. 120–125, Jul 2011. doi: 10.1109/isvlsi.2011.77. URL https://doi.org/10.
1109/isvlsi.2011.77.

Haoran Ye, Jiarui Wang, Zhiguang Cao, Federico Berto, Chuanbo Hua, Haeyeon Kim, Jinkyoo Park,
and Guojie Song. Reevo: Large language models as hyper-heuristics with reflective evolution.
Advances in neural information processing systems, 37:43571–43608, 2024.

Yuhang Zhang, Richard Hartley, John Mashford, and Stewart Burn. Superpixels via pseudo-boolean
optimization. International Conference on Computer Vision,International Conference on Com-
puter Vision, Nov 2011. doi: 10.1109/iccv.2011.6126393.

Wenbo Zhou, Yujiao Zhao, Yiyuan Wang, Shaowei Cai, Shimao Wang, Xinyu Wang, and Minghao
Yin. Improving local search for pseudo boolean optimization by fragile scoring function and
deep optimization. In 29th International Conference on Principles and Practice of Constraint
Programming (CP 2023), pp. 41–1, 2023.

11

https://platform.openai.com/docs
https://doi.org/10.1109/isvlsi.2011.77
https://doi.org/10.1109/isvlsi.2011.77

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS

We employed a large language model (LLM) to assist with proofreading and polishing the writing
of this paper.

B IMPLEMENTATION DETAILS OF StructPBO

In this appendix, we provide the detailed implementation of our structuralized local search solver
StructPBO. While the main text focuses on the overall design and algorithmic mechanism, here we
describe the technical components that enable the solver to operate effectively. In particular, we
(i) present a line-by-line explanation of Algorithm 1, (ii) define the scoring functions and dynamic
weight adaptation strategy, and (iii) illustrate the modular decomposition into seven independently
implemented functions.

B.1 ALGORITHM WALKTHROUGH

Algorithm 1 outlines the search routine of StructPBO. The solver maintains a complete assignment
at all times and iteratively explores the neighborhood by flipping candidate variables. During each
iteration:

• Lines 2–5: Initialize and update the best solution found.

• Lines 6–9: Evaluate candidate flips using the composite score combining hscore(x) and
oscore(x).

• Lines 10–12: Select the best candidate based on the composite score.

• Line 13: If the solver is trapped in local optima, trigger weight adaptation to escape stag-
nation.

• Lines 14–15: Apply the chosen flip to update the assignment.

• Lines 16–17: Terminate when the cutoff or convergence condition is met and return the
best solution.

B.2 SCORING FUNCTIONS

The evaluation of candidate flips relies on two penalty-based scoring functions:

• hscore(x): quantifies the penalty reduction with respect to unsatisfied hard constraints.

• oscore(x): quantifies the penalty reduction for the objective function.

The overall score is a weighted combination:

score(x) = α · hscore(x) + β · oscore(x),

where weights α and β dynamically change according to the search phase. During feasibility-
seeking phases, α ≫ β; as the search approaches optimality, β increases in relative importance.

B.3 DYNAMIC WEIGHT ADAPTATION

To avoid stagnation in local optima, StructPBO periodically adjusts the weights α and β. This adap-
tation allows the solver to balance between repairing constraint violations and improving the objec-
tive. The adaptation strategy follows the principle that hard constraints must be prioritized initially,
but once feasibility is stable, the solver progressively emphasizes objective optimization.

B.4 MODULAR IMPLEMENTATION

To facilitate LLM-based optimization and reduce code complexity, StructPBO decomposes the
solver into seven independently implemented functions. Each function corresponds to a key compo-
nent of the local search process:

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

• InitializeAssignment: Heuristically generates an initial complete assignment.

• Penalty hard: Heuristically computes the hard constraint penalty reduction.

• Penalty obj: Heuristically computes the objective penalty reduction.

• CalculateScore: Combines hard and soft penalties into a dynamic composite score.

• PickBestVariable: Selects the most promising variable based on the composite score.

• UpdateWeights: Adjusts the weights of hard and objective penalties dynamically during
the search.

• PickEscapeVariable: Identifies variables for diversification when stagnation is detected.

This modular structure allows isolated function-level improvements without breaking the overall
consistency of the solver, and provides a clean interface for integration with automated solver opti-
mization frameworks. Detailed descriptions of each function’s inputs, outputs, and internal logic are
provided in the code appendix.

C INDEPENDENT FUNCTIONS IN STRUCTPBO

• InitializeAssignment: Heuristically generates an initial complete assignment

• Penalty hard: Heuristically computes the hard constraint penalty reduction

• Penalty obj: Heuristically computes the objective penalty reduction

• CalculateScore: Heuristically combines hard and soft penalties into a dynamic composite
score

• PickBestVariable: Heuristically selects the most promising variable

• UpdateWeights: Heuristically selects the most promising variable

• PickEscapeVariable : Heuristically identifies variables for diversification when stagnation
is detected

D DETAILED EXPERIMENTAL SETTINGS

D.1 BENCHMARKS AND DATASETS

To comprehensively evaluate the effectiveness of AutoPBO, we employ four widely-used PBO
benchmark families. Detailed descriptions are provided below.

