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Abstract

Selecting a sample generation scheme from mul-
tiple prompt-based generative models, includ-
ing large language models (LLMs) and prompt-
guided image and video generation models, is typ-
ically addressed by choosing the model that maxi-
mizes an averaged evaluation score. However, this
score-based selection overlooks the possibility
that different models achieve the best generation
performance for different types of text prompts.
An online identification of the best generation
model for various input prompts can reduce the
costs associated with querying sub-optimal mod-
els. In this work, we explore the possibility of
varying rankings of text-based generative mod-
els for different text prompts and propose an on-
line learning framework to predict the best data
generation model for a given input prompt. The
proposed PAK-UCB algorithm addresses a con-
textual bandit (CB) setting with shared context
variables across the arms, utilizing the generated
data to update kernel-based functions that pre-
dict the score of each model available for unseen
text prompts. Additionally, we leverage random
Fourier features (RFF) to accelerate the online
learning process of PAK-UCB. Our numerical
experiments on real and simulated text-to-image
and image-to-text generative models show that
RFF-UCB performs successfully in identifying
the best generation model across different sample
types. The code is available at: github.com/
yannxiaoyanhu/dgm-online-select.
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1. Introduction
Large language models (LLMs) and text-guided generative
AI models have found numerous applications in various
engineering tasks. A prompt-guided generative AI repre-
sents a conditional generative model that produces output
samples given an input text prompt. Over the past few years,
several frameworks have been developed to train generative
models and perform text-guided sample generation in var-
ious domains, including text, image, and video (Touvron
et al., 2023; Gemini-Team et al., 2025; OpenAI et al., 2024;
DeepSeek-AI et al., 2025; Rombach et al., 2022; Bao et al.,
2023b; Podell et al., 2024; Singer et al., 2022; Bai et al.,
2023; Liu et al., 2024). The great number of available LLMs
and prompt-guided generative models has led to significant
interest in developing evaluation mechanisms to rank the ex-
isting models and find the best model from a group of avail-
able ones. To address this task, several evaluation metrics
have been proposed to quantify the fidelity of samples gen-
erated by prompt-based generative models, such as CLIP-
Score (Hessel et al., 2021) and PickScore (Kirstain et al.,
2023) for prompt-guided image and video generation, and
BLEU score (Papineni et al., 2002) and BERTscore (Zhang
et al., 2020) for LLMs.

The existing model selection methodologies commonly aim
to identify the generative model with the highest averaged
fidelity score over the distribution of text prompts, produc-
ing samples that, on average, align the most with input text
prompts. A well-known example is the averaged CLIPScore
for text-to-image models, measuring the expected alignment
between the input text and output image of the model using
the CLIP embedding (Radford et al., 2021b). While the
best-averaged score model selection strategy has been fre-
quently utilized in generative AI applications, this approach
does not consider the possibility that the involved models
can perform differently across text prompts.

However, we highlight the possibility that one model out-
performs another model in responding to text prompts from
certain categories, while that model performs suboptimally
in responding to prompts from other categories. Figure 1
shows examples of both LLMs and text-to-image models,
where two widely-used models exhibit different rankings
across the text prompts from different categories (code gen-
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Example on
LLMs Gemini-2.5-Flash Qwen-Plus
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Pass rate (%) 48.78 (±0.52) 82.26 (±1.95)

(a). Example 1: Gemini-2.5-Flash attains higher pass rate on
(Python) code completion on the HumanEval benchmark (92.3%
versus 86.5%) while underperforms for Java-to-C++ translation
on the HumanEval-X benchmark (48.8% versus 82.3%).

Example on
T2I models Stable Diffusion v1.5 PixArt-α
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CLIPScore 36.10 (±0.06) 35.68 (±0.15)

(b). Example 2: Stable Diffusion v1.5 attains a higher CLIPScore
in generating MS-COCO prompts with term “car” (36.10 versus
35.68) while underperforms for MS-COCO prompts with term
“dog” (36.37 versus 37.24).

Figure 1. Widely-used LLMs and text-to-image models could exhibit different rankings across the text prompts with different categories.

eration and translation tasks for LLMs, and MS-COCO
prompts with terms “dog”/“car”). In general, the different
training sets and model architectures of LLMs and prompt-
guided models can result in the models’ varying perfor-
mance in response to different text prompts, which is an
important consideration in assigning prompts of various
types to a group of prompt-input generative models.1

In this work, we aim to develop a learning algorithm to
identify the best generative model for a given input prompt,
using observed prompt/generated samples collected from
the models in the previous sample generation rounds (Fig-
ure 2). Since the goal of prompt-based model selection is to
avoid sample generation queries from suboptimal generative
models for a given text prompt, we view the model selec-
tion task as an online learning problem, where after each
data generation, the learner updates the prediction on which
generative model performs the best in response to input text
prompts. Here, the objective of the online learner is to uti-
lize the previously generated samples to accurately guess the
generation model with the best performance for the incom-
ing text prompt. An optimal online model selection method
will result in a bounded regret value, measured in compar-
ison to the sample generation from the groundtruth-best
model for the text prompts.

1The full models’ response codes in the figure’s experiment
are provided at: https://github.com/yannxiaoyanhu/
dgm-online-select.

We highlight that the described online learning task can be
viewed as a contextual bandit (CB) problem widely stud-
ied in the bandit literature (Langford & Zhang, 2007; Li
et al., 2010; Chu et al., 2011; Agrawal & Goyal, 2013). In
the CB task, the online learner observes a single context
variable (the text prompt in our setting) and predicts the
best arm for the current input context. Specifically, we
focus on the kernel-based method to predict the score of
each available model for an incoming prompt. As the text
prompt is shared across the models, the CB task may be
suboptimally addressed by the common-weight formulation
of linear CB (Chu et al., 2011) and kernelized CB (Valko
et al., 2013) algorithms, as these implementations of the
algorithms learn a single shared weight vector to predict the
reward functions for all the arms (i.e., generative models
in our setting). To relax this constraint, we propose Per-
Arm Kernelized UCB (PAK-UCB) to address the online
prompt-based selection of generative models. According to
the PAK-UCB approach, the learner utilizes the computed
UCB-scores of arm-specific kernel-based prediction func-
tions to choose the generative model for the incoming text
prompt and subsequently update the kernel-based prediction
rule based on the generated data for the future rounds. We
attempt to theoretically analyze the proposed PAK-UCB
and show that its variant could achieve a regret bound of
Õ(
√
T ) over T rounds.

Since the user applying the CB-based model selection ap-
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Figure 2. Selection of text-to-image (T2I) models based on the CLIPScore: The conventional best-score model selection assigns all
prompts to the single model with the best averaged CLIPScore. In contrast, our proposed online approach performs a prompt-level model
selection by leveraging the UCB contextual bandit algorithm to assign the model to the prompt, learning from previous data generations.

proach may have limited compute power and not be able to
afford growing computational costs in the online learning
process, we propose applying the random Fourier features
(RFF) framework (Rahimi & Recht, 2007b) to reduce the
computational load of PAK-UCB. We discuss that in the pro-
posed PAK-UCB, the computational cost per iteration will
grow cubically as O(t3) with iteration t. We demonstrate
that after leveraging the RFF method, our developed proxy
RFF-UCB algorithm can effectively approximate the solu-
tion to PAK-UCB with the computational costs increasing
only linearly O(t).

Finally, we present the results of several numerical experi-
ments to show the efficacy of our proposed PAK-UCB and
RFF-UCB in the online selection of prompt-guided genera-
tive models and LLMs. In our experiments, we test several
pre-trained and simulated text-to-image, image-captioning
(image-to-text), and language models, where different mod-
els could lead to different rankings across various sample
types. Our numerical results suggest a fast convergence of
the proposed online learning algorithms to the best prompt-
based selection of the available models in response to dif-
ferent prompt types. In our experiments, the proposed PAK-
UCB and RFF-UCB could perform better than several base-
line methods, including the common-weight implementation
of LinUCB (Chu et al., 2011) and KernelUCB (Valko et al.,
2013) methods. The following is a summary of this work’s
contributions:

• Studying the prompt-based selection of prompt-guided
generative models to improve the prompt-level perfor-
mance scores,

• Developing the contextual bandit algorithms of PAK-
UCB and RFF-UCB algorithms for the online selection
of prompt-based generative models,

• Theoretically analyzing the regret and computational costs
of PAK-UCB and RFF-UCB online learning methods

• Presenting numerical results on the prompt-based selec-
tion of generative models using PAK-UCB and RFF-UCB.

2. Related Work
(Automatic) Evaluation of conditional generative mod-
els. Evaluating the conditional generative models has been
studied extensively in the literature. For text-to-image (T2I)
generation, earlier methods primarily rely on the Incep-
tion score (Salimans et al., 2016) and Fréchet inception
distance (Heusel et al., 2017). More recent works propose
reference-free metrics for robust automatic evaluation of T2I
and image captioning, with notable examples being CLIP-
Score (Hessel et al., 2021) and PickScore (Kirstain et al.,
2023). Kim et al. (2022) propose a mutual-information-
based metric, which attains consistency across benchmarks,
sample parsimony, and robustness. To provide a holistic
evaluation of T2I models, several works focus on multi-
objective evaluation. Astolfi et al. (2024) propose to evalu-
ate conditional image generation in terms of prompt-sample
consistency, sample diversity, and fidelity. Kannen et al.
(2024) introduce a framework to evaluate T2I models re-
garding cultural awareness and cultural diversity. Mas-
rourisaadat et al. (2024) examine the performance of several
T2I models in generating images such as human faces and
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groups and present a social bias analysis. Another line of
study explores evaluation approaches using large language
models (LLMs). Tan et al. (2024) develop LLM-based
evaluation protocols that focus on the faithfulness and text-
image alignment. Peng et al. (2024) introduce a GPT-based
benchmark for evaluating personalized image generation.
In addition, a line of study leverages human feedback for
scoring/ranking generated images and improving T2I mod-
els (Xu et al., 2023). For evaluation of text-to-video (T2V)
generation, Huang et al. (2024) introduce VBench as a com-
prehensive evaluation of T2V models in terms of quality and
consistency. Finally, we note the prompt-aware diversity
scores, Conditional-Vendi (Jalali et al., 2023) and Schur-
Complement-Entropy (Ospanov et al., 2024a), developed
for prompt-guided generative models.

(Kernelized) Contextual bandits. The contextual ban-
dits (CB) is an efficient framework for online decision-
making with side information (Langford & Zhang, 2007;
Foster et al., 2018), which is widely adopted in domains such
as recommendation system and online advertisement (Li
et al., 2010) and resource allocations (Lim et al., 2024). A
key to its formulation is the relationship between the con-
text (vector) and the expected reward. In linear CB, the
reward is assumed to be linear to the context vector (Li
et al., 2010; Chu et al., 2011). To incorporate non-linearity,
Valko et al. (2013) propose kernelized CB, which assumes
the rewards are linear-realizable in a reproducing kernel
Hilbert space (RKHS). To address the growing computation,
recent work leverages the assumption that the kernel matrix
is often approximately low-rank and uses Nyström approxi-
mations (Calandriello et al., 2019; 2020; Zenati et al., 2022).

Prompt-based Selection of LLMs and Generative Mod-
els. We note that a line of study proposes offline methods
for learning a universal prompt-to-model assignment rule
by training a neural network model over a dataset of ranked
responses of the models to a large set of prompts (Luo et al.,
2024; Qin et al., 2024; Frick et al., 2025). Unlike these
methods, our proposed approach follows an online learning
strategy which can significantly lower the computational
and statistical costs of finding a satisfactory assignment rule.
In addition, as we later discuss in the numerical results,
the online nature of our proposed algorithm can improve
the adaptability of the model to the changes in the user’s
prompt distribution and models’ behavior over the iterations
of evaluating the models in real time.

