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Abstract

Devising emulation frameworks for predicting the spatio-
temporal behavior of nonlinear dynamical systems is a chal-
lenging problem which has generated significant interest
lately. However, scarcity of data often plagues the prevalent
approaches, particularly when the cost of procuring spatio-
temporal data from the underlying physical processes is high.
However, the data sources for a particular spatio-temporal
process may present a hierarchy of fidelities with respect to
their computational cost/accuracy, such that higher fidelity
levels are more accurate (and also more expensive) than the
lower fidelity levels. This paper presents a novel multi-fidelity
spatio-temporal modeling approach (MF-STM), whereby the
lower fidelity data source for a dynamical process is gainfully
utilized in increasing the accuracy of predicting the higher
fidelity fields. The methodology is based on non-intrusive
reduced order modeling using deep convolutional autoen-
coders, combined with a latent-space evolution framework
based on multi-fidelity Gaussian processes. This framework
results in probabilistic spatio-temporal predictions for un-
known operating conditions of the dynamical system, which
provides the end user with quantified levels of uncertainties
associated with the data-driven predictions. The framework
is validated on an advection-dominated fluid flow process de-
scribed by the inviscid shallow water equations, which is a
well-studied benchmark problem.

Machine learning (ML) frameworks for emulating spatio-
temporally varying fields encountered in nonlinear dynam-
ical systems have received a lot of attention in the recent
years (Fukami et al. 2021). Data from such systems are often
generated by high fidelity (HF) simulations that are multi-
physics and multi-scale in nature. Such simulations are of-
ten very expensive to perform and thereby incur large com-
putational costs in data generation. Moreover, data gener-
ated from such systems often reside in very high dimen-
sional spaces. To this end, there have been advancements
in intrusive (Borggaard, Iliescu, and Wang 2011) and non-
intrusive (Maulik, Lusch, and Balaprakash 2021) reduced
order modeling (ROM) techniques using ML, which have
provided promising solutions for constraining the data from
such systems in a compressed space, with minimal losses
incurred due to data compression. Non-intrusive methods
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focus on emulating the spatio-temporal processes by di-
rectly learning from data. In problems where there is a
lack of understanding of the underlying governing equations
for the physical processes which generate the data, non-
intrusive methods of ROMs are particularly useful. Specifi-
cally, deep learning models such as convolutional neural net-
works (CNN), long short-term memory networks (LSTM),
fully connected neural networks (FCNN) have been exten-
sively used along with more traditional approaches such as
proper orthogonal decomposition (POD) and dynamic mode
decomposition (DMD) in different application domains. In
fact, deep learning models have been widely successful in
data-driven emulation tasks due to their higher representa-
tion power through arbitrarily complex nonlinear transfor-
mations. However, despite the success of such data-driven
approaches, the performance of such models tend to be poor
when the amount of data is limited. To this end, the state-of-
the-art approaches in ROMs and spatio-temporal emulation
have rarely catered to data scarce applications.

Data scarcity is a very prevalent problem in practical engi-
neering design scenarios where the simulation models of the
underlying physical processes are extremely expensive due
to the need for resolving fine spatial and temporal scales.
Most advanced machine learning techniques have poor pre-
diction accuracies and generalization guarantees when the
amount of training data is limited. To this end, there have
been significant developments in the last few years in proba-
bilistic modeling approaches to develop multi-fidelity mod-
eling (MFM) frameworks for addressing the issue of data
scarcity in predictive modeling (Giselle Fernández-Godino
et al. 2019; Sarkar et al. 2019; Mondal, Joly, and Sarkar
2019). MFM caters to a class of surrogate modeling ap-
proaches, whereby a statistical model is developed by learn-
ing the correlation and discrepancy among different levels
of fidelities of the prevalent models for a physical process.
The approach is applicable to scenarios where there exists a
hierarchy of the computational models/data sources with re-
spect to their accuracies and computational expenses, such
that the higher fidelity levels are more accurate, but they are
also more expensive. In such a setting, MFM strategies aim
to leverage more data from lower fidelity sources, and less
data from higher fidelity sources to formulate an integrated
modeling framework which can achieve high accuracy in
modeling the input-output relationships of the HF sources.
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Figure 1: Schematic overview of the proposed multi-fidelity
spatio-temporal modeling framework (MF-STM).

In this paper, we propose a multi-fidelity spatio-temporal
modeling approach (MF-STM) which leverages low fidelity
(LF) data for a non-linear dynamical system along with lim-
ited HF data, to achieve better emulation accuracy than the
state-of-the-art which solely leverages HF data. In particular,
we propose :

• A novel multi-fidelity data augmented convolutional au-
toencoder (MF-CAE) framework to constrain the repre-
sentation of low and HF data under a common bottleneck
representation, and

• A novel approach of probabilistic latent space interpola-
tion by leveraging state-of-the-art developments in multi-
fidelity Gaussian processes (MFGP), which automati-
cally provides quantified estimates of prediction uncer-
tainties.

