AUTOPBO: LLM-POWERED OPTIMIZATION FOR LO-CAL SEARCH PBO SOLVERS

Anonymous authors

000

001

002003004

010 011

012

013

014

015

016

017

018

019

021

024

025

026

027

028

031

032

034

037

038

040

041

042

043

044

046

047

048

051

052

Paper under double-blind review

ABSTRACT

Pseudo-Boolean Optimization (PBO) provides a powerful framework for modeling combinatorial problems through pseudo-Boolean (PB) constraints. Local search solvers have shown excellent performance in PBO solving, and their efficiency is highly dependent on their internal heuristics to guide the search. Still, their design often requires significant expert effort and manual tuning in practice. While Large Language Models (LLMs) have demonstrated potential in automating algorithm design, their application to optimizing PBO solvers remains unexplored. In this work, we introduce AutoPBO, a novel LLM-powered framework to automatically enhance PBO local search solvers. We conduct experiments on a broad range of four public benchmarks, including one real-world benchmark, a benchmark from PB competition, an integer linear programming optimization benchmark, and a crafted combinatorial benchmark, to evaluate the performance improvement achieved by AutoPBO and compare it with six state-ofthe-art competitors, including two local search PBO solvers *NuPBO* and *OraSLS*, two complete PB solvers PBO-IHS and RoundingSat, and two mixed integer programming (MIP) solvers Gurobi and SCIP. AutoPBO demonstrates significant improvements over previous local search approaches, while maintaining competitive performance compared to state-of-the-art competitors. The results suggest that AutoPBO offers a promising approach to automating local search solver design.

1 Introduction

Pseudo-Boolean Optimization (PBO) plays an important role in solving a wide range of combinatorial problems Boros & Hammer (2002), which seeks an assignment of values to a set of Boolean variables that optimizes a linear objective function under Pseudo-Boolean (PB) constraints. Due to its powerful expressiveness and the convenience to make use of properties of boolean variables, PBO has demonstrated broad applicability across various domains, including VLSI design, economic modeling, computer vision, and manufacturing optimization Wille et al. (2011); Zhang et al. (2011); Roussel & Manquinho (2021).

Along with the wide usages of the PBO problem in industrial and application domains, solving the PBO is then a non-negligible topic. However, the solving of PBO is a challenging task as the problem is NP-hard Buss & Nordström (2021). In previous studies, the solving methods can be divided into two classes: complete methods and incomplete methods. The complete methods solves the problem to optimal and proves the optimality, while incomplete methods do not guarantee to compute the optimal assignment but try to compute good solutions in a short time.

Research on complete methods for solving PBO has developed multiple approaches. First, since PB constraints can be naturally treated as 0-1 linear constraints, mixed-integer programming (MIP) solvers such as *SCIP* Bestuzheva et al. (2021) and *Gurobi* Gurobi Optimization, LLC (2021) can be directly applied to solve PBO problems. Second, by translating PB constraints into conjunctive normal form (CNF), the problem can be solved using SAT solvers based on Conflict-Driven Clause Learning (CDCL), including *MINISAT*+ Eén & Sörensson (2006), *Open-WBO* Martins et al. (2014), and *NaPS* Sakai & Nabeshima (2015). Beyond these, advanced methods have been developed for more efficient PBO solving. The cutting planes technique, which goes beyond the resolution power of CDCL, is implemented in solvers like *sat4j* Le Berre & Parrain (2010) and *RoundingSat* Elffers &

Nordström (2018; 2020); Devriendt et al. (2021). Additionally, the implicit hitting set (IHS) method has been successfully adapted to PBO in solvers such as *PBO-IHS* Smirnov et al. (2021; 2022).

Complete algorithms often struggle with large-scale instances, leading to the development of incomplete approaches, among which local search stands out as a representative strategy Lei et al. (2021); Chu et al. (2023b); Zhou et al. (2023). The first notable solver *LS-PBO* Lei et al. (2021) introduced a weighting scheme and a scoring function that jointly handle hard and soft constraints. Several key extensions followed: *DeciLS-PBO* Jiang et al. (2023) enhanced the framework by incorporating unit propagation; *NuPBO* Chu et al. (2023b) proposed enhanced scoring functions and weighting schemes; and *DLS-PBO* Chen et al. (2024) implemented dynamic scoring functions. Additionally, *OraSLS* Iser et al. (2023) utilizes an oracle mechanism to guide the local search approach in PBO.

The efficiency of local search solvers heavily relies on internal heuristics to guide the search process. In the past, many works on designing different algorithmic components such as weighting scheme and score functions have been proposed, as in Thornton (2005); Cai & Su (2013); Cai et al. (2014); Cai & Lei (2020); Lei et al. (2021); Chu et al. (2023a; 2024). However, those works are based on human-designed techniques and designing these heuristics often demands substantial expert effort and manual tuning in practice. On the other hand, recent developments on the LLM-based algorithm design start a new paradigm of algorithm design and show the capability of large language models (LLMs) in automating algorithm design. However, the application of LLMs to building PBO solvers remains unexplored, presenting a promising direction for future research.

Current works on automated algorithm design for combinatorial optimization problems are mainly on designing evolutionary algorithms for specific problems or optimizing heuristics in simple solvers. FunSearch Romera-Paredes et al. (2024) pioneered the integration of pretrained LLMs with evolutionary search, initiating heuristic discovery through iterative code generation. Then, EoH Liu et al. (2024) extends this paradigm through dual-representation evolution, and ReEvo Ye et al. (2024) introduces a structured reflection mechanism to guide evolutionary search. What is more, AutoSAT Sun et al. (2024; 2025) focus on optimizing heuristics in SAT solvers, AlphaEvolve Novikov et al. (2025) pushes the paradigm further by ensembling LLMs with automated evaluators in an evolutionary loop, enabling the discovery of entire algorithmic codebases.

The works on automated heuristic design for the general form problem (i.e. problems with general constraints types, such as Integer Programming, Pseudo Boolean Optimization, etc) is rare, and current approaches of designing heuristics for specific types of problems face critical limitations in this scenario: 1) the general-problem solver usually have complex structure with various algorithm components, and thus results in long-context of source codes, being much more sophisticated than evolutionary algorithms for specific types of problems; 2) A general form problem usually allows a wide range of types of constraints rather than specific types of problems normally has quite limited and known types of constraints, making the heuristics design for these two scenarios quite different. Thus, the algorithm design for the general form optimization problem is still challenging, and to our knowledge, there is no prior work on the LLM-driven automated design for PBO solver.

We consider the automated optimization for local search solvers of the PBO problem. Specifically, we consider to enhance the existing state-of-the-art local search solver for PBO by leveraging the power of LLM. We try to address the above challenges by designing methods from three considerations:1) Enhancing LLMs' comprehension of solver codes with complex structures; 2) Reducing errors or invalid modifications during code generation; 3) Improving the solver's efficiency by optimizing its algorithm as a composition that involves multiple functions.