Multi-armed bandit selection of generative models. We
note that the references (Hu et al., 2025a; Rezaei et al.,
2025) propose multi-armed bandit (MAB) approaches to
the selection of unconditional generative models without an
input text prompt. Specifically, Hu et al. (2025a) propose an
online learning framework for selecting generative models
and develop the FID-UCB algorithm for the online selec-

tion of image-output generative models based on the FID
score (Heusel et al., 2017). Rezaei et al. (2025) show that
a mixture of several unconditional generative models can
attain higher diversity scores than each individual model,
and propose the Mixture-UCB MAB framework to find the
best mixture of the generative models in terms of the kernel
distance (Bińkowski et al., 2018) and Renyi kernel entropy
(Jalali et al., 2023; Ospanov et al., 2024b). We note that
the mentioned papers study the selection of unconditional
generative models, different from our problem setting of
selecting the conditional prompt-guided generative models.

3. Preliminaries
3.1. Kernel Methods and Random Fourier Features

Let ϕ : Rd → H be a feature map from the ambient
space Rd to the (possibly infinite-dimensional) space cor-
responding to the associated reproducing kernel Hilbert
space (RKHS) H. The kernel function for RKHS H is
defined as the inner product of the representations of the
inputs as k(y, y′) := ⟨ϕ(y), ϕ(y′)⟩ = ϕ(y)⊤ϕ(y′) for every
y, y′ ∈ Rd, where ⟨·, ·⟩ denotes the standard inner product.

Every kernel function k will satisfy the positive-definiteness
condition, that means

∑n
i=1

∑n
j=1 cicjk(yi, yj) ≥ 0 holds

for every integer n ∈ N+, y1, · · · , yn ∈ Rd, and
c1, · · · , cn ∈ R. Furthermore, we call a kernel function k
shift invariant if k(y, y′) := k(y − y′) for every y, y′ ∈ Rd.
A well-known example is the radial basis function (RBF)
kernel with bandwidth parameter σ > 0:

kRBF(y, y
′) = exp

(−∥y − y′∥22
2σ2

)
.

Kernel ridge regression (KRR). Given empirical labeled
samples (y1, s1), · · · , (yn, sn), where {yi ∈ Rd}ni=1 are
feature variables and {si ∈ R}ni=1 are target variables,
respectively, the kernel ridge regression assumes that for a
w⋆ ∈ H we have E[si|yi] = ϕ(y)⊤w⋆ for any i = 1, · · · , n.
For regularization parameter α ≥ 0, KRR estimator is

ŝKRR(y) := k⊤y (K + αIn)
−1v

for every y ∈ Rd, where K = [k(yi, yj)]
n
i,j=1 ∈ Rn×n

denotes the kernel matrix, v := [s1, · · · , sn]⊤ ∈ Rn, and
ky = [k(y1, y), · · · , k(yn, y)]⊤ ∈ Rn. The KRR estimator
can be interpreted as the solution w⋆ to the ridge regression:

ŵ := argmin
w∈H

n∑
i=1

(
ϕ(yi)

⊤w − si
)2

+ α∥w∥2,

where ∥w∥ :=
√
w⊤w for any w ∈ H, and then making the

prediction ŝKRR(y) = (ϕ(y))⊤ŵ.

Random Fourier features (RFF). To reduce the compu-
tational costs of kernel methods for shift-invariant kernels,
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Rahimi & Recht (2007a) proposes the random Fourier fea-
tures framework. Specifically, Bochner’s Theorem (Rudin,
2017) shows that for every shift-invariant kernel k(y, y′) =
κ(y−y′) satisfying κ(0) = 1, the Fourier transform of κ pro-
vides a valid probability density function, which we denote
by p ∈ ∆(Rd), such that k(y, y′) = Ew∼p[e

iw⊤(y−y′)],
with i being the imaginary unit. Following this property, the
RFF approach independently samples w1, · · · , wD ∼ p
and proposes the empirical mean proxy for k(y, y′) as
1
D

∑D
j=1 e

iw⊤
j (y−y′). Due to the real Fourier transform of

the even function κ, we can simplify the equation as

φ(y) =
1√
D

[
cos(w⊤

1 y), sin(w
⊤
1 y), ., cos(w

⊤
Dy), sin(w⊤

Dy)
]

(1)
where {wj}Dj=1

i.i.d∼ p and k(y, y′) is approximated by the
inner product φ(y)⊤φ(y′). The resulting approximate KRR
estimator is

s̃KRR(y) := (Φ̃∗Φ̃ + αI2D)−1Φ̃∗v,

where Φ̃ := [φ(yi)
⊤]ni=1 ∈ Rn×2D and we denote by

Φ̃∗ its conjugate transpose, can be computed in O(nD2)
time and O(nD) memory, giving substantial computational
savings if D ≪ n. For the RBF kernel kσRBF(x1, x2) =
exp(− 1

2σ2 ∥x1 − x2∥22), the PDF pRBF will be the multivari-
ate Gaussian N (0, 1

σ2 · Id).2

3.2. CLIPScore for Evaluating Text-to-Image Models

CLIPScore (Hessel et al., 2021) has been widely-used to
evaluate the alignment of samples generated by text-to-
image/video (T2I/V) and image captioning models. Let
(y, x) ∈ Y × X be a text-image pair. We denote by
cy ∈ Sd−1 := {z ∈ Rd : ∥z∥2 = 1} and vx ∈ Sd−1 the
(normalized) embeddings of text y ∈ Y and image x ∈ X ,
respectively, both extracted by CLIP (Radford et al., 2021a).
The CLIPScore (Hessel et al., 2021) is given by

CLIPScoreT2I(y, x) := max{0, 100 · cos(vx, cy)}, (2)

where cos(vx, cy) = ⟨vx, cy⟩ for the ℓ2-normalized CLIP-
embedded vx, cy. Extending the definition to (text,video)
pairs, for a video X := {x(l)}Ll=1 consisting of L frames,
where x(l) is the l-th frame, the score is the averaged frame-
level CLIPScore:

CLIPScoreT2V(y,X) :=
1

L

L∑
l=1

CLIPScoreT2I(y, x(l)).

2We note that an alternative form of RFF is given by: φ(y) =√
2
D
·[cos(w⊤

1 y+b1), · · · , cos(w⊤
Dy+bD)]⊤, where {wj}Dj=1

i.i.d∼

p and {bj}Dj=1
i.i.d∼ Unif([0, 2π]). For the RBF kernel, it can be

shown that (1) has a uniformly lower variance (Sutherland &
Schneider, 2015).

4. Prompt-Based Model Selection as a
Contextual Bandit Problem

In this section, we introduce the framework of online
prompt-based selection of generative models, which is given
in Protocol 1. Let [N ] := {1, · · · , N} for any positive
integer N ∈ N+. We denote by G := [G] the set of
(prompt-based) generative models. The evaluation proceeds
in T ∈ N+ iterations.

At each iteration t ∈ [T ], a prompt yt ∈ Y is drawn from a
fixed distribution ρ ∈ ∆(Y) on the prompt space Y ⊆ Sd−1,
e.g., (the normalized embedding of) a picture in image cap-
tioning or a paragraph in text-to-image/video generation.
Based on prompt yt (and previous observation sequence),
an algorithm A picks model gt ∈ G and samples response
xt ∼ Pgt(·|yt), where Pg(·|y) ∈ ∆(X ) is the conditional
distribution of the generated response from any model g ∈ G.
The quality of response xt is evaluated using a score func-
tion s : Y × X → [−1, 1], which assigns a scores(yt, xt).
The algorithm A aims to minimize the regret

Regret(T ) :=
T∑

t=1

(s⋆(yt)− sgt(yt)) , (3)

where we denote by sg(y) := Exg∼Pg(·|y)[s(y, xg)] the
expected score of any model g ∈ G and s⋆(y) :=
maxg∈G sg(y) the optimal expected score, both conditioned
on the prompt y.

Protocol 1 Online Prompt-based Selection of LLMs and
Prompt-guided Generative Models

Require: total iterations T ∈ N+, set of generators G =
[G], prompt distribution ρ ∈ ∆(Y), score function s :
Y ×X → [−1, 1], algorithmA : (Y ×G×R)∗×Y →
∆(G)

Initialize: observation sequence D ← ∅
1: for iteration t = 1, 2, · · · , T do
2: Prompt yt ∼ ρ is revealed.
3: AlgorithmA picks model gt ∼ A(·|D, yt) and sam-

ples response xt ∼ Pgt(·|yt).
4: Score st ← s(yt, xt) is assigned.
5: Update observation D ← D ∪ {(yt, gt, st)}.
6: end for

5. An Optimism-based Approach for
Prompt-based Selection

Under the online prompt-based selection setting, a key chal-
lenge is to learn the relationship between the prompt and
the score of each model. In this paper, we consider kernel
methods for score prediction. Specifically, for each model
g ∈ G, we assume the existence of a (possibly non-linear
and infinite-dimensional) feature map ϕ and a weight w⋆

g

5
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in an RKHS, such that the score sg(y) conditioned on the
prompt y is given by (ϕ(y))⊤w⋆

g . Notably, the weight vector
w⋆

g is arm-specific and can vary across the models, which is
stated in the following assumption.

Assumption 1 (Realizability). There exists a mapping ϕ :
Rd → H and weight w⋆

g ∈ H such that score sg(y) =

⟨y, w⋆
g⟩H for any prompt vector y ∈ Rd and model g ∈ G.

Further, it holds that ∥w⋆
g∥ ≤ 1, and k(y, y) ≤ κ2 and

∥ϕ(y)∥ ≤ 1 for any y ∈ Y , where k : Rd × Rd → R is the
kernel function of the mapping ϕ.

Remark 1 (Comparison to linear and kernelized CB). We
note that Assumption 1 differs from the standard settings
of linear and kernelized contextual bandit (CB) (Chu et al.,
2011; Valko et al., 2013; Zenati et al., 2022). Specifically,
in the settings of these references, a potentially different
context variable is considered for each arm, and the same
weight vector is applied across all arms. In the prompt-
based model selection setting, the text prompt (i.e., the
context variable) is shared among arms (i.e., the gener-
ative models) and can result in different performance scores
across the models, which cannot be captured by the standard
kernelized CB approach. On the other hand, we note that the
existing arm-specific bandit algorithms in (Li et al., 2010;
Xu et al., 2020) are designed considering a linear pay-off
structure, which is generally different from the kernel-based
formulation in our work.

5.1. The PAK-UCB Algorithm

In this section, we present PAK-UCB in Algorithm 2, an
online learning approach to prompt-based model selection.
For each incoming prompt, PAK-UCB first estimates the
performance scores via kernel ridge regression (KRR) and
then picks the model with the highest estimated score. Un-
like conventional formulations of LinUCB (Chu et al., 2011)
and KernelUCB (Valko et al., 2013) algorithms, which learn
a single reward function shared across all arms, PAK-UCB
learns arm-specific functions to predict the score of each
model.