The key area of novelty in our approach is in its exten-
sion of the state-of-the-art spatio-temporal modeling frame-
works to enable the leveraging of prevalent multi-fidelity in-
formation for better and more efficient predictive modeling.
In most applications, data from lower fidelity sources is re-
jected solely because they do not provide accurate estimates
of the physical processes due to the lack of the necessary
resolution of temporal/spatial scales and/or relevant physics
to do so. Through this work, we claim that if there exists
some degree of measurable correlation in the different fi-
delities of the data sources (which our framework automat-
ically learns), multi-fidelity adaptation can significantly im-
prove the prediction accuracy and reduce the uncertainty of
the data-driven predictions under HF data limitations.

MF-STM Framework
The emulation framework comprises three stages :

1. Reduced order modeling : The model order reduction
methodology involves a deep MF-CAE framework which
learns an efficient coded representation from the multi-
fidelity spatio-temporal field data, denoted by ΨFj

(s, t)
for j ∈ 1, 2, · · ·K, where j is the fidelity index,
with j = 1 denoting the highest fidelity level and
j = K denoting the lowest fidelity level. The spatial

and temporal domains for the data, denoted by s =
{s1, s2, · · · sN} and t = {t1, t2, · · · tN} are assumed to
be finite. Moreover, the spatial and temporal domains
are assumed to be the same for all the fidelity levels.
The data is generated by performing a design of exper-
iments (DoE) in the global input parameter space (Xin)
for the underlying process. ΨFj

belongs to a high dimen-
sional space RDin∀j ∈ 1, 2, · · ·K. An encoder model
(Fenc : RDin → RDcode ) and a decoder model (Fdec :
RDcode → RDin ) are the outcomes from this stage,
which are separately used in the following two stages.
Dcode represents the dimension of the coding layer, with
Dcode << Din. Fenc learns to represent the multi-
fidelity data in a reduced dimensional space to provide
the coded representations denoted by z, and Fdec learns
to reconstruct the high dimensional field data from the
coded representations. The reconstruction is snapshot-to-
snapshot, hence for each snapshot, the coded output z de-
notes the spatial modal coefficients. A temporal sequence
of field data ΨFj

(s, t) is coded into temporal evolution of
the modal coefficients denoted by z(t).

2. Latent space interpolation: Once the coded representa-
tions are learned in Stage 1, the temporal evolution of
the latent space modes is learned as a function of the
input parameters. State-of-the-art MFGP techniques are
used for this stage to leverage the correlation among the
multiple fidelity levels with respect to their correspond-
ing modal evolution in the latent space. The outcome
from this stage is a probabilistic latent space interpola-
tion model denoted by R : (Xin, t) 7→ z. This provides
the mapping from Xin to z(t).

3. Field data emulation: For an unknown test input
Xtest ∈ Xin, Stage 2 provides estimates of z(t). These
predicted modes are used as inputs to the pre-trained
Fdec from Stage 1, which generate the spatio-temporal
flowfields ΨFj

(s, t) for the unknown test input condi-
tion, thus completing the emulation framework. Figure 1
shows a schematic of the MF-STM framework, as dis-
cussed above.

Results and Discussions
In this work, the MF-STM approach has been demonstrated
in a two fidelity setting with fine and coarse grid solu-
tions for the inviscid shallow water equations. Shallow wa-
ter equations (Equations 1 - 3) belong to a prototypical sys-
tem of equations for geophysical flows, and the solutions to
these equations have been used extensively by researchers
for validation and benchmarking of spatio-temporal model-
ing frameworks.
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In the above equations, η denotes the total fluid column
height, (vx, vy) denotes the fluid’s horizontal flow veloc-
ity components averaged across the vertical fluid column,
g is the acceleration due to gravity and ρ is the fluid den-
sity which is set to 1.0. The equations are subject to initial
conditions given by:

ρη(x, y, t = 0) = 1 + e
−

(
(x−x̄)2

2(5×104)2
+

(y−ȳ)2

2(5×104)2

)
(4)

ρηvx(x, y, t = 0) = 0 (5)

ρηvy(x, y, t = 0) = 0 (6)