In this work, we design a novel LLM-powered framework to automatically enhance PBO local search solvers. We propose a multi-agent system integrated with a greedy search strategy, enabling closed-loop, feedback-driven optimization. Furthermore, we introduce a structuralized local search PBO solver *StructPBO*, with a clearer structure of codes, that could be used as an input for automatic optimization frameworks. This design helps LLMs to effectively comprehend and optimize PBO-specific search algorithms and was adopted in our system.

Bring the above ideas together, we design our *AutoPBO* framework to automatically enhancing local search solvers of PBO. Experimental results demonstrate that *AutoPBO* significantly improves the performance of local search PBO solvers, offering a promising approach to automating local search solver design.

2 PRELIMINARIES

2.1 PSEUDO-BOOLEAN OPTIMIZATION

A linear pseudo-Boolean (PB) constraint is expressed as: $\sum_{j=1}^{n} a_j l_j \triangleright b$, where $a_j, b \in \mathbb{Z}$ are integer coefficients, b is the threshold, $b \in \{=, >, \geq, <, \leq\}$ is a relational operator, and each l_j is a literal (either a Boolean variable x_i or its negation $\neg x_i$).

In this work, we assume all PB constraints are in the normalized form $\sum_{j=1}^{n} a_j l_j \ge b$ with $a_j, b \in \mathbb{N}_0^+$ (non-negative integers). This assumption is without loss of generality since all PB constraints can be converted to this form by expressing equalities as inequality pairs and applying the identity $x_i = 1 - \neg x_i$ to ensure non-negative coefficients Roussel & Manquinho (2021).

An assignment α is a mapping from variables to $\{0,1\}$. A PB constraint c is *satisfied* under α if the inequality $\sum_{j=1}^{n} a_j l_j \geq b$ holds; otherwise, c is *violated*. The *violation degree* of c under α , denoted

viol(c), quantifies how far c is from being satisfied: $viol(c) = max \left(0, b - \sum_{j=1}^{n} a_j l_j\right)$, which is zero if c is satisfied, and otherwise measures the shortfall. A *PB formula F* is a conjunction of PB constraints, and an assignment that satisfies all constraints in F is called a *feasible solution*.

A pseudo-Boolean optimization (PBO) instance consists of a PB formula F together with a linear Boolean objective function $\sum_{j=1}^n e_j l_j + d$, where $e_j \in \mathbb{N}^+$ and $d \in \mathbb{Z}$. Since all PB constraints must hold, they are treated as *hard constraints*. For any assignment α , its objective value is denoted as $obj(\alpha)$. A feasible solution α_1 is considered superior to another solution α_2 if $obj(\alpha_1) < obj(\alpha_2)$. The objective of PBO is to identify a feasible assignment α that minimizes $obj(\alpha)$.

2.2 LOCAL SEARCH FOR PBO

The local search is a general algorithmic paradigm fo solving combinatorial optimization problems. It typically begins with an initial solution and iteratively explores the neighborhood of the current solution, seeking an improved candidate solution. If such a solution is found, it replaces the current one; otherwise, the search either terminates or employs strategies to escape local optima. The process continues until a stopping criterion is met, such as reaching a maximum number of iterations, a time limit, or a satisfactory solution quality threshold.

In a typical local search process of PBO, given an instance F, the local search algorithm starts from an initial solution α , then iteratively modifies α by selecting variables heuristically and applying corresponding **operators** (e.g., the flip operator in pseudo-Boolean optimization) until a feasible solution is found. An operation is obtained when an operator is specified with a variable, and it is easy to see there could be multiple operations for generating a new solution. During this process, **scoring functions** evaluate candidate operations, prioritizing operations that are likely to improve solution quality. An important factor normally included in scoring functions is the weights of constraints. A **weighting scheme** is adopted to compute the weights of constraints in the scoring function, representing the importance of the constraints.

In general, for greedy variable flipping, PBO local search (LS) algorithms employ a scoring function integrated with the weights of constraints. Let w(c) denote the weight of a hard constraint c, and w(o) denote the weight of the objective function o. For instance, in LS-PBO, the penalty for a constraint c is defined as $penalty(c) = w(c) \times viol(c)$, and the penalty for the objective function under the current assignment α is $penalty(o) = w(o) \times obj(\alpha)$. In NuPBO, a smoothed penalty method is proposed to balance the viol values across constraints. Specifically, for a hard constraint c, the penalty function is redefined as: $penalty(c) = \frac{w(c) \times viol(c)}{smooth(c)}$ where smooth(c) represents a smoothing coefficient derived from constraint properties. Similarly, for the objective function o, the penalty is adjusted to: $penalty(o) = \frac{w(o) \times obj(\alpha)}{smooth(o)}$; with smooth(o) often calculated as the average of the objective function's coefficients. Across these algorithms, the hard score hscore(x) of a variable x quantifies the reduction in the total penalty of all hard constraints when x is flipped. The soft score oscore(x) measures the reduction in the objective function's penalty after flipping x. The scoring function of x is defined as score(x) = hscore(x) + oscore(x), a linear combination of the hard and soft scores.

3 THE AUTOMATED OPTIMIZATION FRAMEWORK

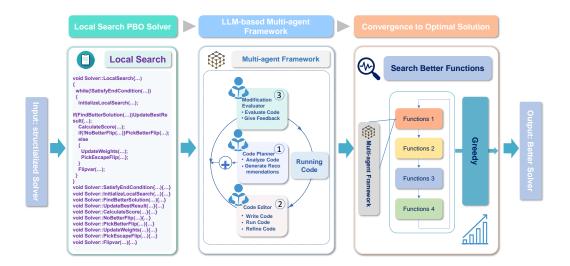


Figure 1: Architecture of AutoPBO. With a structuralized local search PBO solver as input, AutoPBO implements greedy strategy to optimize heuristic functions iteratively. For each iteration, AutoPBO employs the original solver code to instantaneously create an understanding and recommendations for heuristic functions, subsequently engages in code generation and performance assessment by three agents. Upon completion, AutoPBO returns the optimal solver code.

For automating the optimization of codes for local search solver of PBO, we propose a LLM-based multi-agent framework, named *AutoPBO*. Our framework is based on three types of agents and a greedy-based iterative method to achieve a better performance solver.

As illustrated in Figure 1, our framework begins by loading a local search PBO solver, then a number of iterative code optimizing rounds are launched. In each round, we perform several distinct and independent code modifications work, each modification work is realized by the three LLM agents collaboratively. After an optimization round, several versions of code are generated and then a greedy-based selection strategy is applied to select the most effective version for the next iteration. By repeating, the framework ultimately generates the resulting solver.