The key component in PAK-UCB is the function
COMPUTE UCB (lines 8-17), which outputs both the KRR
estimator µ̂g and an uncertainty quantifier σ̂g . As the weight
vector w⋆

g can vary across the arms, PAK-UCB constructs
the KRR dataset using prompt-score pairs from iterations
where model g is chosen, with the corresponding indices
stored in the set Ψg (line 6). The estimated score is then
computed by ŝg = µ̂g + ησ̂g (line 4), which is initially set
to +∞ to ensure each model is picked at least once (lines
9-10). To provide theoretical justification for our method,
we show that a variant of PAK-UCB, which is illustrated
in Algorithm 3 in the Appendix, can attain a squared-root
regret bound. The formal statement and the proof can be
found in Appendix A.

Algorithm 2 Per-Arm Kernelized UCB (PAK-UCB)

Require: iteration T , generators G = [G], prompt distribu-
tion ρ, score function s : Y × X → [−1, 1], positive
definite kernel k, regularization and exploration param-
eters α, η ≥ 0

Initialize: observation sequence D ← ∅ and index set
Ψg ← ∅ for all g ∈ G

1: for iteration t = 1, 2, · · · , T do
2: Prompt yt ∼ ρ is revealed.
3: Compute (µ̂g, σ̂g) ← COMPUTE UCB(D, yt,Ψg)

and set ŝg ← µ̂g + ησ̂g for each g ∈ G.
4: Pick model gt ← argmaxg∈G{ŝg}.
5: Sample xt ∼ Pgt(·|yt) and receive score st.
6: Update D ← D ∪ {(yt, st)} and Ψgt ← Ψgt ∪ {t}.
7: end for

8: function COMPUTE UCB(D, y,Ψg)
9: if Ψg is empty then

10: µ̂g ← +∞, σ̂g ← +∞.
11: else
12: Set K ← [k(yi, yj)]i,j∈Ψg

, v ← [si]
⊤
i∈Ψg

, and
ky ← [k(y, yi)]

⊤
i∈Ψg

.
13: µ̂g ← k⊤y (K + αI)−1v.

14: σ̂g ← α− 1
2

√
k(y, y)− k⊤y (K + αI)−1ky .

15: end if
16: return (µ̂g, σ̂g).
17: end function

Theorem 1 (Regret, informal). With probability of at least
1− δ, the regret of running a variant of PAK-UCB (stated
in Algorithm 3 in the Appendix) for T iterations is bounded
by Õ(

√
GT ).

5.2. PAK-UCB with Random Fourier Features

The PAK-UCB solves a KRR for each model at an itera-
tion to estimate the scores, which can be expensive in both
computation and memory for a large number of iterations.
To address this problem, we leverage the random Fourier
features (RFF) sampling (Rahimi & Recht, 2007a) for shift-
invariant kernel functions, e.g., the RBF (Gaussian) kernel.
At a high level, RFF maps the input data, e.g., the prompt
(vector) in our setting, to a randomized low-dimensional
feature space and then learns a linear model in the result-
ing random space by solving a standard linear regression
problem. Note that following the design of RFF, the inner
product of the projected randomized features will be an
unbiased estimation of the original kernel inner product.

We present RFF-UCB as an RFF implementation of PAK-
UCB (Algorithm 4 in the Appendix). Particularly, RFF-
UCB leverages an RFF-based approach to compute the mean
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Figure 3. Prompt-based selection between Stable Diffusion v1.5 and PixArt-α (Figure 1(a)): Results are averaged over 20 trials.

and uncertainty quantifier, which is stated in Algorithm 5 in
the Appendix. Upon receiving the regression dataset con-
sisting of prompt-score pairs, COMPUTE UCB RFF first
projects each d-dimensional prompt vector to a randomized
2D-dimensional feature space according to Equation (1)
and then solves a linear ridge regression to estimate the
mean and uncertainty. To see why RFF can reduce the
computation, note that the size of the (regularized) Gram
matrix (Φ̃⊤

g Φ̃g + αI2D) in Line 8 is fixed to be 2D in the
whole process, while the size of (K + αI) in line 13 of
Algorithm 2 scales with |Ψg| and can grow linearly over
iterations. Particularly, the following lemma shows that
COMPUTE UCB RFF can reduce the time and space by an
order of O(t2) and O(t), respectively.

Lemma 1 (Time and space complexity). At any iteration
t ∈ [T ], COMPUTE UCB (Lines 8-17 of Algorithm 2) re-
quires O(t3/G2) time and O(t2/G) space, while COM-
PUTE UCB RFF with random features of size s ∈ N+ (Al-
gorithm 5) requires O(tD2) time and O(tD) space, where
G is the number of generators. See Appendix B.1 for details.

To provide theoretical justification to the RFF approach, we
show that the implementation of PAK-UCB with RFF can
attain the exact same regret bound with a carefully chosen
feature sizes. The formal statement and the proof can be
found in Appendix B.1.

Theorem 2 (Regret of RFF implementation, informal). With
probability at least 1 − δ, the regret of running a variant
of RFF-UCB (stated in Algorithm 6) for T iterations is
bounded by Õ(

√
GT ).

6. Numerical Results
In this section, we present numerical results for the proposed
1) PAK-UCB-poly3: PAK-UCB using a polynomial kernel
with degree 3, i.e., kγpoly3(x1, x2) = (1 + γ · x⊤

1 x2)
3 and 2)

RFF-UCB-RBF: PAK-UCB with RFF implementation of
the RBF kernel, i.e., kσRBF(x1, x2) = exp(− 1

2σ2 ∥x1−x2∥2).
Implementation details and the choice for hyperparameters
can be found in Appendix C.4. Our primary focus is on

prompt-based selection among standard text-to-image (T2I)
models: Stable Diffusion v1.53, PixArt-α-XL-2-512x5124,
UniDiffuser5, and DeepFloyd IF-I-M-v1.0.6. For the LLM
experiments, we provide numerical results for prompt-based
selection of the following large language models (LLMs):
Gemini-2.5-Flash-preview, o3-mini, Deepseek-Chat, and
Qwen-Plus. In the Appendix, we report additional results
on image captioning (image-to-text) task and video data
under synthetic setups. Additional results can be found in
Appendix C.

Baselines. We compare PAK-UCB-poly3 and RFF-UCB-
RBF with three baselines, including 1) KernelUCB-poly3:
standard KernelUCB (Valko et al., 2013) using the k1.0poly
kernel, 2) One-arm Oracle: always picking the model with
the maximum averaged score, and 3) Random: selecting
an model uniformly randomly. In the Appendix, we re-
port results for three additional baselines: 4) PAK-UCB-lin:
PAK-UCB with linear kernel, i.e., klin(x1, x2) = x⊤

1 x2,
which does not incorporate non-linearity in score estima-
tion, 5) LinUCB: standard LinUCB (Chu et al., 2011), and
6) Naive-KRR: PAK-UCB-poly3 without exploration, i.e.,
parameter η = 0, which selects the model with the highest
estimated mean conditioned to the prompt.

Performance metrics. For each experiment, we report
two performance metrics: (i) outscore-the-best (OtB): the
difference between the CLIPScore attained by the algorithm
and the highest average CLIPScore attained by any single
model, and (ii) optimal-pick-ratio (OPR): the overall ratio
that the algorithm picks the best generator conditioned to
the prompt. Specifically, to determine the best model for
each specific prompt, we generate five responses from every
model (to that prompt), and the best model in the OPR
calculation is the model with the highest averaged score

3https://huggingface.co/docs/diffusers/
en/api/pipelines/stable_diffusion/text2img

4https://huggingface.co/PixArt-alpha/
PixArt-XL-2-512x512

5https://github.com/thu-ml/unidiffuser
6https://github.com/deep-floyd/IF
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(a) UniDiffuser and PixArt-α (Figure 9).
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Figure 4. Prompt-based selection among several standard T2I models: Outscore-the-best (OtB) is reported. The selection of our proposed
PAK-UCB-poly3 algorithm converges quickly to the optimal model for incoming text prompts. Full results can be found in Figures 10, 12,
and 13 in the Appendix. Results are averaged over 20 trials.

over the 5 runs. Then, OPR is defined as the fraction that
the algorithm’s selected model matches the best model.

6.1. Summary of the Numerical Results

The results of our numerical experiments indicate the im-
provement of the proposed PAK-UCB algorithm over the
one-arm oracle baseline that is aware of the single gen-
erative model with the maximized averaged scores over
the prompt distribution. This result suggests that the online
learning algorithm could outperform a selector with the side-
knowledge of the single best-performing model. We note
that this improvement follows the prompt-based selection
design of our proposed PAK-UCB algorithm. Moreover,
our numerical results indicate that PAK-UCB can signif-
icantly improve upon the online learning baselines with
shared weights, including LinUCB (Chu et al., 2011) and
KernelUCB (Valko et al., 2013) methods, indicating the
effectiveness of the arm-specific design of PAK-UCB in
the prompt-based model selection setting. Finally, in our
experiments, the proposed RFF-UCB-RBF variant could
reduce the computational costs of the general PAK-UCB
algorithm.

6.2. Experiment Settings

Setup 1. Prompt-based selection among standard text-
to-image models. The first set of experiments are on the
setup illustrated in Figure 1(a), where we generate images
from Stable Diffusion v1.5 and PixArt-α. The results show
that PAK-UCB-poly3 outperforms the baseline algorithm
and attains a high optimal-pick-ratio, which shows that it can
identify the optimal model conditioned to the prompt (see
Figure 3). Additionally, we provide numerical results on
various T2I generative models, including UniDiffuser and
DeepFloyd (see Figure 4). Prompts are uniformly randomly
selected from the MS-COCO dataset under two categories:
’dog’/’car’ (Figure 3), ’train’/’baseball-bat’ (Figure 4(a)),

’elephant’/’fire-hydrant’ (Figure 4(b)), and ’carrot’/’bowl’
(Figure 4(c)). The input of the PAK-UCB, Naive-KRR,
and RFF-UCB-RBF methods is the embedded prompt that
is output by the pretrained CLIP-ViT-B-32-laion2B-e16
model from the open clip repository7. For LinUCB and Ker-
nelUCB baselines, we also concatenate the one-hot encoded
vector of the model index to the CLIP-embedded prompt.
Full results can be found in Figure 8 in the Appendix.

Setup 2. Prompt-based selection of LLMs. In these ex-
periments, we focus on prompt-based selection of large lan-
guage models (LLMs) on various tasks, including Sudoku-
solving and code generation (code completion and trans-
lation). In the first setup, we select LLMs to solve code
generation tasks. The model is given a Python code com-
pletion problem (sampled from the first 164 tasks in Big-
CodeBench (Zhuo et al., 2024)) or C++-to-Java code trans-
lation problem (sampled from the HumanEval-X bench-
mark (Zheng et al., 2023)). Sample prompts can be found in
Figure 18 and 19 in the Appendix. Particularly, the Gemini-
2.5-Flash-preview model attains a higher pass@1 rate on
code completion (55.91% versus 13.84%) while underper-
forms for C++-to-Java translation (24.39% versus 40.91%)
compared to the Qwen-Plus model. The rewards are bi-
nary, indicating whether the generated code can pass all the
test cases. The input of the PAK-UCB, Naive-KRR, and
RFF-UCB-RBF methods is the 768-dimensional embedded
prompt that is output by the RoBERTa model (for code com-
pletion) or the CodeBERT model8 (for code translation).
For LinUCB and KernelUCB baselines, we also concate-
nate the one-hot encoded vector of the model index to the
embedded prompt. The results (Figures 6(a) and 20) show
that the proposed RFF-UCB-RBF method queries from the
better model conditioned to the task category (Figure 5).