Here (x, y) and t are the spatial coordinates of the two-
dimensional solution domain, and the temporal variable re-
spectively. x̄, ȳ denotes our global input parameter space
Xin, with −0.5 ≤ x̄, ȳ ≤ 0.5. The 2-D solution domain
is a square with periodic boundary conditions, and in this
work we perform emulation only for the ρη field, so all the
field data presented in this paper correspond to ρη. Further
details regarding the shallow water equations can be found
in (Maulik, Lusch, and Balaprakash 2021). The system of
equations is solved from t = 0 to t = 0.5 with a time-step
of 0.001 on a square 2-D grid with 64 collocation points for
the HF data source, and 32 collocation points for the LF data
source. Thus the HF solutions are in a 64× 64 gridded data
format, and the LF solutions are in a coarser 32 × 32 grid.
A design of experiments (DoE) using Latin Hypercube sam-
pling is performed in Xin, and 10 evenly spaced snapshots
in time are collected from the simulations for each input
condition. Figure 2 shows an example of the discrepancies
between the HF and LF simulations for an input condition
(x̄, ȳ) = (−0.385,−0.015). It can be seen that at t = 0.05
the LF solution lacks the sharp gradients in spatial features,
although there is some noticeable correlation in the spatial
distribution of regions of high and low values of ρη. The LF
solution at t = 0.5 lacks the fine-grained features captured
in the corresponding HF simulation. The next subsections
will focus on how the LF data can be leveraged to not only
improve the emulation accuracy of data-driven models using
solely the HF data, but also reduce the HF data requirement
in achieving comparable accuracy. In the following subsec-
tions, several training conditions are considered with differ-
ent combinations of HF and LF training data, which are de-
scribed later. A set-aside test set of 55 input locations (com-
prising 550 snapshots of HF data) in Xin is used for testing
the performance of the MF-STM framework for each of the
training combinations.

Reconstruction performance
A deep MF-CAE is constructed for compressing ΨFj in a
latent space with Dcode = 20. Fenc has 5 convolutional
layers, with 30, 25, 20, 15 and 5 filters,respectively, hav-
ing a 3 × 3 kernel size. To reduce the dimension of the
output after each convolution step, max-pooling of window-
size 2 × 2 is employed. Fdec is symmetric to Fenc with re-
spect to its convolutional and up-sampling operations. The
MF-CAE architecture is depicted in Figure 1. The data aug-
mentation for the MF-CAE involves training a single CAE

Figure 2: HF field at (a) t = 0.05 and (b) t = 0.5; LF field at
(c) t = 0.05 and (d) t = 0.5 for (x̄, ȳ) = (−0.385,−0.015).

architecture for all the HF and LF data combined. To fa-
cilitate this, ΨF2

is up-sampled using bilinear interpolation
to match the dimensions of ΨF1

. Hence, the MF-CAE is
trained on 64 × 64 dimensional snapshots from both the
HF and LF simulations. The effect of augmenting the CAE
with LF data is compared with the cases when the CAE is
trained with single fidelity (i.e. solely the HF) data, and the
latter is termed as HF-CAE. Different training data com-
binations are considered for HF-CAE, with the number of
high fidelity training points in Xin, denoted by NH , selected
to be 45, 70 and 95, each being a unique Latin Hypercube
DoE. All the MF-CAEs have the same 45 HF input train-
ing points as the HF-CAE with NH = 45. The metric se-
lected for evaluating the reconstruction performance on the
55 test locations is an average (over 550 snapshots) of the

normalized L2 error (εR), where εR =
||ΨF1

−Ψ̃F1
||

||ΨFj
|| , with

Ψ̃F1 denoting the CAE reconstruction of ΨF1 . Table 1 com-
pares εR for the different CAE training combinations. It can
be observed from the table that addition of LF points in
the MF-CAE architecture results in progressively improved
reconstruction performance, with around 25% reduction in
εR with MF-CAE (NH = 45, NL = 95), as compared to
its HF-CAE counterpart with NH = 45. Moreover, it is
also seen that MF-CAE(NH = 45, NL = 70) and MF-
CAE(NH = 45, NL = 95) have similar εR as compared
to HF-CAE (NH = 70) and HF-CAE (NH = 95), respec-
tively. This indicates that it is possible to achieve compa-
rable reconstruction performance to higher HF data-based
CAE models, by leveraging LF data.

