

- Speeding up LLM Inference through Dynamic
Token Halting, KV Skipping, Contextual Token
Fusion, and Adaptive Matryoshka Quantization

Anonymous ACL submission

Abstract

Inference has become the dominant driver of001
resource consumption in large language model002
(LLM) deployments, often accounting for over003
90% of total latency, energy use, and oper-004
ational cost—surpassing even the one-time005
expense of training. While training-time ef-006
ficiency has advanced considerably, runtime007
optimization remains a critical bottleneck, par-008
ticularly under autoregressive decoding. Exist-009
ing methods—such as pruning, quantization,010
early exits, and speculative decoding—often011
require retraining, architectural modifications,012
or a compromise in decoding compatibility.013
We present QuickSilver, a modular, token-014
level framework that enables semantic adap-015
tivity at inference time without altering model016
weights or structure. QuickSilver integrates017
four synergistic mechanisms: (i) Dynamic To-018
ken Halting, which detects representational019
stability and halts further computation for se-020
mantically saturated tokens; (ii) KV Cache021
Skipping, which skips memory updates for022
halted tokens, streamlining attention layers and023
lowering runtime cost; (iii) Contextual Token024
Fusion, which identifies and merges similar to-025
kens during inference, streamlining token flow026
and minimizing redundancy; and (iv) Adap-027
tive Matryoshka Quantization, which dy-028
namically adjusts token-level bit-widths for ef-029
ficient quantization. Unlike speculative decod-030
ing or mixture-of-experts routing, QuickSilver031
operates entirely at runtime on frozen, dense032
models—requiring no auxiliary networks or033
retraining. Evaluated on GPT-2 and Llama-034
2 across WikiText-103 and C4, QuickSilver035
achieves up to 39.6% FLOP reduction with036
minimal perplexity degradation (≤0.2), offer-037
ing a lightweight, plug-and-play path toward038
scalable, energy-efficient inference. To facili-039
tate adoption and further research, we release040
our implementation publicly.1041

1https://anonymous.4open.science/r/Quicksilver/

1 Inference-Time Speed: Why It Matters 042

LLMs now exceed human-level performance 043

across many NLP tasks [OpenAI, 2023; Bubeck 044

et al., 2023], yet inference, not training, has be- 045

come the dominant bottleneck in deployment [Pat- 046

terson and Gonzalez, 2021; Sanh et al., 2022]. 047

Real-world usage patterns make inference respon- 048

sible for over 90% of total energy and compute 049

cost [Patterson et al., 2022; Desislavov et al., 2021], 050

positioning inference-time optimization as a criti- 051

cal frontier. 052

User Interactivity. LLMs in real-time applica- 053

tions such as chatbots or translation tools demand 054

sub-second token-level latency [Chen et al., 2023a; 055

Levy et al., 2023]. Even slight delays degrade user 056

experience [Shuster et al., 2022; Ni et al., 2022], 057

while micro-optimizations can compound to im- 058

prove responsiveness dramatically. 059

Scalability and Cost. Widespread LLM adop- 060

tion stresses infrastructure. Faster inference 061

boosts throughput without linearly scaling com- 062

pute [Barham et al., 2022]. Strategies like early 063

exits [Schwartz et al., 2020; Elbayad et al., 2020a], 064

adaptive computation [Graves, 2016], and spec- 065

ulative decoding [Leviathan et al., 2022] reduce 066

cost but often require retraining or architectural 067

coordination. 068

Reasoning and Agents. Reasoning-heavy and 069

agentic models rely on multi-step inference 070

(e.g., Chain-of-Thought [Wei et al., 2022], Tool- 071

former [Schick et al., 2023]), amplifying runtime 072

overhead. Low-latency execution is vital for main- 073

taining autonomy in dynamic environments. 074

Environmental Impact. Inference, executed 075

millions of times daily, is the primary contributor 076

to LLM carbon emissions [Patterson et al., 2022; 077

Luccioni et al., 2022]. Runtime efficiency directly 078

reduces energy footprint, enabling more sustain- 079

able AI deployment. 080

1

Inference-Time
Optimization

for LLMs

Architectural Approaches

MoE Routing [Lepikhin et al., 2020; Fedus et al., 2022]

Sparse Attention [Chen et al., 2023c]

Low-Rank Approx. [Ma et al., 2022; Li et al., 2021a]

Training-Based Compression

Quantization [Xiao et al., 2022; Lin et al., 2023]

Pruning [Michel et al., 2019b; Fan et al., 2021]

Early Exit [Schuster et al., 2022; Elbayad et al., 2020a; Li et al., 2022]

Runtime-Only Methods

Speculative Decoding [Chen et al., 2023a; Levy et al., 2023]

Token Merging [Bolya et al., 2023; Ge et al., 2024]