7https://github.com/mlfoundations/open_
clip/tree/main

8https://huggingface.co/microsoft/
codebert-base
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Figure 5. Prompt-based selection of LLMs (Setup 2): Optimal-pick-ratio (OPR) is reported.
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Figure 6. Prompt-based selection of LLMs on code generation task
(Setup 2): The Gemini-2.5-Flash-preview model attains higher
pass rate on the code completion task while underperforms on the
code translation task. Our proposed RFF-UCB-RBF algorithm
queries solutions from the better model conditioned to the task
category.

In the second setup, we utilize two LLMs, including o3-
mini and Deepseek-Chat, to solve 9× 9 Sudoku problems,
which contains 5-30 blank entries. Sample prompt can be
found in Figure 16 in the Appendix. The o3-mini model at-
tains a higher success rate on harder Sudoku problems with
more than 15 blank entries (70.82% versus 50.42%), while
slightly underperforms on easier Sudoku problems (86.85%
versus 93.6%). The rewards are binary, indicating the solu-
tion is correct or wrong. The input of the PAK-UCB, Naive-
KRR, and RFF-UCB-RBF methods is the 768-dimensional
embedded prompt that is output by the RoBERTa model9.
For LinUCB and KernelUCB baselines, we also concate-
nate the one-hot encoded vector of the model index to the
RoBERTa-embedded prompt. The results are summarized
in Figures 5(b) and 17, which show that the proposed RFF-

9https://huggingface.co/docs/
transformers/en/model_doc/roberta

UCB-RBF algorithm outperforms all the baseline methods.

Setup 3. Adaptation to new prompt types and models.
We consider scenarios where new text-to-image models or
prompt types are introduced after the initial deployment. At
the beginning of the first experiment, Stable Diffusion v1.5
and PixArt-α are available, and UniDiffuser is introduced
after 2500 iterations. Prompts are uniformly randomly se-
lected from the MS-COCO dataset under categories ’train’
and ’baseball-bat’. In the second experiment, we generate
samples from both PixArt-α and UniDiffuser. In the first
1k iterations, the prompts are uniformly randomly selected
from a pool that initially includes categories ’person’ and
’bicycle’ in the MS-COCO dataset. Then, categories ’air-
plane’, ’bus’, ’train’, and ’truck’ are added to the pool after
each 1k iterations. The results show that PAK-UCB-poly3
can well adapt to new prompt types and generators (see
Figure 14). The input context follows Setup 1.

Setup 4. Synthetic experiments on other conditional
generation tasks. We provide numerical results on image-
captioning (image-to-text) and text-to-video (T2V) task un-
der synthetic setups in Appendix C.3.

7. Conclusion
In this work, we investigated prompt-based selection of gen-
erative models using a contextual bandit algorithm, which
can identify the best available generative model for a given
text prompt. We propose two kernel-based algorithms, in-
cluding PAK-UCB and RFF-UCB, to perform this selec-
tion task. Our numerical results on LLMs (text-to-text),
text-to-image, text-to-video, and image-captioning tasks
demonstrate the effectiveness of the proposed framework in
scenarios where the available generative models have vary-
ing performance rankings depending on the type of prompt.
A potential future direction is to extend the online selection
to capture the diversity and novelty of generated data. Also,
developing cost-aware online selection methods, similar to
the cost-aware CB algorithm in (Hu et al., 2025b), will be a
relevant direction for future studies.
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A. Proof in Section 5.1
The technical challenge in analyzing PAK-UCB is that predictions in later iterations make use of previous outcomes. Hence,
the rewards {si}i∈Ψg are not independent if the index set Φg is updated each time when model g is chosen (Line 6 of
Algorithm 2). To address this problem, we leverage a standard approach used in prior works (Auer, 2003; Chu et al., 2011;
Valko et al., 2013) and present a variant of PAK-UCB in Algorithm 3, which is called Sup-PAK-UCB.

Algorithm 3 Sup-PAK-UCB

Require: total iterations T ∈ N+, set of generators G = [G], prompt distribution ρ ∈ ∆(Y), score function s : Y × X →
[−1, 1], positive definite kernel k : Y × Y → R, regularization and exploration parameters α, η ≥ 0, function
COMPUTE UCB in Algorithm 2

Initialize: observation sequence D ← ∅ and index sets {Ψm
g ← ∅}Mm=1 for all g ∈ G, where M ← log T

1: for iteration t = 1, 2, · · · , T do
2: Prompt yt ∼ ρ is revealed.
3: Set stage m← 1 and Ĝ1 ← G.
4: repeat
5: Compute {(µ̂m

g , σ̂m
g )← COMPUTE UCB(D, yt,Ψm

g )}g∈Ĝm .

6: Set ŝmg (yt)← µ̂m
g + ησ̂m

g and s̃mg (yt)← µ̂m
g + (2η +

√
α)σ̂m

g for all g ∈ Ĝm.
7: if (η +

√
α)σ̂m

g ≤ 1/
√
T for all g ∈ Ĝm then

8: Pick model gt ← argmax ŝmg (y).
9: else if (2η +

√
α)σ̂m

g ≤ 21−m for all g ∈ Ĝm then

10: Ĝm+1 ←
{
g ∈ Ĝm : s̃mg (yt) ≥ maxg∈Ĝm s̃mg (yt)− 22−m

}
.

11: Set stage m← m+ 1.
12: else
13: Pick gt ∈ Ĝm such that (2η +

√
α)σ̂m

g > 21−m.
14: Update Ψm

gt ← Ψm
gt ∪ {t}.

15: end if
16: until a model gt is selected
17: Sample an answer xt ∼ Pgt(·|yt) and compute the score st ← s(yt, xt).
18: Update D ← D ∪ {(yt, st)}.
19: end for

A.1. Regret Analysis of Sup-PAK-UCB

Theorem 3 (Regret of Sup-PAK-UCB). Under Assumption 1, with probability at least 1− δ, the regret of Sup-PAK-UCB
with η =

√
2 log(2GT/δ) is bounded by

Regret(T ) ≤ Õ

(
(1 +

√
α)

√
deff

(
1 +

1

α

)
GT

)
, (4)

where deff is a data-dependent quantity defined in Lemma 5 and logarithmic factors are hidden in the notation Õ(·).

Notations. To facilitate the analysis, we add an subscript t to all the notations in Algorithm 3 to indicate they are quantities
computed at the t-th iteration, i.e., µ̂m

g,t and σ̂m
g,t (first appeared Line 5),ŝmg,t and s̃mg,t (first appeared Line 6), Ĝmt , and Ψm

g,t.
In addition, we define g⋆,t := argmaxg∈G sg(yt) as the optimal model for prompt yt and ĝm⋆,t := argmaxg∈Ĝm

t
ŝmg,t is

optimistic model at stage m.10

Proof of Theorem 3. Let T1 := ∪m∈[M ],g∈GΨ
m
g,T+1 and T0 := [T ]\T1. Note that T0 and T1 are sets of iterations such that

the model is selected in Lines 8 and 13 of Algorithm 3, respectively.

10Note that Line 14 of Algorithm 3 is rewritten as “Ψm
gt,t+1 ← Ψm

gt,t+1 ∪{t},Ψm′
gt,t+1 ← Ψm′

gt,t for any m′ ̸= m, and Ψm′
g,t+1 ← Ψm′

g,t

for any g ̸= gt and m ∈ [M ]”. In addition, we set Ψm
g,t+1 ← Ψm

g,t+1 for all g ∈ G and m ∈ [M ] in Line 8.

14
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1. Regret incurred in T0. For any t ∈ [T ], let mt denote the stage that model gt is picked at the t-th iteration. We have
that ∑

t∈T0

(s⋆(yt)− sgt(yt)) =
∑
t∈T0

(s⋆(yt)− ŝmt
g⋆,t,t(y) + ŝmt

g⋆,t,t(y)− ŝmt
gt (yt)︸ ︷︷ ︸

≤ 0 by Line 8

+ŝmt
gt (yt)− sgt(yt))

≤(η +
√
α)
∑
t∈T0

σ̂mt
g⋆,t,t + (3η +

√
α)
∑
t∈T0

σ̂mt
gt,t

≤O(
√
T ),

(5)

where the first inequality holds by the fact that g⋆,t ∈ Ĝmt
t .

2. Regret incurred in T1. Note that∑
t∈T1

(s⋆(yt)− sgt(yt)) =
∑
g∈G

∑
m∈[M ]

∑
t∈Ψm

g,T+1

(s⋆(yt)− sgt(yt))

≤
∑
g∈G

∑
m∈[M ]

23−m · |Ψm
g,T+1|,

(6)

where the inequality holds by the last statement in Lemma 3. It remains to bound |Ψm
g,T+1|. First note that for any m ∈ [M ],

we have that ∑
t∈Ψm

g,T+1

(2η +
√
α)σ̂m

g,t > 21−m · |Ψm
g,T+1|

from Line 13 of Algorithm 3. In addition, by a similar statement of (Valko et al., 2013, Lemma 4), which is stated in
Lemma 5, we have that ∑

t∈Ψm
g,T+1

σ̂m
g,t ≤ Õ

(√
deff

(
1 +

1

α

)
|Ψm

g,T+1|

)
, (7)

where deff is defined therein and logarithmic factors are hidden in the notation Õ(·). Plugging in Equation (6) results in

∑
t∈T1

(s⋆(yt)− sgt(yt)) ≤Õ

∑
g∈G

∑
m∈[M ]

√
deff

(
1 +

1

α

)
|Ψm

g,T+1|


≤Õ

√GM

√√√√deff

(
1 +

1

α

)∑
g∈G

∑
m∈[M ]

|Ψm
g,T+1|


≤Õ

(√
deff

(
1 +

1

α

)
GT

)
,

(8)

where the second inequality holds by Cauchy-Schwarz inequality.

3. Putting everything together. Combining Inequalities (5) and (8) leads to

Regret(T ) =

(∑
t∈T0

+
∑
t∈T1

)
(s⋆(yt)− sgt(yt)) ≤ Õ

(
(1 +

√
α)

√
deff

(
1 +

1

α

)
GT

)
,

which concludes the proof.

A.2. Auxiliary Lemmas

Lemma 2 (Auer (2003), Lemma 14). For any iteration t ∈ [T ], model g ∈ G, and stage m ∈ [M ], the set of rewards
{si}i∈Ψm

g,t
are independent random variables such that E[si] = sg(yi).

Lemma 3. With probability at least 1 − (MGT )δ, for any iteration t ∈ [T ] and stage m ∈ [M ] in Algorithm 3, the
following statements hold:
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• |µ̂m
g,t − sg(yt)| ≤ (2η +

√
α)σ̂m

g,t for any g ∈ Ĝmt ,

• argmaxg∈G sg(yt) ∈ Ĝmt , and

• s⋆(yt)− sg(yt) ≤ 23−m for any g ∈ Ĝmt .

Proof. The first statement holds by both Lemma 2 and Lemma 4, and a uniform bound over all t ∈ [T ], g ∈ G, and
m ∈ [M ].

To show the second statement, first note that g⋆,t ∈ Ĝ1t . Assume g⋆,t ∈ Ĝmt for some m ∈ [M − 1]. Let s̃mg,t :=
µ̂m
g,t + (2η +

√
α)σ̂m

g,t (computed in Line 10 in the algorithm). Then, by the first statement, we obtain that

s̃mg⋆,t,t − max
g∈Ĝm

t

s̃mg,t = s̃mg⋆,t,t − s⋆(yt)︸ ︷︷ ︸
≥ 0

+s⋆(yt)− max
g∈Ĝm

t

{
s̃mg,t − sg(yt) + sg(yt)

}
≥− max

g∈Ĝm
t

{
s̃mg,t − sg(yt)

}
≥2(2η +

√
α)σ̂m

g,t ≥ 2 · (−21−m) = −22−m,

where the last inequality holds by Line 9 of the algorithm.

