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Figure 1: DiffuPhyGS is a text-to-3D dynamics pipeline that generates detailed 3D objects with
physics-grounded and 3D geometry-aware motion

ABSTRACT

Generating realistic 3D object videos is crucial for virtual reality and digital con-
tent creation. However, existing 3D dynamics generation methods often struggle
to achieve high-quality appearance and physics-aware motion, relying on manual
inputs and pre-existing models. To address these challenges, we propose Diffu-
PhyGS, a novel framework that generates high-quality 3D objects with realistic
and learnable physical motion directly from text prompts. Our approach features
an LLM-Chain-of-Thought-based Iterative Prompt Refinement (LLM-CoT-IPR)
method, which obtains prompt-aligned 2D and multi-view 3D diffusion priors to
guide Gaussian Splatting (GS) to generate 3D objects. We further enhance 3D
generation quality with a Densification-by-Adaptive-Splitting (DAS) mechanism.
Next, we employ a material property decoder that utilizes a Mixture-of-Experts
Material Constitutive Models (MoEMCMs) to predict the mixed material proper-
ties of the 3D object. We then apply the Material Point Method (MPM) to de-
form 3D Gaussian kernels, ensuring physics-grounded motion guided by implicit
and explicit physical priors from the video diffusion model and a velocity loss
function. Extensive experiments show DiffuPhyGS outperforms other methods in
generating realistic physics-grounded motion across diverse materials.

1 INTRODUCTION

Generating realistic, physics-grounded 3D motion from text is valuable for applications in virtual
reality, video games, animation, and robotics. In contrast to general 2D video generation meth-
ods (e.g., diffusion-based models Wu et al. (2025); Wan et al. (2025)) that implicitly learn motion
generation from video data and produce only image-space sequences without explicit 3D geom-
etry, materials, or controllable physical forces, 3D object-based motion generation offers stronger
physical grounding and intrinsic 3D spatial awareness, resulting in more realistic and physically con-
sistent results Huang et al. (2024); Lin et al. (2025); Zhang et al. (2024b); Liu et al. (2024). Recent
advances in text-to-3D generation have enabled the creation of 3D assets Chen et al. (2024b); Tang
et al. (2023a); Poole et al. (2022); Lin et al. (2023); Liang et al. (2024b); Yi et al. (2024), paving
the way for incorporating dynamic behaviors. However, these text-to-3D methods often suffer from
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prompt misalignment, viewpoint inconsistency, and limited visual quality. Moreover, existing 3D
object-based dynamics generation approaches frequently fail to achieve both high-quality appear-
ance and physics-aware motion, often relying on manual inputs and pre-existing 3D object models,
which is inefficient and inconvenient. For example, PhysGaussian Xie et al. (2024) integrates phys-
ical simulations into 3D Gaussians but requires pre-existing 3D object models and manual material
specification, which is time-consuming and requires expertise. Similarly, approaches like Dream-
Physics Huang et al. (2024), OmniPhyGS Lin et al. (2025), PhysDreamer Zhang et al. (2024b),
and Physics3D Liu et al. (2024) use video diffusion models for guidance but lack explicit physical
constraints, leading to artifacts and poor generalization.

Prior works in the domain Huang et al. (2024); Lin et al. (2025); Zhang et al. (2024b); Liu et al.
(2024) leverage video diffusion models for plausible 3D motions, prioritizing perceptual realism
over physical accuracy, often resulting in unnatural deformations or velocities. They also do not fully
integrate high-fidelity 3D appearance with physics-aware dynamics in a text-to-motion pipeline, nor
handle complex material variations within objects.

To address these challenges, we introduce DiffuPhyGS, a framework for generating physics-
grounded 3D object videos from text. To mitigate prompt misalignment in text-to-3D generation
Poole et al. (2022); Lin et al. (2023), we propose LLM-Chain-of-Thought-based Iterative Prompt
Refinement (LLM-CoT-IPR) for iterative refinement. We employ multi-view 3D diffusion priors to
reduce viewpoint inconsistencies and Densification-by-Adaptive-Splitting (DAS) in Gaussian Splat-
ting to capture fine details of the 3D object. For motion, unlike methods relying solely on implicit
guidance Huang et al. (2024); Lin et al. (2025); Zhang et al. (2024b); Liu et al. (2024), we inte-
grate explicit velocity loss from momentum conservation in Material Point Method (MPM) simula-
tions, ensuring physical realism. We also introduce a material decoder that supports mixed materials
through soft gating, enabling the prediction of Mixture-of-Experts Material Constitutive Models
(MoEMCMs) and per-region property estimation. The pipeline is optimized end-to-end, coupling
perceptual guidance with physical constraints via shared Gaussian features.

The main contributions of our work are as follows:

• We introduce a unified pipeline that generates high-quality 3D objects with physics-
grounded motion from text prompts.

• We propose a novel LLM-CoT-Iterative Prompt Refinement method to enhance prompt
alignment, along with an innovative multi-view geometry guidance and Densification-by-
Adaptive-Splitting mechanism, to generate 3D objects with high-quality appearance and
accurate shapes.

• We introduce a novel Mixture-of-Experts Material Constitutive Model prediction to enable
mixed constitutive materials, integrating both implicit and explicit physical priors from the
video diffusion model and velocity loss to generate physics-grounded motion.

• Experimental results demonstrate that our DiffuPhyGS outperforms other methods in gen-
erating realistic, physics-grounded 3D dynamics across a diverse range of materials, with
improved visual quality and motion generation.

2 RELATED WORK

Text-to-3D Generation As an innovative approach in generative AI, text-to-3D generation enables
the generation of 3D models directly from the text prompts. Recent advancements in diffusion
models have led to a surge of works utilizing diffusion priors to ensure that generated 3D models
align closely with the text prompt descriptions Xu et al. (2023); Hong et al. (2024); Ding et al.
(2024); Tang et al. (2023b); Li et al. (2023a); Raj et al. (2023); Chen et al. (2024b). For example,
DreamBooth3D Raj et al. (2023) combines Neural Radiance Fields (NeRF) with 2D diffusion priors
for efficient optimization. DreamFusion Poole et al. (2022) uses Score Distillation Sampling to
align 2D priors with rendered images. Magic3D Lin et al. (2023) employs a coarse-to-fine strategy
with diffusion priors and a 3D hash grid to enhance NeRF optimization. Recently, 3D Gaussian
Splatting (3DGS) Kerbl et al. (2023) has advanced 3D rendering with fast, detailed point-based
representations. Works like GSGEN Chen et al. (2024b) integrate 3DGS with diffusion priors for
photorealistic 3D models Chen et al. (2024a); Yi et al. (2024). Despite progress, challenges remain
in prompt alignment, multi-view consistency, and visual quality. Our approach addresses these by

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

“A sand castle
falling”

User Prompt

En
co

de
r

LLM-CoT-IPR

∇𝜃LMV3D-SDS

∇𝜃	L2D-SDS

Multi-View 
3D Diffussion

2D Di6usion

3D Gaussians

DAS
x, f

MoEMCM 
Prediction

MPM

Generated Video
∇𝜃L4D-SDS

∇𝜃LVelocity

❄

❄

❄

Video Di6ussion

𝜏, F

Analyze Promptori
Evaluate Promptcurr
Assess Image
Generate PromptCLIP 
Refine Promptcurr

image ←GenerateImage(promptcurr)
score ← CLIP(image, promptcurr)
If scorebest < scorethresh:

GPT(promptori, promptcurr, image)

🔥
Elogits

Plogits

je
lly

sa
nd

ru
bb

er ...

