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Abstract

Mutual Information (MI) is a crucial measure for capturing dependencies between vari-
ables, yet exact computation is challenging in high dimensions with intractable likelihoods,
impacting accuracy and robustness. One idea is to use an auxiliary neural network to train
an MI estimator; however, methods based on the empirical distribution function (EDF)
can introduce sharp fluctuations in the MI loss due to poor out-of-sample performance,
thereby destabilizing convergence. We present a Bayesian nonparametric (BNP) solution
for training an MI estimator by constructing the MI loss with a finite representation of the
Dirichlet process posterior to incorporate regularization in the training process. With this
regularization, the MI loss integrates both prior knowledge and empirical data to reduce the
loss sensitivity to fluctuations and outliers in the sample data, particularly in small sam-
ple settings like mini-batches. This approach addresses the challenge of balancing accuracy
and low variance by effectively reducing variance, leading to stabilized and robust MI loss
gradients during training and enhancing the convergence of the MI approximation while
offering stronger theoretical guarantees for convergence. We explore the application of our
estimator in maximizing MI between the data space and the latent space of a variational
autoencoder. Experimental results demonstrate significant improvements in convergence
over EDF-based methods, with applications across synthetic and real datasets, notably in
3D CT image generation—yielding enhanced structure discovery and reduced overfitting in
data synthesis. While this paper focuses on generative models in application, the proposed
estimator is not restricted to this setting and can be applied more broadly in various BNP
learning procedures.

1 Introduction

Mutual information is a statistical measure used to quantify the dependency between random variables with
wide applications in machine learning. It plays a crucial role in tasks such as feature selection, representation
learning, clustering, and generative modeling. By capturing both linear and nonlinear dependencies, mutual
information serves as a versatile measure in understanding and leveraging relationships in complex datasets.
However, computing MI in these applications faces significant challenges, particularly in the presence of
high-dimensional or complex data structures. Mutual information is defined using the joint distribution
of two random variables and the product of their marginal distributions, making its estimation especially
difficult when these distributions are analytically intractable. While neural network-based estimators have
shown promise in addressing some of these issues (Belghazi et al., 2018; Hjelm et al., 2018), they remain
prone to instability and sensitivity to sample variability and outliers, highlighting the need for more flexible
and reliable approaches for mutual information estimation in machine learning tasks.

Recently, Bayesian nonparametric (BNP) techniques have proven effective in introducing uncertainty into
modeling data distributions with minimal assumptions, leading to enhanced flexibility, robustness, and re-
duced sensitivity to sample variability in the machine learning community (Fazeli-Asl et al., 2024; Dellaporta
et al., 2022; Fazeli-Asl & Zhang, 2023; Bariletto & Ho, 2024). However, BNP approaches for estimating mu-
tual information have received comparatively little attention. In this paper, we introduce a Dirichlet process
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(DP) prior on the data distribution and propose a deep BNP mutual information neural estimation (DP-
MINE) between two variables. This estimator serves as the Bayesian counterpart to the Kullback-Leibler
(KL)-based and Jensen-Shannon (JS)-based MINE methods introduced in Belghazi et al. (2018) and Hjelm
et al. (2018), respectively. The MINE is computed by training an auxiliary function, parameterized by a
neural network, that approximates the intractable likelihoods of the joint distribution of the two variables
and the product of their marginal distributions.

Our DP-based approach in the proposed estimator employs a finite DP posterior representation in the loss
function of the auxiliary function, making our estimator more robust to sample variability. It introduces
distributional regularization through the incorporation of a prior distribution, thereby improving the effi-
ciency and stability of the optimization process. This approach improves estimation stability by enhancing
out-of-sample performance, addressing the curse of dimensionality and sensitivity to sample size, and provid-
ing robustness guarantees in high-dimensional settings. This makes it well-suited for integration into deep
learning models, where a procedure with faster and robust convergence is needed for training the relevant
cost functions regularized by this estimator. In contrast, frequentist methods, which rely on the empirical
distribution, may exhibit greater sensitivity to sample variability, potentially leading to less stable gradient
computations during training, particularly with small batch sizes or when dealing with highly heterogeneous
data. This sensitivity can be interpreted as introducing variance in the estimation process. We present exper-
iments comparing our DP approach to EDF-based methods (frequentist approaches) in mutual information
estimation, demonstrating improved performance. Furthermore, our experiments highlight the robustness
of the DPMINE in high-dimensional settings, showing better convergence and reduced estimation fluctua-
tions. In our results, we demonstrate that the DPMINE is theoretically stronger than MINE counterpart,
particularly for the KL-based estimator.

To further motivate the need for our KL-based Bayesian counterpart, we briefly highlight the limitations of
existing MI estimators. JS-based estimators ensure stable convergence but often lack the precision needed
to capture complex dependencies, while traditional KL-based estimators provide greater accuracy but suffer
from poor convergence, limiting their practical use (Song & Ermon, 2020; Poole et al., 2019). Our KL-based
Bayesian counterpart addresses these issues by combining the accuracy of KL with improved convergence
properties. While its broader impact on tasks such as information bottleneck methods is beyond the scope of
this paper, we focus specifically on its effect in improving the performance of a particular family of generative
models where representation learning is essential.

We apply our proposed DPMINE to enhance the performance of a BNP VAE-GAN model, a fusion of Gen-
erative Adversarial Networks (GANs) and Variational Autoencoders (VAEs) (Fazeli-Asl & Zhang, 2023).
A VAE-GAN model effectively addresses the persistent challenges of mode collapse in GANs and the gen-
eration of blurry images in VAEs, striking a balance between diversity and quality in the generated data
(Larsen et al., 2016; Donahue et al., 2016; Dumoulin et al., 2016; Rosca et al., 2017; Kwon et al., 2019).
This integration combines the high-quality outputs that GANs offer and the diversity of representations that
VAEs offer, resulting in a superior generative model. However, to fully unlock the potential of VAE-GAN
models, further exploration of the information encoded in the latent space is needed (Belghazi et al., 2018;
Hjelm et al., 2018). We aim to maximize the information between original and encoded samples, as well as
between generated and encoded samples using our DPMINE. This incorporation of DPMINE in BNP gen-
erative modeling improves representation in the code space of the generative model and also helps preserve
the information in the code space for generating new samples. Although this paper focuses on DPMINE’s
application in generative models, we emphasize that its use is not limited to such models and opens new
opportunities for researchers interested in applying this estimator to various optimization problems within
the BNP learning (BNPL) framework (Lyddon et al., 2018; 2019; Fong et al., 2019).

The paper is structured as follows: Section 2 reviews the basic concepts in mutual information inference,
as well as its applications in generative modeling. In Section 3, we present the fundamental concepts of
the DP and introduce the DPMINE, along with theoretical results on the properties of our estimator. We
then demonstrate the integration of DPMINE into the 3D convolutional architecture of a BNP VAE-GAN
model. Section 4 explores the impact of the DPMINE, first demonstrating its improved performance over
EDF-based methods in mutual information estimation, with greater robustness in high-dimensional settings.
We then apply the DPMINE to train the VAE-GAN model through various experiments, showcasing its
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ability to mitigate mode collapse. In particular, we evaluate the proposed procedure using a collection of
3-dimensional (3D) chest CT scans of COVID-19-infected patients. Finally, we conclude the paper in Section
5, where we discuss potential future research directions. All technical proofs, additional experimental details,
limitation broad impacts, and safeguards are provided in the Appendix.

2 Fundamentals of Mutual Information Inference and Applications in Generative
Modeling

In this section, we introduce the background information on MI and its applications in generative modeling.

2.1 Mutual information

Let (X,Y) be a pair of random variables with a joint cumulative distribution function (CDF) Fx y and
marginal CDFs Fx and Fy, defined over the product space X ® Y. The mutual information between X and
Y is given by:

MI(X,Y) = Dk (Fxev, Fx @ Fy) = H(X) — H(X|Y), (1)

where Dk, (+, -) denotes the KL divergence, and H(-) and H(+|-) represent marginal and conditional Shannon
entropies, respectively.

Computing Eq. equation 1 can be challenging in many practical applications due to the intractable likelihood
of the relevant densities. There are approximate techniques to calculate mutual information. However,
many of them suffer from the curse of dimensionality, like in examples where k-nearest neighbors are used
to estimate MI. (Al-Labadi et al., 2022; Berrett & Samworth, 2019). Moreover, optimizing k to balance the
bias-variance trade-off adds to the complexity (Sugiyama, 2012).