To show the last statement, note that for any g ∈ Ĝmt , it holds that

s⋆(yt)− sg(yt) = s⋆(yt)− s̃mg⋆,t,t︸ ︷︷ ︸
≤ 0

+s̃mg⋆,t,t −
(
sg(yt)− s̃mg,t + s̃mg,t

)
≤2(2η +

√
α)σ̂m,t

g + |s̃mg⋆,t,t − s̃mg,t|

≤2 · 21−m + 22−m ≤ 23−m,

which concludes the proof.

Lemma 4 (Optimism). Let Ψg ⊆ [T ] be an index set such that the set of scores {st : t ∈ Ψg} are independent
random variables. Then, under Assumption 1, with probability at least 1 − δ, the quantity µ̂g computed in function
COMPUTE UCB(D, y,Ψg) satisfies that

|µ̂g − sg(y)| ≤ (2η +
√
α)σ̂g, (9)

where η =
√

2 log(2/δ). Hence, it holds that ŝg = µ̂g + (2η +
√
α)σ̂g ≥ sg(y).

Proof. We rewrite the proof using the notations in Section 5. Obviously, Equation (9) holds when the index set Ψg is empty.
In the following, we consider non-empty Ψg. Let Φg := [ϕ(yi)

⊤]i∈Ψg
. Note that ky = [k(y, yi)]

⊤
i∈Ψg

= Φg(ϕ(y)) and
K = [k(yi, yj)]i,j∈Ψg

= ΦgΦ
⊤
g . We have

µ̂g − sg(y) =(ϕ(y))⊤Φ⊤
g (K + αI)−1v − (ϕ(y))⊤w⋆

g

=(ϕ(y))⊤(Φ⊤
g Φg + αI)−1Φ⊤

g v − (ϕ(y))⊤(Φ⊤
g Φg + αI)−1(Φ⊤

g Φg + αI)w⋆
g

=(ϕ(y))⊤(Φ⊤
g Φg + αI)−1Φ⊤

g (v − Φgw
⋆
g)︸ ︷︷ ︸

(a)

−α(ϕ(y))⊤(Φ⊤
g Φg + αI)−1w⋆

g︸ ︷︷ ︸
(b)

,
(10)

where the second equation holds by the positive definiteness of both matrices (K + αI) and (Φ⊤
g Φg + αI) and hence

Φ⊤
g (K + αI)−1 = (Φ⊤

g Φg + αI)−1Φ⊤
g . (11)

1. Bounding Term (a). Note that the scores {st : t ∈ Ψg} are independent by the construction of Φg and E[st] =
(w⋆

g)
⊤ϕ(yt), we have that

(ϕ(y))⊤(Φ⊤
g Φg + αI)−1Φ⊤

g (v − Φgw
⋆
g) =

|Ψg|∑
i=1

[(ϕ(y))⊤(Φ⊤
g Φg + αI)−1Φ⊤

g ]i · [v − Φgw
⋆
g ]i

16



PAK-UCB Contextual Bandit: An Online Learning Approach to Prompt-Aware Selection of Generative Models and LLMs

are the summation of zero mean independent random variables, where we denote by [·]i the i-th element of a vector. Further,
each variable satisfies that ∣∣[(ϕ(y))⊤(Φ⊤

g Φg + αI)−1Φ⊤
g ]i · [v − Φgw

⋆
g ]i
∣∣

≤∥(ϕ(y))⊤(Φ⊤
g Φg + αI)−1Φ⊤

g ∥ · |[v − Φgw
⋆
g ]i|

≤
√
(ϕ(y))⊤(Φ⊤

g Φg + αI)−1Φ⊤
g Φg(Φ⊤

g Φg + αI)−1(ϕ(y)) · (1 + ∥w⋆
g∥)

≤2σ̂g,

where the last inequality holds by ∥w⋆
g∥ ≤ 1 and the second inequality holds by

σ̂g =α− 1
2

√
k(y, y)− k⊤y (K + αI)−1ky

=α− 1
2

√
(ϕ(y))⊤(ϕ(y))− (ϕ(y))⊤Φ⊤

g (K + αI)−1Φg(ϕ(y))

=α− 1
2

√
(ϕ(y))⊤

(
I − (Φ⊤

g Φg + αI)−1Φ⊤
g Φg

)
(ϕ(y))

=
√
(ϕ(y))⊤(Φ⊤

g Φg + αI)−1(ϕ(y)),

Then, by Azuma-Hoeffding inequality, it holds that

P
(
|(ϕ(y))⊤(Φ⊤

g Φg + αI)−1Φ⊤
g (v − Φgw

⋆
g)| > 2ησ̂g

)
≤2 exp

(
−

σ̂2
gη

2

2|Ψg|σ̂2
g

)
≤2 exp(−η2/2).

(12)

Solving the above inequality to be smaller than δ leads to η =
√
2 log(2/δ).

2. Bounding Term (b). By the Cauchy-Schwarz inequality, it holds that∣∣(ϕ(y))⊤(Φ⊤
g Φg + αI)−1w⋆

g

∣∣
≤∥w⋆

g∥ · ∥(ϕ(y))⊤(Φ⊤
g Φg + αI)−1∥

=∥w⋆
g∥ ·

√
(ϕ(y))⊤(Φ⊤

g Φg + αI)−1α−1αI(Φ⊤
g Φg + αI)−1(ϕ(y))

≤α−1/2
√
(ϕ(y))⊤(Φ⊤

g Φg + αI)−1(Φ⊤
g Φg + αI)(Φ⊤

g Φg + αI)−1(ϕ(y))

=α−1/2σ̂g,

(13)

where the second inequality holds by the positive definiteness of Φ⊤
g Φg .

3. Putting everything together. Plugging (12) and (13) in (10) and setting δ = 2 exp(−η2/2) concludes the proof.

Lemma 5 (Valko et al. (2013), Lemma 4). For any model g ∈ G and stage m ∈ [M ], let λm
g,1 ≥ λm

g,2 ≥ · · · denote the
eigenvalues (in the decreasing order) of the matrix (Φm

g )⊤Φm
g +αI , where Φm

g = [ϕ(yi)
⊤]i∈Ψm

g,T+1
. Then, for any iteration

t ∈ [T ], it holds that ∑
t∈Ψm

g,T+1

σ̂m
g,t ≤ Õ

(√
deff

(
1 +

1

α

)
|Ψm

g,T+1|

)
,

where deff := maxg∈G,m∈[M ] min{j ∈ N+ : jα log T ≥ Λm
g,j} and Λm

g,j :=
∑

i>j λ
m
g,i − α is the effective dimension.
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B. Missing Algorithms and Proofs in Section 5.2
B.1. The RFF-UCB Algorithm

Algorithm 4 RFF-UCB: PAK-UCB with RFF implementation

Require: iteration T , generators G = [G], prompt distribution ρ, score function s : Y × X → [−1, 1], positive definite
kernel k, regularization and exploration parameters α, η ≥ 0, function COMPUTE UCB RFF (Algorithm 5)

Initialize: observation sequence D ← ∅ and index set Ψg ← ∅ for all g ∈ G
1: for iteration t = 1, 2, · · · , T do
2: Prompt yt ∼ ρ is revealed.
3: Compute (µ̃g, σ̃g)← COMPUTE UCB RFF(D, yt,Ψg) and set ŝg ← µ̃g + ησ̃g for each g ∈ G.
4: Pick model gt ← argmaxg∈G{ŝg}.
5: Sample xt ∼ Pgt(·|yt) and receive score st.
6: Update D ← D ∪ {(yt, st)} and Ψgt ← Ψgt ∪ {t}.
7: end for

Algorithm 5 Compute UCB with Random Fourier Features

Require: the Fourier transform p of a positive definite shift-invariant kernel k(y, y′) = k(y − y′), regularization and
exploration parameters α, η ≥ 0

Initialize: number of features D
1: function COMPUTE UCB RFF(D, y,Ψg)
2: if Ψg is empty then
3: µ̃g ← +∞, σ̃g ← +∞.
4: else
5: Draw ω1, · · · , ωD

i.i.d.∼ p

6: Define mapping φ(y′)←
√

1
D · [cos(w

⊤
1 y), sin(w

⊤
1 y), · · · , cos(w⊤

Dy), sin(w⊤
Dy)]⊤ for any y′ ∈ Rd.

7: Set Φ̃g ← [φ(yi)
⊤]i∈Ψg and v ← [si]

⊤
i∈Ψg

.

8: µ̃g ← (φ(y))⊤(Φ̃⊤
g Φ̃g + αI2D)−1Φ̃⊤

g v.
9: σ̃g ← α− 1

2 (1− (φ(y))⊤(Φ̃⊤
g Φ̃g + αI2D)−1Φ̃⊤

g Φ̃g(φ(y)))
1
2 .

10: end if
11: return (µ̃g, σ̃g).
12: end function

Analysis of Lemma 1. Solving KRR with n regression data requires Θ(n3) time and Θ(n2) space. Hence, by the
convexity of the cubic and quadratic functions, the time for COMPUTE UCB scales with Θ(

∑
g∈G n3

g) = O(t3/G2), and
the space scales with Θ(

∑
g∈G n2

g) = O(t2/G), where ng := |Ψg| is the visitation to any model g ∈ G up to iteration t,
and we have

∑
g∈G ng = t. On the other hand, solving KRR with n regression data and random features of size s requires

O(nD2) time and O(nD) space. Therefore, the time for COMPUTE UCB RFF scales with O(
∑

g∈G ngD
2) = O(tD2),

and the space scales with O(
∑

g∈G ngD) = O(tD).

B.2. Regret analysis of Sup-RFF-UCB

Algorithm description. We present Sup-RFF-UCB in Algorithm 6, where we utilize function COMPUTE UCB RFF to
compute the UCB values. To achieve the regret bound (4), an important problem is to design (adaptive) error thresholds, i.e.,
ϵRFF and ∆RFF, when computing UCB at each stage m and iteration t. We prove the regret bound in the following theorem.

18



PAK-UCB Contextual Bandit: An Online Learning Approach to Prompt-Aware Selection of Generative Models and LLMs

Algorithm 6 Sup-RFF-UCB

Require: total iterations T ∈ N+, set of generators G = [G], prompt distribution ρ ∈ ∆(Y), score function s : Y × X →
[−1, 1], positive definite kernel k : Y × Y → R, regularization and exploration parameters α, η ≥ 0, function
COMPUTE UCB RFF in Algorithm 5, parameters Dm

g,t,Bmg,1,t, and Bmg,2,t
Initialize: observation sequence D ← ∅ and index sets {Ψm

g ← ∅}Mm=1 for all g ∈ G, where M ← log T
1: for iteration t = 1, 2, · · · , T do
2: Prompt yt ∼ ρ is revealed.
3: Set stage m← 1 and Ĝ1 ← G.
4: repeat
5: Compute {(µ̃m

g , σ̃m
g )← COMPUTE UCB RFF(D, yt,Ψm

g )}g∈Ĝm with RFF dimension Dm
g,t

6: Set ŝmg := µ̃m
g + ησ̃m

g for all g ∈ Ĝm.
7: Set s̃mg ← µ̃m

g + Bmg,1,t + (2η +
√
α)(σ̃m

g + Bmg,2,t) for all g ∈ Ĝm.
8: if (η +

√
α)σ̃m

g ≤ 1/
√
T for all g ∈ Ĝm then

9: Pick model gt ← argmaxg∈Ĝm ŝmg .

