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ABSTRACT

Offline Reinforcement Learning (RL) endeavors to leverage offline datasets to
craft effective agent policy without online interaction, which imposes proper con-
servative constraints with the support of behavior policies to tackle the Out-Of-
Distribution (OOD) problem. However, existing works often suffer from the con-
straint conflict issue when offline datasets are collected from multiple behavior
policies, i.e., different behavior policies may exhibit inconsistent actions with
distinct returns across the state space. To remedy this issue, recent Advantage-
Weighted (AW) methods prioritize samples with high advantage values for agent
training while inevitably leading to overfitting on these samples. In this paper,
we introduce a novel Advantage-Aware Policy Optimization (A2PO) method to
explicitly construct advantage-aware policy constraints for offline learning under
the mixed-quality datasets. Specifically, A2PO employs a Conditional Variational
Auto-Encoder (CVAE) to disentangle the action distributions of intertwined be-
havior policies by modeling the advantage values of all training data as conditional
variables. Then the agent can follow such disentangled action distribution con-
straints to optimize the advantage-aware policy towards high advantage values.
Extensive experiments conducted on both the single-quality and mixed-quality
datasets of the D4RL benchmark demonstrate that A2PO yields results superior to
state-of-the-art counterparts. Our code will be made publicly available.

1 INTRODUCTION

Offline Reinforcement Learning (RL) (Fujimoto et al., 2019; Chen et al., 2020) aims to learn ef-
fective control policies from pre-collected datasets without online exploration, and has witnessed
its unprecedented success in various real-world applications, including robot manipulation (Xiao
et al., 2022; Lyu et al., 2022), recommendation system (Zhang et al., 2022; Sakhi et al., 2023), etc.
A formidable challenge of offline RL lies in the Out-Of-Distribution (OOD) problem (Levine et al.,
2020), involving the distribution shift between data induced by the learned policy and data collected
by the behavior policy. Consequently, the direct application of conventional online RL methods in-
evitably exhibits extrapolation error (Prudencio et al., 2023), where the unseen state-action pairs are
erroneously estimated. To tackle this OOD problem, offline RL methods attempt to impose proper
conservatism on the learning agent within the distribution of the dataset, such as restricting the
learned policy with a regularization term (Kumar et al., 2019; Fujimoto & Gu, 2021) or penalizing
the value overestimation of OOD actions (Kumar et al., 2020; Kostrikov et al., 2021).

Despite the promising results achieved, offline RL often encounters the constraint conflict issue
when dealing with the mixed-quality dataset (Chen et al., 2022; Singh et al., 2022; Gao et al., 2023;
Chebotar et al., 2023). Specifically, when training data are collected from multiple behavior policies
with distinct returns, existing works still treat each sample constraint equally with no regard for the
differences in data quality. This oversight can lead to conflict value estimation and further subop-
timal results. To resolve this concern, the Advantage-Weighted (AW) methods employ weighted
sampling to prioritize training transitions with high advantage values from the offline dataset (Chen
et al., 2022; Tian et al., 2023; Zhuang et al., 2023). However, we argue that these AW methods
implicitly reduce the diverse behavior policies associated with the offline dataset into a narrow one
from the viewpoint of the dataset redistribution. As a result, this redistribution operation of AW may
exclude a substantial number of crucial transitions during training, thus impeding the advantage es-
timation for the effective state-action space. To exemplify the advantage estimation problem in AW,
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Figure 1: Comparison of our proposed A2PO method and the state-of-the-art AW method (LAPO)
in advantage estimation for the mixed-quality offline dataset (halfcheetah-random-expert-v2). Each
data point represents an initial state-action pair in the offline dataset after applying PCA, while
varying shades of color indicate the magnitude of the actual return or advantage value.

we conduct a didactic experiment on the state-of-the-art AW method, LAPO (Chen et al., 2022),
as shown in Figure 1. The results demonstrate that LAPO only accurately estimates the advantage
value for a small subset of the high-return state-action pairs (left part of Figure 1b), while consis-
tently underestimating the advantage value of numerous effective state-action pairs (right part of
Figure 1b). These errors in advantage estimation can further lead to unreliable policy optimization.

In this paper, we propose Advantage-Aware Policy Optimization, abbreviated as A2PO, to explicitly
learn the advantage-aware policy with disentangled behavior policies from the mixed-quality offline
dataset. Unlike previous AW methods devoted to dataset redistribution while overfitting on high-
advantage data, the proposed A2PO directly conditions the agent policy on the advantage values
of all training data without any prior preference. Technically, A2PO comprises two alternating
stages, behavior policy disentangling and agent policy optimization. The former stage introduces a
Conditional Variational Auto-Encoder (CVAE) (Sohn et al., 2015) to disentangle different behavior
policies into separate action distributions by modeling the advantage values of collected state-action
pairs as conditioned variables. The latter stage further imposes an explicit advantage-aware policy
constraint on the training agent within the support of disentangled action distributions. Combining
policy evaluation and improvement with such advantage-aware constraint, A2PO can perform a
more effective advantage estimation, as illustrated in Figure 1c, to further optimize the agent toward
high advantage values to obtain the effective decision-making policy.

To sum up, our main contribution is the first dedicated attempt towards advantage-aware policy op-
timization to alleviate the constraint conflict issue under the mixed-quality offline dataset. The pro-
posed A2PO can achieve advantage-aware policy constraint derived from different behavior policies,
where a customized CVAE is employed to infer diverse action distributions associated with the be-
havior policies by modeling advantage values as conditional variables. Extensive experiments con-
ducted on the D4RL benchmark (Fu et al., 2020), including both single-quality and mixed-quality
datasets, demonstrate that the proposed A2PO method yields significantly superior performance to
the state-of-the-art offline RL baselines, as well as the advantage-weighted competitors.

2 RELATED WORKS

Offline RL can be broadly classified into three categories: policy constraint (Fujimoto et al., 2019;
Vuong et al., 2022), value regularization (Ghasemipour et al., 2022; Hong et al., 2022), and model-
based methods (Kidambi et al., 2020; Yang et al., 2023). Policy constraint methods attempt to
impose constraints on the learned policy to be close to the behavior policy (Kumar et al., 2019).
Previous studies directly introduce the explicit policy constraint for agent learning, such as behavior
cloning (Fujimoto & Gu, 2021), maximum mean discrepancy (Kumar et al., 2019), or maximum
likelihood estimation (Wu et al., 2022). In contrast, recent efforts mainly focus on realizing the
policy constraints in an implicit way (Peng et al., 2019; Yang et al., 2021; Nair et al., 2020; Siegel
et al., 2020), which approximates the formal optimal policy derived from KL-divergence constraint.
On the other hand, value regularization methods make constraints on the value function to alleviate
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the overestimation of OOD action. Kumar et al. (2020) approximate the lower bound of the value
function by incorporating a conservative penalty term encouraging conservative action selection.
Similarly, Kostrikov et al. (2021) adopt expectile regression to perform conservative estimation of
the value function. To mitigate the overpessimism problem in the value regularization methods, Lyu
et al. (2022) construct a mildly conservative Bellman operator for value network training. Model-
based methods construct the environment dynamics to estimate state-action uncertainty for OOD
penalty (Yu et al., 2020; 2021). However, in the context of offline RL with the mixed-quality dataset,
all these methods treat each sample constraint equally without considering data quality, thereby
resulting in conflict value estimation and further suboptimal learning outcomes.