An effective approach for overcoming these obstacles involves the establishment of a variational lower bound
(VLB) approximation of the MI through the MINE. For instance, Belghazi et al. (2018) uses the Donsker-
Varadhan (DV) representation (Donsker & Varadhan, 1983) of the KL divergence to form a lower bound of
equation 1 as:

EEV(X7 Y) = ]EFXY [T"/(X’ Y)} —In EFX®FY [eT‘Y(X7Y)]’ (2)

where {T }cr be a set of continuous functions parameterized by a neural network on a compact domain I'
that maps X ® Y to R and In(-) denotes the natural logarithm. The DV-MINE is then defined as E%V(X, Y),

where 7 is the optimal parameter that maximizes the VLB equation 2. T, which is an auxiliary statistic,
serves as the fundamental component in this procedure, which learns to differentiate between a sample from
Fxy and Fx ® Fy. In practice, L2V (X, Y) in Eq. equation 2 is approximated using the empirical cumulative
distribution functions (ECDFs), Fx,,, := + > | 6x, and Fy,, = = >" 0y,

T n

3=

n n 1
E,[Y)V(Xm,Yl:n) - Z Ty (X, Y) — 1“2 EeT‘y(Xz,Yw(Z))7 (3)
=1 =1

where {7(1 : n)} denotes a random permutation of {1 : n}, a standard technique to empirically approximate
Epegr, (+) in Eq. equation 2 (Belghazi et al., 2018; Hjelm et al., 2018).

Belghazi et al. (2018) also considered a divergence representation given in Nguyen et al. (2010) to form
another lower bound for Eq. equation 1. However, they discovered that Eq. equation 2 yields a tighter
bound than this alternative lower bound and demonstrated numerically that DV-MINE outperforms MINE
based on the alternative lower bound. Another MINE, based on providing a lower bound for the JS divergence
(Nowozin et al., 2016) between Fxy and Fx ® Fy, can also be found in the literature (Hjelm et al., 2018;
Jones et al., 2023). It is defined as

[’:]YS (Xv Y)= Erxy [_C(_Tv (X, Y))] —Erxory [C(TW(Xv Y))}v
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where ((-) = In(1 + exp(-)) denotes the softplus function. However, Jones et al. (2023) remarked that
JS-MINE may be more appropriate for problems involving the maximization of MI, rather than a precise
approximation.

A detailed exploration and comparative assessment of different variational bounds for MI is provided in Poole
et al. (2019); Tsai et al. (2021), with much of this work driven by the goal of optimizing MI in deep learning
problems (Belghazi et al., 2018; Hjelm et al., 2018; Barber & Agakov, 2004; Lin et al., 2022; Chen et al., 2016).
However, recent studies have shown that existing neural MI estimators, whether JS-based (providing stable
but imprecise estimates) or KL-based (offering accuracy but poor convergence), struggle to provide accurate
and low-variance estimates when the true MI is high, highlighting that stability alone in JS-based estimators
and accuracy alone in KIL-based estimators are insufficient for effectively capturing information (Song &
Ermon, 2020). This limitation can impair the regularization of the objective function in deep learning models,
including the encoding-decoding process in VAE-based models. Attempts to stabilize KL-based estimators
through various modifications of the DV lower bound to reduce variance while preserving accuracy have
been proposed (Mroueh et al., 2021; Wen et al., 2020; Guo et al., 2022). However, these modifications often
increase computational complexity and make the training process more difficult to control.

2.2 Interactions between generative models and mutual information

Generative models have been extensively explored in data augmentation and synthesis (Mendes et al., 2023;
Menon et al., 2023; Toda et al., 2021; Wolterink et al., 2017; Bu et al., 2021). However, these models
are expanded beyond the standard GAN loss function (Goodfellow et al., 2014), which could potentially
introduce challenges such as mode collapse-memorizing certain modes of data distribution while overlooking
other diversities—and training instability. The standard GAN is constructed based on two sets of functions:
{Gutwea and {Dg}oco, which are parameterized by neural networks and referred to as the generator and
discriminator, respectively (Goodfellow et al., 2014). The generator engages in a game with the discriminator,
aiming to deceive it into being unable to distinguish between generated samples and real samples. It is
achieved by updating parameters as follows:

~

(@,0) = arg m(%n m(gxIEF6 [In(1 — Dg(Guw(£)))] + Erln(De(X))].

Here, X € R? ~ F represents a real dataset, and & € RP ~ F¢ represents a noise vector, where d > p. There
are various approaches to address the mode collapse issue, including modifying the loss function (Arjovsky
et al., 2017; Nowozin et al., 2016; Li et al., 2015; Dellaporta et al., 2022; Fazeli-Asl et al., 2024) and exploring
different architectures (Radford et al., 2015; Zhang et al., 2019).

In contrast, an effective strategy is to employ VAE-GAN models (Larsen et al., 2016). The VAE-GAN
employs an encoder network in the VAE component to learn a probabilistic encoding of X into a compact
representation ¢. Subsequently, a decoder is used to generate realistic data from ¢ (Kingma & Welling,
2013). The probabilistic approach involves modeling the variational distribution Fg, (¢|X) using the encoder
network {Ep,}nea, which approximates the true posterior distribution of ¢ given X. The VAE aims to
minimize the error in reconstructing the original input from the code space, as well as the regularization
error—the difference between Fp, (c[X) and F.

The traditional VAE-GAN model comprises of two interconnected networks Ey, G.,, and Dg. The VAE is
connected to the GAN through G,,, which acts as a decoder for the VAE. The generator is fed with (€, ¢)
to generate samples that aim to fool Dy into distinguishing them from X. Some notable works that employ
this strategy include the bi-directional GAN (BiGAN) (Donahue et al., 2016; Dumoulin et al., 2016), the
a-GAN (Rosca et al., 2017), the a-WGAN+Gradient penalty (a-WGAN+GP) (Kwon et al., 2019), and the
BNPWMMD-GAN (Fazeli-Asl & Zhang, 2023). The main differences between these models lie in their loss
functions and network architectures.

Particularly, the a-WGAN-+GP serves as the primary frequentist nonparametric (FNP) counterpart to
the BNPWMMD, though BNPWMMD has recently proven to be a stronger competitor. It combines a-
GAN with WGAN+GP to improve training stability in generating 3D brain MRI data, including sagittal,
coronal, and axial representations. Jafari et al. (2023) enhanced the a-WGAN+GP to generate connected
3D volumes, while Ferreira et al. (2022) proposed another enhanced model for generating 3D rat brain MRI
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using convolutional data manipulation techniques including zoom, rotation, Gaussian noise, flip, translation
and scaling intensity. However, the model may learn to expect these transformations, resulting in generated
data that reflects the augmented relationships rather than true variability (correlated outputs). Additionally,
the provided results did not show a significant visual improvement.

Alongside advancements in VAE-GAN models for generating samples, it is essential to explore the information
encoded in the latent space to fully unlock the potential of these models. Maximizing the MI between the
input and output of the encoder can significantly reduce the reconstruction error in VAE-based models
(Belghazi et al., 2018; Hjelm et al., 2018). This approach encourages the encoder to retain important details
and structure in the input data, ultimately leading to a more informative code representation for the decoder
to use. Belghazi et al. (2018) incorporated max LEV(X, Ey(X)) into the loss function of a BIGAN model to

estimate and maximize the MI between X and E,)(X). This approach, referred to as BIGAN+MINE model,
demonstrated stronger coverage on the training dataset than the original BiGAN, displaying the ability of
the MMI procedure to reduce mode collapse.

Moreover, preserving the information contained in codes during the generation process is extremely impor-
tant. For instance, Chen et al. (2016) attempted to maximize the MI between code E,(X) and generated
sample Gy, (§, E (X)) by providing another VLB for standard GANs under appropriate regularity conditions.
However, no results were provided to declare the effectiveness of their method in mitigating mode collapse.
Alternatively, Belghazi et al. (2018) employed DV representation to maximize MI(Ey(X), Gy (&, Ey(X)))
for standard GANs to demonstrate the effectiveness of the MINE-based method in covering the training data
for this scenario.

3 A DP-based accurate-stable Ml estimator and its application in generative model
regularization

Our proposed method of deep mutual information estimation partially relies on the DP as a technique to
enhance the robustness of the training process, which we will first introduce here. The proposed approach
is easy to implement and, particularly for KL-based estimators, provides a tighter lower bound, ultimately
improving the stability of the estimator, which, as demonstrated in the numerical results section, leads to
variance reduction.

3.1 Dirichlet process

The DP is an infinite generalization of the Dirichlet distribution that is considered on the sample space
denoted as X, which possesses a o-algebra 4 comprising subsets of X (Ferguson, 1973). F follows a DP with
parameters (a, H) with the notation FF™ := (F ~ DP(a, H)), if for any measurable partition A;,..., A of
X with k& > 2, the joint distribution of the vector (F(A;),..., F(Ay)) follows a Dirichlet distribution char-
acterized by parameters (aH(A1),...,aH(A)). Moreover, it is assumed that H(A;) = 0 implies F'(A;) =0
with probability one. The base measure H captures the prior knowledge regarding the data distribution,
while a signifies the strength or intensity of this knowledge.

As a conjugate prior, the posterior distribution of F also follows a DP, denoted by FFY° := (F|Xy., ~
DP(a + n, H*)), for n independent and identically distributed (IID) draws, (X1, € R?), from the random
probability measure F where H* = a(a +n)"'H + n(a +n)"'Fx,.,, and Fx,,, represents the empirical
cumulative distribution function of the sample Xi.,,.