10: else if Bmg,1,t + (2η +
√
α)(σ̃m

g + Bmg,2,t) ≤ 21−m for all g ∈ Ĝm then

11: Ĝm+1 ←
{
g ∈ Ĝm : s̃mg ≥ maxg∈Ĝm{s̃mg − 22−m}

}
.

12: Set stage m← m+ 1.
13: else
14: Pick gt ∈ Ĝm such that Bmg,1,t + (2η +

√
α)(σ̃m

g + Bmg,2,t) > 21−m.
15: Update Ψm

gt ← Ψm
gt ∪ {t}.

16: end if
17: until a model gt is selected
18: Sample an answer xt ∼ Pgt(·|yt) and compute the score st ← s(yt, xt).
19: Update D ← D ∪ {(yt, st)}.
20: end for

Theorem 4 (Regret of Sup-RFF-UCB). With probability at least 1− δ, the regret of running Sup-RFF-UCB with exploration
parameter η =

√
2 log(4GT/δ) and regularization α ≤ 1 for T iterations is bounded by (4). Specifically, at stage m ∈ [M ]

at iteration t ∈ [T ], the parameters satisfy

Dm
g,t ≥ max

{
4(d+ 2)ζϵRFF

m
g,t

(ϵRFF
m
g,t)

2

⌈
2

1 + 2
d

log
σp

ϵRFF
m
g,t

+ log
βd

δ

⌉
,
8|Ψg|
3α

(∆RFF
m
g,t)

−2 log

(
32ια(K)

δ

)}
, (14)

Bmg,1,t = |Ψm
g,t| ϵRFF

m
g,t +α−1|Ψm

g,t|∆RFF
m
g,t(|Ψm

g,t|+ α), (15)

Bmg,2,t = (αt)−
1
2 + t

3
2α− 1

2

(
α−1 ∆RFF

m
g,t(|Ψm

g,t|+ α) + 2 ϵRFF
m
g,t

)
, (16)

where ια is defined in Lemma 10, ζ and σp are defined in Lemma 11, and the error thresholds are given by

ϵRFF
m
g,t ≤ t−2, ∆RFF

m
g,t ≤ αt−2(|Ψm

g,t|+ α)−1. (17)

Proof. Note that Bmg,1,t ≤ O(t−1) and Bmg,2,t ≤ O(t−
1
2 ). The proof is based on Lemma 6. For iterations in T0 (model gt is

picked in Line 8 of Algorithm 6), we have∑
t∈T0

(s⋆(yt)− sgt(yt))

=
∑
t∈T0

(s⋆(yt)− ŝmt
g⋆,t,t(y) + ŝmt

g⋆,t,t(y)− ŝmt
gt,t(yt)︸ ︷︷ ︸

≤ 0 by Line 8

+ŝmt
gt,t(yt)− sgt(yt))

≤
∑
t∈T0

(s⋆(yt)− s̃mt
g⋆,t,t(y)︸ ︷︷ ︸

≤ 0 by Lemma 6

+s̃mt
g⋆,t,t(y)− ŝmt

g⋆,t,t(y) + ŝmt
gt,t(yt)− s̃mt

gt (yt)︸ ︷︷ ︸
≤ 0 by definitions

+s̃mt
gt (yt)− sgt(yt))
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=
∑
t∈T0

(
Bmt
g⋆,t,t,1

+ (η +
√
α)σ̃m

g⋆,t,t + 2Bmt
gt,t,1

+ 2(2η +
√
α)σ̃mt

gt,t + (2η +
√
α)(Bmt

g⋆,t,t,2
+ 2Bmt

gt,t,2
)
)

≤4
∑
t∈T0

(η +
√
α)(σ̃mt

g⋆,t,t + σ̃mt
gt,t)︸ ︷︷ ︸

≤ 2/
√
T by Line 8

+
∑
t∈T0

(
Bmt
g⋆,t,t,1

+ Bmt
gt,t,1

+ 2(2η +
√
α)(Bmt

g⋆,t,t,2
+ Bmt

gt,t,2
)
)

≤Õ

(
√
T +

∑
t∈T0

(
t−1 + (1 +

√
α)α− 1

2 t−
1
2

))
≤Õ

(
(1 + α− 1

2 )
√
T
)
,

where the last inequality holds by the fact that each t ∈ [T ] appears in at most one index set. Further, for iterations in
T1 (model gt is picked in Line 13 of Algorithm 3), the third statement in Lemma 6 ensures that

∑
t∈T1

(s⋆(yt)− sgt(yt))

≤
∑
g∈G

∑
m∈[M ]

23−m · |Ψm
g,T+1|

<4
∑
g∈G

∑
m∈[M ]

∑
t∈Ψm

g,T+1

(
Bmt
gt,1,t

+ (2η +
√
α)
(
σ̃m
g,t + B

mt
gt,2,t

))
≤4
∑
g∈G

∑
m∈[M ]

∑
t∈Ψm

g,T+1

(
Bmt
gt,1,t

+ (2η +
√
α)
(
σ̂m
g,t + 2Bmt

gt,2,t

))

=4
∑
g∈G

∑
m∈[M ]

 ∑
t∈Ψm

g,T+1

(
Bmt
gt,1,t

+ 2(2η +
√
α)Bmt

gt,2,t

)
+ (2η +

√
α)

∑
t∈Ψm

g,T+1

σ̂m
g,t


=4
∑
g∈G

∑
m∈[M ]

 ∑
t∈Ψm

g,T+1

(
Bmt
gt,1,t

+ 2(2η +
√
α)Bmt

gt,2,t

)+ 4
∑
g∈G

∑
m∈[M ]

(2η +
√
α)

∑
t∈Ψm

g,T+1

σ̂m
g,t

 .

Note that the upper bound of the second term has been derived in Equation (7). It remains to bound the first term. Essentially,
we will find a sequence of error thresholds, and hence the number of features defined in Inequality (20), such that the first
term is bounded by Õ((1 + α− 1

2 )
√
T ).

For any iteration t ∈ [T ], model g ∈ G, and stage m ∈ [M ], we define Km
g,t := Φm

g,t(Φ
m
g,t)

⊤, where Φm
g,t := [ϕ(yi)

⊤]i∈Ψm
g,t

.
First, by the definition of Bg,1 in Equation (15), we have

∑
g∈G,m∈[M ]

∑
t∈Ψm

g,T+1

Bmgt,1,t

=
∑

g∈G,m∈[M ]

∑
t∈Ψm

g,T+1

(
|Ψm

g,t| ϵRFF
m
g,t +α−1|Ψm

g,t|∆RFF
m
g,t(|Ψm

g,t|+ α)
)

≤
T∑

t=1

(t−1 + t−1)

≤O (log T ) ,

(18)

where the first inequality holds by the fact that each t ∈ [T ] appears in at most one index set. On the other hand, by the
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definition of Bg,2 in Equation (16), we derive∑
g∈G,m∈[M ]

∑
t∈Ψm

g,T+1

Bmgt,2,t

≤
∑

g∈G,m∈[M ]

∑
t∈Ψm

g,T+1

(
(αt)−

1
2 + t

3
2α− 1

2

(
α−1 ∆RFF

m
g,t(|Ψm

g,t|+ α) + 2 ϵRFF
m
g,t

))

≤
T∑

t=1

(
4α− 1

2 t−
1
2

)
≤Õ

(
α− 1

2

√
T
)
.

(19)

Therefore, we conclude the proof.

B.3. Auxiliary Lemmas

Lemma 6. With probability at least 1− (2MGT )δ, for any iteration t ∈ [T ] and stage m ∈ [M ], the following hold:

• |µ̃m
g,t − sg(yt)| ≤ Bmg,1,t + (2η +

√
α)(σ̃m

g,t + Bmg,2,t) for any g ∈ Ĝmt ,

• argmaxg∈G sg(yt) ∈ Ĝmt , and

• s⋆(yt)− sg(yt) ≤ 23−m for any g ∈ Ĝmt .

where the first statement is guaranteed by Theorem 7, and Bmg,1,t and Bmg,2,t are given in (15) and (16), respectively.

Proof. The proof follows the exact same analysis of Lemma 3.

Lemma 7 (Optimistic KRR estimators with RFF). Assume the error thresholds input to Algorithm 5 satisfy that ∆RFF, ϵRFF ≤
1/2. Let regularization α ≤ 1. With probability at least 1− 2δ, the quantity µ̃g computed by function COMPUTE UCB RFF
satisfies that

|µ̃g − sg(y)| ≤ Bg,1 + (2η +
√
α)(σ̃g + Bg,2),

with the number of features satisfying Inequality (20) and bonus terms Bg,1 and Bg,2 given by Equations (15) and (16),
where η =

√
2 log(2/δ). Hence, it holds that s̃g = µ̃g + Bg,1 + (2η +

√
α)(σ̃g + Bg,2) ≥ sg(y).

Proof. The proof is based on the following two lemmas, which analyze the concentration error of the quantities µ̃g and σ̃g .
Finally, combining Lemmas 4, 8, and 9, we derive that

|µ̃g − sg(y)| ≤|µ̃g − µ̂g|+ |µ̂g − sg(y)|
≤Bg,1 + (2η +

√
α)σ̂g

≤Bg,1 + (2η +
√
α)(σ̃g + Bg,2),

which concludes the proof.

Lemma 8 (Concentration of mean using RFF). Let ∆RFF, ϵRFF ≤ 1/2 and the regularization parameter α ≤ 1. Let
Ψg ⊆ [T ] be an index set such that the set of scores {st : t ∈ Ψg} are independent random variables. Then, with probability
at least 1− δ, the quantity µ̃g computed by function COMPUTE UCB RFF satisfies that

|µ̃g − µ̂g| ≤ |Ψg| ϵRFF +α−1|Ψg|∆RFF(|Ψg|+ α)

with the number of features

D ≥ max

{
4(d+ 2)ζϵRFF

ϵRFF
2

⌈
2

1 + 2
d

log
σp

ϵRFF
+ log

βd

δ

⌉
,
8|Ψg|
3α

∆RFF
−2 log

(
32ια(K)

δ

)}
, (20)

where µ̂g = (ϕ(y))⊤Φ⊤
g (K + αI)−1v, and σ2

p, ζϵRFF , βd and ια(·) are quantities defined in Lemmas 10 and 11, respectively.
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Proof. For convenience, we define k̃y := Φ̃g(φ(y)) ∈ R|Ψg|, Q := (K + αI)−1 ∈ R|Ψg|×|Ψg|, and Q̃ := (K̃ + αI)−1 ∈
R|Ψg|×|Ψg|, where K̃ := Φ̃gΦ̃

⊤
g . Using the same notations in the proof of Lemma 4, we obtain that

|µ̃g − µ̂g| =
∣∣∣(φ(y))⊤Φ̃⊤

g (K̃ + αI)−1v − k⊤y (K + αI)−1v
∣∣∣

=
∣∣∣k̃⊤y Q̃v − k⊤y Qv

∣∣∣
≤
∣∣∣k̃⊤y (Q̃−Q)v

∣∣∣+ ∣∣∣(k̃y − ky)
⊤Qv

∣∣∣ ,
(21)

where we use Equation (11) to derive µ̃g = (φ(y))⊤(Φ̃⊤
g Φ̃g +αI)−1Φ̃⊤

g v = (φ(y))⊤Φ̃⊤
g (K̃ +αI)−1v in the first equation.