Figure 2: Pipeline Overview. DiffuPhyGS employs LLM-CoT-IPR for prompt refinement, gen-
erates 2D and multi-view 3D diffusion priors to guide GS rendering of 3D Gaussian objects, and
enhances quality with DAS. Material properties are derived using a feature encoder and property
decoder. MPM deforms Gaussian kernels for physics-based motion rendering, guided by video dif-
fusion model priors and velocity loss.

generating high-quality, prompt-aligned 3D objects with accurate shapes and consistent multi-view
appearances.

Dynamic 3D Generation Recent advances in 3D object generation have focused on integrating
dynamic behaviors into 3D models Bahmani et al. (2024); Ling et al. (2024); Zhang et al. (2024a);
Zeng et al. (2024); Zheng et al. (2024); Cao & Johnson (2023); Shao et al. (2023); Fridovich-Keil
et al. (2023); Abou-Chakra et al. (2024). Many approaches leverage video diffusion priors with SDS
Bahmani et al. (2024); Zhang et al. (2024a); Zeng et al. (2024) and use dynamic representations like
deformable NeRFs Zheng et al. (2024), HexPlane Cao & Johnson (2023), 4D tensor decomposition
Shao et al. (2023), K-Planes Fridovich-Keil et al. (2023), or dynamic 3D Gaussians Ling et al.
(2024). Multi-view consistency is enhanced through multi-view 4D diffusion models Zhang et al.
(2024a); Liang et al. (2024a) or 4D diffusion priors Zeng et al. (2024). However, these methods
often lack physics-grounded motion due to insufficient physical priors. Our approach integrates
implicit and explicit physical priors to generate physically consistent motion.

Interactive 3D Dynamics Synthesis Recent methods have advanced interactive generation of dy-
namic 3D objects responding to user inputs (Jiang et al., 2024a; Ling et al., 2024), using 4D Score
Distillation Sampling and deformation fields. Physics-aware motion generation under constraints is
explored in (Xie et al., 2024; Li et al., 2023b; Jiang et al., 2024b). Notably, PAC-NeRF (Li et al.,
2023b), PhysGaussian (Xie et al., 2024), and VR-GS (Jiang et al., 2024b) integrate physics simula-
tions with NeRF and 3D Gaussians for realistic motion but often require manual parameter setting
and fixed constitutive models. Recent approaches (Huang et al., 2024; Zhang et al., 2024b; Lin
et al., 2025) learn physical properties from video diffusion models, but they require a pre-defined
3D object model. Moreover, OmniPhysGS (Lin et al., 2025) assumes locally homogeneous expert
models and relies purely on video priors for motion, PhysDreamer (Zhang et al., 2024b) learns
dynamics only in image space from the pretrained video diffusion model, and PhysGaussian (Xie
et al., 2024) depends on user-specified physical parameters. In contrast, our DiffuPhyGS provides
a unified text-to-3D-to-motion pipeline that directly generates 3D Gaussian assets from text, learns
heterogeneous, spatially varying materials via Mixture-of-Experts constitutive models, and explic-
itly enforces physical constraints during MPM-based simulation, enabling realistic and efficient
physics-grounded motion generation.

3 METHOD

In this section, we introduce our framework DiffuPhyGS (Figure 2) for generating 3D objects with
physics-grounded motion. First, DiffuPhyGS refines the input prompt with LLM-CoT-IPR and gen-
erates the 3D object with guided GS rendering. Next, it learns the object’s physical properties using
the material property decoder. It then utilizes MPM to deform the Gaussian kernels using both
implicit and explicit physical priors, which enables realistic physics-grounded motion. To ensure
pipeline cohesion, we employ a shared Gaussian representation with end-to-end joint optimization
of material parameters under combined perceptual and physical losses.

3
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3.1 PRELIMINARY

3D Gaussian Splatting (3DGS) enables high-quality scene reconstruction with fast training and ren-
dering Kerbl et al. (2023). This point-based method represents scenes using 3D Gaussians, de-
fined by position xi, covariance σi, opacity αi, and spherical harmonic coefficients ci, expressed
as Gpxq “ e´ 1

2 pxq
TΣ´1

pxq. For rendering, 3D Gaussians are projected into 2D space and sorted by
depth using tile-based rasterization. Each tile is processed by a thread block, computing pixel colors
via alpha-blending:

C “
ÿ

iPN

ciαi

i´1
ź

j“1

p1 ´ αjq, (1)

where αi and ci denote opacity and color of point i, and N is the number of Gaussians per tile.
Density is managed through pruning and densification Kerbl et al. (2023). We integrate 3DGS into
our framework for object representation, extending the GS kernel to include time-dependent xi and
σi for physics-based motion in generative tasks.

3.2 LLM-COT-ITERATIVE PROMPT REFINEMENT

Text-to-3D generation often produces unsatisfactory results when the input text prompt is overly
brief, lengthy, or involves complex logical relationships. This limitation arises primarily from the
constrained text comprehension capabilities of the guidance models used in the process. Typically,
3D generation models rely on 2D image generation models, such as diffusion models Rombach
et al. (2022); Nichol et al. (2022a), which depend on classifier guidance models like CLIP’s text
encoder Radford et al. (2021). These classifier guidance models lack advanced natural language
understanding and are trained on datasets with simple textual descriptions that lack complex logical
information. As a result, the visual concepts they encode are limited, restricting text-to-3D models
to perform effectively only with simple prompts.

To address this, we introduce an LLM-based CoT-Iterative Prompt Refinement (LLM-CoT-IPR)
module that is used in the text-to-3D stage to optimize the 3D object generation, and we use GPT-4o
as the LLM to improve text alignment in the generated 3D object. As outlined in Algorithm 1, we
generate an image using Stable Diffusion, compute its CLIP score, and, if below the threshold within
the maximum iterations, refine the prompt with GPT-4o to maximize the CLIP score.