Although the stick-breaking representation is a commonly employed series representation for DP inference
(Sethuraman, 1994), it lacks the necessary normalization terms to convert it into a probability measure
(Zarepour & Al-Labadi, 2012). Additionally, simulating from an infinite series is only feasible through using
a random truncation approach to handle the terms within the series. To address these limitations, Ishwaran
& Zarepour (2002) introduced an approximation of the DP in the form of a finite series, which allows for
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convenient simulation. In the context of posterior inference, this approximation is given by

N
FR™ =Y I R 0xrer, (4)
1=1

1ID
~Y

where (JE‘]’\?,N) ~ Dirichlet((a+n)/N,...,(a+n)/N), (X{%) ~ H*, and dxre: is the Dirac delta measure.

In this study, the variables Jf % and X}°® represent the DP’s weight and location, respectively. The sequence

(FE°%)N>1 converges in distribution to FF°5, where FL° and FF° are random values in Mj(R?), the space
of probability measures on R? endowed with the topology of weak convergence (Ishwaran & Zarepour, 2002).
In the subsequent sections, we investigate the efficacy of this approximation within a regularization method
in a BNP generative model.

Remark 1. The prior H in the DP introduces a reqularizing effect by smoothing the resulting distribution.
Unlike the empirical distribution, which represents the data exactly as observed, the DP with a prior creates
a distribution that accounts for both observed data and the prior knowledge. This makes the model less sen-
sitive to fluctuations and variability in the sample data, which can be particularly beneficial for optimization
processes in models that rely on loss functions (Bariletto & Ho, 2024). It does so by anchoring the sampled
distribution around H, especially when data is sparse or when there are regions of high variability. Choosing
an effective prior H for regularization depends on the specific research context and the statistician’s knowl-
edge of the subject area. For instance, in genetics, H might reflect biological baselines, while in financial
modeling, a prior could incorporate historical market trends. Fach choice aligns with the research goals,
capturing nuances relevant to the field. A commonly effective choice for general purposes is a multivariate
normal distribution with parameters reflecting the sample’s mean and covariance. This prior helps anchor
the distribution near erpected values, but with flexibility that accounts for sample variability, thus providing
a stabilizing reqularization effect across diverse data points.

Remark 2. The DP framework balances between adhering to H and adapting to the data through concen-
tration parameter a. This balance prevents overfitting to the specific data sample and provides a more stable
and generalized distribution, especially in small sample scenarios Fong et al. (2019); Lyddon et al. (2018).
The DP framework strikes a balance between adhering to H and adapting to the data through the concen-
tration parameter a. This balance mitigates overfitting to specific data samples and ensures a more stable
and generalized distribution, particularly in small sample scenarios. In this paper, we follow Fazeli-Asl &
Zhang (2023) to employ a Maximum A Posteriori (MAP) estimate for selecting the optimal value of the
concentration parameter a. This is achieved by maximizing the log-likelithood of FP°%, fitted to the given
dataset, over a range of a values.

Remark 3. In approximating the DP in Eq. equation 4, it is crucial to determine an optimal number of
terms to ensure that the truncated series remains a close representation of the true Dirichlet Process. We
address this requirement by applying a random stopping rule as outlined in Zarepour & Al-Labadi (2012). This
adaptive rule terminates the approximation when the marginal contribution of the current term falls below
a specified significance level relative to the cumulative sum of previous terms. Given a predefined threshold
e € (0,1), the stopping criterion is defined by: N = inf {j ,Jrlifr < e}. This approach effectively
i=1
balances computational efficiency with approximation accuracy.

3.2 DPMINE: The Dirichlet process mutual information neural estimator

In this section, the DP approximation equation 4 is leveraged to develop two lower bounds for MI, leading
to the formulation of DPMINE.

KL-based representation: Let (X;.,) be n IID random variables for X € R¢ ~ F. For continuous

functions f; : R — R, i = 1,2, let X! = f;(X). Then, for a fixed value of a and a chosen probability
measure H used in the DP approximation equation 4, we propose to estimate the DV lower bound of
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MI(X],XY) as

Pos Po:
EEPDV(fl(XI;S\s[)JQ(XE\S})) — Z‘]P?\?T (f1(X )7f2(xfos o IHZJPOS Ty (F1 (X, %), f2(X05) (5)

Here, {m(1: N)} denotes a random permutation of {1 : N}, which is a common technique used to empirically
approximate Epy . (+) in equation 2 (Belghazi et al., 2018; Hjelm et al., 2018).

JS-based representation: The JS-based estimation is similarly proposed as:

EOPS(XER), FoXER) s= D7 JER | = Ty (1 (XE™), o (XE)) = (T3 (1 (XE™), o XEGR)]- - (6)

Let i be a label in {DV,JS} indicating the type of the VLB. The BNP MINEs are consequently considered
as:

MIppi (f1(X1X), f2(XTR)) = max LYP(f(XTR), f2(XTR))- (7)

The following theorem states that, at least in the case of KL-based MINE, LEPDV(X{)OS/, X2P°S/) is asymp-
totically larger than £DV(X/,X5) on average. This results in a tighter VLB on the true MI and allows for
a more accurate estimation of MI by maximizing the tighter bound over a compact domain T.

Theorem 1 (Limiting expectation). Considering DP posterior representations defined in equation 15 and
equation 6. Given the DP posterior approximation in equation 4, we have,

i limy, Nosoo Eppes (CYPPYV(F(XTR), f2(X1%))) = £L7V(X1,X5), a.s
it Epro: (LDPIS(f1(XT%), f2(X1%))) converges a.s. to L15(X],X5), as n, N — oo,

where “a.s.” stands for “almost surely”, denoting that the statements hold with probability 1.

The strong consistency of the proposed estimators is also investigated through the next theorem.

Theorem 2 (Consistency). Considering BNP MINEs given in equation 7. Then, for any label i in { DV, JS},
as n, N — oco:

i MIPP(FUXER), 2 (XTR)) == MI(X,XY),
it. There exists a set of neural network {Ty}~er on some compact domain T’ such that

MIPPH(FL(XTR), F2(XTR)) = MI(X],X5).

3.3 Embedding DPMINE in generative models

The BNPWMMD-GAN (Fazeli-Asl & Zhang, 2023) is a VAE-GAN model that places a DP prior on the
data distribution. This approach helps prevent overfitting, while also leveraging the advantages of GANs and
VAEs in data augmentation. In this study, we aim to refine the BNPWMMD-GAN by using the proposed
BNP MINE to further improve its performance. The BNPWMMD-GAN architecture features four networks:
The encoder—{ Ey } e, the generator—{ Gy, }weq, the code generator-{CGyy }ureqr, and the discriminator—
{Dg}oce. The addition of the code generator network sets the BNPWMMD-GAN apart from traditional
VAE-GANSs. It takes noise from a sub-latent space—the latent space of the code generator—-and generates
code samples adversarially by using encoder outputs as its training dataset, as described in Eq. equation 8c.
The code generator is responsible for exploring uncharted regions of the code space that may have been
overlooked by the encoder, thereby enhancing the overall diversity of the generated data.
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Figure 1: A general diagram of the BNPWMMD model refined by DPMINE in generating 3D images.

Given the codes (CI:N = En (Xf‘}\b,)) and generated codes (€1.n := CG, (€].)) along with the latent noise
(&1:n € RP) ~ F¢ and sub-latent noise (§].5 € RY?) ~ Fg/, where ¢ < p, the BNPWMMD-GAN is trained by
updating the networks’ parameters according to the following hybrid objective function®:

N
(@) = axgmin { - > [DoGu(€) + Do(Gule)) + DofGu(@)] + MMD(FE For e )

~~

_MMD(F}\:;OS? FGw(&l:N)) + MMD(FEOS’ FGw(ClzN)) + MMD(F&:NvFCl:N) }’ (83‘)
Ty (w,m) Z2(w,m)

A

N
— 3 i i i . _ Pos Pos
0= arg@mm { N ; [DG(Gw(sz)) + Do(Gu(ci)) + Do(Gu(€i)) 3Jz‘,N DB(Xz‘ )} +A LJGZ;D }7

J1(0)
(8b)

@' = argmin MMD(F, , Fz, . )- (8¢)
Q/
Here, the generator is fed with (&1.n,¢1.n5,€1.n), and terms Z;(w,n) and J;1(0) refer to minimizing the
combined distance given by®:

dwnmp (FF, Fg) = WS(FPS, Fg ) + MMD(FP*s, Fg). (9)

The inclusion of distance measurement equation 9 will improve the model training outcomes as it incorporates
both the overall distribution comparison and the feature-matching techniques. The idea of minimizing the
distance between FF° and the generator distribution Fg,, was initially introduced independently in the
BNP learning approach outlined in Dellaporta et al. (2022); Fazeli-Asl et al. (2024). This approach suggests
that such minimization induces a posterior distribution on the generator’s parameter space, which, in turn,
leads to a posterior approximation for the network parameters. This BNPL strategy effectively handles
model misspecification by using a non-parametric prior (Fong et al., 2019; Lyddon et al., 2018; 2019; Lee
et al., 2024), which promotes stable learning and improves generalization in generative tasks. Additionally,
it mitigates sensitivity to outliers and sample variability through prior regularization, leading to more stable
out-of-sample performance compared to conventional learning approaches that depend solely on the empirical
data distribution for loss computation (Bariletto & Ho, 2024). A depiction of this strategy is provided by
Dellaporta et al. (2022, Figure 1).

