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ABSTRACT
Aggregation structures with explicit information, such as image
attributes and scene semantics, are effective and popular for in-
telligent systems for assessing aesthetics of visual data. However,
useful information may not be available due to the high cost of
manual annotation and expert design. In this paper, we present a
novel multi-patch (MP) aggregation method for image aesthetic
assessment. Different from state-of-the-art methods, which aug-
ment an MP aggregation network with various visual attributes,
we train the model in an end-to-end manner with aesthetic labels
only (i.e., aesthetically positive or negative). We achieve the goal by
resorting to an attention-based mechanism that adaptively adjusts
the weight of each patch during the training process to improve
learning efficiency. In addition, we propose a set of objectives
with three typical attention mechanisms (i.e., average, minimum,
and adaptive) and evaluate their effectiveness on the Aesthetic
Visual Analysis (AVA) benchmark. Numerical results show that
our approach outperforms existing methods by a large margin. We
further verify the effectiveness of the proposed attention-based
objectives via ablation studies and shed light on the design of
aesthetic assessment systems.
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1 INTRODUCTION
As the volume of visual data grows exponentially each year, the
capability of assessing image aesthetics becomes crucial for various
applications such as photo enhancement, image stream ranking, and
album thumbnail composition [1, 3, 4]. The aesthetic assessment
process of the human visual system involves numerous factors such
as lighting, contrast, composition, and texture [7, 26]. Some of these
factors belong to holistic scene information, whereas others are
fine-grained image details. Designing an artificial intelligent system
that accommodates all these factors is a challenging task.

Many studies have focused on this problem in the last decade. Al-
though some early methods only consider global factors [5, 13, 22],
most recent approaches propose combining holistic scene infor-
mation and fine-grained details in a multi-patch (MP) aggregation
network [6, 12, 23, 34]. A common practice is to leverage explicit
information, such as image attributes [34, 36], scene semantics [19],
and intrinsic components [6, 23] in the network design. Using
explicit information encodes various complementary visual cues
and can significantly outperform alternative methods that only rely
on aesthetic labels [22]. However, explicit information might not
be always available due to the high cost of manual annotation and
the expert knowledge required for feature design. As images with
aesthetic labels become available at a large scale from online pho-
tography communities, we revisit the problem of image aesthetic
assessment and explore how to learn an effective aesthetic-aware
model in an end-to-end manner with aesthetic labels only.

Learning with aesthetic labels only is challenging because the
labels may not provide sufficient signals for training and can lead
to poor assessment results. In the absence of explicit information,
deciding which image patches are useful in making the correct pre-
diction is difficult. Therefore, image patches are usually considered
equally important in the training stage and the inference time for
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Figure 1: System overview. We use an attention-based ob-
jective to enhance training signals by assigning relatively
larger weights to misclassified image patches.

most previous methods. Recently, Ma et al. [23] proposed an effec-
tive patch selection module to select useful patches heuristically
during the training stage and showed that patch selection alone
improved the aesthetic assessment performance by 7%. However,
their heuristic patch selection was indirectly learned from the
training data and might not fully leverage meaningful information
from aesthetic labels. We notice that the scheme of patch selection
shares an idea similar with attention mechanisms [2, 10, 30], in
which human visual attention is not distributed evenly within
an image. Recent successes in visual analysis [18, 33, 35] have
demonstrated that a well designed attention-based module can
significantly improve the performance of a learning system.

Motivated by patch selection and attention mechanism, we pro-
pose a simple yet effective solution for image aesthetic assess-
ment, as shown in Figure 1. The key ingredient is an attention-
based objective that strengthens training signals by assigning large
weights to patches on which the current model has made incorrect
predictions. In this manner, we improve the learning efficiency
and eventually achieve better assessment results compared with
existing approaches that consider each patch with equal weight.