• PB16: The OPT-SMALLINT-LIN benchmark from the 2016 pseudo-Boolean competition,
comprising 1600 diverse instances from multiple categories.2 Following the categorization
in (Smirnov et al., 2021), we divide PB16 into 42 datasets based on their applications.

• MIPLIB: A benchmark of 0-1 integer linear programming problems, containing 267 in-
stances of various types, as introduced in (Devriendt et al., 2021).3

• CRAFT: A collection of 1025 crafted combinatorial problems with small integer coeffi-
cients, also from (Devriendt et al., 2021).4

• Real-world: A benchmark set containing three application-driven problems: the
Minimum-Width Confidence Band Problem (MWCB, 24 instances), the Seating Arrange-
ments Problem (SAP, 21 instances), and the Wireless Sensor Network Optimization Prob-
lem (WSNO, 18 instances). All problem descriptions, encodings, and instances are from
(Lei et al., 2021).5

2http://www.cril.univ-artois.fr/PB16/bench/PB16-used.tar
3https://zenodo.org/record/3870965
4https://zenodo.org/record/4036016
5https://lcs.ios.ac.cn/%7ecaisw/Resource/LS-PBO/

13

http://www.cril.univ-artois.fr/PB16/bench/PB16-used.tar
https://zenodo.org/record/3870965
https://zenodo.org/record/4036016
https://lcs.ios.ac.cn/%7ecaisw/Resource/LS-PBO/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

D.2 STATE-OF-THE-ART COMPETITORS

To provide a comprehensive comparison, we include six state-of-the-art solvers in our experiments.
Their information is detailed below:

• NuPBO (Chu et al., 2023b): The state-of-the-art local search solver for solving PBO.
• OraSLS (Iser et al., 2023): a recent oracle-based SLS algorithm for PBO, which improves

upon previous pure SLS approaches.
• PBO-IHS (Smirnov et al., 2022): A PBO solver that utilizes the implicit hitting set approach

and building upon RoundingSat (Elffers & Nordström, 2018).
• RoundingSat (Devriendt et al., 2021): A PBO solver combining core-guided search with

cutting planes reasoning.
• Gurobi (Gurobi Optimization, LLC, 2021): One of the most powerful commercial MIP

solvers (Version 12.0.2). The default configuration is used, along with a single thread.
• SCIP (Gamrath et al., 2020): One of the fastest non-commercial solvers for MIP (Version

8.0.4).

E EXTENDED EXPERIMENTAL RESULTS

E.1 DETAILED EXPERIMENTAL RESULTS

Tables 4 and 5 present the detailed per-dataset evaluation results of AutoPBO across all 47 datasets,
extending the benchmark-level analysis in Section 5.2. These comprehensive results demonstrate
that AutoPBO consistently outperforms StructPBO while maintaining competitive performance
against state-of-the-art solvers. Specifically, AutoPBO achieves superior performance in both #win
and avg score metrics across diverse problem types, further validating its robust performance.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Dataset StructPBO #win AutoPBO #win StructPBO avg score AutoPBO avg score