3.1 Optimization by Multiple Agents

There are three specialized LLM agents in our framework, each of which has its own functionality and distinct roles, i.e., the Code Optimization Planner, Code Editor, and Modification Evaluator. Each of them serves different functionalities in our framework as follows:

- Code Optimization Planner: Analyze key code segments to recognize the function targeted for modification and generate modification plans.
- Code Editor: Realize the code modification to improve the code, following the advice generated by the Code Optimization Planner.
- Modification Evaluator: Evaluate the modified code and generate advice for future improvement.

Those three agents operate through an automated cycle of modification plan generation, code edit iteration, and dynamic evaluation.

A code optimization round consists two phases: the planning phase and the editing phase. In the planning phase, the Code Optimization Planner Agent identifies possible optimization ways and generates preliminary improvement plans, such as "Dynamic Score Ratios: Adjust h_score_ratio and s_score_ratio dynamically based on the current state of the search (e.g., increase the weight of hard constraints when the solution is infeasible", "Include a term that considers the age of the variable

(time since last flip) to encourage diversification and escape local optima", etc. The details of the implementations of the Code Optimization Planner is presented in Section 4.2.

The editing phase is built by interactions of the Code Editor and the Modification Evaluator, for multiple times. The Code Editor Agent performs the actual work of code modifications and runs for multiple times in the editing phase. Initially, it modifies the code modifications with the optimization plans provided by the Code Optimization Planner as input, and generates the first version of the code. It identifies if the modification has actual significant meanings, by excluding trivial modifications such as variable re-naming, parameter changing, etc. An actual compilation and running of the code is also performed at this time, to collect information such as the existence of compilation errors or running information.

The running information and the evaluation results from the Modification Evaluator will then be sent to the code Editor as feedback for the next modification. This interaction will be performed by the Code Editor, Modification Evaluator several times, resulting in a final version of code for the current code optimization round.

In the following, we will first present the implementation of different agents, then introduce the greedy-based iterative methods on top of code optimization rounds, which jointly form our whole optimization framework for PBO local search solver.

3.2 PROMPT ENGINEERING

Agent	Tasks	Tips
Code Optimization Planner	Comprehensively analyzing all key code segments Proposing possible modification manners	Complete review of all relevant code sections Generation of both practical and theoretically promising proposals Strict JSON format adherence
Code Editor	Phase 1: 1. Precise interpretation of Planner's description 2. Directional suggestions for code changes Phase 2: 1. Analyze experimental outcomes 2. Produce superior code versions	Phase 1: 1. Preserve original function signatures 2. Prevent undefined variable introduction 3. Guarantee differentiation from previous codes Phase 2: 1. Maintain code formatting 2. Avoid redundant modifications
Code Modification Evaluator	1. Evaluation and classification of outputs	Thorough syntax verification Comparative analysis for meaningful improvements Categorical classification

Table 1: Agent Tasks and Tips Overview

The three agents are implemented by different prompt, which are designed following the principles proposed by OpenAI's foundational guidelinesOpenAI (2023), we have developed a structured prompt to implement different functionalities for them.

Our prompt includes A *Role* set to the agent, the *Tasks* definitions, the *Tips* to provide suggestions and the complete PBO solver code appended at the end to ensure all agents share the same context. All three agents share a common *Role* configuration as a solver researcher attempting to improve the heuristics in a PBO solver. This foundational *Role* description establishes the professional identity and overarching objective for each agent in the optimization process. *Tasks* and *Tips* of every agent are shown in Table 1.

3.3 Convergence to Optimal Solution

As illustrated in Figure 1, we implement an iterative greedy algorithm that progressively constructs the improved solver through three steps:

• Code Optimization Round: Agents optimize one function at a time, while keeping others functions fixed. For example, we first generate multiple optimized versions of the UpdateWeights function through LLM agents, then select the best-performing version before proceeding to optimize CalculateScore. Implementation Process is that the LLM agents first generate multiple optimized versions of the function as illustrated in 3.1. Then our

 framework automates the following workflow: it constructs solver instances for each function version, runs these solvers in parallel on certain dataset, and automatically collects their outputs—including feasibility status (Feasible or Infeasible) and objective values (obj) across all test instances. Finally, the framework determines the best-performing version through automatic comparison by tallying the total feasible solutions (Feasible count) and the number of instances where a solver's obj outperforms StructPBO (Win count), selecting the version that achieves the highest count on both metrics.

- **Modification Propagating**: The selected optimal function (e.g., improved UpdateWeights) is immediately integrated into *StructPBO*. Subsequent optimizations (e.g., CalculateScore refinement) are then performed on this updated *StructPBO*.
- Iterative Improvement: This process repeats until all target functions are optimized.

This approach addresses the inherent dependency between functions. Consider the interaction between UpdateWeights and CalculateScore: The scoring function in CalculateScore must reflect the latest clause weights from UpdateWeights to properly prioritize constraint satisfaction. If we independently optimize both functions and combine their best versions, the scoring mechanism might ignore updated weight distributions, leading to inconsistent optimization behavior. Our greedy strategy prevents such conflicts by enforcing sequential adaptation - the improved CalculateScore automatically adapts to the newly integrated UpdateWeights through Modification Propagating.

Together with these three steps and the three agents involved, we iteratively improve our code, trying to get a better performance solver.

3.4 A NEW STRUCTURALIZED LOCAL SEARCH PBO SOLVER: StructPBO

As we mentioned in Section 1, previous studies on automated algorithm design usually focus on combinatorial optimization problems with known types and simple-architecture algorithms, which are quite different from general problem solvers with complex structures. Notably, state-of-the-art Local Search PBO solvers typically involve advanced programming techniques and multiple algorithmic components to achieve high efficiency. This makes it challenging for LLMs to directly process or optimize such solvers.

In our preliminary experiments, using LLMs to generate a PBO solver from scratch under the EoH mechanism resulted in only simplistic local search algorithms with basic scoring functions and random perturbations (see Appendix C). Moreover, when attempting to optimize existing Local Search PBO solvers through established solver optimization frameworks, the high complexity and tight coupling of the codebase led to frequent syntactic errors and logical inconsistencies in LLM-generated code.

To address these issues, we propose a predefined, structured Local Search PBO framework named *StructPBO*. Aligning with the basic components of local search, we define the major functionalities of a solver and build a structuralized solver *StructPBO*, following the design of the state-of-the-art *NuPBO* Chu et al. (2023b).

The overall workflow of *StructPBO* is summarized in Algorithm 1, where the solver iteratively maintains a complete assignment, updates the best solution, and employs a heuristic-driven variable selection mechanism. The key idea is to balance constraint satisfaction and objective optimization through a composite scoring function, where dynamic penalty weights adaptively shift the search focus according to the current search status. This enables effective navigation of the search space while avoiding stagnation in local optima.

Implementation details, including the line-by-line description of Algorithm 1, the formulation of scoring functions, the weight adaptation strategy, and the modular decomposition into seven independent functions, are provided in Appendix C.