Advantage-weighted offline RL method employs weighted sampling to prioritize training tran-
sitions with high advantage values from the offline dataset. To enhance sample efficiency, Peng et al.
(2019) introduce an advantage-weighted maximum likelihood loss by directly calculating advantage
values via trajectory return. Nair et al. (2020) further use the critic network to estimate advantage
values for advantage-weighted policy training. Recently, AW methods have also been well studied
in addressing the constraint conflict issue that arises from the mixed-quality dataset (Chen et al.,
2022; Zhuang et al., 2023; Peng et al., 2023). Several studies present advantage-weighted behavior
cloning as a direct objective function (Zhuang et al., 2023) or an explicit policy constraint (Fuji-
moto & Gu, 2021). Chen et al. (2022) propose the Latent Advantage-Weighted Policy Optimiza-
tion (LAPO) framework, which employs an advantage-weighted loss to train CVAE for generating
high-advantage actions based on the state condition. However, this AW mechanism inevitably suf-
fers from overfitting to specific high-advantage samples. Meanwhile, return-conditioned supervised
learning (Brandfonbrener et al., 2022) learns the action distribution with explicit trajectory return
signals. In contrast, our A2PO directly conditions the agent policy on both the state and the esti-
mated advantage value, enabling effective utilization of all samples with varying quality.

3 PRELIMINARIES

We formalize the RL task as a Markov Decision Process (MDP) (Puterman, 2014) defined by a
tuple M = ⟨S,A, P, r, γ, ρ0⟩, where S represents the state space, A represents the action space,
P : S × A × S → [0, 1] denotes the environment dynamics, r : S × A → R denotes the reward
function, γ ∈ (0, 1] is the discount factor, and ρ0 is the initial state distribution. At each time
step t, the agent observes the state st ∈ S and selects an action at ∈ A according to its policy
π. This action leads to a transition to the next state st+1 based on the dynamics distribution P .
Additionally, the agent receives a reward signal rt. The goal of RL is to learn an optimal policy π∗

that maximizes the expected return: π∗ = argmaxπ Eπ
[∑∞

k=0 γ
krt+k

]
. In offline RL, the agent

can only learn from an offline dataset without online interaction with the environment. In the single-
quality settings, the offline dataset D = {(st, at, rt, st+1) | t = 1, · · · , N} with N transitions is
collected by only one behavior policy πβ . In the mixed-quality settings, the offline dataset D =⋃
i {(si,t, ai,t, ri,t, si,t+1) | t = 1, · · · , N} is collected by multiple behavior policies {πβi}Mi=1.

In the context of RL, we evaluate the learned policy π by the state-action value function Qπ(s, a) =
Eπ [

∑∞
t=0 γ

tr(st, at) | s0 = s, a0 = a]. The value function is defined as V π(s) = Ea∼π [Qπ(s, a)],
while the advantage function is defined as Aπ(s, a) = Qπ(s, a) − V π(s). For continuous control,
our A2PO implementation uses the TD3 algorithm (Fujimoto et al., 2018) based on the actor-critic
framework as a basic backbone for its robust performance. The actor network πω , known as the
learned policy, is parameterized by ω, while the critic networks consist of the Q-network Qθ param-
eterized by θ and the V-network Vϕ parameterized by ϕ. The actor-critic framework involves two
steps: policy evaluation and policy improvement. During policy evaluation phase, the Q-network
Qθ is optimized by following temporal-difference (TD) loss ((Sutton & Barto, 2018)):

LQ(θ) = E(s,a,r,s′)∼D,a′∼πω̂(s′)
[
Qθ(s, a)−

(
r(s, a) + γQθ̂(s

′, a′)
)]2

, (1)

where θ̂ and ω̂ are the parameters of the target networks that are regularly updated by online param-
eters θ and ω to maintain learning stability. The V-network Vϕ can also be optimized by the similar
TD loss. For policy improvement in continuous control, the actor network πω can be optimized by
the deterministic policy gradient loss (Silver et al., 2014; Schulman et al., 2017):

Lπ(ω) = Es∼D [−Qθ(s, πω(s))] . (2)
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Figure 2: An illustrative diagram of the Advantage-Aware Policy Optimization (A2PO) method.

Note that offline RL will impose conservative constraints on the optimization losses to tackle
the OOD problem. Moreover, the performance of the final learned policy πω highly depends on
the quality of the offline dataset D associated with the behavior policies {πβi}.

4 METHODOLOGY

In this section, we provide details of our proposed A2PO approach, consisting of two key com-
ponents: behavior policy disentangling and agent policy optimization. In the behavior policy dis-
entangling phase, we employ a CVAE to disentangle behavior policies by modeling the advantage
values of collected state-action pairs as conditioned variables. The CVAE enables the agent to infer
different action distributions associated with various behavior policies. Then in the agent policy op-
timization phase, the action distributions derived from the advantage condition serve as disentangled
behavior policies, establishing an advantage-aware policy constraint to guide agent training. An
overview of our A2PO is illustrated in Figure 2.

4.1 BEHAVIOR POLICY DISENTANGLING

To realize behavior policy disentangling, we adopt a CVAE to relate the distribution of the latent
variable to that of the specific behavior policy under the given advantage-based condition variables.
The CVAE model is consist of an encoder qφ(z|a, c) and a decoder pψ(a|z, c), where z denotes the
latent variable and c denotes the conditional variables. Concretely, the encoder qφ(z|a, c) is fed with
condition c and action a to project them into a latent representation z. Given specific condition c and
the encoder output z, the decoder pψ(a|z, c) captures the correlation between condition c and latent
representation z to reconstruct the original action a. Unlike previous methods (Fujimoto et al., 2019;
Chen et al., 2022; Wu et al., 2022) predicting action solely based on the state s, we consider both
state s and advantage value ξ for CVAE condition. The state-advantage condition c is formulated as:

c = s || ξ. (3)

Therefore, given the current state s and the advantage value ξ as a joint condition, the CVAE model is
able to generate corresponding action awith varying quality positively correlated with the advantage
condition ξ. For a state-action pair (s, a), the advantage condition ξ can be computed as follows:

ξ = tanh
(
min
i=1,2

Qθi(s, a)− Vϕ(s)
)
, (4)

where two Q-networks with the min(·) operation are adopted to ensure conservatism in offline RL
settings (Fujimoto et al., 2019). Moreover, we employ the tanh(·) function to normalize the advan-
tage condition within the range of (−1, 1). This operation prevents excessive outliers from impact-
ing the performance of CVAE, improving the controllability of generation. The optimization of the
Q-networks and V-network will be described in the following section.

The CVAE model is trained using the state-advantage condition c and the corresponding action a.
The training objective involves maximizing the Empirical Lower Bound (ELBO) (Sohn et al., 2015)
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on the log-likelihood of the sampled minibatch:

LCVAE(φ,ψ) = −ED
[
Eqφ(z|a,c) [log(pψ(a|z, c))] + α · KL [(qφ(z|a, c) ∥ p(z))]

]
, (5)

where α is the coefficient for trading off the KL-divergence loss term, and p(z) denotes the prior
distribution of z setting to beN (0, 1). The first log-likelihood term encourages the generated action
to match the real action as much as possible, while the second KL divergence term aligns the learned
latent variable distribution with the prior distribution p(z).

At each round of CVAE training, a minibatch of state-action pairs (s, a) is sampled from the offline
dataset. These pairs are fed to the critic networkQθ and Vϕ to get corresponding advantage condition
ξ by Equation (4). Then the advantage-aware CVAE is subsequently optimized by Equation (5). By
incorporating the advantage condition ξ into the CVAE, the CVAE captures the relation between
ξ and the action distribution of the behavior policy, as shown in the upper part of Figure 2. This
enables the CVAE to generate actions a based on the state-advantage condition c in a manner where
the action quality is positively correlated with ξ. Furthermore, the advantage-aware CVAE is utilized
to establish an advantage-aware policy constraint for agent policy optimization in the next stage.