For comparison purpose, we present and evaluate three typical
attention mechanisms (i.e., average, minimum, and adaptive). In
comparison with the heuristic patch selection scheme [23], our
method simplifies the design of the network architecture, and more
importantly, enables an end-to-end way to train an assessment
model with aesthetic labels only. To the best of our knowledge,
attention mechanism has not been explored for image aesthetic
assessment. Our quantitative results demonstrate that our proposed
solution outperforms state-of-the-art methods on the large-scale
Aesthetic Visual Analysis (AVA) benchmark [25]. We also conduct
ablation studies and provide additional visualizations to analyze
our learned models.

2 RELATEDWORK
The estimation of image styles, aesthetics, and quality has been
actively investigated over the past few decades. Early studies started
from distinguishing snapshots from professional photographs by

CNN
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input data cropped patch Hidden layer output(a)
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Figure 2: Typical aggregation-based architectures for image
aesthetic assessment: (a) MP aggregation; (b) multi-column
aggregation; (c) aggregation with explicit information.

modeling well-established photographic rules based on low-level
handcrafted features [5, 13, 16, 32]. Recently, machine learning
based approaches have been successfully applied to various com-
puter vision tasks [9, 18, 33]. Deep learning methods, such as deep
convolutional neural network (CNN) and deep belief network, have
been successfully applied to photo aesthetic assessment task with
promising results. In Figure 2, we divide recent deep learning
based aesthetic assessment methods into three categories based on
different aggregation structures.

MP aggregation (Figure 2a) concatenates vector representations
extracted from multiple patches of the input image for aesthetic
assessment. Typical examples include deep multi-patch aggregation
network (DMA-Net) [22], multi-net adaptive spatial pooling CNN
(MNA-CNN) [19], and MP subnet with an effective patch selection
scheme (New-MP-Net) [23].

Multi-column aggregation (Figure 2b) focuses on boosting train-
ing signals of aesthetic modeling with additional task-related ex-
plicit information, such asmulti-column for various attribute model-
ing [15, 36], brain-inspired deep networks (BDN) [34], two-column
CNN for rating pictorial aesthetics (RAPID) [21], aesthetic-attention
net (AA-Net) [35], multi-task CNN (MTCNN) with semantic pre-
diction [11], aesthetic quality regression with simultaneous image
categorization (A&C CNN) [12], and two-column deep aesthetic
net (DAN) with triplet pre-training and category prediction [6].

Representation aggregation with explicit information (Figure 2c) is
built on an MP aggregation module and uses explicit information as
complementary visual cues for good results. Common examples of
explicit information include object instances (e.g., DMA-Net with an
object-oriented model [22]), scene semantic (e.g., MNA-CNN with
scene-aware aggregation [19]), and expert-designed photographic
attributes (e.g., depth of field and color harmonization [23]).

Although explicit information provides meaningful cues for
image aesthetic assessment, useful information may not always
be available due to the high cost of manual annotation and expert
knowledge in design. Therefore, compared with methods having
explicit information, training a CNN with aesthetic labels alone is
useful if it achieves similar or even better assessment results.
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3 APPROACH
3.1 Problem Statement
We denote N pairs of input image I and its corresponding ground-
truth aesthetic label ŷ as our dataset {Ii , ŷi }Ni=1. Here, ŷi = 1means
that the image Ii is aesthetically positive, whereas ŷi = 0 denotes
an aesthetically negative image. Given the dataset, the problem of
learning image aesthetic assessment can be formulated as follows:

arдmax
θ

1
|P |

∑
p∈P

Pr (ỹ = ŷ | p,θ ) (1)

where P is a set of square patches {p} cropped from images in
the dataset, ỹ denotes the predicted aesthetic label, and θ refers
to all the network parameters that need to be learned for image
aesthetic assessment task. In Equation 1, Pr (ỹ = ŷ | p,θ ) represents
the probability that the patch is correctly predicted as the ground-
truth label and is computed as the output of the last so f tmax layer
in our network.