4 EXPERIMENTS

In this section, we introduce the experimental settings and present extensive experiments on 4 PBO benchmarks. First, we evaluate the effectiveness of *AutoPBO* as a framework for enhancing baseline

Algorithm 1: the structPBO solver **Input:** PBO instance F, cutoff time cutof f. **Output:** The best solution α^* found and its objective function value obj^* , or "No solution found". $obj^* := +\infty;$ $\alpha^* := \varnothing,$ $\alpha := InitializeAssignment();$ **while** *elapsed time* < *cutoff* **do if** α *is feasible and* $obj(\alpha) < obj^*$ **then** // Update best solution and its objective function value $\alpha^* := \alpha, \quad obj^* := obj(\alpha);$ for each variable x do $hscore(x) := \Delta Penalty_{hard}(x);$ $oscore(x) := \Delta Penalty_{obj}(x);$ score(x) := CalculateScore(hscore(x), oscore(x));if $D := \{x | Score(x) > 0\} \neq \emptyset$ then // A variable is picked accordingly x := PickBestVariable(D);else // Stuck in a local optimum UpdateWeights(F); // A variable is picked according to local-optima-escaping heuristics x := PickEscapeVariable(F); $\alpha := \alpha$ with x flipped; 16 if $\alpha^* \neq \emptyset$ then return α^* and obj^* ; else return No solution found;

solvers, demonstrating that it consistently improves performance across multiple benchmarks. Second, we compare *AutoPBO* with state-of-the-art PBO solvers to highlight its strong competitiveness. Finally, in Appendix A we provide variance analysis through repeated experiments to demonstrate the statistical stability of *AutoPBO*'s performance.

4.1 SETTINGS

4.1.1 Environment

Our PBO solver is implemented in C++, while the interface for interacting with LLMs is developed in Python. The solver is compiled using g++ 9.4.0. All experiments are performed on an Ubuntu 20.04.4 LTS server, which is equipped with two AMD EPYC 7763 processors. Each processor operates at a base frequency of 2.45 GHz. The server is configured with 1TB of RAM. For all experiments, the DeepSeek¹ LLM is employed.

4.1.2 BENCHMARKS AND DATASETS

We evaluate *AutoPBO* on four widely-used PBO benchmarks: PB16, MIPLIB, CRAFT, and Real-world, comprising 47 datasets in total. All benchmarks are randomly split into training and testing sets with a 1:1 ratio. Training sets are used to generate optimized solvers, while testing sets are reserved for evaluation. Full dataset descriptions and sources are provided in Appendix D.1.

4.1.3 STATE-OF-THE-ART COMPETITORS

We compare *AutoPBO* with 6 state-of-the-art solvers, including 2 incomplete solver (*i.e.*, *NuPBO* and *OraSLS*) and 4 complete solvers. The 4 complete solvers include 2 PB solvers (*i.e.*, *PBO-IHS*

¹We utilize the DeepSeek-R1 as default in this paper.

378
379
380
381
382
383
38/

Benchmark	Str	uctPBO	AutoPBO			
Delicilliark	#win avg_score		#win	avg_score		
Real-world	17	0.9962	29	0.9998		
CRAFT	488	0.9472	513	0.9474		
MIPLIB	101	0.8450	112	0.8598		
PB16	697	0.8272	775	0.8447		
Total	1303	0.8738	1429	0.8849		

Table 2: AutoPBO vs StructPBO Performance Comparison (By Benchmark)

3	8	3	7
3	8	38	8
_	_		

	G	urobi	SCIP		PBO-IHS-Tuned		RoundingSat-Tuned		OraSLS-Tuned		NuPBO-Tuned		AutoPBO	
Benchmark	#win	avg_score	#win	avg_score	#win	avg_score	#win	avg_score	#win	avg_score	#win	avg_score	#wine	avg_score
Real-world	3	0.5050	0	0.1417	0	0.3311	4	0.4508	2	0.3221	16	0.9649	23	0.9671
CRAFT	479	0.9783	289	0.8337	277	0.7959	451	0.9690	406	0.9620	454	0.9447	460	0.9449
MIPLIB	101	0.8378	62	0.5653	55	0.7044	48	0.7616	52	0.7246	71	0.8212	70	0.8347
PB16	626	0.8456	314	0.6115	463	0.7537	428	0.7135	464	0.8016	548	0.8181	572	0.8195
Total	1209	0.8834	665	0.6740	795	0.7548	931	0.8004	924	0.8398	1089	0.8653	1125	0.8674

Table 3: Multi-Solver Performance Comparison (By Benchmark)

and *RoundingSat*) and 2 MIP solvers (*i.e.*, *Gurobi* and *SCIP*). Detailed solver information is listed in Appendix D.2.

4.1.4 Performance Metrics

In our experiments, AutoPBO first generates optimization strategies on the training set with a 60-second cutoff time. Then, each solver performs one run within a given cutoff time (300 seconds) on every instance in the testing set for evaluation. We record the cost of the best solution found by solver S_j on instance I_k , denoted as $sol_{S_jI_k}$. The cost of the best solution found among all solvers in the same table on instance I_k is denoted as $best_{I_k}$.

Following previous research on PBO, we measure the performance of each solver using two metrics:

 • #win: the number of instances where the corresponding $best_{I_k}$ can be obtained by solver S on B_i (i.e., the number of winning instances).

• avg_score : in our experiments, the competition score of solver S_j on instance I_k is represented by $score_{S_jI_k} = \frac{best_{I_k}+1}{sol_{S_jI_k}+1}$, which measures the gap between $sol_{S_jI_k}$ and $best_{I_k}$. If solver S_j could not report a solution on instance I_k , then $score_{S_jI_k} = 0$. We use avg_score to denote the average competition score of a solver on a dataset.

For each of the above two metrics, if a solver obtains a larger metric value on a dataset, then the solver exhibits better performance on the dataset. The results highlighted in **bold** indicate the best performance for the corresponding metric.

4.2 RESULTS

4.2.1 IMPROVEMENTS OF LOCAL SEARCH PBO SOLVER

 We first evaluate AutoPBO on top of StructPBO across 47 datasets from 4 benchmarks. Figures 2 and 3 present the datasets with changes in #win and avg_score respectively along with the magnitude of these changes. AutoPBO demonstrates consistent performance gains: improving #win on 24 datasets and avg_score on 23 datasets, with only a single case of marginal degradation in avg_score . This consistent non-negative trend confirms that AutoPBO not only avoids harming performance but also delivers significant gains on nearly half of the datasets across all benchmarks.

Table 2 provides a benchmark-level comparison between AutoPBO and StructPBO in terms of both #win and score. Across all 4 benchmarks, AutoPBO demonstrates consistent improvements, raising the total number of #win and increasing the overall avg_score .

These benchmark-level results highlight the generality and robustness of *AutoPBO*.