BA 5 11 (+6) 0.9820 1.0000 (+0.0180)
EmployeeSche 8 9 (+1) 0.8789 0.8889 (+0.0100)
MIPLIB01 267 101 112 (+11) 0.8450 0.8598 (+0.0148)
NG 14 15 (+1) 0.9977 1.0000 (+0.0023)
PBOins lwsa 1 10 (+9) 0.9949 0.9999 (+0.0050)
PBOins mwcb 7 10 (+3) 0.9945 0.9997 (+0.0052)
PBOins wsno 9 9 1.0000 1.0000
area 13 15 (+2) 0.9810 1.0000 (+0.0190)
areaDelay 15 15 1.0000 1.0000
bounded golo 9 9 0.4444 0.4444
course-ass 2 3 (+1) 0.9998 1.0000 (+0.0002)
crafted opb 488 513 (+25) 0.9472 0.9474 (+0.0002)
cudf 11 11 0.5455 0.5455
data 30 39 (+9) 0.4452 0.5223 (+0.0771)
decomp 2 5 (+3) 0.9333 1.0000 (+0.0667)
domset 8 8 1.0000 1.0000
dt-problems 30 30 1.0000 1.0000
factor 86 88 (+2) 0.8756 0.9066 (+0.0310)
fctp 16 16 0.1250 0.1250
featureSubsc 10 10 1.0000 1.0000
flexray 5 5 0.4000 0.4000
frb 20 20 1.0000 1.0000
garden 4 4 1.0000 1.0000
golomb-ruler 6 8 (+2) 0.6433 0.6589 (+0.0156)
graca 10 10 1.0000 1.0000
haplotype 4 4 1.0000 1.0000
heinz 20 23 (+3) 0.6494 0.6522 (+0.0028)
kullmann 3 4 (+1) 0.9826 1.0000 (+0.0174)
logic-synthe 36 37 (+1) 0.9989 1.0000 (+0.0011)
market-split 11 20 (+9) 0.3244 0.5500 (+0.2256)
milp 17 17 0.7059 0.7059
minlplib 49 49 1.0000 1.0000
miplib 36 51 (+15) 0.7706 0.7665 (-0.0041)
mps 2 2 1.0000 1.0000
oliveras 57 63 (+6) 0.9975 0.9992 (+0.0017)
pbfvmc-formu 11 11 1.0000 1.0000
poldner 3 3 1.0000 1.0000
primes-dimac 75 77 (+2) 0.8077 0.8332 (+0.0255)
radar 6 6 1.0000 1.0000
random 13 22 (+9) 0.7725 0.7727 (+0.0002)
routing 8 8 1.0000 1.0000
synthesis-pt 5 5 1.0000 1.0000
trarea ac 5 5 1.0000 1.0000
ttp 3 4 (+1) 0.9965 1.0000 (+0.0035)
unibo 17 18 (+1) 0.3886 0.3889 (+0.0003)
vtxcov 8 8 1.0000 1.0000
wnq 4 7 (+3) 0.9895 0.9971 (+0.0076)
Total 1303 1429 (+126) 0.8738 0.8849 (+0.0110)

Table 4: AutoPBO vs StructPBO Performance Comparison (By Dataset)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Gurobi SCIP PBO-IHS-Tuned RoundingSat-Tuned OraSLS-Tuned NuPBO-Tuned AutoPBO
Dataset #win avg score #win avg score #win avg score #win avg score #win avg score #win avg score #win avg score