1Each F indexed by a sample vector in equation 8 indicates the corresponding empirical distribution.

2Simultaneous updates of parameters w and 7 are facilitated by the essential role played by the generator function, which
serves as a decoder during VAE training.

3The details for computing the Wasserstein distance (WS) and the maximum mean discrepancy (MMD) are provided in
Appendix B.
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Since the MMD measure is an L2-norm distance, the MMD-based terms in Z; (w,n) serves as the posterior
reconstruction errors, while Zo(w,n) serves as the regularization error for approximating the variational
distribution Fg, (c;. N|XP°“) Furthermore, the gradient penalty J2(0) with a positive coefficient A was used
to ensure training stability by forcing the 1-Lipschitz constraint on the discriminator (Gulrajani et al., 2017).
Specifically, this penalty is given by

N
LGP—D - Z ||VXPOS '->('POS)||2 ) )

where ﬁfos = u)EZPOSJr (1—u)XFos and XZPOS represents any posterior fake sample generated by the generator.

Now, to maximize the extraction of information during the encoding process and ensure the preservation
of meaningful information in the decoding process, we propose refining Eq. equation 8a using the optimiza-
tion problem in Eq. equation 10a along with incorporating objective functions in Egs. equation 10b and
equation 10c.

(w,n) = argmin {L(LU, n) + Lo(w,n) — LYP(XTN, c1n) — L7 (Guw(ern), ern)

Q,H
- ‘CDPi(Gw(él:N)47 cl:N) - ‘CEQPI(GQJ (51:]\7)7 Cl:N)}7 (1034)
41 = arg mm{ EDP‘(XIE‘}\S,, cy. N)} (10Db)

’?2 = argl_‘min{ - ﬁsfl(Gw(ClzN)7 cl:N) - Eszpi(Gw(élzN)v ClzN) - EEZPI(GLU (&1:N)7 cl:N)}~ (]-OC)

Note that we use the neural network {T, },,er, to estimate MI(X, E, (X)), while we use {T, }+,ecr, to
estimate MI(X, En(X)). Here, X denotes any fake data generated by G, (-). The general diagram of the
model is visually shown in Figure 1. A detailed description of the model’s architecture, accompanied by a
flowchart illustrating its operational process, is provided in Appendix E.3.

4 Experimental results

In this section, we evaluate the performance of the procedure using simulation and real datasets. Initially, we
need to set the hyperparameters of the DP before placing it on the data distribution F'. Following Fazeli-Asl
et al. (2024), we consider the base measure to be a multivariate normal distribution, with the concentration
parameter estimated using the MAP procedure described in Remark 1 and 2 of Section 3.1. Additionally,
the value of N in the DP approximation of Eq. equation 4 is chosen according to the guidance provided in
Remark 3 of Section 3.1

We initiate this section by presenting several simulation examples to assess the performance of both KL-
based and JS-based DPMINEs in estimating the MI. Subsequently, we will explore the application of the
better-performing estimator in refining the training procedure of VAE-GANSs.

4.1 MINE: BNP versus FNP

4.1.1 Estimation accuracy

In our experimental evaluation, we must evaluate the accuracy of both the KL.-based and JS-based DPMINEs
in estimating the MI as it directly impacts the accuracy of refining the desired BNP VAE-GAN model.
Additionally, we need to compare the BNP estimators with their frequentist counterparts. To achieve this,
we present estimation values of both BNP and FNP procedures through Figure 2 for two cases—when the
two random variables X and Y are independent, and when they are dependent. The figure shows that the
BNP estimators exhibit better convergence than the FNP estimators as well as lower variance, which stems

1G, (ElzN) can be expressed as fi(-) = Gw(ﬂcvl:N) — X1.N + - in definitions equation 15 and equation 6. Therefore, it is
well-defined.
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. Dimensions
Estimator | Epochs 5 10 100 1000
500 5 sec 5 sec 5 sec 5 sec
MINE 1500 12 sec 12 sec 12 sec 12 sec
500 42 sec 42 sec 42 sec 42 sec
DPMINE 1500 1 min 25 sec | 1 min 25 sec | 1 min 25 sec | 1 min 25 sec

Table 1: Run time of the MINE and DPMINE on different dimensions of the data and epochs.

from the improved out-of-sample performance of the BNP procedure that reduces sensitivity to sample size
and outliers. However, in non-independent cases, the JS-based estimator shows a gap between its estimated
value and the true value, unlike the KL-based estimator. Therefore, we decided to continue our investigation
in the next experimental part using KL-based estimators.
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Figure 2: MINE estimation of the MI between two random variables X and Y using both BNP and FNP
frameworks, given a sample size of 16 over 500 epochs. The red dashed line represents the true value of MI.
The blue line represents the BNP estimation of MI (our method), while the yellow line represents the FNP
estimation. The left-hand figure in each experiment represents the JS-based estimator, and the right-hand
figure represents the KL-based estimator.

4.1.2 Robustness of the DPMINE to high dimensionality

To assess the robustness of our estimator to high dimensionality, we report the results of two previous
examples with varying dimensions of d = 2,10, 100, 1000 (see Figures 3 and 4). The blue color represents
the BNP estimation of MI, while the yellow one represents the FNP estimation. These figures demonstrate
the robustness of the DPMINE estimator to high dimensionality, indicating better convergence and reduced
fluctuations in MI estimation, particularly in cases where the two variables are not independent. This
highlights the estimator’s ability to control variance, which is a key objective of this paper. In Figure 4(e),
we provide results for 1500 epochs, as higher dimensions require more epochs for convergence based on the
chosen learning rate, in addition to the results already shown for 500 epochs in Figure 4(d).

4.2 Refining VAE-GAN training via MINE

To implement the BNPWMMD+DPMINE, we consider the Gaussian kernel function, defined as
ke, (X,Y) = exp(%) with bandwidth parameter o, in the MMD distance given in Appendix B.
We search for the appropriate bandwidth parameter o over a fixed grid of values, o € {2, 5,10, 20,40, 80}.
We then compute the mixture of Gaussian kernels, denoted as k(-,-) = >__ kq, (-, -). This selection of kernel
function and bandwidth has been shown to yield satisfactory performance in training MMD-based GANSs,
as mentioned in Li et al. (2015); Fazeli-Asl et al. (2024); Fazeli-Asl & Zhang (2023). Then, we consider next

examples to investigate the proposed approach.

4.2.1 Synthetic Example

Coil Dataset: We first look at a synthetic example that showcases the effectiveness of the BN-
PWMMD+DPMINE in mitigating mode collapse. In this example, we simulate 5000 samples in 3D space,

10
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d.

denoted as (X (t),Y (), Z(t)), where X (t) = 6cost, Y (t) = 6sint, and Z(t) = t, with ¢ ranging from —27 to
47. We then normalize all datasets to a range between —1 and 1. This normalization ensures compatibility
with the hyperbolic tangent activation function, which is used in the generator’s last layer in all compared
models. We also used a latent dimension of 100 with a sub-latent dimension of 10 in this example. Addition-
ally, we provide the results of the BNPWMMD to display the basic model’s performance in covering data
space in the absence of DPMINE.

For a comprehensive comparison, we include results from a set of experiments involving three well-known
VAE-GAN models commonly used in the literature: BiGAN+MINE, a-WGAN+MINE, and a-WGAN.? As
demonstrated by Belghazi et al. (2018), adding MINE improves the performance of BIGAN, as evidenced by

51n this section, the GP notation is omitted for brevity, as GP is incorporated into the loss functions of both the BNPWMMD
and a-WGAN models.
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their comparison between BiGAN and BiGAN+MINE. Thus, we exclude the standalone BiGAN from our

experiments.

Notably, BNPWMMD leverages posterior samples generated from F}\Dfos, as defined in Eq. equation 4, to
optimize its objective functions, rather than relying on direct samples from the empirical distribution used
by its FNP counterpart. Consequently, it is essential to employ the BNP version of MINE to regularize
BNPWMMD’s cost function during network parameter optimization. In contrast, FNP models such as a-
WGAN and BiGAN use the empirical distribution to compute sample means in their cost functions, which
are compatible with the calculation of MINE in Eq. equation 3 (see Appendix C for further details on the
baselines’ cost functions). Given these structural differences, applying the MINE designed for FNP models
to BNPWMMD (i.e., BNPWMMD-+MINE) or using DPMINE with FNP models like a-WGAN and BiGAN
(i.e., vWGAN+DPMINE or BiGAN+DPMINE) is inappropriate. Such combinations are incompatible with
the input structures and cost function formulations of these models.