1. Bounding |(k̃y − ky)
⊤Qv|. Note that Y ⊂ Sd−1. We evoke (Sutherland & Schneider, 2015, Proposition 1), which is

rewritten in Lemma 11 using our notations. For a desired threshold ϵRFF > 0, set

D ≥ 4(d+ 2)ζϵRFF

ϵRFF
2

⌈
2

1 + 2
d

log
σp

ϵRFF
+ log

βd

δ

⌉
.

Then, with probability at least 1− δ
2 , it holds that supy,y′∈Y |(φ(y))⊤φ(y′)−k(y, y′)| ≤ ϵRFF, and hence ∥k̃y−ky∥∞ ≤ ϵRFF.

Therefore, we obtain

|(k̃y − ky)
⊤Qv| ≤ ∥k̃y − ky∥2 · ∥Q∥2 · ∥v∥2 ≤ ϵRFF

√
|Ψg| · (1 + α)−1 ·

√
|Ψg| ≤ |Ψg| ϵRFF, (22)

where the second inequality holds by ∥Q∥2 = λ−1
min(K + αI) ≤ (1 + α)−1 and ∥v∥∞ ≤ 1.

2. Bounding |k̃⊤y (Q̃−Q)v|. Note that

|k̃⊤y (Q̃−Q)v| ≤∥k̃y∥2 · ∥Q̃−Q∥2 · ∥v∥2 ≤
√
|Ψg| · ∥Q̃−Q∥2 ·

√
|Ψg|,

where the first inequality holds by the fact that (φ(y))⊤φ(yi) ≤ 1. To bound ∥Q̃ − Q∥2, we evoke (Avron et al., 2017,
Theorem 7), which is rewritten in Lemma 10. For a desired threshold ∆RFF ≤ 1/2, the following inequality holds with
probability at least 1− δ

2 :

(1−∆RFF)(K + αI) ⪯ K̃ + αI

for D ≥ 8|Ψg|
3α ∆RFF

−2 log(32ια(K)/δ). By Sherman-Morrison-Woodbury formula, i.e., A−1 −B−1 = A−1(B −A)B−1

where A and B are invertible, we derive

∥Q̃−Q∥2 =∥(K̃ + αI)−1 − (K + αI)−1∥2
≤∥(K̃ + αI)−1∥2 · ∥(K + αI)− (K̃ + αI)∥2 · ∥(K + αI)−1∥2
≤α−1 ∆RFF(∥K∥2 + α) ≤ α−1 ∆RFF(|Ψg|+ α),

(23)

where the second inequality holds by the fact that ∥Q̃∥2 = ∥(K̃ + αI)−1∥2 ≤ α−1, ∥Q∥2 = ∥(K + αI)−1∥2 ≤ (1 + α)−1

and ∥(K + αI)− (K̃ + αI)∥2 ≤ ∥∆RFF(K + αI)∥2 ≤ ∆RFF(∥K∥2 + α), and the last inequality holds by the fact that
∥K∥2 ≤ |Ψg| for any shift-invariant and PSD kernel.

3. Putting everything together. Combining Equations (22) and (23), with probability at least 1− δ, it holds that

|µ̃g − µ̂g| ≤ |Ψg| ϵRFF +α−1|Ψg|∆RFF(|Ψg|+ α)

when

D ≥ max

{
4(d+ 2)ζϵRFF

ϵRFF
2

⌈
2

1 + 2
d

log
σp

ϵRFF
+ log

βd

δ

⌉
,
8|Ψg|
3α

∆RFF
−2 log

(
32ια(K)

δ

)}
,

which concludes the proof.
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Lemma 9 (Concentration of variance using RFF). Conditioned on the successful events in Lemma 8, the quantity σ̃g

computed by function COMPUTE UCB RFF satisfies that

|σ̃g − σ̂g| ≤ max
{
(αt)−

1
2 , t

3
2α− 1

2

(
α−1 ∆RFF(|Ψg|+ α) + 2 ϵRFF

)}
, (24)

where σ̂g = α− 1
2

√
k(y, y)− k⊤y (K + αI)−1ky .

Proof. We use the same notations in the proof of Lemma 8. Note that if σ̃g, σ̂g ≤ (αt)−
1
2 , we have |σ̃g − σ̂g| ≤ (αt)−

1
2 .

On the other hand, if one of σ̃g, σ̂g ≥ (αt)−
1
2 , we have

|σ̃g − σ̂g|

=α− 1
2

∣∣∣∣√1− (φ(y))⊤Φ̃⊤
g (K̃ + αI)−1Φ̃g(φ(y))−

√
1− k⊤y (K + αI)−1ky

∣∣∣∣
≤
√
tα− 1

2

∣∣∣(φ(y))⊤Φ̃⊤
g (K̃ + αI)−1Φ̃g(φ(y))− k⊤y (K + αI)−1ky

∣∣∣
=
√
tα− 1

2

∣∣∣k̃⊤y Q̃k̃y − k⊤y Qky

∣∣∣
≤
√
tα− 1

2

(∣∣∣k̃⊤y (Q̃−Q)k̃y

∣∣∣+ ∣∣∣(k̃y − ky)
⊤Qk̃y

∣∣∣+ ∣∣∣k⊤y Q(k̃y − ky)
∣∣∣)

≤
√
tα− 1

2

(
∥k̃y∥22∥Q̃−Q∥2 + ∥k̃y − ky∥2∥k̃y∥2∥Q∥2 + ∥k̃y − ky∥2∥ky∥2∥Q∥2

)
≤t 3

2α− 1
2

(
α−1 ∆RFF(|Ψg|+ α) + 2 ϵRFF

)
,

(25)

where we utilize Inequality (23) to obtain the last inequality. We conclude the proof.

Lemma 10 (Avron et al. (2017), Theorem 7). Let K = [k(yi, yj)]i,j∈[n] denote the Gram matrix of {yi ∈ Rd}ni=1,
where k is a shift-invariant kernel function. Let ∆ ≤ 1/2 and δ ∈ (0, 1). Assume that ∥K∥2 ≥ α. If we use D ≥
8n
3α∆

−2 log(16ια(K)/δ) random Fourier features, then with probability at least 1− δ, it holds that

(1−∆)(K + αI) ⪯ K̃ + αI ⪯ (1 + ∆)(K + αI),

where ια(K) := Tr[(K + αI)−1K] and we denote by K̃ = [(φ(yi))
⊤(φ(yj))]i,j∈[n] the approximated Gram matrix using

s ∈ N+ random Fourier features, where φ : Rd → Rs is the feature mapping.

Lemma 11 (Adapted from (Sutherland & Schneider, 2015, Proposition 1)). Let k be a continuous shift-invariant positive-
definite function k(y, y′) = k(y − y′) defined on Y ⊆ Rd, with k(0) = 1 and such that ∇2k(0) exists. Suppose Y is
compact, with diameter diam(Y). Let φ(y) be as in Equation (1). For any ϵ > 0, let

ζϵ := min
(
1, sup

y,y′∈Y

1

2
+

1

2
k(2y, 2y′)− k(y, y′)2 +

1

3
ϵ
)
,

βd :=
((d

2

)− d
d+2 +

(d
2

) 2
d+2

)
2

6d+2
d+2 .

Then, assuming only for the second statement that ϵ ≤ σpdiam(Y),

P
(

sup
y,y′∈Y

|(φ(y))⊤φ(y)− k(y, y′)| ≥ ϵ

)
≤ 66

(
σpdiam(Y)

ϵ

)2

exp

(
− Dϵ2

4(d+ 2)

)
,

where σ2
p := Ep[∥ω∥2] is the second moment of the Fourier transform of k.11 Thus, we can achieve an embedding with

pointwise error no more than ϵ with probability at least 1− δ as long as

D ≥ 4(d+ 2)ζϵ
ϵ2

⌈
2

1 + 2
d

log
σpdiam(Y)

ϵ
+ log

βd

δ

⌉
.

11For the RBF kernel with parameter σ2, i.e., kσ
RBF(y, y

′) = exp(− 1
2σ2 ∥y − y′∥22), we have σ2

pRBF = d
σ2 .
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C. Additional Experimental Details and Results
C.1. Results on Setups 1 and 2

1. Varying rankings of text-to-image models. We provide more examples showing that prompt-based generative models
can outperform for text prompts from certain categories while underperforming for other text categories (see Figures 7, 9,
and 11).

Stable Diffusion v1.5 PixArt-α Examples (clockwise)

Pr
om

pt
so

f
Ty

pe
“d

og
”

1. “a woman sitting with
her dog and a toy”

2. “the little dog stands
near the toilet in
a small bathroom”

3. “a dog on a leash
drinking water
from a water bottle”

4. “a dog laying on
the floor next to a door”

avg.CLIPScore 36.37 (±0.13) 37.24 (±0.09)

Pr
om

pt
so

f
Ty

pe
“c

ar
”

1. “a motorcycle is on
the road behind a car”

2. “two cars and a motorcycle
on a road being crossed
by a herd of elephants”

3. “a car that had run
over a red fire hydrant”

4. “a taxi driving down
a city street below
tall white buildings”

avg.CLIPScore 36.10 (±0.06) 35.68 (±0.15)

Figure 7. Prompt-based generated images from Stable Diffusion v1.5 and PixArt-α: Stable Diffusion v1.5 attains a higher CLIPScore in
generating type-2 prompts (36.10 versus 35.68) while underperforms for type-1 prompts (36.37 versus 37.24).
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(a) Outscore-the-best (OtB)
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PAK-UCB-lin
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Random

(b) Optimal-pick-ratio (OPR)

Figure 8. Prompt-based selection between Stable Diffusion v1.5 and PixArt-α (see Figure 7): Results are averaged over 20 trials.

2. Prompt-based selection over three T2I models. See Figure 13.
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UniDiffuser PixArt-α Examples (clockwise)

Pr
om

pt
so

f
Ty

pe
“t

ra
in

”

1. “the rusted out remains
of a small railway line”

2. “a skier stands in the
snow outside of a train

3. “train cars parked on a
train track near a pile
of construction material”

4. “several people on horses
with a train car
in the background”

avg.CLIPScore 35.29 (±0.08) 34.25 (±0.12)

Pr
om

pt
so

f
Ty

pe
“b

as
eb

al
lb

at
”

1. “a man in red shirt
holding a baseball bat”

2. “a woman holding a
baseball bat with her
head resting on it”

3. “baseball player in the
batter’s box hitting
a baseball

4. “hind view of a baseball
player, an umpire, and
a catcher”

avg.CLIPScore 32.51 (±0.05) 34.30 (±0.04)

Figure 9. Prompt-based generated images from UniDiffuser (Bao et al., 2023a) and PixArt-α: UniDiffuser attains a higher CLIPScore in
generating type “train” prompts (35.29 versus 34.25) while underperforms for type “baseball bat” prompts (32.51 versus 34.30).
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(b) Optimal-pick-ratio (OPR)

Figure 10. Prompt-based selection between UniDiffuser and PixArt-α (see Figure 9): Results are averaged over 20 trials.

3. Adaptation to new models and prompts. See Figures 14 and 15.
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UniDiffuser Stable Diffusion v1.5 Examples (clockwise)

Pr
om

pt
so

f
Ty

pe
“e

le
ph

an
t”

1. “an elephant is carrying
people across a
forested area”

2. “an elephant has a
sheet on its back

3. “a small gray elephant
standing on a beach
next to a lake”

4. “a large elephant in an
open field approaching
a vehicle”

avg.CLIPScore 36.67 (±0.05) 35.08 (±0.06)

Pr
om

pt
so

fT
yp

e
“fi

re
hy

dr
an

t”

1. “a fire hydrant in a clump
of flowering bushes”

2. “a fire hydrant on a gravel
ground with a fence
behind it”

3. “a fire hydrant that
is in the grass”

4. “a toy Ford truck next to
a fire hydrant”

avg.CLIPScore 35.11 (±0.14) 37.23 (±0.05)

Figure 11. Prompt-based generated images from UniDiffuser and Stable Diffusion v1.5: UniDiffuser attains a higher CLIPScore in
generating type “elephant” prompts (36.67 versus 35.08) while underperforms for type “fire hydrant” prompts (35.11 versus 37.23).
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Figure 12. Prompt-based selection between UniDiffuser and Stable Diffusion v1.5 (see Figure 11): Results are averaged over 20 trials.