QuickSilver (Ours) Token Halting + KV Skipping + Fusion

Figure 1: Taxonomy of inference-time optimization techniques for LLMs
Technique Requires Retraining Architecture Change Runtime-Only Token-Level Stackable Representative Works
Early Exit ✓ Yes ✎ Possibly ✗ No ❅ No ✎ Limited [Schuster et al., 2022; Elbayad et al., 2020a; Li et al., 2022]
Mixture of Experts (MoE) Routing ✓ Yes ✓ Yes ✗ No ❅ No ❅ No [Lepikhin et al., 2020; Fedus et al., 2022]
Speculative Decoding ✗ No ✎ Light Wrapper ✓ Yes ❅ No ✎ Limited [Chen et al., 2023a; Levy et al., 2023]
Attention/Layer Pruning ✓ Yes ✎ Model Patch ✗ No ❅ No ✎ Limited [Michel et al., 2019b; Fan et al., 2021]
Quantization ✓ Yes ✎ Compiler Patch ✗ No ❅ No ✓ Yes [Xiao et al., 2022; Lin et al., 2023]
Token Merging ✎ Sometimes ✎ Light Patch ✓ Yes ✓ Yes ✓ Yes [Bolya et al., 2023; Ge et al., 2024]
Sparse Attention ✓ Yes ✓ Yes ✗ No ❅ No ❅ No [Chen et al., 2023c]
Low-Rank Approximation ✓ Yes ✓ Yes ✗ No ❅ No ✎ Limited [Ma et al., 2022; Li et al., 2021a]
FlashInfer ✗ No ✓ Kernel Only ✓ Yes ❅ No ✓ Yes [Ye et al., 2025]
LayerDrop ✓ Yes ✓ Yes ✗ No ❅ No ✎ Limited [Fan et al., 2021]
QuickSilver (Ours) ✗ No ✗ No ✓ Yes ✓ Yes ✓ Yes —

Table 1: Comparison of QuickSilver with existing inference-time acceleration methods across key attributes. Icons:
✓= Yes, ✗= No, ✎= Partial/Limited, ❅= Not Applicable.

Limitations of Prior Work. Inference accelera-081

tors such as quantization [Xiao et al., 2022], prun-082

ing [Michel et al., 2019b], token merging [Bolya083

et al., 2023], and sparse attention [Child et al.,084

2019; Chen et al., 2023c] often require retrain-085

ing, introduce architectural changes, or lead086

to degraded output quality [Sanh et al., 2022;087

Bolya et al., 2023]. Speculative decoding [Chen088

et al., 2023a; Levy et al., 2023] adds a veri-089

fier model and coordination burden, while layer-090

skipping methods (e.g., FastBERT [Liu et al.,091

2020], PABEE [Zhou and et al., 2020]) rely on092

task-specific supervision and calibrated thresholds.093

Most techniques operate at the layer or sequence094

level, lacking token-level control and runtime095

plasticity. Their dependence on static heuristics096

or auxiliary modules limits deployability in frozen097

or black-box models. Figure 1 summarizes these098

design constraints, and Table 1 offers an attribute-099

level comparison across retraining, architecture,100

runtime scope, granularity, and composability.101

Our Approach. We present QuickSilver, a102

runtime-only, zero-shot, model-agnostic frame-103

work for inference acceleration. It integrates Dy-104

namic Token Halting, KV Cache Skipping, Con-105

textual Token Fusion, and Adaptive Matryoshka106

Quantization—reducing per-step cost without re-107

training or altering model internals. QuickSilver108

complements step-reduction methods like specula-109

tive decoding, offering a composable solution for110

fast, sustainable, and scalable LLM inference.111

2 QuickSilver - Design Details 112

In this section, we present the core technical com- 113

ponents of QuickSilver, a runtime-only frame- 114

work composed of four lightweight, modular 115

mechanisms: Dynamic Token Halting, KV Cache 116

Skipping, Contextual Token Fusion, and Adap- 117

tive Matryoshka Quantization. Each targets a dis- 118

tinct redundancy axis—temporal, memory, spa- 119

tial, and precision—and operates on frozen trans- 120

former models without retraining or architectural 121

changes. We outline the design motivations, deci- 122

sion signals, and implementation strategies be- 123

hind each module, and show how their composi- 124

tion enables per-token compute reduction while 125

preserving model fidelity and output quality. 126

2.1 Dynamic Token Halting 127

In standard Transformer inference, every token t 128

is processed through all L layers—even when its 129

representation has already stabilized. Dynamic 130

Token Halting (DTH) addresses this inefficiency 131

by detecting semantic convergence and terminating 132

computation for such tokens early, layer-wise. 133

Semantic Convergence. Let h(ℓ)
t ∈ Rd be the 134

hidden state of token t at layer ℓ. DTH leverages 135

this insight by computing, at each layer ℓ, two 136

metrics for each token t: 137

• Layerwise Drift ∆(ℓ)
t = ∥h(ℓ)

t − h
(ℓ−1)
t ∥2 138

• Token Entropy 139

2

0 5 10 15 20 25 30
Layer

0

2

4

6

8

10

L2
 D

iff
er

en
ce

Dynamic Token Halting with Varied L2 Curves
(Forced drops in red; natural halts in blue; full processing in gray)