Using chain-of-thought (CoT) prompting Wei et al. (2022), we instruct GPT-4o to: 1) Analyze the
original prompt; 2) Evaluate the current prompt; 3) Assess the generated image; 4) Generate a
CLIP prompt; 5) Refine the prompt for optimal length, clarity, and logical complexity. This process
mitigates issues like vague prompts (e.g., “a red rose”, Figure 5) or overly complex ones (Figure 6),
ensuring coherent input for downstream diffusion and GS modules.

3.3 TEXT-TO-3D

To generate high-quality 3D objects with realistic shapes and appearances, we adopt 3D Gaussians
as our 3D representation, leveraging GS rendering. This is motivated by its point-based nature,
ability to produce high-quality rendering results, and fast rendering speed.

Multi-View 3D Diffusion Prior Building on previous methods Tang et al. (2023a); Chen et al.
(2024b), we employ diffusion priors as rendering guidance. However, unlike these approaches,
we introduce a multi-view 3D point cloud diffusion prior to mitigate the Janus problem—where
models overfit to specific views, leading to artifacts such as multiple faces or inaccurate geometry.
Specifically, we use the 2D diffusion model MVDream Shi et al. (2024) to generate multi-view
images of the object based on a given prompt. These images are then fed into the image-to-3D-
point-cloud diffusion model Point-E Nichol et al. (2022b) to create a multi-view 3D point cloud
diffusion prior. To use this prior as shape guidance, we apply a 3D Score Distillation Sampling loss
Alldieck et al. (2024) to guide the shape optimization process:

Lshape “ EϵI ,t
„

wIptq
›

›

›
ϵϕpÎt; y, tq ´ ϵI

›

›

›

2

2

ȷ

` EϵX ,t
”

wXptq }ϵψpxt; y, tq ´ ϵX}
2
2

ı

¨ λMV3D, (2)
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where xt denotes the noisy Gaussian positions, Î represents the generated image, w is the weighting
function, and ϵ is the Gaussian noise.

Densification-by-Adaptive-Splitting To enhance 3D model visual quality and capture fine de-
tails efficiently, we introduce the Densification-by-Adaptive-Splitting (DAS) mechanism in Gaus-
sian Splatting (GS). DAS adaptively refines 3D Gaussians using a 2D appearance diffusion prior
from Stable Diffusion Rombach et al. (2022).

DAS computes a per-Gaussian splitting threshold based on local gradient magnitude relative to the
global mean and standard deviation. Gaussians in high-gradient regions, indicating fine details, are
split if they exceed this threshold, allocating more primitives to detailed areas without overusing
resources. The threshold is dynamically adjusted via an adaptation factor to avoid unnecessary
splits.

During optimization, the gradient gi is the L2 norm of the loss gradient with respect to the ith Gaus-
sian’s mean position, computed via PyTorch automatic differentiation. Gradients are detached to
avoid second-order derivative costs and guide splitting in a non-differentiable step post-optimization.
The adaptive threshold τi is:

τi “ τbase

ˆ

1 ` α ¨
gi ´ ḡ

σg ` ϵ

˙

, (3)

where τbase is the baseline threshold, α controls sensitivity, gi, ḡ, and σg are the gradient norm,
mean, and standard deviation, respectively, and ϵ prevents division by zero. Gaussians with gi ě τi
are split per the original GS strategy Kerbl et al. (2023), using existing backpropagation gradients
efficiently.

The appearance refinement loss is:

Lappearance “ EϵI ,t
„

wIptq
›

›

›
ϵϕpÎt; y, tq ´ ϵI

›

›

›

2

2

ȷ

¨ λSDS, (4)

where Î is the generated image and λSDS is the SDS loss weight. By optimizing with multi-view 3D
shape and 2D appearance priors, and applying DAS periodically, our method synthesizes consistent,
high-quality 3D models suitable for downstream material encoding.

3.4 3D-TO-MOTION

To generate realistic, physics-grounded dynamics of 3D Gaussians, we employ the Material Point
Method (MPM) through 3DGS rendering, guided by both implicit and explicit physical priors: a
video diffusion prior and a velocity loss. We use a material feature encoder to extract features
from the 3D Gaussians and a material property decoder with soft gating to predict the material
properties of the Gaussians using Mixture-of-Experts Material Constitutive Models (MoEMCMs).
The objective is to optimize the learnable material property parameters θ.

Material Point Method We utilize MPM Sulsky (1994) to simulate the material behaviors of
objects under various physical forces and deformations. We employ the 3D Gaussians to represent
the discrete particles, and we use a deformation map ϕpX, tq to describe the motion of a particle’s
position xi at the time t Xie et al. (2024). Local transformations are defined using the gradient of the
deformation map as F pX, tq “ ∇XϕpX, tq, which decomposes into elastic and plastic components:
F “ FEFP . To align with continuum mechanics, updates to the deformation map ϕ conform to the
conservation of mass and momentum Sulsky (1994):

Dρ

Dt
` ρ∇ ¨ v “ 0, ρ

Dv

Dt
“ ∇ ¨ τ ` f ext, (5)

where

τ “
1

detpF q

BΨ

BF
pFEqpFEqT (6)

represents the Cauchy stress tensor. Ψp¨q is the hyperelastic energy density function, determined by
the material-specific elasticity model. Depending on the material-specific plasticity model, FE “

MpFEq, where Mp¨q is the return mapping that enforces plasticity constraints on FE .

5
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The material properties are only determined by the Ψp¨q, Mp¨q, and the physical parameters γ.
Unlike previous works Xie et al. (2024); Li et al. (2023b); Jiang et al. (2024b) that fix these material
properties, we treat them as learnable material models for the Gaussians to estimate the material
property parameters: Ψθel , Mθpl

, γθphy , where θel, θpl, and θphy are the elasticity, plasticity, and
physical parameters, respectively. This learnable parameterization enables joint optimization with
upstream Gaussian features and downstream dynamics.

Mixture-of-Experts Material Constitutive Models In MPM physics simulations, local interac-
tions between neighboring Gaussians govern material behaviors such as elasticity (how a material
deforms under stress and returns to its original shape when stress is removed) and plasticity (per-
manent deformation under stress). To accurately capture these material behaviors, we collect a set
of material constitutive models Xie et al. (2024); Zong et al. (2023) (Appendix A), covering a wide
range of material types to simulate physics-grounded motion. Unlike previous methods Lin et al.
(2025) that assume homogeneous material properties within local neighborhoods, we adopt hetero-
geneous material properties to capture mixed materials within local neighborhoods of the object.
Specifically, our MoEMCMs enable per-Gaussian material customization by blending multiple con-
stitutive models with learned weights, allowing for spatially varying material compositions (e.g., a
single object with regions of rubber-like elasticity and jelly-like plasticity). This facilitates realistic
simulations of objects with mixed materials, such as a soft toy with a rigid core and flexible exterior.