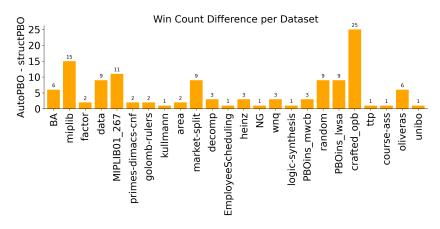


Figure 2: #win differences between AutoPBO and StructPBO. Each bar represents AutoPBO's #win minus StructPBO's #win. Positive values (orange bars) indicate AutoPBO's advantage.

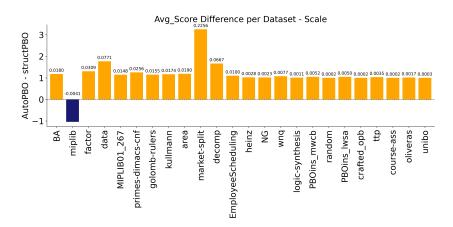


Figure 3: avg_score differences between AutoPBO and StructPBO. Each bar represents AutoPBO's avg_score minus StructPBO's avg_score (AutoPBO - StructPBO). Positive values (orange bars) indicate AutoPBO's higher avg_score , while negative values (dark-blue bars) indicate StructPBO's higher avg_score (after non-linear scaling for better visibility).

4.2.2 Competitive Results of AutoPBO

We conduct a comprehensive comparison between *AutoPBO* and state-of-the-art solvers, as shown in Table 3. To ensure fair comparison, we performed parameter tuning for *PBO-IHS*, *RoundingSat*, *OraSLS*, and *NuPBO* on each dataset. The tuning scripts and final parameter configurations are documented in Code & Data Appendix. The experimental results demonstrate that *AutoPBO* outperforms all open-source solvers in both #win and avg_score. Notably, *AutoPBO* shows competitive performance compared to the commercial solver *Gurobi*.

At the dataset level (see Appendix A), AutoPBO achieves the highest #win on 31 out of 47 datasets and obtains the best avg_score on 32 datasets. The complete per-dataset comparison reveals that AutoPBO consistently delivers robust performance across diverse problem types.

REFERENCES

Ksenia Bestuzheva, Mathieu Besançon, Wei-Kun Chen, Antonia Chmiela, Tim Donkiewicz, Jasper Van Doornmalen, Leon Eifler, Oliver Gaul, Gerald Gamrath, Ambros Gleixner, et al. The scip optimization suite 8.0. *arXiv preprint arXiv:2112.08872*, 2021.

- Endre Boros and Peter L Hammer. Pseudo-boolean optimization. *Discrete applied mathematics*, 123(1-3):155–225, 2002.
- Sam Buss and Jakob Nordström. Proof complexity and sat solving. In *Handbook of Satisfiability*, pp. 233–350. IOS Press, 2021.
 - Shaowei Cai and Zhendong Lei. Old techniques in new ways: Clause weighting, unit propagation and hybridization for maximum satisfiability. *Artificial Intelligence*, 287:103354, 2020.
 - Shaowei Cai and Kaile Su. Local search for boolean satisfiability with configuration checking and subscore. *Artificial Intelligence*, 204:75–98, 2013.
 - Shaowei Cai, Chuan Luo, John Thornton, and Kaile Su. Tailoring local search for partial maxsat. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 28, 2014.
 - Zhihan Chen, Peng Lin, Hao Hu, and Shaowei Cai. Parls-pbo: A parallel local search solver for pseudo boolean optimization. *arXiv preprint arXiv:2407.21729*, 2024.
 - Yi Chu, Shaowei Cai, and Chuan Luo. NuWLS: Improving local search for (weighted) partial maxsat by new weighting techniques. In *Proceedings of AAAI 2023*, volume 37, pp. 3915–3923, 2023a.
 - Yi Chu, Shaowei Cai, Chuan Luo, Zhendong Lei, and Cong Peng. Towards more efficient local search for pseudo-boolean optimization. In 29th International Conference on Principles and Practice of Constraint Programming (CP 2023), pp. 12–1, 2023b.
 - Yi Chu, Chu-Min Li, Furong Ye, and Shaowei Cai. Enhancing maxsat local search via a unified soft clause weighting scheme. In *In Proceedings of SAT 2024*, volume 305, pp. 8:1–8:18, 2024.
 - Jo Devriendt, Stephan Gocht, Emir Demirovic, Jakob Nordström, and Peter J. Stuckey. Cutting to the core of pseudo-boolean optimization: Combining core-guided search with cutting planes reasoning. In *Proceedings of AAAI 2021*, pp. 3750–3758, 2021.
 - Niklas Eén and Niklas Sörensson. Translating pseudo-boolean constraints into sat. *Journal on Satisfiability, Boolean Modeling and Computation*, 2(1-4):1–26, 2006.
 - Jan Elffers and Jakob Nordström. Divide and conquer: Towards faster pseudo-boolean solving. In Jérôme Lang (ed.), *Proceedings of IJCAI 2018*, pp. 1291–1299, 2018.
 - Jan Elffers and Jakob Nordström. A cardinal improvement to pseudo-Boolean solving. In *Proceedings of AAAI 2020*, pp. 1495–1503, 2020.
 - Gerald Gamrath, Daniel Anderson, Ksenia Bestuzheva, Wei-Kun Chen, Leon Eifler, Maxime Gasse, Patrick Gemander, Ambros Gleixner, Leona Gottwald, Katrin Halbig, Gregor Hendel, Christopher Hojny, Thorsten Koch, Pierre Le Bodic, Stephen J. Maher, Frederic Matter, Matthias Miltenberger, Erik Mühmer, Benjamin Müller, Marc E. Pfetsch, Franziska Schlösser, Felipe Serrano, Yuji Shinano, Christine Tawfik, Stefan Vigerske, Fabian Wegscheider, Dieter Weninger, and Jakob Witzig. The SCIP Optimization Suite 7.0. Technical report, Optimization Online, March 2020. URL http://www.optimization-online.org/DB_HTML/2020/03/7705.html.
 - Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2021. URL https://www.gurobi.com.
 - Markus Iser, Jeremias Berg, and Matti Järvisalo. Oracle-based local search for pseudo-boolean optimization. In *ECAI 2023*, pp. 1124–1131. IOS Press, 2023.
 - Luyu Jiang, Dantong Ouyang, Qi Zhang, and Liming Zhang. Decils-pbo: an effective local search method for pseudo-boolean optimization. *arXiv preprint arXiv:2301.12251*, 2023.
 - Daniel Le Berre and Anne Parrain. The sat4j library, release 2.2. *Journal on Satisfiability, Boolean Modeling and Computation*, 7(2-3):59–64, 2010.
 - Zhendong Lei, Shaowei Cai, Chuan Luo, and Holger Hoos. Efficient local search for pseudo boolean optimization. In *Theory and Applications of Satisfiability Testing—SAT 2021: 24th International Conference, Barcelona, Spain, July 5-9, 2021, Proceedings 24*, pp. 332–348. Springer, 2021.