This (full)
is (forced)
a (forced)
long (full)
sentence (full)
designed (full)
to (forced)
demonstrate (full)
how (full)
dynamic (full)
token (full)
halting, (full)
enhanced (full)
KV (full)
cache (full)
optimization, (full)
and (forced)
contextual (full)
fusion (full)
work (full)
together (full)
accelerate (full)
inference (full)
by (forced)
reducing (full)
redundant (full)
computations (full)
merging (full)
similar (full)
tokens. (full)

(a) Dynamic Token Halting. Tokens are halted once
their representations converge, measured via L2 drift.
Blue traces show halted tokens, red denotes forced halts,
and gray denotes full propagation. This mechanism
enables early exits per token, reducing unnecessary
layer computation without retraining.

(b) KV Cache Skipping. Layer-token heatmap depict-
ing where KV cache writes are performed (blue) versus
skipped (red). Skipping is triggered by halting deci-
sions, which reduces memory pressure in deeper layers
and improves the efficiency of attention time.

(c) Contextual Token Fusion. Tokens with near-
identical hidden states are progressively merged across
layers. Red arcs indicate fusion events; purple paths
represent fused token trajectories. This reduces effec-
tive sequence length while preserving syntactic and
semantic alignment.

(d) Adaptive Matryoshka Quantization. At a mid-
network layer (e.g., Layer 15), tokens are assigned bit-
widths based on entropy: green = 8-bit, orange = 4-bit,
red = 2-bit. This per-token precision scaling reduces
memory and compute on low-entropy spans without
degrading quality.

Figure 2: Visualization of QuickSilver’s token-level runtime mechanisms. Each module adaptively adjusts
inference based on semantic signals without altering weights, forming a unified framework that scales computation
to information content.

H(p(ℓ)t) = −
∑

i p
(ℓ)
t (i) log p

(ℓ)
t (i)140

Halting Policy. A token halts when both signals141

fall below predefined thresholds:142

H
(ℓ)
t =

{
0, if ∆(ℓ)

t < τdrift andH(p(ℓ)t) < τhalt

1, otherwise
143

Here, H(ℓ)
t = 0 indicates halting. This decision144

is based on two criteria: low representational drift145

and low predictive entropy, which jointly ensure146

convergence in both the latent space and output147

confidence. Once halted, the token is excluded148

from computation in layers ℓ+ 1 through L.149

Override Logic. DTH supports flexible over-150

rides:151

• Forced Halting: Token is halted regardless of 152

∆
(ℓ)
t (e.g., latency-critical contexts). 153

• Full Processing: Token bypasses halting (e.g., 154

special tokens or domain-sensitive terms). 155

The halting decision becomes: 156

H ′
t(ℓ) = max{1[full processing], Ht(ℓ)} ·min{1[no forced halt], Ht(ℓ)}. 157

Computational Impact. Tokens with ∆
(ℓ)
t < 158

τ are removed from deeper-layer computation 159

and memory flow, substantially reducing FLOPs. 160

In empirical settings, DTH achieves meaningful 161

speedups with minimal degradation in quality. 162

3

As illustrated in Figure 2(a), DTH is a key com-163

ponent of QuickSilver’s runtime framework, en-164

abling per-token pruning based on semantic sta-165

bility. It is particularly effective in long-context166

scenarios where early stabilization is common.167

Token Categorization. To analyze which lin-168

guistic token types are halted—or should be—by169

QuickSilver, we group them into two broad cate-170

gories using the Penn Treebank POS tagset [Mar-171

cus et al., 1993]:172

• Function Words (FW): Determiners, prepo-173

sitions, conjunctions, auxiliaries, and pro-174

nouns—tokens that typically exhibit early satura-175

tion in representation space [Linzen et al., 2016;176

Rogers et al., 2020].177

• Content Words (CW): Nouns, verbs, adjectives,178

and adverbs—tokens that require deeper contex-179

tualization for disambiguation [Hewitt and Man-180

ning, 2019; Tenney et al., 2019a].181

Figure 3: Accuracy degradation by halting depth
and token type. Function words halted early (l < 10)
incur negligible accuracy loss. In contrast, halting con-
tent words prematurely causes semantic degradation,
particularly in inference and syntax-sensitive tasks. De-
layed halting yields favorable trade-offs.