Directly optimizing Equation 1 is computationally expensive
and might lead to unwanted artifacts, such as overfitting, especially
when only aesthetic labels are available. This issue can be linked
to the fact that a large batch size usually introduces detrimental
effects (e.g., sharp local minima) during the training process via
mini-batch stochastic gradient descent (SGD) [14]. Therefore, it is
desirable to design an objective function for efficient and effective
learning of aesthetic-aware image representations.

3.2 Attention-based Objective Functions
Inspired by patch selection [23] and attention mechanisms [2, 10,
30], we propose assigning different weights to different image
patches for effective learning of the aesthetic assessment model.
For comparison purpose, we propose three different MP weight
assignment schemes, namely,MPavд ,MPmin , andMPada .

MPavд scheme. Recall the Jensen’s inequality that: given a real-
valued concave function f and a set of points {x} in a domain S ,
Jensen’s inequality can be stated as follows:

f
( 1
|S |

∑
x ∈S

x
)
≥

1
|S |

∑
x ∈S

f (x) (2)

where the equality holds if and only if xi = x j (∀xi ∈ S) or f is
linear. On the basis of Jensen’s inequality,MPavд can be proposed
as an efficient relaxation of the original objective in Equation 1, as
shown below:

log
( 1
|P |

∑
p∈P

Pr (ỹ = ŷ | p,θ )
)
≥

1
|P |

∑
p∈P

log
(
Pr (ỹ = ŷ | p,θ )

)
︸                                 ︷︷                                 ︸

MPavд
(3)

∂MPavд

∂θ
=

1
|P |

∑
p∈P

1
Pr (ỹ = ŷ | p,θ )︸             ︷︷             ︸

weiдhts

·
∂Pr (ỹ = ŷ | p,θ )

∂θ
(4)

If we sample one patch from each image, theMPavд scheme will
share a training pipeline similar to the training of a common im-
age classification model. Therefore, this scheme can be trained
efficiently compared with the existing MP aggregation models.

MPmin scheme. In many machine learning algorithms, another
typical attention mechanism is to focus on improving results at
data points with moderate confidences, such as hinge loss and
hard example mining [20, 28]. Inspired by these prior methods, we
propose theMPmin scheme as another relaxation of Equation 1:

log
( 1
|P |

∑
p∈P

Pr (ỹ = ŷ | p,θ )
)
≥ min

p∈P

1
|P |

log
(
Pr (ỹ = ŷ | p,θ )

)
=

1
|P |

log
(
Pr (ỹ = ŷ | pm ,θ )

)
︸                             ︷︷                             ︸

MPmin

(5)

where

pm = arдmin
p∈P

Pr (ỹ = ŷ | p,θ )

∂MPmin
∂θ

=
1
|P |

1
Pr (ỹ = ŷ | pm ,θ )

·
∂Pr (ỹ = ŷ | pm ,θ )

∂θ

=
1
|P |

∑
p∈P

I(p = pm )

Pr (ỹ = ŷ | p,θ )
·
∂Pr (ỹ = ŷ | p,θ )

∂θ

(6)

where I(·) equals to 1 if p is pm , and 0 otherwise. As shown in
Equation 5, theMPmin scheme only considers image patches with
the lowest prediction confidence to search for meaningful visual
cues, while ignoring other patches from the same image. In practice,
we implement a softer version of MPmin to avoid a potentially
unstable training process. Specifically, the possibility that p is
selected in the SGD process is proportional to 1 − Pr (ỹ = ŷ | p,θ ).