- Fei Liu, Tong Xialiang, Mingxuan Yuan, Xi Lin, Fu Luo, Zhenkun Wang, Zhichao Lu, and Qingfu Zhang. Evolution of heuristics: Towards efficient automatic algorithm design using large language model. In *the 41st International Conference on Machine Learning*, 2024.
 - Ruben Martins, Vasco Manquinho, and Inês Lynce. Open-wbo: A modular maxsat solver. In *International Conference on Theory and Applications of Satisfiability Testing*, pp. 438–445. Springer, 2014.
 - Alexander Novikov, Ngân Vũ, Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt Wagner, Sergey Shirobokov, Borislav Kozlovskii, Francisco JR Ruiz, Abbas Mehrabian, et al. AlphaEvolve: A coding agent for scientific and algorithmic discovery. *arXiv preprint arXiv:2506.13131*, 2025.
 - OpenAI. Openai api documentation, 2023. URL https://platform.openai.com/docs.
 - Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog, M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang, Omar Fawzi, et al. Mathematical discoveries from program search with large language models. *Nature*, 625(7995):468–475, 2024.
 - Olivier Roussel and Vasco Manquinho. Pseudo-boolean and cardinality constraints. In *Handbook of satisfiability*, pp. 1087–1129. IOS Press, 2021.
 - Masahiko Sakai and Hidetomo Nabeshima. Construction of an ROBDD for a PB-constraint in band form and related techniques for pb-solvers. *IEICE Transactions on Information & Systems*, 98-D (6):1121–1127, 2015.
 - Pavel Smirnov, Jeremias Berg, and Matti Järvisalo. Pseudo-boolean optimization by implicit hitting sets. In 27th International Conference on Principles and Practice of Constraint Programming (CP 2021), pp. 51–1. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021.
 - Pavel Smirnov, Jeremias Berg, and Matti Järvisalo. Improvements to the implicit hitting set approach to pseudo-boolean optimization. In *Proceedings of SAT 2022*, pp. 13:1–13:18, 2022.
 - Yiwen Sun, Furong Ye, Xianyin Zhang, Shiyu Huang, Bingzhen Zhang, Ke Wei, and Shaowei Cai. Autosat: Automatically optimize sat solvers via large language models. *arXiv preprint*, 2024.
 - Yiwen Sun, Furong Ye, Zhihan Chen, Ke Wei, and Shaowei Cai. Automatically discovering heuristics in a complex sat solver with large language models. *arXiv preprint arXiv:2507.22876*, 2025.
 - John Thornton. Clause weighting local search for sat. *Journal of Automated Reasoning*, 35:97–142, 2005.
 - Robert Wille, Hongyan Zhang, and Rolf Drechsler. Atpg for reversible circuits using simulation, boolean satisfiability, and pseudo boolean optimization. In 2011 IEEE Computer Society Annual Symposium on VLSI, pp. 120–125, Jul 2011. doi: 10.1109/isvlsi.2011.77. URL https://doi.org/10.1109/isvlsi.2011.77.
 - Haoran Ye, Jiarui Wang, Zhiguang Cao, Federico Berto, Chuanbo Hua, Haeyeon Kim, Jinkyoo Park, and Guojie Song. Reevo: Large language models as hyper-heuristics with reflective evolution. *Advances in neural information processing systems*, 37:43571–43608, 2024.
 - Yuhang Zhang, Richard Hartley, John Mashford, and Stewart Burn. Superpixels via pseudo-boolean optimization. *International Conference on Computer Vision*, International Conference on Computer Vision, Nov 2011. doi: 10.1109/iccv.2011.6126393.
 - Wenbo Zhou, Yujiao Zhao, Yiyuan Wang, Shaowei Cai, Shimao Wang, Xinyu Wang, and Minghao Yin. Improving local search for pseudo boolean optimization by fragile scoring function and deep optimization. In 29th International Conference on Principles and Practice of Constraint Programming (CP 2023), pp. 41–1, 2023.

A THE USE OF LARGE LANGUAGE MODELS

We employed a large language model (LLM) to assist with proofreading and polishing the writing of this paper.

B IMPLEMENTATION DETAILS OF StructPBO

In this appendix, we provide the detailed implementation of our structuralized local search solver *StructPBO*. While the main text focuses on the overall design and algorithmic mechanism, here we describe the technical components that enable the solver to operate effectively. In particular, we (i) present a line-by-line explanation of Algorithm 1, (ii) define the scoring functions and dynamic weight adaptation strategy, and (iii) illustrate the modular decomposition into seven independently implemented functions.

B.1 ALGORITHM WALKTHROUGH

Algorithm 1 outlines the search routine of *StructPBO*. The solver maintains a complete assignment at all times and iteratively explores the neighborhood by flipping candidate variables. During each iteration:

- Lines 2–5: Initialize and update the best solution found.
- Lines 6–9: Evaluate candidate flips using the composite score combining hscore(x) and oscore(x).
- Lines 10–12: Select the best candidate based on the composite score.
- Line 13: If the solver is trapped in local optima, trigger weight adaptation to escape stagnation.
- Lines 14–15: Apply the chosen flip to update the assignment.
- Lines 16–17: Terminate when the cutoff or convergence condition is met and return the best solution.

B.2 SCORING FUNCTIONS

The evaluation of candidate flips relies on two penalty-based scoring functions:

- hscore(x): quantifies the penalty reduction with respect to unsatisfied hard constraints.
- oscore(x): quantifies the penalty reduction for the objective function.

The overall score is a weighted combination:

$$score(x) = \alpha \cdot hscore(x) + \beta \cdot oscore(x)$$

where weights α and β dynamically change according to the search phase. During feasibility-seeking phases, $\alpha \gg \beta$; as the search approaches optimality, β increases in relative importance.

B.3 DYNAMIC WEIGHT ADAPTATION

To avoid stagnation in local optima, StructPBO periodically adjusts the weights α and β . This adaptation allows the solver to balance between repairing constraint violations and improving the objective. The adaptation strategy follows the principle that hard constraints must be prioritized initially, but once feasibility is stable, the solver progressively emphasizes objective optimization.

B.4 MODULAR IMPLEMENTATION

To facilitate LLM-based optimization and reduce code complexity, *StructPBO* decomposes the solver into seven independently implemented functions. Each function corresponds to a key component of the local search process:

- InitializeAssignment: Heuristically generates an initial complete assignment.
- Penalty_hard: Heuristically computes the hard constraint penalty reduction.
- **Penalty_obj**: Heuristically computes the objective penalty reduction.
- CalculateScore: Combines hard and soft penalties into a dynamic composite score.
- PickBestVariable: Selects the most promising variable based on the composite score.
- UpdateWeights: Adjusts the weights of hard and objective penalties dynamically during the search.
- PickEscapeVariable: Identifies variables for diversification when stagnation is detected.

This modular structure allows isolated function-level improvements without breaking the overall consistency of the solver, and provides a clean interface for integration with automated solver optimization frameworks. Detailed descriptions of each function's inputs, outputs, and internal logic are provided in the code appendix.