BA 12 0.9984 0 0.2549 0 0.8292 3 0.8971 0 0.8769 0 0.9665 3 0.9819
EmployeeSc 6 0.7579 0 0.0000 1 0.5786 5 0.8090 5 0.8195 7 0.8789 8 0.8889
MIPLIB01 2 101 0.8378 62 0.5653 55 0.7044 48 0.7616 52 0.7246 71 0.8212 70 0.8347
NG 11 0.9466 0 0.0000 0 0.8847 2 0.9405 0 0.9176 7 0.9847 7 0.9847
PBOins lws 0 0.0811 0 0.0000 0 0.0000 0 0.0000 0 0.0000 3 0.9957 9 0.9997
PBOins mwc 2 0.7366 0 0.1080 0 0.5599 3 0.6587 0 0.2685 6 0.9133 7 0.9153
PBOins wsn 1 0.7144 0 0.3599 0 0.4305 1 0.7245 2 0.7871 7 0.9962 7 0.9962
area 15 1.0000 8 0.8974 10 0.9265 14 0.9892 10 0.9430 13 0.9769 14 0.9949
areaDelay 15 1.0000 0 0.8691 8 0.9690 15 1.0000 6 0.9683 15 1.0000 15 1.0000
bounded go 3 0.5215 1 0.2753 2 0.6140 3 0.6544 5 0.6610 1 0.2561 1 0.3172
course-ass 3 1.0000 1 0.7863 1 0.9871 2 0.9998 2 0.9976 2 0.9998 3 1.0000
crafted op 479 0.9783 289 0.8337 277 0.7959 451 0.9690 406 0.9620 454 0.9447 460 0.9449
cudf 6 0.5455 6 0.5455 10 0.9987 6 0.5455 4 0.3636 6 0.5455 6 0.5455
data 41 0.6512 20 0.2555 14 0.3271 16 0.3640 19 0.4966 16 0.4245 17 0.4376
decomp 1 0.7381 0 0.7788 0 0.3150 0 0.0000 0 0.9355 1 0.9206 5 1.0000
domset 1 0.9872 0 0.9035 0 0.9774 0 0.9375 0 0.9269 7 0.9993 8 1.0000
dt-problem 30 1.0000 30 1.0000 30 1.0000 30 1.0000 24 0.8000 30 1.0000 30 1.0000
factor 96 0.9583 96 0.9583 96 0.9583 96 0.9583 96 0.9583 96 0.9583 87 0.9006
fctp 2 0.1250 1 0.1211 0 0.0000 0 0.0000 2 0.1250 2 0.1250 2 0.1250
featureSub 3 0.9869 0 0.7037 10 1.0000 10 1.0000 10 1.0000 10 1.0000 10 1.0000
flexray 2 0.4000 2 0.4000 2 0.4000 2 0.4000 0 0.0000 2 0.4000 2 0.4000
frb 2 0.9966 0 0.9880 0 0.9942 0 0.9923 0 0.9922 20 1.0000 20 1.0000
garden 3 0.9057 1 0.8628 3 0.7500 2 0.9256 2 0.9050 4 1.0000 4 1.0000
golomb-rul 6 0.6584 5 0.6171 8 0.8466 1 0.0000 7 0.6667 4 0.5686 3 0.5718
graca 10 1.0000 0 0.0098 9 0.9997 10 1.0000 10 1.0000 10 1.0000 10 1.0000
haplotype 4 1.0000 0 0.3886 3 0.9931 4 1.0000 4 1.0000 4 1.0000 4 1.0000
heinz 18 0.6493 13 0.4754 15 0.6131 14 0.5739 14 0.5597 18 0.6487 18 0.6461
kullmann 2 0.8196 0 0.3577 2 0.8122 2 0.7301 1 0.6816 3 0.9817 4 1.0000
logic-synt 36 0.9986 12 0.8932 35 0.9459 24 0.9759 25 0.9781 36 0.9989 37 1.0000
market-spl 20 0.5500 11 0.2934 9 0.0125 9 0.1613 11 0.3431 11 0.2420 11 0.3022
milp 14 0.8235 2 0.2727 6 0.5556 9 0.6399 10 0.6964 4 0.5197 4 0.5389
minlplib 38 0.9972 9 0.9321 14 0.7229 19 0.9802 10 0.9612 36 0.9996 36 0.9994
miplib 46 0.8942 11 0.3900 20 0.6045 24 0.8046 21 0.7188 20 0.7024 23 0.7095
mps 1 1.0000 2 1.0000 0 0.8824 2 1.0000 2 1.0000 2 1.0000 2 1.0000
oliveras 47 0.7924 21 0.4639 47 0.8314 61 0.9983 59 0.9983 41 0.9773 41 0.9784
pbfvmc-for 10 0.9992 1 0.5562 0 0.5031 2 0.6082 3 0.5180 11 1.0000 11 1.0000
poldner 3 1.0000 2 0.9841 3 1.0000 3 1.0000 3 1.0000 3 1.0000 3 1.0000
primes-dim 63 0.8205 47 0.6871 58 0.7436 0 0.0000 62 0.8290 60 0.8073 63 0.8329
radar 6 1.0000 0 0.9743 6 1.0000 1 0.9827 3 0.9714 6 1.0000 6 1.0000
random 17 0.7727 1 0.5740 17 0.7727 17 0.7727 17 0.7727 8 0.7725 17 0.7727
routing 8 1.0000 5 0.6250 8 1.0000 8 1.0000 8 1.0000 8 1.0000 8 1.0000
synthesis- 5 1.0000 3 0.9745 5 1.0000 5 1.0000 3 0.9869 5 1.0000 5 1.0000
trarea ac 5 1.0000 2 0.9822 3 0.9704 3 0.9669 3 0.9636 5 1.0000 5 1.0000
ttp 1 0.7154 1 0.7040 0 0.9296 2 0.9729 1 0.9594 2 0.9894 4 1.0000
unibo 8 0.4853 0 0.1142 5 0.4908 2 0.4002 2 0.3881 0 0.2980 0 0.3161
vtxcov 5 0.9995 0 0.9736 3 0.9986 0 0.9867 0 0.9711 8 1.0000 8 1.0000
wnq 1 0.9719 0 0.0000 0 0.9572 0 0.0000 0 0.3860 4 0.9895 7 0.9995
Total 1209 0.8834 665 0.6740 795 0.7548 931 0.8004 924 0.8398 1089 0.8653 1125 0.8674

Table 5: Multi-Solver Performance Comparison (By Dataset)

16

	Introduction
	Preliminaries
	Pseudo-Boolean Optimization
	Local Search for PBO

	The Automated Optimization Framework
	Optimization by Multiple Agents
	Prompt Engineering
	Convergence to Optimal Solution
	A New Structuralized Local Search PBO Solver: StructPBO

	Experiments
	Settings
	Environment
	Benchmarks and Datasets
	State-of-the-art Competitors
	Performance Metrics

	Results
	Improvements of Local Search PBO solver
	Competitive Results of AutoPBO

	The Use of Large Language Models
	Implementation Details of StructPBO
	Algorithm Walkthrough
	Scoring Functions
	Dynamic Weight Adaptation
	Modular Implementation

	Independent Functions in StructPBO
	Detailed Experimental Settings
	BENCHMARKS AND DATASETS
	State-of-the-art Competitors

	Extended Experimental Results
	Detailed Experimental Results