4.2 AGENT POLICY OPTIMIZATION

The agent is constructed using the actor-critic framework (Sutton & Barto, 2018). The critic com-
prises two Q-networks Qθi=1,2

and one V-network Vϕ. The advantage-aware policy πω(·|c), with
input c = s || ξ, generates a latent representation z̃ based on the state s and the designated advantage
condition ξ. This latent representation z̃, along with c, is then fed into the decoder pψ to decode a
recognizable action aξ, as follows:

aξ ∼ pψ(· | z̃, c), where z̃ ∼ πω(· | c). (6)

The agent optimization, following the actor-critic framework, encompasses policy evaluation and
policy improvement steps. During the policy evaluation step, the critic is optimized through the
minimization of the temporal difference (TD) loss, as follows:

LCritic(θ, ϕ) = E (s,a,r,s′)∼D
z̃∗∼πω(·|c∗),
a∗ξ∼pψ(·|z̃

∗,c∗)

[∑
i

[
r+Vϕ̂(s)−Qθi(s, a)

]2
+
[
r+min

i
Qθ̂i(s

′, a∗ξ)−Vϕ(s)
]2]

,

(7)

whereQθ̂ and Vϕ̂ are the target network updated softly, a∗ξ is obtained by the optimal policy πω(·|c∗)
and c∗ = s || ξ∗ is state s enhanced with the largest advantage condition ξ∗ = 1 since the range of ξ is
normalized in Equation (4). The first term of LCritic is to optimize Q-network while the second term
is to optimize V-network. Different from Equation (1), we introduce the target Q and V networks to
directly optimize the mutual online network to stabilize the critic training.

For the policy improvement step, the TD3BC-style (Fujimoto & Gu, 2021) loss is defined as:

LActor(ω) = −λE s∼D,
z̃∗∼πω(·|c∗),
a∗ξ∼pψ(·|z̃

∗,c∗)

Qθ1(s, a
∗
ξ) + E (s,a)∼D,

z̃∼πω(·|c),
aξ∼pψ(·|z̃,c)

(a− aξ)2, (8)

where a∗ξ is the optimal action sampled from pψ(·|z̃∗, c∗) with πω(·|c∗) and c∗ = s || ξ∗ , and
advantage condition ξ for aξ in the second term is obtained from the critic by Equation (4).
Meanwhile, following TD3BC (Fujimoto & Gu, 2021), we add a normalization coefficient λ =
α/( 1

N

∑
(si,ai)

|Q(si, ai)|) to the first term to keep the scale balance between Q value objective and
regularization, where α is a hyperparameter to control the scale of the normalized Q value. The first
term encourages the optimal policy condition on c∗ to select actions that yield the highest expected
returns represented by the Q-value. This aligns with the policy improvement step commonly seen in
conventional reinforcement learning approaches. The second behavior cloning term explicitly im-
poses constraints on the advantage-aware policy, ensuring the policy selects in-sample actions that
adhere to the advantage condition ξ determined by the critic. Therefore, the suboptimal samples with
low advantage condition ξ will not disrupt the optimization of optimal policy πω(·|c∗). And they
enforce valid constraints on the corresponding policy πω(·|c), as shown in the lower part of Figure 2.
It should be noted that the decoder pψ is fixed during both policy evaluation and improvement.
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To make A2PO clearer for readers, the pseudocode is provided in Appendix A. It is important to
note that while the CVAE and the agent are trained in an alternating manner, the CVAE training step
K is much less than the total training step T . This disparity arises from the fact that, as the training
progresses, the critic Qθ and Vϕ gradually converge towards their optimal values. Consequently, the
computed advantage conditions ξ of most transitions tend to be negative, except a small portion of
superior ones with positive ξ. And the low values of ξ are insufficient to enforce policy optimization.
Therefore, as training progresses further, it becomes essential to keep the advantage-aware CVAE
fixed to ensure stable policy optimization, and we will illustrate this conclusion in Section 5.

5 EXPERIMENTS

To illustrate the effectiveness of the proposed A2PO method, we conduct experiments on the D4RL
benchmark (Fu et al., 2020). We aim to answer the following questions: (1) Can A2PO outper-
form the state-of-the-art offline RL methods in both the single-quality datasets and mixed-quality
datasets? (Section 5.2 and Appendix C, I, J) (2) How do different components of A2PO contribute
to the overall performance? (Section 5.3 and Appendix D–G, K) (3) Can the A2PO agent effectively
estimate the advantage value of different transitions? (Section 5.4 and Appendix H) (4) How does
A2PO perform under mixed-quality datasets with varying single-quality samples? (Appendix L)

5.1 EXPERIMENT SETTINGS

Tasks and Datasets. We evaluate the proposed A2PO on three locomotion tasks (i.e., halfcheetah-
v2, walker2d-v2, and hopper-v2) and six navigation tasks (i.e., maze2d-umaze-v1, maze2d-medium-
v1, maze2d-large-v1, antmaze-umaze-diverse-v1, antmaze-medium-diverse-v1, and antmaze-large-
diverse-v1) using the D4RL benchmark (Fu et al., 2020). For each locomotion task, we conduct
experiments using both the single-quality and mixed-quality datasets. The single-quality datasets are
generated with the random, medium, and expert behavior policies. The mixed-quality datasets are
combinations of these single-quality datasets, including medium-expert, medium-replay, random-
medium, medium-expert, and random-medium-expert. Since the D4RL benchmark only includes
the first two mixed-quality datasets, we manually construct the last three mixed-quality datasets by
directly combining the corresponding single-quality datasets. For each navigation task, we directly
adopt the single-quality dataset in the D4RL benchmark generated by the expert behavior policy.

Comparison Methods and Hyperparameters. We compare the proposed A2PO to several state-of-
the-art offline RL methods: BCQ (Fujimoto et al., 2019), TD3BC (Fujimoto & Gu, 2021), CQL (Ku-
mar et al., 2020), IQL (Kostrikov et al., 2021), especially the advantage-weighted offline RL meth-
ods: LAPO (Chen et al., 2022) and BPPO (Zhuang et al., 2023). Besides, we also select the vanilla
BC method (Pomerleau, 1991) and the model-based offline RL method, MOPO (Yu et al., 2020),
for comparison. The detailed hyperparameters are given in Appendix B.2.

5.2 COMPARISON ON D4RL BENCHMARKS

Locomotion. The experimental results of all compared methods in D4RL locomotion tasks are
presented in Table 1. With the single-quality dataset in the locomotion tasks, our A2PO achieves
state-of-the-art results with low variance across most tasks. Moreover, both AW method LAPO and
non-AW baselines like TD3BC and even BC achieve acceptable performance, which indicates that
the conflict issue hardly occurs in the single-quality dataset. As for the D4RL mixed-quality dataset
medium-expert and medium-replay, the performance of other baselines shows varying degrees of
degradation. Particularly, the non-AW methods are particularly affected, as seen in the performance
gap of BC and BCQ between hopper-expert and hopper-medium-expert. AW method LAPO remains
relatively excellent, while our A2PO continues to achieve the best performance on these datasets.
Notably, some baselines, such as MOPO, show improved results due to the gain of samples from
behavior policies, leading to a more accurate reconstruction of the environmental dynamics. The
newly constructed mixed-quality datasets, namely random-medium, random-expert, and random-
medium-expert, highlight the issue of substantial gaps between behavior policies. The results reveal
a significant drop in performance and increased variance for all other baselines, including the AW
methods LAPO and BPPO. However, our A2PO consistently outperforms most other baselines on
the majority of these datasets. When considering the total scores across all datasets, A2PO outper-
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Table 1: Test returns of our proposed A2PO and baselines on the locomotion tasks. ± corresponds
to one standard deviation of the average evaluation of the performance on 5 random seeds. The
performance is measured by the normalized scores at the last training iteration. Bold indicates the
best performance in each task. Corresponding learning curves are reported in Appendix C.