C INDEPENDENT FUNCTIONS IN STRUCTPBO

- InitializeAssignment: Heuristically generates an initial complete assignment
- Penalty_hard: Heuristically computes the hard constraint penalty reduction
- Penalty_obj: Heuristically computes the objective penalty reduction
- CalculateScore: Heuristically combines hard and soft penalties into a dynamic composite score
- PickBestVariable: Heuristically selects the most promising variable
- **UpdateWeights**: Heuristically selects the most promising variable
- **PickEscapeVariable**: Heuristically identifies variables for diversification when stagnation is detected

D DETAILED EXPERIMENTAL SETTINGS

D.1 BENCHMARKS AND DATASETS

To comprehensively evaluate the effectiveness of *AutoPBO*, we employ four widely-used PBO benchmark families. Detailed descriptions are provided below.

- PB16: The OPT-SMALLINT-LIN benchmark from the 2016 pseudo-Boolean competition, comprising 1600 diverse instances from multiple categories.² Following the categorization in (Smirnov et al., 2021), we divide PB16 into 42 datasets based on their applications.
- MIPLIB: A benchmark of 0-1 integer linear programming problems, containing 267 instances of various types, as introduced in (Devriendt et al., 2021).³
- CRAFT: A collection of 1025 crafted combinatorial problems with small integer coefficients, also from (Devriendt et al., 2021).⁴
- Real-world: A benchmark set containing three application-driven problems: the Minimum-Width Confidence Band Problem (MWCB, 24 instances), the Seating Arrangements Problem (SAP, 21 instances), and the Wireless Sensor Network Optimization Problem (WSNO, 18 instances). All problem descriptions, encodings, and instances are from (Lei et al., 2021).⁵

²http://www.cril.univ-artois.fr/PB16/bench/PB16-used.tar

https://zenodo.org/record/3870965

⁴https://zenodo.org/record/4036016

⁵https://lcs.ios.ac.cn/%7ecaisw/Resource/LS-PBO/

D.2 STATE-OF-THE-ART COMPETITORS

To provide a comprehensive comparison, we include six state-of-the-art solvers in our experiments. Their information is detailed below:

- NuPBO (Chu et al., 2023b): The state-of-the-art local search solver for solving PBO.
- *OraSLS* (Iser et al., 2023): a recent oracle-based SLS algorithm for PBO, which improves upon previous pure SLS approaches.
- *PBO-IHS* (Smirnov et al., 2022): A PBO solver that utilizes the implicit hitting set approach and building upon *RoundingSat* (Elffers & Nordström, 2018).
- *RoundingSat* (Devriendt et al., 2021): A PBO solver combining core-guided search with cutting planes reasoning.
- *Gurobi* (Gurobi Optimization, LLC, 2021): One of the most powerful commercial MIP solvers (Version 12.0.2). The default configuration is used, along with a single thread.
- *SCIP* (Gamrath et al., 2020): One of the fastest non-commercial solvers for MIP (Version 8.0.4).

E EXTENDED EXPERIMENTAL RESULTS

E.1 DETAILED EXPERIMENTAL RESULTS

Tables 4 and 5 present the detailed per-dataset evaluation results of AutoPBO across all 47 datasets, extending the benchmark-level analysis in Section 5.2. These comprehensive results demonstrate that AutoPBO consistently outperforms StructPBO while maintaining competitive performance against state-of-the-art solvers. Specifically, AutoPBO achieves superior performance in both #win and avg_score metrics across diverse problem types, further validating its robust performance.

Dataset		StructPBO #win	AutoPBO #win	StructPBO avg_score	AutoPBO avg_score
BA		5	11 (+6)	0.9820	1.0000 (+0.0180)
Employee		8	9 (+1)	0.8789	0.8889 (+0.0100)
MIPLIB0	1_267	101	112 (+11)	0.8450	0.8598 (+0.0148)
NG		14	15 (+1)	0.9977	1.0000 (+0.0023)
PBOins_lv	wsa	1	10 (+9)	0.9949	0.9999 (+0.0050)
PBOins_n	nwcb	7	10 (+3)	0.9945	0.9997 (+0.0052)
PBOins_w	vsno	9	9	1.0000	1.0000
area		13	15 (+2)	0.9810	1.0000 (+0.0190)
areaDelay	,	15	15	1.0000	1.0000
bounded_g	golo	9	9	0.4444	0.4444
course-ass	s	2	3 (+1)	0.9998	1.0000 (+0.0002)
crafted_op	ob	488	513 (+25)	0.9472	0.9474 (+0.0002)
cudf		11	11	0.5455	0.5455
data		30	39 (+9)	0.4452	0.5223 (+0.0771)
decomp		2	5 (+3)	0.9333	1.0000 (+0.0667)
domset		8	8	1.0000	1.0000
dt-probler	ns	30	30	1.0000	1.0000
factor		86	88 (+2)	0.8756	0.9066 (+0.0310)
fctp		16	16	0.1250	0.1250
featureSul	bsc	10	10	1.0000	1.0000
flexray	0.50	5	5	0.4000	0.4000
frb		20	20	1.0000	1.0000
garden		4	4	1.0000	1.0000
golomb-rı	ıler	6	8 (+2)	0.6433	0.6589 (+0.0156)
graca	aici	10	10	1.0000	1.0000
haplotype		4	4	1.0000	1.0000
heinz		20	23 (+3)	0.6494	0.6522 (+0.0028)
kullmann		3	4 (+1)	0.9826	1.0000 (+0.0174)
	ha	36	37 (+1)	0.9820	1.0000 (+0.0174)
logic-synt		11	` ′	0.3244	0.5500 (+0.2256)
market-sp	,111t	17 17	20 (+9) 17	0.7059	0.5500 (+0.2250)
milp					
minlplib		49	49	1.0000	1.0000
miplib		36	51 (+15)	0.7706	0.7665 (-0.0041)
mps		2	2	1.0000	1.0000
oliveras		57	63 (+6)	0.9975	0.9992 (+0.0017)
pbfvmc-fo	ormu	11	11	1.0000	1.0000
poldner		3	3	1.0000	1.0000
primes-di	mac	75	77 (+2)	0.8077	0.8332 (+0.0255)
radar		6	6	1.0000	1.0000
random		13	22 (+9)	0.7725	0.7727 (+0.0002)
routing		8	8	1.0000	1.0000
synthesis-	pt	5	5	1.0000	1.0000
trarea_ac		5	5	1.0000	1.0000
ttp		3	4 (+1)	0.9965	1.0000 (+0.0035)
unibo		17	18 (+1)	0.3886	0.3889 (+0.0003)
vtxcov		8	8	1.0000	1.0000
wnq		4	7 (+3)	0.9895	0.9971 (+0.0076)
Total		1303	1429 (+126)	0.8738	0.8849 (+0.0110)