Material Feature Encoder To predict per-Gaussian elasticity and plasticity properties, we design
a material feature encoder inspired by the architecture of Point-BERT Yu et al. (2022), which is
effective for processing point cloud data by capturing local geometric structures and contextual
relationships through grouping and self-attention mechanisms. We encode local neighborhoods of
3D Gaussian features, allowing the model to learn material-specific representations from scratch
during training. This choice is motivated by the need to infer spatially varying material properties
from the 3D Gaussian features tXi,Σi, αi, ciu, which implicitly encode object structure and texture
cues that correlate with physical behaviors.

The encoder partitions the 3D Gaussian features into local neighborhood features using farthest point
sampling (FPS) for group centers and K-Nearest Neighbors (KNN) for grouping. These grouped fea-
tures are then processed through convolutional layers for initial encoding, followed by transformer
blocks to aggregate contextual information. The encoded features are mapped to logits as:

Encoderpx, fq Ñ pelogits, plogitsq, (7)
where x is the Gaussian positions, f is the concatenated features, and elogits, plogits influence elasticity
and plasticity behaviors. The encoder is trained end-to-end with the full pipeline, using gradients
from both SDS and velocity losses to optimize material predictions jointly with dynamics.

Material Property Decoder We assume heterogeneous material properties in local object neigh-
borhoods and decode contribution logit scores by assigning Mixture of Experts Material Constitutive
Models (MoEMCMs) to Gaussians using softmax-derived weights:

DecoderpF, logitsq “

C
ÿ

c“1

PcpFnq ¨ wn,c, (8)

where

wn,c “
expplogitsn,cq

řC
c1“1 expplogitsn,c1 q

, (9)

with wn,c as the weight for material model category c at Gaussian n, logits representing contribu-
tion scores (elogits or plogits), Pc the material constitutive model, and Fn the deformation gradient.
Material models Ψp¨q and Mp¨q are decoded as:

τ “ ΨpF q “ DecoderpF, elogitsq,

F “ MpF q “ DecoderpF, plogitsq.
(10)

This enables heterogeneous material compositions, with distinct properties across regions (e.g., stiff
base, compliant top). Following Xie et al. (2024); Zong et al. (2023), we use 7 material constitutive
models: 3 hyperelastic density functions and 4 plasticity return mappings (please see supplementary
material for details). MoEMCMs capture diverse material behaviors for realistic physics-grounded
motion.

6
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Video Diffusion SDS Guidance To ensure realistic physics-based motion generation, we adopt
an implicit physical prior from video diffusion SDS to guide the 3DGS rendering. Given generated
positions x̂ and deformation gradients F̂ , we leverage ModelScope Wang et al. (2023) to obtain the
video diffusion prior, guiding the generation of motion clip V̂ with learnable material parameters θ:

∇θLSDS “ Eξ,ϵ

«

ωpξq

´

ϵ̂ΦpV̂ ; ξ, yq ´ ϵ
¯

BV̂

Bx̂, F̂

Bx̂, F̂

Bθ

ff

. (11)

Velocity Loss To enhance physical realism in motion, we incorporate a velocity loss based on
Newton’s Second Law, F “ m ¨ dvdt , discretized in the Material Point Method (MPM) as:

∆v “
F ¨ ∆t

m
, (12)

where F is the applied force, m is the mass, and ∆t is the time step.

The velocity loss enforces momentum conservation by penalizing deviations between the actual
velocity change (∆vactual,i “ vi,t`1 ´ vi,t) from the MPM solver and the expected velocity change:

∆vexpected,i “
pFstress,i ` Fext,iq∆t

mi
, (13)

where Fstress,i “ ´∆t Vi
ř

j σi : ∇wij represents internal stress forces, and Fext,i “ mi ¨ g denotes
external gravity forces. The velocity loss is defined as the mean squared error:

Lvel “
1

N

N
ÿ

i“1

}∆vactual,i ´ ∆vexpected,i}
2. (14)

The total loss is obtained by adding the velocity loss to the training objective, weighted by λvel:

Ltotal “ LSDS ` λvel ¨ Lvel. (15)

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Setup We implement the 3D Gaussian Splatting using PyTorch, following the optimization
pipeline from Kerbl et al. (2023). To generate physics-grounded motion, we build upon MPM
Sulsky (1994); Xie et al. (2024). All experiments are conducted on an NVIDIA RTX 3090 GPU.
We set the loss weights λMV3D “ 0.1, λDAS “ 0.1, and λvel “ 0.2.

Metrics For dynamic scenes without real-world ground truth, we follow standard practice in the
domain Lin et al. (2025) and use a randomly initialized, frozen model as a reference baseline rather
than a physical ground-truth video. For each prompt and method, we generate a video with the
trained model and a reference video from the same input using the reference model. We use CLIP-
SIM Radford et al. (2021) to measure prompt consistency, calculated as the average cosine similar-
ity between text prompt and video frame embeddings. We adopt DiffSSIM and DiffCLIP Lin et al.
(2025) to assess expressiveness and robustness by comparing videos from trained and randomly ini-
tialized models. Higher CLIPSIM, DiffSSIM , and DiffCLIP indicate better performance. Fréchet
Video Distance (FVD) Unterthiner et al. (2018) evaluates video quality, and LAION-Aesthetic
scores Schuhmann et al. (2022) assess the aesthetic quality of generated 3D objects.

Baselines We compare our method with three baseline methods: 1) PhysDreamer Zhang et al.
(2024b), which learns dynamics priors from videos generated by diffusion models to simulate ob-
ject dynamics; 2) OmniPhysGS Lin et al. (2025), which assigns homogeneous expert constitutive
models to the object’s local neighborhoods and uses physical priors learned from video diffusion
models to generate object motion; 3) PhysGaussian Xie et al. (2024), which generates object mo-
tion based on user-defined parameters of physical dynamics. Since these methods do not support
generating 3D objects directly from prompts, we focus on evaluating their supported motion gener-
ation using 3D models produced by our method. We do not directly compare with generic 2D video
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Ours

DreamPhysics

“A rubber burger falling on a surface.”

OmniPhysGS

PhysGaussian

“A gravel pile falling then collapsing.”

“Pancakes melting.” “A jelly bouncing.”

Ours

DreamPhysics

OmniPhysGS

PhysGaussian

Figure 3: Qualitative comparisons of our physics-grounded motion results with other baselines.
Compared with baseline methods, our DiffuPhyGS generates more realistic and physically consis-
tent behaviors (e.g., elastic bouncing, granular collapse, viscous melting), whereas baselines produce
results with weaker or unrealistic motions (e.g., highlighted rectangular areas) that deviate from ex-
pected physical responses.

Table 1: User study results. The best results are in bold.