MPada scheme. To take advantage of patch selection in the
training stage in an end-to-end manner, we designMPada to assign
adaptively larger weights to meaningful training instances, i.e.,
patches on which the current model predicts incorrect aesthetic
labels, as shown as follows:

MPada =
1
|P |

∑
p∈P

ωβ · log
(
Pr (ỹ = ŷ | p,θ )

)
ωβ =

Pr (ỹ = ŷ | p,θ )−β − 1
Pr (ỹ = ŷ | p,θ )−β

= 1 − Pr (ỹ = ŷ | p,θ )β
(7)

∂MPada
∂θ

=
1
|P |

∑
p∈P

λ ·
∂Pr (ỹ = ŷ | p,θ )

∂θ

λ =
1 − (1 + β · log Pr (ỹ = ŷ | p,θ )) · (1 − ωβ )

Pr (ỹ = ŷ | p,θ )

(8)

where β is a positive number to control the adaptiveness of weight
assignment. Given that Pr (ỹ = ŷ | p,θ )−β is in the range of (1,+∞),
we normalize its value by subtracting 1 and dividing the result by
Pr (ỹ = ŷ | p,θ )−β . Figure 3 shows how the curves ofωβ change as a
function of Pr (ỹ = ŷ | p,θ ) with different values of β . Intuitively, as
the optimization progresses, the ratio of instances of high decision
confidence increases. Consequently, the overall loss decreases, and
meaningful training signals become weaker. To maintain mean-
ingful training signals, we should allocate more computational
resources to data points of relatively lower prediction confidence.

Different from the hinge loss which ignores data points that have
been classified correctly, the MPada scheme constantly assigns
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Figure 3: Curves of adaptive weights ωβ = 1 − Pr β with
different values of the hyperparameter β .

certain positive weights to those patches to help maintain correct
predictions, similar to focal loss [17]. Moreover, this scheme pre-
vents the training process from becoming unstable due to potential
noisy data points or outliers.

The task of aesthetic assessment can be considered as a two-class
classification problem, and the classifier may suffer from accuracy
paradox if the dataset is unbalanced. In the training partition of AVA
benchmark [25], more than 75% photos are labeled as aesthetically
positive, whereas the rest are negative ones. To achieve a high
accuracy, an assessment model may tend to predict a photo to be
aesthetically positive. The MPada scheme can resolve this issue
effectively because it assigns large weights ωβ to misclassified data
points, which will essentially bias the model to pay attention to the
minority class.

3.3 Network Architecture
In addition to the objective function, the network architecture is
another indispensable part of an effective machine learning system.
Among the popular architectures of CNNs, ResNet [9] is a good
choice for our task because of its computational efficiency for
training and inference processes.

Table 1 shows the details of our network architecture for all the
experiments. For a fair comparison, we adopt the 18-layer ResNet
architecture (plus the last classification layer), with the same depth
of layers as models based on VGG16 nets [29], which are commonly
used in previous methods for aesthetic assessment [19, 22, 23].

4 EXPERIMENTAL RESULTS
In this section, we describe our implementation details and present
the experiment results. We compare our approach with state-of-
the-art methods on the AVA benchmark dataset and validate the
proposed solution via ablation study.

4.1 Training Data
We conduct experiments based on the AVA benchmark [25], which
is the largest publicly available dataset for image aesthetic assess-
ment. The AVA benchmark contains about 250, 000 photos in total.
Each photo has an aesthetic score, which is obtained by averaging

Layers Output names Output shape
conv, 7x7, 64, stride 2 - [112, 112, 64]
max pool, 3x3, stride 2 - [56, 56, 64]

[
conv, 3x3, 64
conv, 3x3, 64

]
x2

0-0-BNReLU1

[56, 56, 64]

0-0-BNReLU2
0-0-ReLU

0-1-BNReLU1
0-1-BNReLU2
0-1-ReLU

[
conv, 3x3, 128
conv, 3x3, 128

]
x2

1-0-BNReLU1

[28, 28, 128]

1-0-BNReLU2
1-0-ReLU

1-1-BNReLU1
1-1-BNReLU2
1-1-ReLU

[
conv, 3x3, 256
conv, 3x3, 256

]
x2

2-0-BNReLU1

[14, 14, 256]