Table 4: AutoPBO vs StructPBO Performance Comparison (By Dataset)

	Gurohi		Gurobi SCIP		PBO-IHS-Tuned RoundingSat-Tuned			OraSLS-Tuned		NuPi	BO-Tuned	AutoPBO		
Dataset		avg_score		avg_score		avg_score		avg_score		avg_score		avg_score		
BA	12	0.9984	0	0.2549	0	0.8292	3	0.8971	0	0.8769	0	0.9665	3	0.9819
EmployeeSc	6	0.7579	0	0.0000	1	0.5786	5	0.8090	5	0.8195	7	0.8789	8	0.8889
MIPLIB01_2	101	0.8378	62	0.5653	55	0.7044	48	0.7616	52	0.7246	71	0.8212	70	0.8347
NG	11	0.9466	0	0.0000	0	0.8847	2	0.9405	0	0.9176	7	0.9847	7	0.9847
PBOins_lws	0	0.0811	0	0.0000	0	0.0000	0	0.0000	0	0.0000	3	0.9957	9	0.9997
PBOins_mwc	2	0.7366	0	0.1080	0	0.5599	3	0.6587	0	0.2685	6	0.9133	7	0.9153
PBOins_wsn	1	0.7144	0	0.3599	0	0.4305	1	0.7245	2	0.7871	7	0.9962	7	0.9962
area	15	1.0000	8	0.8974	10	0.9265	14	0.9892	10	0.9430	13	0.9769	14	0.9949
areaDelay	15	1.0000	0	0.8691	8	0.9690	15	1.0000	6	0.9683	15	1.0000	15	1.0000
bounded_go	3	0.5215	1	0.2753	2	0.6140	3	0.6544	5	0.6610	1	0.2561	1	0.3172
course-ass	3	1.0000	1	0.7863	1	0.9871	2	0.9998	2	0.9976	2	0.9998	3	1.0000
crafted_op	479	0.9783	289	0.8337	277	0.7959	451	0.9690	406	0.9620	454	0.9447	460	0.9449
cudf	6	0.5455	6	0.5455	10	0.9987	6	0.5455	4	0.3636	6	0.5455	6	0.5455
data	41	0.6512	20	0.2555	14	0.3271	16	0.3640	19	0.4966	16	0.4245	17	0.4376
decomp	1	0.7381	0	0.7788	0	0.3150	0	0.0000	0	0.9355	1	0.9206	5	1.0000
domset	1	0.9872	0	0.9035	0	0.9774	0	0.9375	0	0.9269	7	0.9993	8	1.0000
dt-problem	30	1.0000	30	1.0000	30	1.0000	30	1.0000	24	0.8000	30	1.0000	30	1.0000
factor	96	0.9583	96	0.9583	96	0.9583	96	0.9583	96	0.9583	96	0.9583	87	0.9006
fctp	2	0.1250	1	0.1211	0	0.0000	0	0.0000	2	0.1250	2	0.1250	2	0.1250
featureSub	3	0.9869	0	0.7037	10	1.0000	10	1.0000	10	1.0000	10	1.0000	10	1.0000
flexray	2	0.4000	2	0.4000	2	0.4000	2	0.4000	0	0.0000	2	0.4000	2	0.4000
frb	2	0.9966	0	0.9880	0	0.9942	0	0.9923	0	0.9922	20	1.0000	20	1.0000
garden	3	0.9057	1	0.8628	3	0.7500	2	0.9256	2	0.9050	4	1.0000	4	1.0000
golomb-rul	6	0.6584	5	0.6171	8	0.8466	1	0.0000	7	0.6667	4	0.5686	3	0.5718
graca	10	1.0000	0	0.0098	9	0.9997	10	1.0000	10	1.0000	10	1.0000	10	1.0000
haplotype	4	1.0000	0	0.3886	3	0.9931	4	1.0000	4	1.0000	4	1.0000	4	1.0000
heinz	18	0.6493	13	0.4754	15	0.6131	14	0.5739	14	0.5597	18	0.6487	18	0.6461
kullmann	2	0.8196	0	0.3577	2	0.8122	2	0.7301	1	0.6816	3	0.9817	4	1.0000
logic-synt	36	0.9986	12	0.8932	35	0.9459	24	0.9759	25	0.9781	36	0.9989	37	1.0000
market-spl	20	0.5500	11	0.2934	9	0.0125	9	0.1613	11	0.3431	11	0.2420	11	0.3022
milp	14	0.8235	2	0.2727	6	0.5556	9	0.6399	10	0.6964	4	0.5197	4	0.5389
minlplib	38	0.9972	9	0.9321	14	0.7229	19	0.9802	10	0.9612	36	0.9996	36	0.9994
miplib	46	0.8942	11	0.3900	20	0.6045	24	0.8046	21	0.7188	20	0.7024	23	0.7095
mps	1	1.0000	2	1.0000	0	0.8824	2	1.0000	2	1.0000	2	1.0000	2	1.0000
oliveras	47	0.7924	21	0.4639	47	0.8314	61	0.9983	59	0.9983	41	0.9773	41	0.9784
pbfvmc-for	10	0.9992	1	0.5562	0	0.5031	2	0.6082	3	0.5180	11	1.0000	11	1.0000
poldner	3	1.0000	2	0.9841	3	1.0000	3	1.0000	3	1.0000	3	1.0000	3	1.0000
primes-dim	63	0.8205	47	0.6871	58	0.7436	0	0.0000	62	0.8290	60	0.8073	63	0.8329
radar	6	1.0000	0	0.9743	6	1.0000	1	0.9827	3	0.9714	6	1.0000	6	1.0000
random	17	0.7727	1	0.5740	17	0.7727	17	0.7727	17	0.7727	8	0.7725	17	0.7727
routing	8	1.0000	5	0.6250	8	1.0000	8	1.0000	8	1.0000	8	1.0000	8	1.0000
synthesis-	5	1.0000	3	0.9745	5	1.0000	5	1.0000	3	0.9869	5	1.0000	5	1.0000
trarea_ac	5	1.0000	2	0.9822	3	0.9704	3	0.9669	3	0.9636	5	1.0000	5	1.0000
ttp	1	0.7154	1	0.7040	0	0.9296	2	0.9729	1	0.9594	2	0.9894	4	1.0000
unibo	8	0.4853	0	0.1142	5	0.4908	2	0.4002	2	0.3881	0	0.2980	0	0.3161
vtxcov	5	0.9995	0	0.9736	3	0.9986	0	0.9867	0	0.9711	8	1.0000	8	1.0000
wnq	1	0.9719	0	0.0000	0	0.9572	0	0.0000	0	0.3860	4	0.9895	7	0.9995
Total	1209	0.8834	665	0.6740	795	0.7548	931	0.8004	924	0.8398	1089	0.8653	1125	0.8674

Table 5: Multi-Solver Performance Comparison (By Dataset)