Source Task BC BCQ TD3BC CQL IQL MOPO BPPO LAPO A2PO (Ours)

random
halfcheetah 2.25±0.00 2.25±0.00 11.25±0.97 23.41±0.73 14.52±2.87 37.75±3.45 2.25±0.00 26.99±0.78 25.52±0.98

hopper 3.31±0.85 7.43±0.48 9.2±1.75 2.97±2.49 8.18±0.59 18.19±9.65 2.56±0.07 16.08±7.30 18.43±0.42

walker2d 1.63±0.54 4.43±0.95 1.07±1.04 2.09±1.85 6.47±1.16 0.04±0.02 6.53±0.64 1.91±1.32 3.59±1.74

medium
halfcheetah 42.14±0.33 46.83±0.18 48.31±0.10 47.20±0.20 47.63±0.05 48.40±0.17 0.62±0.81 45.58±0.06 47.09±0.17

hopper 50.45±2.31 56.37±2.74 58.55±1.17 74.20±0.82 51.17±2.62 5.68±4.00 13.42±9.17 52.53±2.61 80.29±3.95

walker2d 71.73±2.44 73.12±1.38 83.62±0.85 80.38±0.77 63.75±3.91 0.09±0.06 31.38±18.57 80.46±1.25 84.88±0.23

expert
halfcheetah 92.02±0.32 92.69±0.94 96.74±0.37 5.58±2.96 92.37±1.45 9.68±2.43 5.51±2.02 95.33±0.17 96.26±0.27

hopper 104.56±3.51 77.58±4.14 108.61±1.47 93.95±1.98 69.81±12.86 5.37±4.09 2.56±2.05 110.45±0.89 111.70±0.39

walker2d 108.61±0.19 110.13±0.28 110.13±0.05 105.62±0.94 108.53±0.76 23.21±13.04 4.54±0.40 111.55±0.11 112.36±0.23

medium
replay

halfcheetah 18.97±13.85 40.87±0.21 44.51±0.22 46.74±0.13 43.99±0.33 37.46±28.06 11.82±7.17 41.94±0.47 44.74±0.22

hopper 20.99±3.92 48.19±5.52 65.20±9.77 91.34±1.99 52.61±3.61 75.05±28.82 12.68±6.57 50.14±11.16 101.59±1.25

walker2d 13.99±6.71 52.62±4.62 81.28±3.12 79.93±1.26 68.84±8.39 60.68±19.32 3.17±3.05 60.55±10.45 82.82±1.70

medium
expert

halfcheetah 45.18±1.22 46.87±0.18 91.52±1.82 16.47±3.62 87.71±1.97 69.73±6.67 21.02±14.44 94.22±0.46 95.61±0.54

hopper 54.44±4.05 58.05±4.03 98.58±2.48 89.19±12.15 36.04±21.36 20.32±13.22 16.28±2.66 111.04±0.36 107.44±0.56

walker2d 90.54±5.93 75.14±1.18 110.28±0.26 102.65±3.13 104.13±0.76 91.92±7.63 13.28±12.31 110.88±0.15 112.13±0.24

random
medium

halfcheetah 2.25±0.00 12.71±3.89 47.71±0.07 31.89±16.67 42.23±0.95 52.71±4.27 2.25±0.00 18.53±0.99 45.20±0.21

hopper 23.20±8.00 9.24±0.77 7.42±3.17 3.33±3.59 6.18±0.66 19.86±12.21 9.14±11.23 4.17±3.11 7.14±0.35

walker2d 19.16±18.96 0.20±0.27 10.68±0.57 0.19±0.63 54.58±2.21 40.18±33.10 21.96±22.91 23.65±33.97 75.80±2.12

random
expert

halfcheetah 13.73±18.94 2.10±1.48 43.05±8.57 15.03±11.68 28.64±7.90 18.50±2.31 2.24±0.00 52.58±17.30 90.32±1.63

hopper 10.14±10.75 8.53±3.62 78.81±25.50 7.75±6.91 58.50±12.86 17.15±3.80 11.22±11.98 82.33±18.95 105.19±4.54

walker2d 14.70±11.35 0.56±0.89 6.96±1.73 0.27±0.78 90.88±9.99 4.56±6.06 1.47±2.26 0.39±0.53 91.96±10.98

random
medium
expert

halfcheetah 2.25±0.01 15.91±7.32 62.33±4.96 13.50±12.12 61.61±4.11 26.72±8.34 2.19±0.02 71.09±0.47 90.58±1.44

hopper 27.35±5.79 3.99±3.55 60.51±35.16 9.43±6.36 57.88±13.77 13.30±8.45 16.00±8.21 66.59±19.29 107.84±0.42

walker2d 24.57±9.34 2.39±2.46 15.71±3.87 0.05±0.21 90.83±5.10 56.39±19.57 21.26±9.54 60.41±43.32 97.71±6.74

Total 768.43±38.36 848.20±14.22 1352.03±46.23 943.16±29.40 1347.08±36.20 752.94±66.53 235.35±43.21 1389.39±66.12 1837.19±14.88

Table 2: Test returns of our proposed A2PO and baselines on the navigation tasks.

Task BC BCQ TD3BC CQL IQL MOPO BPPO LAPO A2PO (Ours)

maze2d-u 0.46±2.92 24.79±1.15 24.19±20.80 17.02±1.87 56.17±9.86 -15.40±0.53 14.02±1.03 78.00±9.93 133.27±9.58

maze2d-m 0.73±1.35 22.51±11.38 33.50±23.70 22.45±6.70 25.67±16.93 19.09±14.23 3.22±1.50 43.21±0.85 83.95±10.56

maze2d-l 1.11±1.06 42.95±10.17 128.46±29.62 2.53±6.58 45.67±18.91 -0.53±1.40 2.45±5.68 69.70±2.39 127.61±5.35

antmaze-u-d 50.00±2.83 53.33±12.47 60.00±43.20 80.00±8.16 86.67±12.47 0.00±0.00 24.00±14.24 84.13±4.11 96.66±4.71

antmaze-m-d 0.00±0.00 6.67±4.71 3.33±4.71 0.00±0.00 46.67±18.86 0.00±0.00 0.00±0.00 1.18±0.94 50.00±15.25

antmaze-l-d 0.00±0.00 0.00±0.00 0.00±0.00 6.67±4.71 43.33±12.47 0.00±0.00 0.00±0.00 0.00±0.00 6.00±4.90

Total 52.30±7.15 144.25±18.69 249.48±60.30 128.67±13.43 304.18±37.53 3.16±14.31 43.69±17.31 276.22±12.78 497.49±22.60

forms the next best-performing and recently state-of-the-art AW method, LAPO, by over 33%. This
comparison highlights the superior performance achieved by A2PO, showcasing its effective disen-
tanglement of action distributions from different behavior policies in order to enforce a reasonable
advantage-aware policy constraint and obtain an optimal agent policy.

Navigation. Table 2 presents the experimental results of all the compared methods on the D4RL
navigation tasks. Among the offline RL baselines and AW methods, A2PO demonstrates remark-
able performance in the challenging maze navigation tasks, showcasing the robust representation
capabilities of the advantage-aware policy.

5.3 ABLATION ANALYSIS

Different Advantage condition during training. The performance comparison of different ad-
vantage condition computing methods for agent training is given in Figure 3. Equation (4) obtains
continuous advantage condition ξ in the range of (−1, 1). To evaluate the effectiveness of the con-
tinuous computing method, we design a discrete form of advantage condition: ξdis=sgn(ξ) · 1|ξ|>ϵ,
where sgn(·) is the symbolic function, and 1|ξ|>ϵ is the indicator function returning 1 if the absolute
value of ξ is greater than the hyperparameter of threshold ϵ, otherwise 0. Thus, the advantage condi-
tion ξdis is constrained to discrete value of {−1, 0, 1}. Moreover, if threshold ϵ = 0, ξdis only takes
values from {−1, 1}. Another special form of advantage condition is ξfix = 1 for all state-action
pairs, in which the advantage-aware ability is lost. Figure 3a shows that setting ξfix = 1 without
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(b) ξdis with ϵ = 0.0
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(c) ξdis with ϵ = 0.1
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(d) ξdis with ϵ = 0.5

Figure 3: Test return difference of A2PO with different discrete advantage conditions during training
compared with original A2PO with continuous advantage condition during training. The full forms
of task abbreviations are listed in Appendix B.1. Detailed test returns are reported in Appendix D.
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Figure 4: Learning curves of A2PO with different discrete advantage conditions for test while using
the original continuous advantage condition during training. Test returns are reported in Appendix E.

explicitly advantage-aware mechanism leads to a significant performance decreasing, especially in
the new mixed-quality dataset. Meanwhile, ξdis with different values of threshold ϵ achieve slightly
inferior results than the continuous ξ. This outcome strongly supports the efficiency of behavior pol-
icy disentangling. Although ξdis input makes this process easier, ξdis hiddens the concrete advantage
value, causing a mismatch between the advantage value and the sampled transition.