HF-CAE
(NH = 45)

HF-CAE
(NH = 70)

HF-CAE
(NH = 95)

0.0207 0.0171 0.0150

MF-CAE
(NH = 45,
NL = 45)

MF-CAE
(NH = 45,
NL = 70)

MF-CAE
(NH = 45,
NL = 95)

0.0187 0.0178 0.0154

Table 1: εR for the different CAE training combinations.
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Regression and Emulation
Given the training inputs in {Xin× t}, the Fenc of MF-CAE
provides the latent space (z) representations for both the HF
and LF fields. This mapping to the latent space is learnt
by the MFGP regressor R, which is accomplished using
the non-linear autoregressive Gaussian process (NARGP)
approach proposed by Perdikaris et al (Perdikaris et al.
2017). It is also assumed that the training inputs have the
nested structure of DF1

⊆ DF2
, i.e. the HF training input

points are a subset of the LF training input points (Kennedy
and O’Hagan 2000). NARGP is a modification of the lin-
ear autoregressive MF modeling approach originally pro-
posed by Kennedy and O’Hagan (Kennedy and O’Hagan
2000), in order to incorporate non-linear inter-fidelity corre-
lations. The NARGP formulation for our regression problem
can be represented as z1(x̄, ȳ, t) = g((x̄, ȳ, t), z∗2(x̄, ȳ, t)),
where z∗2(·) is the GP posterior of the LF level, and g(·) is
also a GP. More details of the mathematical formulation of
NARGP can be found in Perdikaris et al. (2017).

(a) (b)

Figure 3: (a) Emulation error ε̄E and (b) Emulation uncer-
tainty σ̄E as a function of time, using the six different emu-
lation approaches. Metrics averaged over 55 test samples.

The effect of multi-fidelity modeling in the regression
performance has been analyzed using MFGP, and com-
pared with the single fidelity GP (SFGP) counterpart where
only the HF data is used both in the ROM and the regres-
sion stages. Using SFGP for flowfield emulation combined
with ROM has been used by researchers earlier in this con-
text (Maulik et al. 2021). The six different models trained for
regression are: SFGP A (NH = 45), SFGP B (NH = 70),
SFGP C (NH = 95), MFGP A(NH = 45, NL = 45),
MFGP B(NH = 45, NL = 70) and MFGP C(NH = 45,
NL = 95). All the MFGPs have the same 45 HF training
points as the SFGP with NH = 45. The metrics compared
are the normalized L2 error of emulation (εE), which de-
notes the error between the true HF field and the decoded
field output from the posterior GP mean prediction of z for
a test input condition, and the standard deviation (σE) of the
emulated predictions. These two metrics have been averaged
over all the 55 test samples and plotted in Figure 3. It can be
seen from Figure 3 that adding LF points progressively re-
duces the error and the uncertainty of emulation, keeping the
same number of HF points. The maximum improvement is
obtained for MFGP C when compared with SFGP A, where
an improved performance is seen with respect to both the
metrics. Moreover, it is interesting to note that the emulation

error of MFGP C is lower than all the SFGPs, with SFGP C
being closest to MFGP C. Thus, with 45 HF points and 95
LF points, the multi-fidelity framework could achieve a bet-
ter emulation performance (∼38% reduction in sample aver-
aged εE and ∼42% reduction in sample averaged σE) than
a single high fidelity counterpart with 45 HF points. This in-
dicates the effectiveness of incorporating LF data along with
the HF information through a multi-fidelity framework, par-
ticularly when the LF data is inexpensive to obtain. Figure 4
shows a qualitative comparison among the true HF field and
the mean predicted fields from SFGP A and MFGP C for t =
0.05 and t =0.16 for a test case with (x̄, ȳ) = (0.445, 0.215).
It is observed that with the same 45 HF points used in the
ROM and regression models, the MFGP C is able to rep-
resent the true field more accurately than the single fidelity
counterpart, with better overall emulation of the flow fea-
tures.

Figure 4: True HF fields at (a) t = 0.05 and (b) t = 0.16,
MFGP C predicted mean HF field at (c) t = 0.05 and (d)
t = 0.16, SFGP A predicted mean HF field at (e) t = 0.05
and (f) t = 0.16, for a test case with (x̄, ȳ) = (0.445, 0.215).

Conclusions
This paper presents a novel multi-fidelity modeling ap-
proach for spatio-temporal emulation, named as MF-STM,
that captures the multi-fidelity correlation present in spatio-
temporal data. The model has been tested on a prototypical
system of equations simulating geophysical flows, namely
the inviscid shallow water equations. Augmenting HF data
with a relatively inaccurate coarse-grid LF data has resulted
in ∼25% reduction in reconstruction error for the ROM.
Moreover, the MF-STM approach has resulted in ∼38% re-
duction in emulation error and ∼42% reduction in predic-
tion uncertainty for the spatio-temporal fields over a held-out
test set. The methodology provides a promising approach of
making use of the otherwise rejected less accurate (but less
expensive) LF data for data-driven emulation, particularly
in data-limited scenarios. In situations where the cost dif-
ference between the HF and LF models is significant, this
framework has the potential of reducing the computational
cost in developing accurate and robust surrogate models.
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