2-0-BNReLU2
2-0-ReLU

2-1-BNReLU1
2-1-BNReLU2
2-1-ReLU

[
conv, 3x3, 512
conv, 3x3, 512

]
x2

3-0-BNReLU1

[7, 7, 512]

3-0-BNReLU2
3-0-ReLU

3-1-BNReLU1
3-1-BNReLU2
3-1-ReLU

global average pooling - [512]
2d fc, softmax - [2]

Table 1: The architecture of deep CNN used in our exper-
iments. We use the 18-layer ResNet for a fair comparison
with alternative approaches. Each x-x-ReLU is the output of
a residual block.

the ratings from about 200 people. The scores range from 1 to 10,
where 10 indicates the highest aesthetic quality.

For a fair comparison, we use the same partition of training
and test data similar to prior methods [19, 22, 23, 25] (i.e., 235,599
images for training and the rest for testing). We also follow the
same procedure to assign a binary aesthetic label to each image in
AVA. Specifically, images with average ratings less than or equal
to 5 are aesthetically negative, whereas others are aesthetically
positive.

4.2 Implementation Details
Given an image of arbitrary resolution in our dataset, we initially
resize its shorter edge to be 256 while keeping its aspect ratio. In
this manner, we can keep the testing data pipeline compatible with
the training data pipeline without changing the aspect ratios of
original images, which we assume is important for photo aesthetic
assessment. Figure 4 shows that the distributions of aesthetic scores
of images of different aspect ratios share similar patterns.

We then randomly crop several patches of resolution 224 ×

224 from each resized image. Random horizontal flipping (50%
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Figure 4: The distributions of aesthetic scores of imageswith
various aspect ratios share similar patterns.

probability to flip) is conducted for data augmentation without
color jittering or multi-scale cropping. Next, the collected patches
are fed into the CNN to learn the feature representation for aesthetic
assessment. An attention-based MP objective function (Section 3) is
used to organize separated patches effectively and ensure that error
back-propagation process eventually leads to desirable convergence
with satisfactory assessment performance.

We build our system based on publicly available implementations
of ResNet [9] using Tensorflow. Instead of training from scratch, our
network is fine-tuned from a model pretrained on the ImageNet
ILSVRC2012 dataset [27]. Each training process contains 32 epochs
and it takes about 10 hours to complete on an NVIDIA TITAN X
graphics card. At test time, it takes less than 0.1 ms to predict the
aesthetic label of an image.

We apply a five-fold cross-validation technique on the training
set of AVA to select the model hyperparameters. The hyperparame-
ters include the learning rate (begins with 0.001 and is reduced by
half every 20 epochs), fixed weight decay with 0.0001, and β = 0.5
in ωβ . The optimization process is performed using Nesterov SGD
with a mini-batch size of 32.

4.3 Performance Evaluations
We use the total classification accuracy on the canonical AVA testing
partition to validate the effectiveness of our proposed objectives
for aesthetic assessment. In Table 2, we compare our results with
several existing techniques, including handcrafted features [25],
three VGG-Net based methods [19], a single-patch network [22]
based on spatial pyramid pooling (SPP) [8], three types of aggre-
gation based approaches as reviewed in Section 2, and a recent
method [31] which casts aesthetic assessment as a regression task.

4.3.1 Our methods versus state-of-the-art approaches. Our pro-
posed objective functions based on attention mechanism gener-
ally work better compared with existing techniques for image
aesthetic assessment. The MPada scheme even outperforms the
models with well-designed features that utilize hybrid information
(e.g., [11, 19, 22, 23]). In Figure 5, we show four groups of aesthetic
assessment results predicted by our MPada scheme based on the

Method Core Features Results
AVA [25] handcrafted features 68.0
VGG-Scale [19] non-uniform scaling 73.8
VGG-Pad [19] uniform scaling + padding 72.9
SPP [22] spatial pooling 76.0
VGG-Crop [19]