Different Advantage condition for test. The performance comparison of different discrete advan-
tage conditions for test is given in Figure 4. To ensure clear differentiation, we select the advantage
conditions ξ from {−1, 0, 1}. The different designated advantage conditions ξ are fixed input for the
actor, leading to different policies πω(·|s, ξ). The final outcomes demonstrate the partition of returns
corresponding to the policies with different ξ. Furthermore, the magnitude of the gap increases as
the offline dataset includes samples from more behavior policies. These observations provide strong
evidence for the success of A2PO disentangling the behavior policies under the multi-quality dataset.

Different CVAE training steps. The results of different CVAE training step K is presented in
Figure 5. The results show that K = 2 × 105 achieves the overall best average performance, while
both K = 105 and K = 106 exhibit higher variances or larger fluctuations. For K = 105, A2PO
converges to a quite good level but not as excellent asK = 2×105. In this case, the behavior policies
disentangling halt prematurely, leading to incomplete CVAE learning. For K = 106, high returns
are typically achieved at the early stages but diminish significantly later. This can be attributed to the
fact that as the critic being optimized, the critic assigns high advantage conditions to only a small
portion of transitions. The resulting unbalanced distribution of advantage conditions hampers the
learning of both the advantage-aware CVAE and policy.

5.4 VISUALIZATION

Figure 6 presents the visualization of A2PO latent representation. The uniformly sampled advantage
condition ξ combined with the initial state s, are fed into the actor network to get the latent repre-
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Figure 5: Learning curves of A2PO with different CVAE training steps (i.e., the number of training
iterations for CVAE optimization). Test returns are reported in Appendix F.
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Figure 6: Visualization of A2PO latent representation after applying PCA with different advan-
tage conditions and actual returns in the walker2d-medium-replay and hopper-medium-replay tasks.
Each data point indicates a latent representation z̃ based on the initial state and different advantage
conditions sampled uniformly from [−1, 1]. The actual return is measured under the corresponding
sampled advantage condition. The value magnitude is indicated with varying shades of color.

sentation generated by the final layer of the actor. The result demonstrates that the representations
converge according to the advantage and the actual return. Notably, the return of each point aligns
with the corresponding variations in ξ. Moreover, as ξ increases monotonically, the representations
undergo continuous alterations in a rough direction. These observations suggest the effectiveness
of advantage-aware policy construction. Meanwhile, more experiments of advantage estimation
conducted on different tasks and datasets are presented in Appendix H.

6 CONCLUSION

In this paper, we propose a novel approach, termed as A2PO, to tackle the constraint conflict is-
sue on mixed-quality offline dataset with advantage-aware policy constraint. Specifically, A2PO
utilizes a CVAE to effectively disentangle the action distributions associated with various behav-
ior policies. This is achieved by modeling the advantage values of all training data as conditional
variables. Consequently, advantage-aware agent policy optimization can be focused on maximizing
high advantage values while conforming to the disentangled distribution constraint imposed by the
mixed-quality dataset. Experimental results show that A2PO successfully decouples the underlying
behavior policies and significantly outperforms state-of-the-art offline RL competitors. One limita-
tion of A2PO is the instability of the advantage condition computed by the critic networks. As the
training progresses, the critic is optimized continuously, measuring the same transition with distinct
advantage conditions. The instability of the advantage condition poses challenges for both CVAE
and agent training. To address this issue, we halt the CVAE training after a predetermined number
of training steps to prevent performance collapse, which heavily relies on the specified step number.
To overcome this limitation, our future work will focus on extending A2PO to design an adaptive
advantage condition computing mechanism for stable training.
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A METHOD

To make the proposed Advantage-Aware Policy Optimization (A2PO) method clearer for readers,
the pseudocode is provided in Algorithm 1.

Algorithm 1 Advantage-Aware Policy Optimization (A2PO)

Input: offline dataset D, CVAE training step K, total training step T , soft update rate τ .
Initialize: CVAE encoder qφ and decoder pψ , actor network πω , critic networks Qθ and Vϕ.

for i = 1 to T do
Sample random minibatch of transitions B = {(s, a, r, s′)} ∼ D.
ξ = tanh(mini=1,2Qθi(s, a)− Vϕ(s)), ξ∗ = 1, c = s||ξ, c∗ = s||ξ∗
# Behavior Policy Disentangling
if i ≤ K then

Optimize CVAE encoder qφ and decoder pψ by

LCVAE(φ,ψ) = −ED
[
Eqφ(z|a,c) [log(pψ(a|z, c))] + α · KL [(qφ(z|a, c) ∥ p(z))]

]
.

end if
# Agent Policy Optimization
Optimize critic networks Qθ and Vϕ by

LCritic(θ, ϕ) = E (s,a,r,s′)∼D
z̃∗∼πω(·|c∗),
a∗ξ∼pψ(·|z̃

∗,c∗)

[∑
i

[
r+Vϕ̂(s)−Qθi(s, a)

]2
+
[
r+min

i
Qθ̂i(s

′, a∗ξ)−Vϕ(s)
]2]

.

.
Optimize actor network πω by

LActor(ω) = −λE s∼D,
z̃∗∼πω(·|c∗),
a∗ξ∼pψ(·|z̃

∗,c∗)

Qθ1(s, a
∗
ξ) + E (s,a)∼D,

z̃∼πω(·|c),
aξ∼pψ(·|z̃,c)

(a− aξ)2.

.
Soft-update the target network: θ̂ ← (1− τ)θ̂ + τθ, ϕ̂← (1− τ)ϕ̂+ τϕ.

end for

B EXPERIMENT DETAILS

B.1 TASK ABBREVIATION

In order to improve the readability and conciseness, we adopt abbreviations for the tasks throughout
the main text. The corresponding abbreviations for each task are provided in Table S1 and Table S2.

B.2 IMPLEMENTATION DETAILS

In this section, we provide the implementation details of our experiments. We conducted our exper-
iments using PyTorch 3.8 (Paszke et al., 2019) on a cluster of 8 A6000 GPUs. Each run required
approximately 8 hours to complete 1 million steps. The source code will be made openly available
upon the publication of this paper. For our experiments, we utilized fixed and selectable hyperpa-
rameters, presented in Table S3 and Table S4 respectively. Following the TD3BC approach, we
incorporated Q normalization, policy noise, and policy clipping during the training process. For the
hyperparameter value α in Q normalization, we follow the same setting α = 2.5 as in the official
TD3BC implementation and keep this hyperparameter on the whole experiment. These techniques
have been demonstrated to significantly enhance performance (Fujimoto & Gu, 2021). The CVAE
was optimized over K step, while the actor-critic model was trained for T step. The critic network
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Table S1: The abbreviation of the corresponding locomotion task and dataset.

Dataset Halfcheetah-v2 Hopper-v2 Walker2d-v2

random hc-r h-r w-r
medium hc-m h-m w-m
expert hc-e h-e w-e

medium-replay hc-m-r h-m-r w-m-r
medium-expert hc-m-e h-m-e w-m-e

random-medium hc-r-m h-r-m w-r-m
random-expert hc-m-e h-m-e w-m-e

random-medium-expert hc-r-m-e h-r-m-e w-r-m-e

Table S2: The abbreviation of the corresponding navigation task.

Task & Dataset Abbreviation

maze2d-umaze-v1 maze2d-u
maze2d-medium-v1 maze2d-m

maze2d-large-v1 maze2d-l
antmaze-umaze-diverse-v1 antmaze-u-d

antmaze-medium-diverse-v1 antmaze-m-d
antmaze-large-diverse-v1 antmaze-l-d

was updated at each step, whereas the actor network and the target critic networks were updated once
after specific steps of critic optimization. By employing the default hyperparameters in Table S3 and
the specific hyperparameters outlined in Table S4, the A2PO method achieved state-of-the-art per-
formance across multiple tasks, as mentioned in Section 5.