We show 1,000 samples in Figure 5, generated from noise input (random samples) and reconstructed from
encoded and decoded real input. This figure clearly demonstrates the impact that the DPMINE has in gen-
erative modeling, as it allows the BNPWMMD to cover the entire data space. Although applying the MINE
to a-WGAN improves the convergence of random samples compared to the absence of these refinements, it
still struggles to effectively cover the data space even with these modifications.

Moreover, the BNPWMMD+DPMINE maintains a good balance in coverage between random and recon-
structed samples while the a-WGAN model cannot provide a reasonable balance between these two cases.
The BiGAN+MINE performs poorly, in comparison, after 5000 epochs and requires a significantly larger
number of epochs to converge. However, we found that even with these extended epochs, it cannot achieve
better quality than the BNP counterpart provided in this paper. An additional synthetic example in Ap-
pendix E.1 further demonstrates the effectiveness of our model.
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Figure 5: 1000 randomly generated and reconstructed samples for the coil example.

4.2.2 Real Example

COVID-19 Dataset: This dataset comprises of 3D chest CT images of 1000 subjects diagnosed with lung
infections after testing positive for COVID-19%. All images in this dataset are stored in the DICOM format
and have a resolution of 16 bits per pixel, with dimensions of 512 x 512 pixels in grayscale. We randomly
selected 200 patients, resulting in a total of 91,960 images. As part of the preprocessing step, we first stored
each patient’s data in a Neuroimaging Informatics Technology Initiative (NIFTI) format file. Then, we
converted each NIFTTI file into a 3D image with a dimension of 64 x 64 x 64. Each dimension represents the
axial, sagittal, and coronal views of the lungs. After normalizing the dataset, we used a mini-batch size of
16 and trained all compared models for 7500 epochs. We also used a latent dimension of 1000 as suggested

6The dataset is freely available online at https://doi.org/10.7910/DVN/6ACUZJ (license: CCO 1.0).
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in Kwon et al. (2019) for high-dimensional cases, with a sub-latent dimension of 100 as used in Fazeli-Asl &
Zhang (2023).

To showcase the image generation ability of BNPWMMD+DPMINE compared to other models, we provide
a 3D visualization of real and random samples of chest CT images in Figure 6. This indicates the exceptional
capability of the model to generate sharp images. For a more comprehensive view of the generated samples,
we included additional slices from each dimension representation in Appendix E.2 We also compared the
reconstruction capability of different models by displaying slices of a reconstructed sample from each model in
the Appendix. The BNPWMMD+DPMINE excels at reconstructing the high-dimensional dataset, further
validating the effectiveness of our proposed model.

(a) Real Dataset (b) BNPWMMD+DPMINE (C) a-WGAN-+MINE (d) BiGAN+MINE

Figure 6: A 3D visualization of a real sample and a randomly generated sample in COVID-19 example.

However, additional quantitative tools are essential to assess the similarity between real and fake samples.
Reducing the data dimensionality allows for better visualization to understand the similarities between data
points. In Figure 11a(a), we present the t-SNE (Van der Maaten & Hinton, 2008) mapping of the real dataset
and 200 random samples to 2D points which clearly shows the extensive coverage of samples generated from
the BNPWMMD+DPMINE on the real dataset. Conversely, the a-WGAN-+MINE exhibits mode collapse,
and BiGAN+MINE demonstrates poor performance. We also use a custom encoder, a 2-layer linear neural
network, to map samples to the 2D space displayed by Figure 11a(b), which supports a similar conclusion.

To quantify the dissimilarity in the 2D space between real and generated features, denoted as f. :=
(Featurely.ogo -, Feature21.000,,) and fy; := (Featureli.ago, g, Feature2y.000,4), we calculate the average of
Fréchet inception distance (FID) and the Kernel inception distance (KID) metrics over 100 replications.
Results for the empirical MMD metric between real and generated scans in the 2D feature space, computed
with the same kernel and bandwidth parameters used in the BNPWMMD model, are also presented in Table
2. In this table, we deliberately avoid computing MMD in the data space, as our proposed model is already
optimized by minimizing MMD between real and fake scans in the data space as a part of training process.
As a result, our model is expected to achieve better MMD scores in the data space compared to others,
rendering such a comparison unfair. Smaller values in the reported metrics indicate lower dissimilarity and
better performance, thereby confirming the significant role of the proposed model in avoiding mode collapse.
Additionally, we use the Multi-Scale Structural Similarity Index (MS-SSIM) (Wang et al., 2003) to evaluate
the perceived visual quality of images. MS-SSIM captures both structural information and visual quality
by performing a multi-scale decomposition and comparing luminance, contrast, and structure across vari-
ous scales between real and synthetic samples. As an instance-level similarity metric, MS-SSIM assumes a
one-to-one mapping between real and generated samples. While the methods being compared are uncondi-
tional generators, using MS-SSIM is justified because the axial, sagittal, and coronal views of lung scans are
generally well-aligned across patients. This alignment facilitates meaningful comparisons between synthetic
and corresponding real views, enabling an evaluation that effectively captures structural fidelity. A higher
MS-SSIM score suggests better quality, while a lower score indicates lower quality. For further details on the
calculations, refer to Appendix E.3. Additionally, Appendix E.2 presents another real-world example using
a brain MRI dataset of patients with tumors, extending the evaluation to a broader range of datasets from
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different domains. This inclusion provides a more comprehensive validation of the model’s effectiveness and
highlights its versatility across various types of data.
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Figure 7: Scatter plot of 2D features in COVID-19 example.

Table 2: Comparison of statistical scores for COVID-19 example.
BNPWMMD | a-WGAN BiGAN

Fvaluator +DPMINE | +MINE | +MINE
FID Custom Encoder 0.00063 0.02177 0.25729
t-SNE 9.48447 13.3682 6298.69
KID Custom Encoder 0.00069 0.02281 0.46684
t-SNE 0.99858 2.31426 3107.53
MMD Custom Encoder 0.00902 0.05131 0.92849
t-SNE 0.00074 0.05742 0.34447
MS-SSIM 0.43465 0.39756 0.02251

5 Concluding remarks

We introduced a Bayesian nonparametric (BNP) framework for mutual information estimation using a Dirich-
let process-based neural estimator (DPMINE). The core theoretical contribution of this work lies in the
construction of a tighter lower bound for mutual information using a finite representation of the Dirichlet
process posterior, which was established specifically for KL-based estimators. This tighter bound enhances
the informativeness of the MI loss function and introduces a form of regularization that reduces sensitivity to
sample variability and outliers, leading to improved convergence during training. The combination of prior
regularization and empirical data allows DPMINE to address the trade-off between variance and accuracy,
which is a known limitation of existing KL-based estimators. Our experimental results demonstrate that
DPMINE outperforms empirical distribution function-based methods (EDF-based) in terms of convergence
and variance reduction, particularly in complex high-dimensional generative modeling tasks such as 3D CT
image generation.

The proposed estimator effectively enhances the training of deep generative models by improving the re-
liability and informativeness of the learned representations. Notably, the demonstrated improvements in
convergence and variance control make DPMINE highly suitable for handling challenging high-dimensional
datasets where accurate mutual information estimation is critical. Although this paper focuses on the ap-
plication of DPMINE in generative models, the underlying BNP framework extends beyond this setting
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and opens new opportunities for optimizing mutual information in other complex learning tasks, including
representation learning, reinforcement learning, and Bayesian decision-making.

An important future direction involves adapting the DPMINE framework to address emerging challenges in
training large language models (LLMs). Mutual information estimation is increasingly recognized as a key
tool for improving representation quality and guiding information flow in transformer-based architectures.
The ability of DPMINE to provide stable and accurate estimates of information content could be lever-
aged to refine LLM pretraining objectives, enhance token embedding strategies, and improve generalization
in downstream tasks. Furthermore, by reducing variance and stabilizing training, the BNP framework of-
fers a promising solution for mitigating the sensitivity of LLM training to noise and sample heterogeneity,
particularly in few-shot and domain-adaptive settings.

Additionally, the regularization effect introduced by the BNP framework provides a principled approach for
reducing overfitting and improving generalization in settings with limited data, such as low-resource lan-
guages and domain-specific corpora. Incorporating DPMINE into federated learning contexts could further
strengthen privacy-preserving data generation and cross-device model training by enhancing the robustness
of information flow across non-IID datasets. However, this will pose significant challenges since the procedure
developed in this paper is based on the IID assumption, and extending it to non-IID. settings will require
additional methodological adjustments.
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Appendix

A Notations

e F': Real data distribution.
o (Xi.n): A sample of n independent and identically distributed random variables generated from F'.

o DP(a+ n,H*): The Dirichlet process (DP) posterior with concentration parameter a + n, a > 0,
and base measure H*.

e H*: A mixture probability measure given by —2-H + - F:

a+n at+n Xiin®

o H: The base measure of the DP prior DP(a, H).

o Fy,..: The empirical probability measure based on the sample data defined by % S 0%,

o FL°s: The probability measure of the DP posterior approximation defined by Zfil Jf R 0xPos With
(XT%) ~ H* and (J1.% 5) ~ Dirichlet((a 4+ n)/N, ..., (a +n)/N) Ishwaran & Zarepour (2002).

o fi(X): A continuous function of a random variable X ~ F, denoted as X/, for i = 1, 2.
o {T4}~er: A set of continuous functions parameterized by a neural network on a compact domain T.
e I Identity matrix of size d x d.