MP aggregation

71.2
DMA-Net [22] 75.41
MNA-CNN [19] 77.1
New-MP-Net [23] 81.7
DCNN [21]

multi-column
aggregation

73.25
RAPID [21] 75.42
A&C CNN [12] 74.51
MTCNN [11] 78.56
MTRLCNN [11] 79.08
BDN [34] 78.08
Two-column DAN [6] 78.72
AA-Net [35] 76.9
DMA-Net-IF [22] representation aggregation

with explicit information

75.4
MNA-CNN-Scene [19] 77.4
A-Lamp [23] 82.5

NIMA [31] distributions of human
opinion scores 81.51

MPavд average weights 81.76
MPmin minimum select 80.50
MPada adaptive weights 83.03

Table 2: Comparisons between several state-of-the-art ap-
proaches and our proposed schemes. We list the core fea-
tures of each method and the corresponding total classifi-
cation accuracy on the AVA test set.

ResNet architecture, including aesthetically positive and negative
predictions with high and low decision confidence.

4.3.2 Comparisons between different attention-based schemes.
Among all the three attention-based objectives proposed in Sec-
tion 3, theMPada scheme achieves the highest aesthetic assessment
accuracy. Figure 6 shows that the MPada scheme tends to assign
larger weights to aesthetically negative examples with respect to
positive ones. This adaptive scheme can help resolve the intrinsic
class imbalance problem of our dataset and will lead to better
assessment performance. We have also found that training based on
theMPada scheme converges faster and reaches a lower minimum
compared with the other two schemes.

4.3.3 β value for adaptive weight assignment. For a better under-
standing of theMPada scheme, we conduct additional experiments
to train themodel with different values of β (i.e., the hyperparameter
for adaptive weight ωβ in Eqn 7). Figure 3 shows that when β ∈

(0, 1), patches correspond to smaller probability and thus lower
prediction confidence will be assigned a considerably larger weight,
that is, amodel with β ∈ (0, 1) is more adaptive comparedwith those
with β ∈ (1,∞). Our experimental results show that a model trained
with β ∈ (0, 1) generally outperforms the ones with β ∈ (1,∞) by a
margin of ∼ 1% in terms of total classification accuracy.
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Figure 5: Our aesthetic assessment results on the AVA test set predicted by the MPada scheme.

Figure 6: Average weights for patches from aesthetically
positive and negative instances during the training process.

4.4 Further Investigation
In this section, we conduct ablation study to verify the effectiveness
of our proposed method. We also investigate the learned represen-
tations to understand aesthetic-aware models further.

4.4.1 Ablation study: ResNet versus VGG. In addition to using
the 18-layer ResNet [9], we also test the aesthetic assessment per-
formance of theMPada scheme based on VGG16 nets, which are
commonly used in previous studies [19, 22, 23]. In comparison with
the number in Table 2, the accuracy of implementation using VGG16
nets is only approximately 0.5% lower. Note that a VGG16 net has
a considerably larger network size (around 500MB) as compared
to ResNet (approximately 40MB) and requires considerably more
computational resources and time budget.

4.4.2 Representation correlation. For further understanding of
the trained aesthetic-aware neural network, we investigate the

representation vectors extracted from different layers of the ResNet
architecture. We resort to singular vector canonical correlation
analysis (SVCCA) 1 [24], a recently proposed powerful tool to
understand the relationships among representations of various
layers. We use ResNetImaдeN et , ResNetAVA and ResNetRand to
denote the original model pretrained on ImageNet, the fine-tuned
model from ResNetImaдeN et and the model trained from scratch,
respectively. The SVCCA maps of ResNetAVA and ResNetRand are
shown in Figures 7 and 8, respectively. The notations of output
nodes in the SVCCA maps are listed in Table 1. Figure 7 shows
a positive correlation among various layers in the trained model,
especially for high-level layers (e.g., the last six layers).