As for the implementation of other baselines, the BC baseline is implemented based on the BPPO im-
plementation available at: github.com/Dragon-Zhuang/BPPO. The CQL, IQL and MOPO baselines
are implemented using the implementations provided at github.com/young-geng/cql, gwthomas/iql-
pytorch, and github.com/yihaosun1124/OfflineRL-Kit, respectively. The remaining baselines, in-
cluding BCQ, TD3BC, MOPO, BPPO, and LAPO, are implemented using the original implemen-
tations provided by the authors of the respective papers. These implementations can be found
at: BCQ github.com/sfujim/BCQ, TD3BC github.com/sfujim/TD3 BC, BPPO github.com/Dragon-
Zhuang/BPPO, and LAPO github.com/pcchenxi/LAPO-offlienRL.

C BASELINES COMPARISON

We plot the learning curves of locomotion tasks in Figure S1 and Figure S2, while the curves of
navigation tasks are in Figure S3. The performance is evaluated every 20000 steps for each random
seed. This assessment is based on the execution of 10 complete trajectories using the current policy.
Compared with the state-of-the-art baseline methods, our proposed A2PO significantly improves
the final performance. The results demonstrate that the A2PO agent has successfully obtained the
optimal policy across diverse behavior policies.

D ANALYSIS OF ADVANTAGE CONDITION INPUT FOR TRAINING

Learning curves of our proposed A2PO method and baselines on the navigation tasks under the
single-quality expert dataset. In this section, we provide a full comparison of different advantage
condition computing methods for training on Locomotion tasks in Table S5. These computing meth-
ods are thoroughly described in Section 5.3. From detailed data, all of the discrete advantage condi-
tions suffer from unstable performance as well as large variance. In hopper-random-medium-expert
and walker2d-random-medium-expert, ξdis with ϵ = 0.5 works the best. And in hopper-random-
expert and walker2d-random-expert, ξdis with ϵ = 0.1 works the best. However, in most cases,
continuous advantage condition ξ works well. Thus we use continuous ξ by default for simplicity.
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Table S3: The default hyperparameters in A2PO.

Hyperparameters Value

CVAE and actor-critic
hyperparameter

Total training step T 1 ∗ 106
CVAE training step K 2 ∗ 105

Soft update rate τ 0.005
Whether use discrete ξ False

Batch size 256
Policy noise 0.2

Policy clip range [−0.5, 0.5]
Q normalization 2.5

State normalization True
Actor update frequency 2

Optimizer Adam
CVAE learning rate 3 ∗ 10−4

Actor learning rate 3 ∗ 10−4

Critic learning rate 3 ∗ 10−4

CVAE loss coefficient 0.5

Network architecture

Actor hidden layer [256, 256]
Critic hidden layer [256, 256, 256]

CVAE encoder hidden layer [750, 750]
CVAE decoder hidden layer [750, 750]

Latent space dimension 2 ∗ |A|

Table S4: The specific hyperparameters in A2PO.

Hyperparameter Task Value

CVAE training step K
Antmaze-large-diverse-v1 1 ∗ 105

Maze2d-umaze-v1 4 ∗ 105
maze2d-medium-v1 4 ∗ 105

Others 2 ∗ 105

Whether use discrete ξ
Maze2d-medium-v1 True, ϵ = 0.1

Antmaze-large-diverse-v1 True, ϵ = 0.3
Others False

E ANALYSIS OF ADVANTAGE CONDITION INPUT FOR TESTING

In this section, we provide a full comparison of different fixed advantage condition inputs for testing
on locomotion tasks in Table S6 as a supplement for Figure 4. The result shows that the agent
performance improves as the input fixed advantage condition ξ increases.

F ANALYSIS OF CVAE TRAIN STEPS

In this section, we consider exploring the influence of the CVAE train step K. We provide a full
comparison of different CVAE train steps on locomotion tasks in Table S7. From Table S7, we
can observe that the performance with large train step K = 1 ∗ 106 or with low train step K =
1 ∗ 105 is unstable over these tasks and even crash after training in the halfcheetah-random-expert
and walker2d-random-expert tasks. Thus, we select the moderate K = 2 ∗ 105 to achieve a stable
mixed-quality behavior policy capture by default.
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Figure S1: Learning curves of our proposed A2PO and baselines on the locomotion tasks under
different single-quality datasets. “hc” denotes halfcheetah, “h” denotes hopper, and “w” denotes
walker2d. All experimental results are illustrated with the mean and the standard deviation of the
performance over 5 random seeds for a fair comparison. To make the results in figures clearer for
readers, we adopt a 95% confidence interval to plot the error region.
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Figure S2: Learning curves of our proposed A2PO and baselines on the locomotion tasks under
different multi-quality datasets.
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Figure S3: Learning curves of our proposed A2PO method and baselines on the navigation tasks
under the single-quality expert dataset.

Table S5: Test returns of our proposed A2PO with different advantage conditions during training.
± corresponds to one standard deviation of the average evaluation of the performance on 5 random
seeds. The performance is measured by the normalized scores at the last training iteration. Bold
indicates the best performance in each task.

Source Task ξfix = 1 ξdis, ϵ = 0.0 ξdis, ϵ = 0.1 ξdis, ϵ = 0.5 Continuous ξ

medium
replay

halfcheetah 39.63±0.56 40.67±0.81 40.96±0.49 41.24±0.50 44.74±0.22

hopper 74.81±11.21 96.92±1.70 85.19±5.99 93.33±4.36 101.59±1.25

walker2d 61.90±1.62 63.61±5.55 73.39±5.81 69.13±6.74 82.82±1.70

medium
expert

halfcheetah 93.10±1.54 94.11±0.39 94.46±0.49 94.77±0.04 95.61±0.54

hopper 62.50±5.54 110.45±0.66 108.58±1.46 107.62±2.86 107.44±0.56

walker2d 109.31±0.06 110.73±0.29 110.66±0.08 110.66±6.74 112.13±0.24

random
expert

halfcheetah 5.77±1.14 25.98±6.37 21.88±6.21 22.91±3.67 90.32±1.63

hopper 51.57±31.81 107.75±3.69 110.41±1.00 95.84±19.41 105.19±4.54

walker2d 63.05±33.08 73.64±51.98 109.64±0.02 109.93±0.11 91.96±10.98

random
medium
expert

halfcheetah 63.16±1.17 73.67±5.36 71.57±2.65 71.18±3.65 90.58±1.44

hopper 65.74±38.22 108.03±1.16 96.12±15.79 108.81±0.08 107.84±0.42

walker2d 88.95±13.48 96.89±13.78 54.52±54.60 108.68±3.33 97.71±6.74
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Table S6: Test returns of A2PO with different discrete advantage conditions for test while using the
original continuous advantage condition during training.

Source Task πω(·|s, ξ=−1) πω(·|s, ξ=0) πω(·|s, ξ=1)

expert
halfcheetah 87.15±0.27 93.23±0.38 96.26±0.27

hopper 84.87±22.18 106.56±6.66 111.70±10.39

walker2d 7.86±3.12 48.88±12.72 112.36±0.23

medium
replay

halfcheetah 4.74±5.56 21.51±8.57 44.74±0.22

hopper 11.44±6.32 25.28±1.08 101.59±1.25

walker2d 2.00±3.40 22.46±3.67 82.82±1.70

medium
expert

halfcheetah 40.42±0.64 64.45±4.63 95.61±0.54

hopper 37.07±16.15 76.85±24.41 107.44±0.56

walker2d 5.80±0.86 72.99±5.84 112.13±0.24

random
expert

halfcheetah 2.82±4.15 79.91±11.87 90.32±1.63

hopper 0.80±0.01 11.48±9.05 105.19±4.54

walker2d -0.09±0.01 3.14±4.50 91.96±10.98

random
medium
expert

halfcheetah 2.89±1.90 54.34±7.02 90.58±1.44

hopper 7.94±7.18 30.99±19.08 107.84±0.42

walker2d 1.54±1.62 9.16±5.91 97.71±6.74

Table S7: Test returns of A2PO with different CVAE training steps (i.e., the number of training
iterations for CVAE optimization).