Criteria/Method Ours OmniPhysGS DreamPhysics PhysGaussian
Motion Quality 2.55 ± 0.25 2.00 ± 0.34 1.91 ± 0.84 1.79 ± 0.71
Visual Quality 2.46 ± 0.12 2.06 ± 0.28 2.00 ± 0.39 1.94 ± 0.27
Average 2.51 ± 0.19 2.03 ± 0.31 1.96 ± 0.62 1.86 ± 0.49

generation methods (e.g, diffusion-based models Wu et al. (2025); Wan et al. (2025)), since they
operate purely in 2D without explicit 3D geometry, physical priors, and cannot be subjected to the
same forces and conditions as our method. Instead, we focus on 3D object-based methods that share
the same 3D representations, enabling fair assessment of physical plausibility under comparable
conditions.

4.2 QUALITATIVE EVALUATION

We demonstrate the qualitative performance of our framework by generating 3D objects with di-
verse and diagnostically challenging physics-based dynamics (e.g., rubber, jelly, sand, granular,
melting, fracture). These test cases are deliberately chosen because they are particularly revealing
of physical plausibility, and they form a shared subset of motions that all compared methods can
reasonably handle, ensuring a fair and controlled evaluation.

Qualitative Comparisons Figure 3 highlights our framework’s ability to synthesize 3D objects
with realistic shapes, appearances, and physics-grounded motion based on given prompts. For fair
comparison, we follow the evaluation protocol adopted in prior works and focus on canonical motion
prompts that baselines such as OmniPhysGS, DreamPhysics, and PhysGaussian are designed to ad-
dress, while also being highly sensitive to violations of basic physics. Compared to our framework,
OmniPhysGS’s falling rubber burger lacks elasticity, barely bouncing on impact, and its gravel pile
bounces unrealistically instead of collapsing. DreamPhysics fails to capture rubber friction, causing
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slipping, and its jelly lacks bouncing motion. PhysGaussian’s rubber burger appears rigid without
deformation, and its pancakes show no melting motion. Beyond these benchmark prompts, our
framework, enabled by the proposed MoEMCMs and heterogeneous material fields, can generate
richer behaviors, which we illustrate in Appendix 4 (Figure 4) and in the supplementary videos.

User Study We conducted a user study with 20 participants to evaluate the human-perceived qual-
ity of the generated 3D object motion videos. For each of the 4 methods, we generated 5 video clips,
resulting in a total of 20 videos. Participants rated each video using the Mean Opinion Score (MOS),
with scores ranging from 1 (Bad) to 5 (Excellent), based on two criteria: 1) motion quality, and 2)
visual quality.

As reported in Table 1, our framework consistently achieves the highest MOS across all criteria:
it outperforms the strongest baseline by a clear margin in both motion quality and visual quality
leading to the best average score overall. These user study results not only demonstrate a consid-
erably better perceived quality compared to prior methods, but also align well with the quantitative
evaluation results presented in the paper.

4.3 QUANTITATIVE EVALUATION

Quantitative Comparisons Table 2 shows the quantitative evaluation results for prompts such as
“A rubber burger falling on a surface”, “A gravel pile falling then collapsing”, “Pancakes melt-
ing”, and “A jelly bouncing”. Across these diverse materials, our method obtains the best average
scores on CLIPSIM, DiffSSIM , and DiffCLIP , indicating stronger alignment with the text prompt,
more expressive and faithful physical behavior, and improved robustness compared to all baselines.
Although OmniPhysGS achieves the lowest average FVD (a 2.5% improvement over ours), it con-
sistently underperforms our method on the physics- and content-aware metrics, trailing by 0.2%
in CLIPSIM, 45.1% in DiffSSIM , and 10.6% in DiffCLIP . This demonstrates that our approach
achieves a better overall trade-off between perceptual video quality and accurate, controllable phys-
ical dynamics.

Efficiency and Memory Usage Table 3 reports the total time, average epoch time, and average
peak GPU memory for the 3D-to-motion stage. PhysGaussian (PhysGS) attains the lowest total time
and peak memory usage, which is expected since it does not learn material or dynamics parameters
and thus avoids the overhead of optimization. Among the learning-based methods (DreamPhysics,
OmniPhysGS, and DiffuPhyGS), our DiffuPhyGS achieves the lowest total time and average peak
memory, and the second-best average epoch time (slightly slower than DreamPhysics). Overall,
DiffuPhyGS offers a favorable trade-off between efficiency and capability, because it maintains
competitive computational cost while providing a full text-to-3D-to-motion pipeline with physics-
grounding.

4.4 ABLATION STUDY

LLM-CoT-Iterative Prompt Refinement Ablation studies show that removing LLM-CoT-IPR
lowers CLIPSIM and LAION scores (Table 6), highlighting its role in prompt consistency and aes-
thetic quality (Figure 11).

Multi-View 3D Diffusion Prior Incorporating the multi-view 3D diffusion prior enhances geo-
metric accuracy in 3D objects, as shown in Figure 9 and Figure 7, improving shape quality.

Densification-by-Adaptive-Splitting We conduct ablation studies to evaluate the necessity of
DAS. Figure 8 shows that with DAS, the number of Gaussians increases steadily from the 6, 000th
to the 10, 000th step, with consistent increments every 1, 000 steps. Without DAS, the number of
Gaussians increases rapidly with larger increments, indicating over-allocation of Gaussians. DAS
adaptively splits Gaussians in regions with higher gradients, ensuring efficient allocation and stable
growth of Gaussians, which is crucial for rendering finer detail (Figure 10).

Physics-Grounded Motion Generation As shown in Table 4, removing any of the proposed com-
ponents consistently degrades performance across all metrics, underscoring their importance for
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Table 2: Results of quantitative evaluation. “Ò”: higher is better. “Ó”: lower is better. The best
results are in bold. Each cell shows the percentage difference relative to our method DiffuPhyGS.

Method Metric Burger Gravel Melting Jelly Average

PhysGaussian Xie et al. (2024)

CLIPSIMÒ 0.2888 -5.3% 0.2966 +1.6% 0.2496 -1.0% 0.3035 +0.3% 0.2846 -1.2%

DiffSSIM Ò 0.0757 -42.6% 0.0786 +10.5% 0.0814 +16.5% 0.0807 +33.6% 0.0791 -5.0%

DiffCLIP Ò 1.3375 +33.5% 1.7621 -18.5% 0.9889 -28.6% 1.2418 -3.6% 1.3326 -8.7%

FVDÓ 30.9738 -16.7% 27.0694 -8.3% 22.1761 +25.7% 22.3910 -78.3% 25.6526 -9.2%

DreamPhysics Huang et al. (2024)

CLIPSIMÒ 0.2942 -3.5% 0.2913 -0.2% 0.2493 -1.1% 0.3059 +1.1% 0.2852 -1.0%

DiffSSIM Ò 0.0772 -41.4% 0.0789 +11.0% 0.0832 +19.0% 0.0810 +34.1% 0.0801 -3.8%

DiffCLIP Ò 1.3624 +36.0% 1.7302 -20.0% 0.9874 -28.7% 1.2517 -2.8% 1.3329 -8.7%

FVDÓ 28.1310 -6.0% 26.8209 -7.3% 22.2417 +25.5% 22.2282 -77.0% 24.8554 -5.8%

OmniPhysGS Lin et al. (2025)