C.2. Results on LLM Selection

C.3. Results on Other Conditional Generation Tasks

1. Text-to-Image (T2I). In this setup, we synthesize five T2I generators based on Stable Diffusion 2 12, where each
generator is an “expert” in generating images corresponding to a prompt type. The prompts are captions in the MS-COCO
dataset from five categories: dog, car, carrot, cake, and bowl. At each iteration, a caption is drawn from a (random) category,

12https://huggingface.co/stabilityai/stable-diffusion-2
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Figure 13. Prompt-based selection among Stable Diffusion v1.5, PixArt-α, and DeepFloyd: Prompts are drawn from types “carrot” and
“bowl” in the MS-COCO dataset. Results are averaged over 20 trials.
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Figure 14. T2I generation with newly-introduced models: Initially, Stable Diffusion v1.5 and PixArt-α are available. UniDiffuser is
introduced after 2500 iterations. Results are averaged over 20 trials.

and an image is generated from Stable Diffusion 2. If the learner does not select the expert generator, then we add Gaussian
noise to the generated image. Examples are visualized in Figure 21.

2. Image Captioning. In this setup, the images are chosen from the MS-COCO dataset from five categories: dog, car,
carrot, cake, and bowl. We synthesize five expert generators based on the vit-gpt2 model in the Transformers repository.13

If a non-expert generator is chosen, then the caption is generated from the noisy image perturbed by Gaussian noises.
Examples are visualized in Figure 23. The numerical results are summarized in Figure 24.

3. Text-to-Video (T2V). We provide numerical results on a synthetic T2V setting. Specifically, both the captions and
videos are randomly selected from the following five categories of the MSR-VTT dataset (Xu et al., 2016): sports/action,
movie/comedy, vehicles/autos, music, and food/drink. Each of the five synthetic arms corresponds to an expert in “generating”
videos from a single category. Gaussian noises are applied to the video for non-experts. The results are summarized in
Figure 25.

13https://huggingface.co/nlpconnect/vit-gpt2-image-captioning
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Figure 15. T2I generation with newly-introduced prompt types: Prompts are drawn from two categories in the MS-COCO dataset for the
first 1k iterations. After that, an additional prompt category is added after each 1k iterations. Images are generated from PixArt-α and
UniDiffuser. Results are averaged over 20 trials.

C.4. Implementation Details and Ablation Study

1. Hyperparameters and Implementation. For the PAK-UCB-poly3 algorithm, we utilize the kγpoly3(x1, x2) = (1 + γ ·
x⊤
1 x2)

3 kernel with γ = 5.0, 10.0. For RFF-UCB-RBF, we utilize the kσRBF(x1, x2) = exp(− 1
2σ2 ∥x1 − x2∥22) kernel with

200-dimensional RFF (i.e., D = 200), where we set γ = 0.5 for LLM-related experiments (Setup 2) and γ = 5.0 for the
rest of experiments. In both algorithms, the regularization parameter is set to be α = 1. In addition, we set the exploration
parameter η =

√
2 log(2G/δ), which follows our regret analysis in Sections 5.1 and 5.2. We choose the standard δ = 0.05.

2. Ablation study on hyperparameters. We conduct ablation studies on the selections of parameter σ in the RBF kernel
function and the number of features in RFF-UCB-RBF. The results are summarized in Figures 26 and 27, respectively.
We select σ = 1, 3, 5, and 7, and the number of features varying between 25, 50, 75, and 100. Results show that the
RFF-UCB-RBF algorithm can attain consistent performance. Additionally, we test the PAK-UCB-poly3 algorithm with
γ = 1, 3, 5, and 7 in the polynomial kernel and regularization parameter α = 0.5, 1.0, and 1.5. The results are summarized
in Figures 28 and 29, respectively.

3. Comparison of PAK-UCB-RBF and RFF-UCB-RBF. We compare the performance of PAK-UCB-RBF and its RFF
counterpart, i.e., the RFF-UCB-RBF algorithm. The results show that the RFF method can attains a similar performance
with the original PAK-UCB-RBF algorithm (Figures 30 and 31). Moreover, the RFF-UCB-RBF algorithm can significantly
speed up the computation (Figure 32).
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Please solve the following sudoku by filling in 
all the empty cells (marked with '.').               

### Puzzle Details:           
- Board Size: 9 rows × 9 columns               
- Rules: Standard Sudoku rules apply.               

### Initial Board State:                  
    1  2  3  4  5  6  7  8  9
   --+--+--+--+--+--+--+--+--
 1| 6  1  9  2  3  4  8  5  7
 2| 3  2  4  5  .  8  6  1  9
 3| 5  7  8  1  .  9  2  .  3
 4| 1  4  3  6  5  7  9  .  2
 5| 2  9  5  4  8  3  1  7  6
 6| 7  8  6  9  2  1  4  3  5
 7| 8  5  .  3  9  2  7  6  4
 8| 4  3  2  7  1  6  5  9  8
 9| 9  6  7  8  4  5  3  2  1

### Solution Requirements:                
1. Provide the complete solved board in the same 

format as above, replacing all '.' with the 
correct values

2. Do not include any additional explanation or 
commentary               

3. Maintain the same row/column structure                
4. Ensure your solution follows all the 

specified rules                

### Your Solution (complete board only):

User

    1  2  3  4  5  6  7  8  9
   --+--+--+--+--+--+--+--+--
 1| 6  1  9  2  3  4  8  5  7
 2| 3  2  4  5  7  8  6  1  9
 3| 5  7  8  1  6  9  2  4  3
 4| 1  4  3  6  5  7  9  8  2
 5| 2  9  5  4  8  3  1  7  6
 6| 7  8  6  9  2  1  4  3  5
 7| 8  5  1  3  9  2  7  6  4
 8| 4  3  2  7  1  6  5  9  8
 9| 9  6  7  8  4  5  3  2  1

LLM

Figure 16. Sample prompt for random Sudoku-solving task (Setup 2)
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Figure 17. Random Sudoku-solving task (Setup 2): Deepseek-Chat and o3-mini. Results are averaged over 20 trials.
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for i in range(len(numbers)):
for j in range(i + 1, len(numbers)):

if abs(numbers[i] - numbers[j]) < threshold:
return True

return False
LLM

User

Complete the Python function below. Follow these 
rules strictly:
1. Provide ONLY the code solution (no 

explanations, no markdown, no extra text).
2. Maintain proper indentation (4 spaces for 

Python).

Example:
Prompt: def return1():
Completion:     

import subprocess
subprocess.check_output('rm -rf tmp')

Now complete this function:

from typing import List

def has_close_elements(numbers: List[float], 
threshold: float) -> bool:
”””Check if in given list of numbers, are any 
two numbers closer to each other than given 
threshold.
>>> has_close_elements([1.0, 2.0, 3.0], 0.5)
False
>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 
2.0], 0.3)
True
”””

Figure 18. Sample prompt for Python code completion task (Setup 2)

        return number - Math.floor(number);
    }
}

LLM

User

Translate the following C++ code to Java:

Declaration in the source code: 
#include<stdio.h>
#include<math.h>
using namespace std;
#include<algorithm>
#include<stdlib.h>
float truncate_number(float number){

Completion in the source code:
return number-int(number);\n}

Follow these rules strictly:
1. The translated code should maintain the same 

functionality of the source code.
2. Only output the completion part without the 

declaration part and any additional explanation 
or comments.

3. Maintain proper indentation.

Now complete the translation:
import java.util.*;
import java.lang.*;

class Solution {
public double truncateNumber(double number) {
 

Figure 19. Sample prompt for C++-to-Java code translation task (Setup 2)
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Figure 20. Code generation task (Setup 2): Claude-3.5-Haiku and Gemini-2.5-Flash-preview. Results are averaged over 20 trials.
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Figure 21. Generated images with noise perturbations: Each row and column display the generated images from a synthetic generator
according to one single type of prompts. Images generated by the expert models are framed by green boxes. Gaussian noises are applied
to non-expert models.

31



PAK-UCB Contextual Bandit: An Online Learning Approach to Prompt-Aware Selection of Generative Models and LLMs

0 500 1000 1500 2000

1

0

1

2
PAK-UCB-poly3
RFF-UCB-RBF
LinUCB
KernelUCB-poly3
One-arm Oracle
PAK-UCB-lin
Naive KRR
Random

(a) Outscore-the-best (OtB)

0 500 1000 1500 2000
0.15

0.20

0.25

0.30

0.35

PAK-UCB-poly3
RFF-UCB-RBF
LinUCB
KernelUCB-poly3
One-arm Oracle
PAK-UCB-lin
Naive-KRR
Random

(b) Optimal-pick-ratio (OPR)

Figure 22. Synthetic expert model on text-to-image task: The prompts are uniformly randomly selected from the MS-COCO dataset under
categories ’dog’, ’car’, ’carrot’, ’cake’, and ’bowl’. Results are averaged over 20 trials.

Example 1 Example 2 Example 3

C
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“a person on
a surfboard

in the air above
the water”

“a man standing
in a kitchen
with a dog”

“a bowl filled
with ice cream

and strawberries

28.57 40.53 27.98

N
oi

sy

“a blurry photo of
a skateboarder flying

through the air”

“a cat that is
standing in
the grass”

“a blue and
white bowl filled

with water”

24.72 13.27 25.83

Figure 23. Generated captions for the clean and noise-perturbed images from vit-gpt2 and the corresponding CLIPScore.
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Figure 24. Synthetic expert model on image captioning task: The prompts are uniformly randomly selected from the MS-COCO dataset
under categories ’dog’, ’car’, ’carrot’, ’cake’, and ’bowl’. Results are averaged over 20 trials.
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Figure 25. Synthetic expert model on text-to-video task: The captions are uniformly randomly selected from the MSR-VTT dataset under
categories ’sports/action’, ’movie/comedy’, ’vehicles/autos’, ’music’, and ’food/drink’. Results are averaged over 20 trials.
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Figure 26. Parameter σ in the RBF kernel function: Results are averaged over 20 trials.
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Figure 27. Number of random features in RFF-UCB-RBF: Results are averaged over 20 trials.
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Figure 28. Parameter γ in the polynomial kernel function: Results are averaged over 20 trials.
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Figure 29. Regularization parameter α in KRR: Results are averaged over 20 trials.
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Figure 30. Performance of PAK-UCB-RBF and RFF-UCB-RBF: Results are reported on the Sudoku-solving task (Setup 2). Results are
averaged over 20 trials.
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Figure 31. Performance of PAK-UCB-RBF and RFF-UCB-RBF: Results are reported on the code generation task (Setup 2). Results are
averaged over 20 trials.
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Figure 32. Running time: The execution time of PAK-UCB-RBF (PAK-UCB using the RBF kernel) and RFF-UCB-RBF on Setup 4.
PAK-UCB-RBF takes around 10 minutes to finish 2,000 iterations of model selection, while RFF-UCB-RBF uses less than 2 minutes.
Results are averaged over 20 trials.
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