Source Task K = 1 ∗ 105 K = 1 ∗ 106 K = 2 ∗ 105

medium
replay

halfcheetah 41.85±0.54 33.92±1.81 44.74±0.22

hopper 92.36±5.32 72.90±10.10 101.59±1.25

walker2d 78.03±2.95 43.22±5.73 82.82±1.70

medium
expert

halfcheetah 93.98±0.28 94.69±0.33 95.61±0.54

hopper 86.03±21.28 111.13±0.45 107.44±0.56

walker2d 111.41±0.33 111.14±0.17 112.13±0.24

random
expert

halfcheetah 74.72±8.36 1.45±0.11 90.32±1.63

hopper 105.78±1.83 85.14±10.28 105.19±4.54

walker2d 28.01±39.43 67.50±2.83 91.96±10.98

random
medium
expert

halfcheetah 80.39±4.47 28.35±3.50 90.58±1.44

hopper 70.28±30.43 88.96±4.39 107.84±0.42

walker2d 99.90±7.95 64.52±21.22 97.71±6.74

19



Under review as a conference paper at ICLR 2024

Table S8: Test returns of CVAE policy and agent policy in A2PO.

Source Task CVAE policy
pψ(·|z0, c∗)

Agent Policy
π(·|z̃∗, c∗)

random
halfcheetah 15.31±0.49 25.52±0.98

hopper 31.66±0.00 18.43±0.42

walker2d 4.69±0.65 3.59±1.74

medium
halfcheetah 45.73±0.25 47.09±0.17

hopper 57.06±2.78 80.29±3.95

walker2d 81.91±0.70 84.88±0.23

expert
halfcheetah 94.95±0.86 96.26±0.27

hopper 91.85±6.19 105.11±0.39

walker2d 111.84±0.52 112.36±0.23

medium
replay

halfcheetah 39.17±1.75 44.74±0.22

hopper 91.47±11.38 101.59±1.25

walker2d 63.36±9.49 82.82±1.70

medium
expert

halfcheetah 93.35±0.86 95.61±0.54

hopper 112.20±0.56 107.44±0.56

walker2d 110.48±0.28 112.13±0.24

random
medium

halfcheetah 41.10±0.89 45.20±0.21

hopper 15.49±11.74 7.14±0.35

walker2d 41.89±5.96 75.80±2.12

random
expert

halfcheetah 36.89±15.87 90.32±1.63

hopper 81.38±15.57 105.19±4.54

walker2d -0.06±0.12 91.96±10.98

random
medium
expert

halfcheetah 66.19±6.03 90.58±1.44

hopper 56.67±7.82 107.84±0.42

walker2d 22.73±6.05 97.71±6.74

G CVAE POLICY EVALUATION

In this section, we present thorough comparison results of the CVAE policy and agent policy in Ta-
ble S8. The CVAE policy corresponds to the CVAE decoder pψ(a|z0, c∗), where z0 is sampled from
N (0, 1), state-advantage, ξ∗ = 1 represents the largest advantage condition, and c∗ = s || ξ∗. After
K steps of CVAE training is finished, the CVAE decoder pψ(a|z0, c∗) approximates the superior
behavior policy output. The CVAE policy performance in Table S8 demonstrates that the CVAE
policy only exhibits superior performance in a limited number of tasks and datasets, such as hopper-
random and walker2d-random. In the majority of cases, the A2PO agent consistently outperforms
the CVAE agent. These results indicate that the A2PO agent attains well-disentangled behavior poli-
cies and optimal agent policy, surpassing the capabilities of CVAE-reconstructed behavior policies.

H ADVANTAGE VISUALIZATION

In this section, we expand upon the didactic experiment introduced in Section 1 by incorporating
additional tasks and datasets, which is aimed to indicate that the imprecise advantage approximation
of AW methods is not a coincidence but a common problem. Similar to Figure 1, Figure S4 presents
a comparative analysis of the actual return, LAPO, and our A2PO advantage approximation. The
findings indicate that LAPO exhibits limited discrimination in assessing transition advantages, while
our A2PO method effectively distinguishes between transitions of varying data quality. These results
underscore the limitations of the AW method and highlight the superiority of our A2PO approach.
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Figure S4: Comparison of our proposed A2PO method and the state-of-the-art AW method (LAPO)
in advantage estimation for mixed-quality offline datasets in locomotion tasks. Each data point
represents an initial state-action pair in the offline dataset after applying PCA, while varying shades
of color indicate the magnitude of the actual return or advantage value.
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I EXTRA COMPARISONS ON MORE TASKS

In this section, we test A2PO as well as other baselines in D4RL FrankaKitchen and Adroit tasks as
shown in Table S9. The results indicate that our A2PO method can achieve comparable performance
to the state-of-the-art lightweight baselines.

J EXTRA COMPARISONS WITH MORE BASELINES

In this section, we have added the lightweight baselines BEAR(Kumar et al., 2019), AWAC (Nair
et al., 2020), SPOT (Wu et al., 2022), XQL (Garg et al., 2023), SQL (Xu et al., 2023), and EQL (Xu
et al., 2023); representation learning baseline BPR (Zang et al., 2022); diffusing-based baselines
Diffusion-QL (Wang et al., 2022) and IDQL (Hansen-Estruch et al., 2023) as the comparison base-
lines to further evaluate the superiority of our A2PO. The results are presented in Table S10 and
Table S11. The results indicate that our A2PO method can achieve comparable performance to the
state-of-the-art lightweight and representation learning baselines. Meanwhile, our A2PO exhibits
performance on par with these more heavyweight diffusion-based methods. Notably, diffusion-
based methods often perform poorly when there is a significant difference in data quality within
the mixed-quality dataset. This observation underscores the effectiveness of our advantage-aware
mechanism, which allows our lightweight CVAE model to capture the multi-quality characteristics
from the offline dataset more effectively compared to the heavyweight diffusion models.

K ANALYSIS OF A2PO POLICY OPTIMIZATION

In this section, we consider the effectiveness of the BC regularization term in the A2PO policy
optimization. In this case, A2PO and advantage-weighted method LAPO have the same policy
optimization loss for a deterministic policy gradient. The comparison results are shown in Table S12.
The results indicate that even without the BC regularization term, A2PO consistently outperforms
LAPO in the majority of tasks. Moreover, the BC term in A2PO can enhance its performance in
most cases. This comparison highlights the superior performance achieved by A2PO, showcasing its
effective disentanglement of action distributions from different behavior policies in order to enforce
a reasonable advantage-aware policy constraint and obtain an optimal agent policy.

L ANALYSIS OF THE PROPORTIONS OF THE MIXED-QUALITY DATASET

In this section, we have additionally conducted an ablation study to investigate the impact of vary-
ing amounts of single-quality samples in mixed-quality datasets, as shown in Table S13. The results
demonstrate the robustness of our A2PO model in handling mixed-quality datasets containing dif-
ferent proportions of single-quality samples.

Table S9: Test returns of our proposed A2PO and baselines on the FrankaKitcdhen and Adroit tasks.
Italics indicate that the results are obtained from the D4RL (Fu et al., 2020) paper.