CLIPSIMÒ 0.2986 -2.1% 0.2932 +0.4% 0.2559 +1.5% 0.3013 -0.5% 0.2872 -0.2%

DiffSSIM Ò 0.0600 -54.5% 0.0553 -22.2% 0.0659 -5.7% 0.0014 -97.7% 0.0457 -45.1%

DiffCLIP Ò 1.2643 +26.2% 1.7727 -18.0% 1.1815 -14.6% 0.9984 -22.5% 1.3042 -10.6%

FVDÓ 14.1274 +46.8% 29.8549 -19.4% 24.2862 +18.6% 23.3247 -85.7% 22.8981 +2.5%

DiffuPhyGS (Ours)

CLIPSIMÒ 0.3049 0.2920 0.2520 0.3027 0.2879
DiffSSIM Ò 0.1318 0.0711 0.0699 0.0604 0.0833
DiffCLIP Ò 1.0016 2.1627 1.3843 1.2883 1.4592

FVDÓ 26.5382 24.9928 29.8428 12.5603 23.4835

Table 3: Results of efficiency and memory usage evaluation. The best results are in bold, the second
best are underlined.

Method/Metric Total Time (s)Ó Avg. Epoch Time (s)Ó Avg. Peak Mem. (MB)Ó
DreamPhysics 12.5 7.7 9043.2
OmniPhyGS 11.8 8.3 11742.1
PhysGS 4.5 0.04 439.7
DiffuPhyGS (Ours) 10.3 8.2 8597.2

Table 4: Ablation study results for physics-grounded motion generation. The best mean results are
in bold. All metrics are reported as mean ˘ standard deviation.

Setting/Metric CLIPSIMÒ DiffSSIMÒ DiffCLIP Ò FVDÓ

DiffuPhyGS [Full] 0.2879 ˘ 0.0031 0.0833 ˘ 0.0045 1.4592 ˘ 0.052 23.4835 ˘ 1.3
w/o MoEMCMs 0.2613 ˘ 0.0036 0.0460 ˘ 0.0033 0.9984 ˘ 0.047 31.2345 ˘ 1.6
w/o Velocity Loss 0.2622 ˘ 0.0034 0.0460 ˘ 0.0031 1.0016 ˘ 0.049 27.8921 ˘ 1.4
w/o Video Diffusion Prior 0.2622 ˘ 0.0038 0.0460 ˘ 0.0030 1.0016 ˘ 0.051 29.4567 ˘ 1.5
w/o LLM-CoT-IPR 0.2683 ˘ 0.0042 0.01397 ˘ 0.0021 0.9865 ˘ 0.054 124.4351 ˘ 2.3

video quality, expressiveness, and robustness (Figure 12). In particular, excluding the MoEMCMs
or LLM-CoT-IPR leads to pronounced drops in CLIPSIM, DiffSSIM, and DiffCLIP, while ablating the
velocity loss or the video diffusion prior yields smaller but systematic differences in these prompt-
consistency metrics and noticeably worse FVD compared to the full model. The reported mean ˘

standard deviation over three random seeds further indicates that these performance gaps are stable
rather than due to stochastic variation in the SDS optimization.

5 CONCLUSION

In this paper, we present an innovative pipeline that generates high-quality 3D objects with realistic,
physics-aware motion based on text prompts. Our pipeline integrates natural language processing,
generative modeling, and physics simulation, pushing the boundaries of 3D dynamic generation.
This advancement paves the way for transformative applications across diverse industries, including
filmmaking, virtual and augmented reality, gaming, and beyond. Future work could explore the
incorporation of relighting techniques and a wider variety of material types to further enhance the
realism and versatility of the generated motion.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Jad Abou-Chakra, Feras Dayoub, and Niko Sünderhauf. Particlenerf: A particle-based encoding for
online neural radiance fields. In Proceedings of the IEEE/CVF Winter Conference on Applications
of Computer Vision, pp. 5975–5984, 2024.

Thiemo Alldieck, Nikos Kolotouros, and Cristian Sminchisescu. Score distillation sampling with
learned manifold corrective, 2024. URL https://arxiv.org/abs/2401.05293.

Sherwin Bahmani, Ivan Skorokhodov, Victor Rong, Gordon Wetzstein, Leonidas Guibas, Peter
Wonka, Sergey Tulyakov, Jeong Joon Park, Andrea Tagliasacchi, and David B Lindell. 4d-fy:
Text-to-4d generation using hybrid score distillation sampling. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 7996–8006, 2024.
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A APPENDIX

A.1 MATERIAL POINT METHOD

The Material Point Method (MPM) is a computational physics technique used to simulate material
behaviors under various physical forces and deformations Sulsky (1994). In MPM, a material body
is discretized into a collection of Lagrangian particles. Each particle carries a set of quantities,
including position xni , mass mi, velocity vni , Kirchhoff stress tensor Kn

i , deformation gradient
Fni , and affine momentum Ani on particle i at time tn. At time tn, let xnj , mj , and vnj represent
the position, mass, and velocity on grid node j, which facilitate the computation of deformations
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“A rubber corgi falling to the ground.”

“A sponge tearing apart.”

“A pineapple made of jelly bouncing on the surface.”

“A blue and white porcelain vase made of sand collapsing.”

“A honey jar melting.”

Figure 4: Additional qualitative results.

and applied forces on the material body. Due to the conservation of mass, particle mass remains
invariant. At each time step, MPM performs a two-way transfer process: 1) Particle-to-Grid and 2)
Grid-to-Particle.

Particle-to-Grid Transfer During this process, the mass and momentum of particles are trans-
ferred to the grid nodes Xie et al. (2024). The mass mn

j at a grid node j is calculated as:

mn
j “

ÿ

i

wnjimi, (16)

where wnji is the interpolation weight derived from a B-spline kernel. Using the APIC momentum
transfer method Jiang et al. (2015), the momentum at grid node j is updated as:

mn
j v

n
j “

ÿ

i

wnjimipv
n
i ` Ani pxj ´ xni qq. (17)
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Table 5: Physical Parameters.

Notation Meaning / Definition

E Young’s modulus (E)
ν Poisson’s Ratio (ν)
µ Shear modulus E

2p1`νq

λ Lamé modulus Eν
p1`νqp1´2νq

Based on the internal and external forces acting on the particles, the grid velocity vn`1
j at the next

time step is updated as:

vn`1
j “ vnj ´

∆t

mj

ÿ

i

Kn
i ∇wnjiV

0
i ` ∆tg, (18)

where g is the gravitational acceleration.