“

e “a.s”: Standing for “almost surely” and indicates that the statements hold with probability 1.

B Definition of MMD and Wasserstein distances: DP and empirical representations

Selecting an appropriate statistical distance is crucial for effective generative model training. Here, we focus
on the DP representation of two popular distances used in BNP deep learning and we will briefly mention
their frequentist counterparts.
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B.1 Maximum mean discrepancy distance (feature-matching comparison)

The MMD distance was initially introduced in Gretton et al. (2012) for frequentist two-sample comparisons.
Recently, a DP-based version of this distance has been proposed for BNP hypothesis testing Fazeli-Asl et al.
(2024). Consider a set of functions {Gy, }wen parameterized by a neural network that can generate n IID
random variables (Y7.,), where the likelihood function is intractable and not accessible. Let k(-,-) be a
continuous kernel function with a feature space corresponding to a universal reproducing kernel Hilbert

space Gretton et al. (2012) defined on a compact sample space X Gretton et al. (2012). Given a sample

(X1:n) e F, the MMD distance between FY°5 and Fy,  is approximated as:

1\/[1\/[])2(ijl\D]os’}pY1 n . Z Poq Po%k_ XPos XPO%)
l,t=1
9 N n 1 n
A Z Pos Pos )+ = Z k‘(Y[,Yt). (11)
[ )

In the frequentist version of the MMD distance, as defined in Gretton et al. (2012), the empirical distribution
Fx, . is considered. This is denoted as MMD?(Fx, .., Fy,., ), which is obtained by replacing N, ij’\? N and
XPos with n, 1/n, and Xy.,, respectively, in Eq. equation 11.

B.2 Wasserstein distance (overall distribution comparison)

The frequentist version of the Wasserstein distance is completely discussed in (Villani, 2008, Part 16). Fazeli-
Asl et al. Fazeli-Asl & Zhang (2023) proposed a BNP version of this distance through its Kantorovich-
Rubinstein dual representation. Let {Dg}gco be a parametrized family of continuous functions that all are
1-Lipschitz. Then the Wasserstein distance between FF° and Fy,  is approximated as:

N
Pos . Pos Posy DG(YZ)
WS(FY ,Fyltn).—mgxz JERDo(X[) = —— ). (12)
1=1

By utilizing modifications in equation 12 similar to those described for the MMD distance, the empirical
representation of the Wasserstein distance can also be obtained. In this section, we propose two novel
representations for the MINE using the DP. These representations are based on the KL and JS divergences
will be used in our BNP learning framework to maximize information during the training process.

C Baseline Models

In this section, we present details of the two baseline models used in our experiments. Their cost functions
are defined in terms of the general expectation of random variables. However, in practice, all expectations
appearing in their objective functions are approximated using empirical distributions.

C.1 «a-WGAN+Gradient penalty

The a-WGAN+GP, introduced by Kwon et al. (2019), is a VAE-GAN-a hybrid generative model that com-
bines Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANs)-specifically designed
for data synthesis. It incorporates the encoder—{Ey, },c3, the generator{Gy }weq, the code discriminator—
{CDg }¢co’, the discriminator—{ D¢ }gce, and the Wasserstein GAN with gradient penalty framework. For
training dataset X ~ F', the model is trained by updating the networks’ parameters according to the following
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hybrid objective function:

(@, 7) = argmin { — Ex, [Do(Gu(e))] — Er, [Do(Gu(€))] + M Er[IX — Gul(@)l,]}

QH
0= arger)nin {]Epc [Do(Guw(e))] +Er, [Do(Gu(€))] —2Er[Deo(x)] 4+ X2 LGP-D} (13)
é’ = arg@r/nin {]EFC [C De/(c)] — ]EF£ [C Dg/(é)] + Ao LGP—CD}~ (14)

where £ is a noise vector sampled from the distribution F¢, and ¢ := E,(X) represents the latent represen-
tation of X. The term A\Ep, | X — Gy (c)||; denotes the reconstruction loss, inferred by modeling the data
distribution with a Laplace distribution. Additionally, the gradient penalty terms Lgp.p and Lgp.cp, scaled
by the coefficient Ay, are added to Egs. equation 13 and equation 14, respectively, to enforce the 1-Lipschitz
constraint on the discriminators.

C.2 BiGAN

BiGAN, independently introduced by Donahue et al. (2016) and Dumoulin et al. (2016), is a variant of
the VAE-GAN framework designed for data generation. In BiGAN, the discriminator distinguishes between
pairs of data and latent codes—either real data paired with its encoded representation or generated data
paired with its sampled latent vector. This bidirectional structure enables the model to simultaneously learn
a mapping from data to the latent space and from the latent space back to the data. The training of BIGAN
involves optimizing the following objectives:

(w,7m) = arg g%{*EFg [In Do (Guw(£),€)] — Erp[Er,[1 —In Do (X, c)]]},

6 = arg ngin{_]EF[]EFc [In Dg (X, c)]] = Er,[In (1 — De(Gu(§),€))]}

D Theoretical proofs

D.1 Proof of Theorem 1

Theorem 3 (Limiting expectation). Considering DP posterior representations of MINE presented in the
main paper. Given the DP posterior approximation F]{?"s, we have,

i limp, N o0 Epros (LDPPY(fL(XER), f2(X1%))) = LEV(X],XY), a.s
ii. Epro (ﬁ,?PJS(fl(Xi(])\‘;),fg(Xi?{;))) converges a.s. to L2°(X],X5), as n, N — oo,

Proof. Recall that

N
S oS oS oS oS Pos 5
LDPDV(fl(XPoa) fz(XfS\b;)) — ZJI’PNT'Y i Xf )7f2(Xf ) — IHZ‘]P Ty (f1(X, )f2(x7r<z>)) (15)
=1 =1

Considering the property of Dirichlet distribution, E pros (Jz %) = 1/N, and then applying Jensen’s inequality
in the above equation implies

N
Epros (L27PY (F(XFR), L(XTR)) = Y

=1

1 Pos e}
Ty (f1(XE%), f2(X0°)) 1nZ Ty U1 XL 2075

2|~

=1. (16)

As n approaches infinity, the Glivenko-Cantelli theorem implies that Fi, 22, F, and subsequently,
H* 225 F. This implies that (XT%) converges to (Xi.x), a sample of N random variables generated from
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F. Therefore, using the continuous mapping theorem as n — oo, we have the convergence:

N

a.s. 1
r — Z N Y(F1(Xe), 2(Xe) — lnz NeTW(h(XZ)’fz(XW(m) = LYV(A(Xin), f2(X1n)).
=1

Here, we use Egv(fl(XlzNLfg(Xl;N)) to indicate the empirical representation of the DV lower bound
based on the N samples (X;.x). On the other hand, the law of the large number implies

LV (f1(Xin), fo(Xiw)) == LIV(X, X5), (17)

as N — oo.
Now, subtract L4PV (X, X%) from both sides of equation 16 and take the limit as n and N approach infinity:
lim  (Epros (Ly°7PV(f1(XTN), f2(XTR))) — L4PV (X1, X5)) >0,

n,N— oo

which completes the proof of (i). A similar method is used to prove (ii) and it is then omitted. O

D.2 Proof of Theorem 2

Theorem 4 (Consistency). Considering BNP MINEs given in the main paper. Then, for any label i in
{DV,JS}, as n,N — oo:

i. MIPPH(fL(XER9), f2(XE5)) = MT'(Xq, X5),
1. There exists a set of neural network {Ty}~er on some compact domain I' such that

MIDPi(f( Pos) fg(X‘Dos)) ﬁf_>MI(X/1,X/2) (18)

Proof. We will only provide the proof for the DPDV estimator of the MI. The proof for the DPJS estimator
is similar and therefore omitted.

To prove (i), following the proof of Theorem 1, we have (X7%) 2% (X1.n) as n — oo. Then, for any
¢e{l1,..., N}, the continuous mapping theorem implies:

Ty (J1(XE), f2(XE)) = Ty (f1(Xe), f2(Xe)),s (19)

Ty (LX), f2(X50)) == Ty (f1(Xe)s fo (X)), (20)

as n — 0o. On the other hand, following Fazeli-Asl et al. (Fazeli-Asl & Zhang, 2023, Theorem 1), as n — oo,
we have:

1
JPOS a.s.. - 21
oy L 1)

Now, considering results equation 19, equation 20, and equation 21 in the DP representation of the DV lower
bound given in equation 15 when n — oo, we can imply:

ﬁBPDV(fl(XE%))fz(le:%)) a.s. EDV(f1(X1 N)s f2(X1:n)). (22)

Finally, considering the convergence in equation 17 on the right-hand side of Eq. equation 22 when N — oo,
since max(+) is a continuous function, the continuous mapping theorem concludes the proof of (i).