Task BC BCQ CQL IQL TD3BC SPOT BPPO LAPO A2PO(Ours)

kitchen-complete-v0 33.8 8.1 43.8 62.5 0.83±1.18 41.67±11.40 0.00±0.00 50.83±10.27 60.00±2.04

kitchen-partial-v0 33.8 18.9 49.8 46.3 0.00±0.00 0.00±0.00 16.67±2.36 58.75±16.25 48.33±4.08

kitchen-mixed-v0 47.5 10.6 51.0 51.0 0.83±1.18 0.00±0.00 0.00±0.00 52.33±6.27 53.33±2.36

pen-human-v1 34.4 12.3 37.5 71.5 -3.69±0.38 32.70±11.40 25.77±19.25 68.06±18.01 68.94±5.90

hammer-human-v1 1.5 1.2 4.4 1.4 0.71±0.25 1.99±0.07 0.50±0.35 1.12±0.29 1.84±0.35

door-human-v1 0.5 0.4 9.9 4.3 -0.33±0.01 -0.33±0.01 -0.02±0.03 6.07±4.60 8.51±3.66

relocate-human-v1 0.0 0.0 0.2 0.1 -0.30±0.01 -0.07±0.13 -0.08±0.08 0.04±0.01 0.49±0.58

pen-cloned-v1 56.9 28.0 39.2 37.3 1.74±2.90 2.54±7.96 21.77±5.88 55.84±20.29 84.80±21.43

hammer-cloned-v1 0.8 0.4 2.1 2.1 0.26±0.02 0.46±0.03 0.25±0.22 0.84±0.35 0.43±0.15

door-cloned-v1 -0.1 0.0 0.4 1.6 -0.35±0.02 -0.35±0.02 -0.04±0.05 0.22±0.40 0.31±0.04

relocate-cloned-v1 -0.1 -0.2 -0.1 -0.2 -0.31±0.01 -0.30±0.01 -0.14±0.11 -0.05±0.07 0.00±0.04

Total 209.0 79.7 238.2 277.9 -0.61 78.31 64.68 294.05 326.98
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Table S10: Test returns of our proposed A2PO and lightweight baselines on the locomotion tasks.
The italic results of BEAR and AWAC are obtained from the D4RL paper, while SPOT, XQL, SQL
and EQL are obtained from its original paper.

Source Task BEAR AWAC SPOT XQL SQL EQL BPR A2PO (Ours)

medium
halfcheetah 41.7 43.5 58.4 48.3 48.3 47.2 47.25±0.34 47.09±0.17

hopper 52.1 57.0 86.0 74.2 75.5 70.6 58.16±4.32 80.29±3.95

walker2d 59.1 72.4 86.4 84.2 84.2 83.2 82.74±1.83 84.88±0.23

medium
replay

halfcheetah 38.6 40.5 52.2 45.2 44.8 44.5 41.20±2.43 44.74±0.22

hopper 19.2 37.2 100.2 100.7 101.7 98.1 41.86±7.98 101.59±1.25

walker2d 33.7 27.0 91.6 82.2 77.2 81.6 83.30±25.11 82.82±1.70

medium
expert

halfcheetah 53.4 42.8 86.9 94.2 94.0 94.6 95.16±0.94 95.61±0.54

hopper 40.1 55.8 99.3 111.2 110.8 111.5 110.18±2.72 105.44±0.56

walker2d 96.3 74.5 112.0 112.7 111.0 110.2 109.25±0.28 112.13±0.24

random
expert

halfcheetah 4.18±1.79 87.32±2.91 60.42±3.69 35.68±9.07 30.60±12.35 47.37±6.41 3.10±1.70 90.32±1.63

hopper 5.73±3.63 84.70±19.83 98.60±5.32 55.49±14.70 68.63±14.05 68.57±24.55 53.96±16.22 105.19±4.54

walker2d -0.36±0.00 11.70±12.04 7.20±9.96 21.69±19.27 104.38±5.03 9.09±7.94 27.60±26.97 91.96±10.98

random
medium

halfcheetah 13.78±4.87 46.54±0.10 46.12±0.25 39.71±2.76 36.93±3.82 42.32±1.45 39.86±1.37 45.20±0.21

hopper 1.40±0.58 19.45±11.87 7.78±0.87 1.59±0.17 5.03±2.19 1.69±0.22 3.99±0.60 7.14±0.35

walker2d -0.46±0.07 -0.03±0.08 7.77±4.10 4.30±6.27 68.91±8.00 31.40±15.29 31.73±29.98 75.80±2.12

random
medium
expert

halfcheetah 2.25±0.00 89.65±1.67 80.18±7.47 42.73±12.32 63.42±6.37 42.79±3.18 26.40±11.76 90.58±1.44

hopper 8.62±2.10 30.31±7.46 40.19±23.07 47.08±28.89 75.01±13.68 72.41±17.91 46.67±7.65 107.84±0.42

walker2d -0.41±0.65 -0.31±0.07 10.31±4.63 52.60±26.99 77.68±26.65 60.95±21.81 105.25±2.08 97.71±6.67

Total 468.9 1205.23 1131.57 1053.77 1278.09 1118.09 1007.66 1466.33

Table S11: Test returns of our proposed A2PO, representation learning baseline BPR, and
lightweight baselines on the locomotion tasks. The italic results of Diffusion-QL and IDQL are
obtained from its original paper.

Source Task Diffusion-QL IDQL A2PO (Ours)

medium
halfcheetah 51.1 51.0 47.09±0.17

hopper 90.5 65.4 80.29±3.95

walker2d 87.0 82.5 84.88±0.23

medium
replay

halfcheetah 47.8 45.9 44.74±0.22

hopper 95.5 92.1 101.59±1.25

walker2d 101.3 85.1 82.82±1.70

medium
expert

halfcheetah 96.8 95.9 95.61±0.54

hopper 111.1 108.6 105.44±0.56

walker2d 110.1 112.7 112.13±0.24

random
expert

halfcheetah 86.07±1.49 32.55±2.94 90.32±1.63

hopper 101.96±7.03 19.73±13.80 105.19±4.54

walker2d 56.33±31.44 0.18±0.08 91.96±10.98

random
medium

halfcheetah 48.43±0.32 6.26±1.18 45.20±0.21

hopper 6.93±0.75 2.78±2.01 7.14±0.35

walker2d 3.27±2.35 3.82±3.21 75.80±2.12

random
medium
expert

halfcheetah 81.15±7.21 36.24±13.27 90.58±1.44

hopper 70.09±2.05 6.17±3.31 107.84±0.42

walker2d 56.56±23.02 18.55±8.13 97.71±6.74

Total 1301.99 865.48 1466.33
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Table S12: Test returns of LAPO and our proposed A2PO without BC term in the policy optimization
step. Bold indicates that the better performance among LAPO and A2PO w/o BC.

Source Task LAPO A2PO w/o BC A2PO (Ours)

medium
halfcheetah 45.58±0.06 46.81±0.09 47.09±0.17

hopper 52.53±2.61 70.08±4.03 80.29±3.95

walker2d 80.46±1.25 81.97±1.12 84.88±0.23

medium
replay

halfcheetah 41.94±0.47 42.01±0.28 44.74±0.22

hopper 50.14±11.16 96.51±1.47 101.59±1.25

walker2d 60.55±10.45 71.09±7.98 82.82±1.70

medium
expert

halfcheetah 94.22±0.46 94.29±0.03 95.61±0.54

hopper 111.04±0.36 107.27±1.93 105.44±0.56

walker2d 110.88±0.15 111.61±0.07 112.13±0.24

random
expert

halfcheetah 52.58±17.30 31.37±6.27 90.32±1.63

hopper 82.33±18.95 113.20±1.20 105.19±4.54

walker2d 0.89±0.53 66.82±11.01 91.96±10.98

random
medium

halfcheetah 18.53±0.99 43.19±0.54 45.20±0.21

hopper 4.17±3.11 1.59±0.92 7.14±0.35

walker2d 23.65±33.97 72.32±4.43 75.80±2.12

random
medium
expert

halfcheetah 71.09±0.47 70.77±4.21 90.58±1.44

hopper 66.59±19.29 86.54±7.25 107.84±0.42

walker2d 60.41±43.22 110.35±1.20 97.71±6.74

Total 1027.58 1317.79 1466.33

Table S13: Test returns of our proposed A2PO on the locomotion tasks with the medium-
expert (m-e) dataset containing different proportions of single-quality samples.

Task m:e = 3:1 m:e = 2:1 m:e = 1:1 m:e = 1:2 m:e = 1:3

halfcheetah 93.78±0.70 94.28±0.09 95.61±0.54 95.30±0.25 95.06±0.22

hopper 106.94±0.67 74.72±25.18 105.44±0.56 112.19±0.09 110.17±1.37

walker2d 110.94±0.36 110.77±0.57 112.13±0.24 111.26±0.49 110.67±0.21

Total 311.66 279.77 313.18 318.75 315.90
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