Grid-to-Particle Transfer In this stage, the updated velocities and momentum from the grid
nodes are transferred back to the particles Xie et al. (2024); Jiang et al. (2016). The velocity vn`1

i ,
position xn`1

i , affine momentum An`1
i , and deformation gradient Fn`1

i of particle i at the new time
step are updated as follows:

vn`1
i “

ÿ

j

vn`1
j wnji,

xn`1
i “ xni ` ∆t vn`1

i ,

An`1
i “

12

∆x2pb ` 1q

ÿ

j

wnjiv
n`1
j

`

xnj ´ xni
˘T

,

∇vn`1
i “

ÿ

j

vn`1
j

`

∇wnji
˘T

,

Fn`1
i “ Mp

`

I ` ∇vn`1
i

˘

Fni q,

Kn`1
i “ KpFn`1

i q.

(19)

Here, b denotes the B-spline degree, and ∆x represents the Eulerian grid spacing. The calculation
of the deformation adjustment mapping Mp¨q and the Kirchhoff stress tensor K are detailed in the
next section.

A.1.1 MATERIAL CONSTITUTIVE MODELS

We compile a set of material constitutive models from previous work Xie et al. (2024); Zong et al.
(2023); Lin et al. (2025), which describe various material behaviors, including those exhibiting
elasticity or plasticity. The essential physical parameters for these materials are listed in Table 5.

A.1.2 ELASTICITY MODELS

We employ the Kirchhoff stress tensor K “ BΨ
BF to map F to K, in order to express the stress-strain

relationship.

Fixed Corotated Elasticity Following previous work Stomakhin et al. (2012), we define fixed
corotated elasticity as:

K “ 2µpF ´ Rq ` λJpJ ´ 1qF´T , (20)
where R is obtained from the polar decomposition of F “ RS, and J is the determinant of F .

Neo-Hookean Elasticity We define Neo-Hookean elasticity, following Bonet & Wood (1997), as:

K “ µpF ´ F´T q ` λ logpJqF´T . (21)
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StVK Elasticity We define the StVK elasticity, based on Barbič & James (2005), as:

K “ Up2µΣ´1lnΣ ` λtrplnΣqΣ´1qV T , (22)

where U , Σ, and V are derived from the singular value decomposition of F “ UΣV T .

A.1.3 PLASTICITY MODELS

We employ the return mapping function Mp¨q to transform the current deformation gradient to the
final deformation gradient F .

Identity Plasticity Most purely elastic materials employ the identity plasticity as:

MpF q “ F. (23)

Drucker-Prager Plasticity Following Drucker & Prager (1952); Chen et al. (2021), we define
Drucker-Prager plasticity as:

MpF q “ UZpΣqV T , (24)

ZpΣq “

$

’

&

’

%

1 sumpϵq ą 0

Σ δγ ď 0 and sumpϵq ď 0

exppϵ ´ δγ ϵ̂
}ϵ̂} q otherwise,

(25)

where ϵ “ log pΣq.

von Mises Plasticity We define von Mises plasticity, following Mises (1913); Huang et al. (2021),
as:

MpF q “ UZpΣqV T , (26)

ZpΣq “

#

Σ, δγ ď 0,

exp
´

ϵ ´ δγ ϵ̂
}ϵ̂}

¯

, otherwise.
(27)

Fluid Plasticity We define fluid plasticity, following Stomakhin et al. (2014); Gao et al. (2018),
as:

MpF q “ J1{3I. (28)

A.2 METRICS

We adopt the ViT-B/32 model of CLIP Radford et al. (2021) to calculate the CLIPSIM Wu et al.
(2021) score as:

CLIPSIM “
1

N

N
ÿ

n“1

CLIP pÎn, yq, (29)

where În is the n-th frame of the generated video and y is the text prompt. A higher CLIPSIM
indicates better alignment between the video and the text.

Following Lin et al. (2025), we define DiffSSIM and DiffCLIP as:

DiffSSIM “ 1 ´
1

N

N
ÿ

n“1

SSIMpI 1
n, Înq, DiffCLIP “

CLIPSIM
CLIPSIM1 , (30)

where I 1
n is the n-th frame of the video generated by a randomly initialized model, SSIM is the

structural similarity index Wang et al. (2004), and CLIPSIM1 is the CLIPSIM of the randomly
initialized model. Higher values of DiffSSIM and DiffCLIP indicate greater expressiveness and
robustness of the model.
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Table 6: Ablation study results of LLM-CoT-IPR. The best results are in bold.

Setting/Metric CLIPSIMÒ LAIONÒ

DiffuPhyGS [Full] 0.2879 33.7781
w/o LLM-CoT-IPR 0.2683 17.1845

A.3 SCORE DISTILLATION SAMPLING

Score Distillation Sampling (SDS), introduced in DreamFusion Poole et al. (2022), is a technique
that leverages a 2D diffusion prior to optimize an image generator based on probability density
distillation. The image generator, parameterized by parameters θ, is represented as gpθq. To optimize
θ such that the generated image x “ gpθq resembles a sample from the pre-trained, frozen 2D
diffusion model, the SDS loss gradient for optimizing θ is formulated as:

∇θLSDSpϕ, x “ gpθqq
∆
“ Et,ϵ

„

wptq pϵ̂ϕpzt; y, tq ´ ϵq
Bx

Bθ

ȷ

, (31)

where ϵ̂ϕpzt; y, tq is the noise predicted by the pre-trained 2D diffusion model with text prompt y at
time step t, ϵ is the true noise at the time step, Bx

Bθ is the derivative of the generated image with respect
to the generator’s parameters θ, and wptq is a weighting function from DDPM Ho et al. (2020). This
loss function aligns the scores (or gradients) of the image generator and the 2D diffusion model by
optimizing the loss with respect to θ, enabling efficient use of the 2D diffusion prior to guide 3D
model generation.

A.4 LLM-COT-IPR ALGORITHM AND PROMPTS

We provide LLM-CoT-IPR pseudo-code 1 and example prompts, including an overly brief prompt
illustrated in Figure 5 and a complex prompt shown in Figure 6.