Our experiments show that ResNetRand can still achieve good
aesthetic classification results and is inferior to ResNetAVA by a
moderate gap (around 1%). In comparison with the SVCCA map
of ResNetAVA in Figure 7, the correlations of representations in
ResNetRand are relatively weaker, as shown in Figure 8. This result
indicates that a weak representation correlation can cause degrada-
tion of aesthetic assessment performance.

4.4.3 Aesthetic-aware model versus object-oriented model. Since
we start from a pre-trained object-oriented model ResNetImaдeN et
and then fine-tune it to obtain a model ResNetAVA for aesthetic
assessment, it is interesting to see which parts of the network
change the most during the fine-tuning process. Figure 9 shows the
heatmap visualization where the SVCCA map of ResNetAVA has
larger components than the SVCCA map of ResNetImaдeN et . This
figure indicates that the high-level layers of a model for aesthetic
assessment present stronger correlation compared with an object-
oriented model.

1The code of SVCCA we use can be found at https://github.com/google/svcca.
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Figure 7: SVCCA map visualization of correlations between
different layer representations in ResNetAVA.

Figure 8: SVCCA map visualization of correlations between
different layer representations in ResNetRand .

4.4.4 Effect of image resizing methods. In our current system,
we initially resize the shorter edge to be 256 for all the images to
make the training and test data compatible with each other. This
preprocessing operation is valid if aesthetic assessment result only
relies on scale-invariant features and will not change after uniform
resizing. In certain cases, such as the pictures with distinctive local
contrast, resizing the images may change the aesthetic assessment

Figure 9: Heatmap visualization showing where the SVCCA
map of ResNetAVA has larger components than the SVCCA
map of ResNetImaдeN et .

1 / 0.740   1 / 0.562 1 / 0.670 0 / 0.521 1 / 0.736    1 / 0.606

1 / 0.710 1 / 0.596 0 / 0.582       0 / 0.692 0 / 0.573   0 / 0.651

0 / 0.539 0 / 0.761 0 / 0.638         0 / 0.812 1 / 0.757 1 / 0.572

Figure 10: Our aesthetic assessment results and the cor-
responding prediction confidence with two scaling ap-
proaches: resizing shorter edge to be 256 while keeping the
aspect ratio (left) and resizing to a resolution 256×256 (right).

results. We designate the study of image aesthetic assessment at
the original resolution as future work.

In Figure 10, we compare our uniform scaling strategy with non-
uniform scaling to a resolution of 256 × 256. For each image, we
show our aesthetic assessment result and the corresponding predic-
tion confidence. This figure shows that resizing without keeping
the original aspect ratio will reduce the confidence for positive
predictions and will increase the confidence for negative ones. This
result is consistent with human visual perception because changing
the aspect ratio of an ordinary image is likely to downgrade the
image aesthetically.

Session: FF-4 MM’18, October 22-26, 2018, Seoul, Republic of Korea

885



5 CONCLUSIONS
In this study, we revisit the problem of image aesthetic assessment
and propose a simple yet effective solution inspired by the attention
mechanism. To learn a neural network based model for aesthetic
assessment from training data with aesthetic labels only, we investi-
gate three different weight assignment schemes for MP aggregation,
namely,MPavд ,MPmin , andMPada . Our experimental results on
the AVA test dataset show that our approach outperforms state-of-
the-art approaches for image aesthetic assessment by a largemargin.
Among the three schemes presented, adaptive weight assignment
MPada achieves the best aesthetic assessment performance due
to larger weights assigned to meaningful instances during the
optimization process, which help strengthen training signals and
resolve the class imbalance issue of the dataset. We further validate
our design choices via ablation study and evaluate the learned
models by comparing different training strategies.

In the future we plan to investigate learning from unlabeled
data to improve assessment performance further. Although our
major goal is to improve the accuracy of image aesthetic assessment,
another possible future avenue is to explore more compact aesthetic
assessment models for various mobile applications, such as image
enhancement and album thumbnail generation. Finally, combining
image aesthetic assessment with other visual analysis tasks within
a unified learning framework is also interesting.
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