To prove (ii), the triangular inequality implies:
MIPPPY (f1(XTR), f2(XTN)) — MI(XT, X5)

MIDPDV(f1 (XPos ) f2 (XPos )) o MIDV (X/l’ X'Q)

+ |MIPY (X, X}) — MI(X], Xp) . (28)
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Regarding almost surely convergence in part (i), given €; > 0, there exists Ny € N such that for all n, N > Nj,

’MIDPDV(fl(Xic;s)7 f2(XPos)) — MIPV(X/, X))

< €1, a.s. (24)

On the other hand, following Belghazi et al. (Belghazi et al., 2018, Lemma 1) for given e; > 0, there exists
a set of neural network {7 },er on some compact domain I" such that

’MIDV(X’I,X;) ~MI(X,, X)| < e, as. (25)

Now using equation 24 and equation 25 in equation 23 with choosing €; = €2 = €/2 completes the proof. [

E Additional results and implementing details

E.1 synthetic example

Stanford Bunny Dataset: We use the Stanford Bunny dataset, available at https://graphics.
stanford.edu/data/3Dscanrep/, to investigate the impact of DPMINE on an additional synthetic example.
The dataset consists of point clouds representing the Stanford Bunny, a renowned 3D model provided by
the Stanford University Computer Graphics Laboratory. These point clouds, captured with the Cyberware
3030 MS scanner and stored in PLY files (Polygon File Format) developed at Stanford, represent spatial
locations on the object’s surface. Point clouds provide a 3D spatial representation of the object, enabling
detailed visualization and analysis. For our study, we use three point clouds from this dataset and apply
filtering with the pyoints Python library to extract points in 3D space.

We randomly sampled 5000 points from the available 43,188 points as the training dataset and implemented
our model on them by feeding the model with noise inputs to generate 2500 random samples and with
encoded real inputs to obtain reconstruction samples. Figure 8 illustrates the significant impact of DPMINE
on the performance of the BNP VAE-GAN in data generation.

E.2 Real examples

Covid-19 dataset: The red border in Figure 9 indicates the corresponding slices depicted in Figure 6 of the
experimental findings discussed in the main paper. This clearly demonstrates the excellent performance of
BNPWMMD+DPMINE in displaying sharp and diverse slices in a 3D randomly generated sample, surpassing
the performance of other methods. Additionally, Figure 10 includes reconstructed samples that exhibit the
highest similarity to the training dataset for the BNPWMMD+DPMINE method.

BraTS 2018 Dataset: The BRATS 2018 dataset, a benchmark resource in medical imaging available at
https://www.med.upenn.edu/sbia/brats2018/data.html, is employed for training models in the genera-
tion of brain tumor MRI scans. For the experiments, data from 210 subjects labeled as “HGG" (High-Grade
Glioma) are used, focusing on patients with aggressive brain tumors. Each subject’s MRI data includes
four distinct imaging modalities: T1-weighted (T1), T1-weighted with contrast enhancement (Tlce), T2-
weighted (T2), and Fluid Attenuated Inversion Recovery (FLAIR). Notably, the FLAIR modality, which is
particularly effective for highlighting edema and tumor boundaries, is used for the experiments, providing
essential insights for synthetic MRI generation.

The results presented in Figures 11-14 and Table 3 reinforce our previous findings on the lung dataset,
demonstrating similarly strong performance when applying the methodology to the BraTS dataset. This
cross-domain evaluation further validates the model’s robustness and adaptability to diverse data types.

E.3 Implementing details

E.3.1 Calculation of evaluation scores

Considering the real and generated features, f,. := (Featureli.aoo,,Feature2i.000) and f, :=
(Featurely.ago 4, Feature21.200,4), the FID and KID metrics are calculated using the following Eqs., respec-
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BNPWMMD+DPMINE | BNPWMMD

a-WGAN+MINE

BiGAN+MINE

Figure 8: 2500 samples for the Stanford Bunny using BNPWMMD+DPMINE, a-WGAN+MINE, and Bi-
GAN-+MINE after 5000 epochs.

tively Binkowski et al. (2018):

FID(f,, ) = llus. = tos, I+ T (25, + 55, —2(/555, ),
KID(f.. £,) = MMD*(£,. £,),

where pg, and py, , and Yy and g are the mean vector and covariance matrix of f,. and f,, respectively.
The empirical MMD metric in Gretton et al. (2012) is used to compute MMD?(-, -), with a polynomial kernel
k(fr, fy) = (0.5FF f,+1)” and degree v. The “Tr” denotes matrix trace, “T” denotes matrix transpose, and
“II-1]” denotes Euclidean norm. We use the provided code at https://torchmetrics.readthedocs.io/en/
v0.8.2/image/kernel_inception_distance.html to compute KID with v = 3, and also use the provided
code at https://pytorch.org/ignite/generated/ignite.metrics.FID.html to calculate FID.
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a-WGAN+MINE| BNPWMMD+DPMINE|| Real Dataset

BiGAN+MINE

Random Samples

Figure 9: 27 slices of each side of a 3D sample randomly generated from BNPWMMD+DPMINE, Bi-
GAN+MINE, and a-WGAN+MINE after 7500 epochs for COVID-19 example.
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Axial Sagittal Coronal

a-WGAN+MINE| BNPWMMD+DPMINE

BiGAN+MINE

i

Reconstructed Samples

Figure 10: 27 slices of each side of a 3D sample reconstructed by BNPWMMD+DPMINE, BIGAN+MINE;,
and a-WGAN+MINE after 7500 epochs for COVID-19 example.

(a) Real Dataset (b) BNPWMMD+DPMINE (C) a-WGAN-+MINE (d) BiGAN-+MINE

Figure 11: A 3D visualization of a real sample and a randomly generated sample in BraTS18 example.

Additionally, we calculate MS-SSIM using the available codes at https://torchmetrics.readthedocs.io/
en/v0.8.2/image/multi_scale_structural_similarity.html.

E.3.2 Network setting

In this section, we provide comprehensive information regarding the architectures of all networks used in the
experimental results. The encoder network, generator network, and discriminator network architectures, as
presented in Tables 4, 6, and 7 respectively, were implemented based on Kwon et al. (2019) for the e-WGAN
model. The relevant codes” are available at https://github.com/cyclomon/3dbraingen.git. Moreover,
the BNPWMMD model proposed in Fazeli-Asl & Zhang (2023) incorporates these architectures, alongside
an additional code generator outlined in Table 5. Figure 15 provides a flowchart illustrating the operation
process of BNPWMMD+DPMINE.

On the other hand, we have attempted to adapt the generator and discriminator architectures given in
Belghazi et al. (2018) for generating 3D chest CT images using BiGAN. The generator architecture can be
found in Table 8, and the discriminator architecture can be found in Table 9. We have also considered the

"It is licensed under the MIT License.
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Figure 12: Scatter plot of 2D features in BraTS18 example.

Axial Sagittal Coronal

a-WGAN+MINE| BNPWMMD+DPMINE|| Real Dataset

BiGAN+MINE

Random Samples

Figure 13: 27 slices of each side of a 3D sample randomly generated from BNPWMMD+DPMINE, Bi-
GAN+MINE, and a-WGAN+MINE after 7500 epochs for BraTS18 example.
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Axial Sagittal Coronal

a-WGAN+MINE| BNPWMMD+DPMINE

BiGAN+MINE

Reconstructed Samples

Figure 14: 27 slices of each side of a 3D sample reconstructed by BNPWMMD+DPMINE, BIGAN+MINE;,
and a-WGAN+MINE after 7500 epochs for BraTS18 example.

Table 3: Comparison of statistical scores for BraTS18 example.

Evaluator BNPWMMD | a-WGAN BiGAN
+DPMINE +MINE +MINE
FID Custom Encoder 0.00197 0.00692 0.04000
t-SNE 25.9317 59.5596 5572.95
KID Custom Encoder 0.00038 0.00229 0.1589
t-SNE 8.8100 15.1563 2723.97
MMD Custom Encoder 0.00075 0.00410 0.02799
t-SNE 0.1988 0.8150 2.4023
MS-SSIM 0.75007 0.74799 0.20349

encoder architecture provided in Table 4 for BiGAN. Additionally, Table 10 presents a simple architecture
used for updating the parameters {T,}~,er in the DPMINE and MINE calculationsBelghazi et al. (2018).
The basic codes® of BIGAN+MINE can be found in https://github.com/gtegner/mine-pytorch.git.

All architectures have been implemented in PyTorch using the Adam optimizer and a learning rate of 0.0002
on an NVIDIA Tesla V100-SXM2 with 4 GPUs, each with 32GB of RAM. Our code requires 48-72 hours to
provide results for the COVID-19 example. For the coil experiments, our code takes about 4-6 hours.

F Limitations

The BNP generative model proposed in this paper assumes that the training data follows the IID assumption.
However, this assumption restricts the model’s applicability to certain privacy-preserving techniques, such as
federated learning, which often rely on non-IID assumptions at the local device level. While this limitation
is acknowledged, it is beyond the scope of the current work to address it. In future research, we plan to
extend the proposed BNP model to incorporate non-IID assumptions and apply it to federated learning.
This extension aims to mitigate issues such as slow convergence and unfair predictions that may arise when
applying a global model to unseen data.