Algorithm 1 LLM-CoT-Iterative Prompt Refinement

1: function LLM-COT-IPR(ori prompt, score thresh, max iter)
2: curr prompt Ð ori prompt
3: best prompt Ð ori prompt
4: best score Ð ´8

5: for each iteration from 1 to max iter do
6: image Ð GenerateImagepcurr promptq
7: score Ð CLIP pimage, curr promptq
8: if score ą best score then
9: best score Ð score

10: best prompt Ð curr prompt
11: end if
12: if best score ě score thresh then
13: Return best prompt
14: end if
15: curr prompt Ð GPT pori prompt, curr prompt, imageq

16: end for
17: Return best prompt
18: end function
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Given the original_prompt, current_prompt, and an image generated from current_prompt, your goal 
is to refine the current_prompt to better align with the original_prompt while improving clarity 
and detail. Follow these steps to refine the prompt:

            1. Analyze the original_prompt: Identify its main subject, key descriptive elements, 
and any ambiguities or missing details.
            2. Evaluate the current_prompt: Compare it to the original_prompt. Determine if it’s 
too short, too long, or misaligned in any way. Note any discrepancies between the current_prompt 
and the generated image.
            3. Assess the generated image: Describe the visual features of the image (e.g., 
colors, shapes, textures) and how well they match the current_prompt and original_prompt.
            4. Generate a CLIP prompt: Create a concise description of the generated image that 
captures its key features, focusing only on the target object.
            5. Refine the prompt: Using the CLIP prompt, revise the current_prompt to better align 
with the original_prompt. Ensure the refined_prompt follows these rules: 
            - Describe only the target object (exclude background, add 'no background').
            - Provide at least 7 values, each with at least 3 words, separated by commas.
            - Add more detail if the current_prompt is too short; simplify if it’s too complex, 
while keeping the main information from the original_prompt.
            - Reduce ambiguity and logical complexity.

            After completing these steps, present your chain of thought reasoning, then output 
"refined_prompt: object, value1, value2, value3, value4, value5, value6, value7, no background”

Q: 1. original_prompt: "A red rose"; 2. current_prompt: "A red rose"; 3. the generated image 
(shows a simple red rose with no intricate details).

A: chain of thought:
            1. Analyze the original_prompt: The main subject is a red rose. It’s simple and focuses 
on color (red) and type (rose), with no additional details.
            2. Evaluate the current_prompt: "A red rose" matches the original_prompt exactly, but 
it’s very short and lacks detail. The generated image likely shows a basic red rose, which may not 
fully capture potential user expectations for more specifics.
            3. Assess the generated image: The image shows a red rose with smooth petals, uniform 
red color, and no background or intricate features.
            4. Generate a CLIP prompt: "Red rose with smooth petals, uniform red color, simple 
shape, no background."
            5. Refine the prompt: The current_prompt is already clear but too brief. I’ll add more 
detail to match potential user expectations while keeping it simple. The refined prompt should 
describe the rose’s appearance more vividly.

refined_prompt: Rose, bright red petals, smooth petal surface, rounded bloom shape, fresh green 
stem, subtle thorn details, natural floral scent, no background

User InputOutput

System Prompt

LLM

Figure 5: LLM-CoT-IPR overly brief prompt.
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Given the original_prompt, current_prompt, and an image generated from current_prompt, your goal 
is to refine the current_prompt to better align with the original_prompt while improving clarity 
and detail. Follow these steps to refine the prompt:

            1. Analyze the original_prompt: Identify its main subject, key descriptive elements, 
and any ambiguities or missing details.
            2. Evaluate the current_prompt: Compare it to the original_prompt. Determine if it’s 
too short, too long, or misaligned in any way. Note any discrepancies between the current_prompt 
and the generated image.
            3. Assess the generated image: Describe the visual features of the image (e.g., 
colors, shapes, textures) and how well they match the current_prompt and original_prompt.
            4. Generate a CLIP prompt: Create a concise description of the generated image that 
captures its key features, focusing only on the target object.
            5. Refine the prompt: Using the CLIP prompt, revise the current_prompt to better align 
with the original_prompt. Ensure the refined_prompt follows these rules: 
            - Describe only the target object (exclude background, add 'no background').
            - Provide at least 7 values, each with at least 3 words, separated by commas.
            - Add more detail if the current_prompt is too short; simplify if it’s too complex, 
while keeping the main information from the original_prompt.
            - Reduce ambiguity and logical complexity.

            After completing these steps, present your chain of thought reasoning, then output 
"refined_prompt: object, value1, value2, value3, value4, value5, value6, value7, no background”

Q: 1. original_prompt: "A red rose with petals unfurling in an intricate swirl, each successive 
layer descending into ever deeper shades of red, the velvety surfaces catching the ephemeral light 
and casting gentle shadows that reveal the complex network of veins tracing patterns of natural 
elegance"; 2. current_prompt: "A red rose"; 3. the generated image (shows a simple red rose with 
no intricate details).

A: chain of thought:
            1. Analyze the original_prompt: The main subject is a red rose. Key descriptive 
elements include "petals unfurling in an intricate swirl," "deeper shades of red," "velvety 
surfaces," "ephemeral light," "gentle shadows," and "complex network of veins." The prompt is very 
detailed and poetic, suggesting the user wants a highly specific, elegant image.
            2. Evaluate the current_prompt: "A red rose" is much simpler than the original_prompt. 
It lacks the swirl, shading, texture, light, shadows, and veins. The generated image likely 
reflects this simplicity, showing just a basic red rose.
            3. Assess the generated image: The image shows a red rose with smooth petals, uniform 
red color, and no intricate features, shadows, or veins. The background is minimal.
            4. Generate a CLIP prompt: "Red rose with smooth petals, uniform red color, no 
intricate details, simple shape, no background."
            5. Refine the prompt: The current_prompt is too vague and short. I need to expand it to 
include key details from the original_prompt (swirl, shading, texture) while simplifying the 
language. The refined prompt should focus on the rose and exclude background.

refined_prompt: Rose, petals unfurling swirl, deep red shades, velvety petal texture, gentle light 
reflection, subtle shadow cast, visible vein network, natural elegance, no background

User InputOutput

System Prompt

LLM

Figure 6: LLM-CoT-IPR complex prompt.
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(b)

(a)

Figure 7: Leveraging the multi-view 3D diffusion prior (MV 3D prior) to initialize the positions of
3D Gaussians at step t “ 0 enhances geometry’s view consistency. (a) With MV 3D prior, it leads to
view-consistent initial cat geometry; (b) without MV 3D prior, it only forms scattered 3D Gaussian
points. Prompt: A cat.
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Figure 8: DAS facilitates a more stable increase in the number of Gaussians.

(a)

(b)

Figure 9: Ablation of multi-view 3D prior in the generated video. (a) Without it, Janus problem
occurs; (b) with it, views are consistent.

(b)

(a)

Figure 10: Ablation of DAS in the generated video. (a) With DAS, the result has better details; (b)
without DAS, the result has blurry regions.
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(b)

(a)

Figure 11: Ablation of LLM-CoT-IPR in the generated video. (a) With LLM-CoT-IPR, burger bread
is realistic; (b) without it, the bread is deformed.

(a)

(b)

(c)

Figure 12: Ablation of 3D-to-motion components in the generated video. (a) Without velocity
loss, the rotation is unnatural and velocity is small; (b) without MoEMCMs, the whole burger has
distorted motion; (c) without video diffusion prior, the burger melts. Prompt: A rubber burger falling
on a surface.
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