81t is licensed under the MIT License.
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Figure 15: A general flowchart to illustrate the actual operation process of BNPWMMD-+DPMINE.
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Table 4: Encoder: A 3D Convolutional Network Architecture for the COVID-19 Dataset used in
BNPWMMD-GAN and a-WGAN.

Input Output Kernel . . Activation
Layer dimension dimension Size StridePadding Function
. 1 x 64 x 64 x 64
Convolution (Data dimension) 64 x32%x32%x324x4x4 2 1 (neg%%?\}{eys%%légo.@
. Leaky ReLU
Convolution| 64 x 32 x 32 x 32 (128 X 16 x 16 x 164 x 4 x 4| 2 1

(negative slope=0.2)
BatchNorm (128 x 16 x 16 x 16128 x 16 x 16 x 16 - - - -

Leaky ReLU
(negative slope=0.2)
BatchNorm | 256 x 8 x 8 x 8 | 256 x 8 x 8 x 8 - - - -

Leaky ReLLU
(negative slope=0.2)

Convolution|128 x 16 x 16 x 16| 256 x 8 x 8 x 8 4 x4 x4 2 1

Convolution| 256 x 8 x 8 x 8 512 x4 x4x4 |[dx4x4 2 1

BatchNorm | 512 x4 x4 x4 512 x4 x4 x4 -
Convolution| 512 x4 x4 x4 | 1000 x1x1x1 [4x4x4 2 1 -

G Broad impacts and safeguards

One potential positive impact of this paper is the advancement of artificial intelligence (AI) techniques in
healthcare. The proposed model offers a solution to the challenge of accessing high-quality, diverse medical
datasets for clinical decision-making. This can lead to improved accuracy and effectiveness in diagnosing and
treating diseases, ultimately benefiting patients and healthcare providers. Additionally, the incorporation
of a BNP procedure helps uncover underlying structures in the data and reduce overfitting, enhancing the
reliability of the generated samples.

However, the use of Al in healthcare also raises concerns about data privacy and security. It is important
to prioritize patient privacy and data protection by implementing strict regulations and protocols to ensure
that patient data is anonymized and protected. Additionally, there is a risk of bias in the generated samples,
which could lead to disparities in healthcare outcomes if the models are not properly validated and tested on
diverse populations. Therefore, transparency and accountability in the development and deployment of these
AT models are necessary. Rigorous testing and validation on diverse datasets should be conducted to mitigate
bias and ensure fairness. Collaboration between healthcare professionals, Al researchers, and policymakers is
essential to establish guidelines and regulations that prioritize patient privacy, data protection, and equitable
healthcare outcomes.
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Table 5: Code-Generator: A 3D Convolutional Network Architecture for the COVID-19 Dataset used in
BNPWMMD-GAN and a-WGAN.

Input Output Kernel . . _|Activation
Layer dimer:lsion dimerl;)sion Size Stride Padding Function

100
Convolution (Sub-latent |16 x 2 x5 x 103 x 3 x 3 1 1 ReLU

dimension)

BatchNorm2 |16 x 2 x 5 x 10[16 x 2 x 5 x 10 - - - -
Max-pooling |16 X2 x5 X 10[16 X2 x5 x 51 x1x21x1x2 - -
Convolution 16 x2xH5x5|32x2x5x5[3x3x3 1 1 ReLU
BatchNorm?2 32Xx2x5x5[32x2x5x%x5H - - - -
Max-pooling 32X2x5x5[32x2x5x2(1x1x21x1x2 - -
Convolution 32X2x5x2[64x2x5Xx213x3x%x3 1 1 ReLU
BatchNorm3 64x2x5x2[64%Xx2Xx5x2 - - - -
Max-pooling 64X2x5Xx2[64x2x5x1[1x1x21x1x2 - -
Flatten 64x2xbHx1 640 - - - -
Fully-connected 640 1000 - - - -

Table 6: Generator: A 3D Convolutional Network Architecture for the COVID-19 Dataset used in
BNPWMMD-GAN and a-WGAN. 5 : R
Input utput Kerne . . ctivation

Layer dimelilsion dimerll)sion Size Stride Padding Function
Transposed 10.00 . 512 x4 x4x4 [4x4x4] 1 0 ReLU
convotution |(Latent dimension)
BatchNorm | 512 x4 x4 x 4 512 x4 x4 x4 - - - -
Upscale 512 x4 x4 x4 512 x4 x4 x4 - - - -
Convolution| 512 x4 x4 x4 256 x 8 x 8 x8 3 x3x3| 1 1 ReLU
BatchNorm | 256 x 8 x 8 x 8 256 x 8 Xx 8 X 8 - - - -
Upscale 256 Xx 8 x 8 x 8 256 x 8 x 8 x 8 - - - -
Convolution| 256 x 8 x 8 x 8 [128 x 16 x 16 x 16|3 x 3 x 3 1 1 ReLU
BatchNorm [128 x 16 x 16 x 16|128 x 16 x 16 x 16 - - - -
Upscale 128 x 16 X 16 X 16|128 x 16 x 16 x 16 - - - -
Convolution|128 x 16 x 16 x 16|64 x 32 x 32 x 323 x 3 x 3 1 1 ReLU
BatchNorm | 64 x 32 x 32 x 32 | 64 x 32 x 32 x 32 - - - -
Upscale 64 X 32 X 32 x32 |64 x 32 x32x 32 - - - -
Convolution| 64 x 32 x 32 x 32| 1 x 64 x 64 x64 [3x3x3 1 1 Tanh

Table 7: Discriminator: A 3D Convolutional Network Architecture for the COVID-19 Dataset used in

BNPWMMD-GAN and a-WGAN.

Input Output Kernel . . Activation
Layer dimension dimension Size StridePadding Function
. 1x 64 x 64 x 64
Convolution (Data dimension) 64 x32x32x3214x4x4 2 1 (neg%ﬁ%igs (%Je[iog)
Convolution| 64 x 32 x 32 x 32 [128 x 16 x 16 x 16/4 x 4 x 4| 2 1 Leaky ReL.U
(negative slope=0.2)
BatchNorm [128 x 16 x 16 x 16/128 x 16 x 16 x 16 - - - -
] Leaky ReLU
Convolution|128 x 16 X 16 x 16| 256 x 8 x 8 x 8 |4 x4 x 4| 2 1 .
(negative slope=0.2)
BatchNorm | 256 x 8 X 8 x 8 | 256 x 8 Xx 8 x 8 - - - -
Convolution| 256 x 8 x 8x 8 | 512x4x4x4 Adx4x4 2 1 Leaky ReL.U
(negative slope=0.2)
BatchNorm | 512 x4 x4 x4 | 512x4x4x4 - - - -
Convolution| 512 x4 x4 x4 I1x1x1x1 [“dx4x4 2 1 Sigmoid
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Table 8: Generator: A 3D Convolutional Network Architectt

1re for the COV

ID-19 Dataset used in BiGAN.

Input Output Kernel . . _|Activation

Layer dimension dimension Size Stride Padding Function
1000

Fully-connected (latent dimension) 4x4x4x512 - - - -
Transposed 512x4x4x4 | 256x8x8x8 [Axdxd 2 1 ReLU
convolution
Transposed 256 x 8 x 8 x 8 [128 x 16 x 16 x 16{4 x 4 x 4| 2 1 ReLU
convolution
Transposed o0 162 16 x 16/ 64 x 32 x 32 x 32 |4 x 4 x 4] 2 1 ReLU
convolution
Transposed g a0 39 % 32| 1x64x64x64 [4xdxd 2 1 Tanh
convolution

Table 9: Discriminator:

BiGAN.

A 3D Convolutional Network Architecture for the COVID-19 Dataset used in

Input Output Kernel . . _|Activation
Layer dimerilsion dimerll)sion Size Stride Padding Function
Convolution | f X 04X 64X 64 1) 09 30w 3ol5x5x5| 2 2 |LeakyReLU

(Data dimension)

Convolution 64 X 32 x 32 x 32128 x 16 X 16 X 16|5 x 5 x 5| 2 2 LeakyReLLU
Convolution 128 x 16 X 16 X 16| 256 x 8 x 8 x 8 |5 X 5 x 5| 2 2 LeakyReLLU
Flatten 256 x 8 x 8 X 8 131072 - - - -
Concatenate 1000 + 131072 132072 - -
latent-variable
Fully-connected 132072 1024 - - - -
Fully-connected 1024 1 - - - Sigmoid

Table 10: T’,-network Architecture used in DPMINE and MINE computation.

. . . . _|Activation

Layer Input Dimension Output Dimension Function
i 1000 + 64°

concatenation (Latent dimension 4 Data dimension) 263144 )
Linear 263144 400 ReLLU
Linear 400 400 ReLU
Linear 400 400 ReLU
Linear 400 1 ReLLU
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