Metric. Let Acct denote the classification accu-182

racy of token t, and Dt its halting depth (layer at183

which it is frozen). We define mean deviation as:184

∆Acc
(d)
cat = Et∈cat,Dt=d

[
AccBaseline

t −AccQS
t

]
,185

where QS denotes QuickSilver, and d indexes halt-186

ing depth.187

Observations. Figure 3 illustrates (see more in188

Section 3 and Appendix L) accuracy deltas across189

tasks and halting depths:190

• Function Words halted early (e.g., before Layer191

10) contribute minimally to prediction error, with192

|∆Acc|< 0.2% in most tasks—consistent with193

their role as syntactic scaffolding [Hale, 2001].194

• Content Words halted prematurely (e.g., Layer 195

15) exhibit measurable degradation in semanti- 196

cally demanding tasks such as RTE and CoLA. 197

• Delayed Halting—i.e., enforcing a minimum 198

layer for halting—mitigates errors on semantically 199

rich tokens without significantly increasing com- 200

putational cost. 201

This stratified analysis affirms the design of 202

QuickSilver’s dual-signal halting mechanism: 203

tokens halted early are predominantly function 204

words, whose limited semantic drift warrants early 205

termination, while content words naturally prop- 206

agate deeper. This alignment between computa- 207

tional behavior and linguistic function resonates 208

with insights from probing literature [Clark et al., 209

2019; Jawahar et al., 2019], reinforcing the inter- 210

pretability of representational depth. 211

Empirical POS Analysis. Table 2 quantifies 212

QuickSilver’s halting behavior by POS tag. Func- 213

tion words—such as determiners, prepositions, 214

and conjunctions—are halted with high frequency 215

(>85%), reflecting their grammatical utility and 216

low semantic contribution. In contrast, content 217

words show far lower halting rates (18.5%), as they 218

encode essential meaning and continue to evolve 219

across layers. These findings empirically support 220

the hypothesis that token-level entropy and drift 221

heuristics align with linguistic function, enabling 222

adaptive compute allocation based on semantic im- 223

portance. 224

POS Tag Category Fraction Halted (%) Token Count Examples

Determiners (DT) 91.4% 1,204 the, this, those
Prepositions (IN) 87.2% 986 in, on, over
Conjunctions (CC) 89.6% 412 and, but, or
Pronouns (PRP/PRP$) 74.8% 705 he, we, our
Auxiliary Verbs (MD, VBZ, VBP) 68.3% 893 is, does, can

Content Words (NN, VB, JJ, RB) 18.5% 9,710 dog, run, fast, really

Table 2: POS-level halting rates under QuickSilver
(WikiText-103, Layer 15). Function words halt early at
high rates, supporting the intuition that they carry low
semantic load. Content words—semantically rich and
task-critical—are retained deeper in the network.

QuickSilver’s halting strategy is neither rule- 225

based nor indiscriminate—it is a soft, data-driven 226

mechanism that adapts to token-level semantic 227

salience in context. By halting syntactically 228

predictable tokens early while allowing content- 229

bearing words to refine through depth, it enables 230

fine-grained, linguistically aligned compute al- 231

location with minimal performance loss. 232

4

2.2 KV Cache KV Skipping233

Transformer models maintain Key–Value (KV)234

caches at every attention layer, storing token-wise235

projections regardless of downstream relevance.236

KV Cache Skipping leverages per-token halting237

signals (Section 2.1) to suppress redundant KV238

writes for semantically converged tokens, thereby239

reducing memory usage and compute overhead.240

KV Computation. At layer ℓ, the key and value241

matrices for a sequence of T tokens are:242

K(ℓ) = [k
(ℓ)
1 , . . . ,k

(ℓ)
T]⊤, V(ℓ) = [v

(ℓ)
1 , . . . ,v

(ℓ)
T]⊤243

with each vector derived from hidden states via:244

k
(ℓ)
t = W

(ℓ)
K h

(ℓ)
t , v

(ℓ)
t = W

(ℓ)
V h

(ℓ)
t .245

These projections are cached to enable fast autore-246

gressive or batched inference.247

Skipping Logic. Let Ht(ℓ) denote the halting248

indicator for token t at layer ℓ. We define a KV249

skipping mask:250

St(ℓ) =

{
0 if Ht(ℓ) = 0 (token halted)
1 otherwise

251

If St(ℓ) = 0, then the corresponding KV entries252

are skipped:253

k
(ℓ)
t ← St(ℓ) · k(ℓ)

t , v
(ℓ)
t ← St(ℓ) · v(ℓ)

t .254

This suppresses memory updates for stale tokens255

that no longer contribute semantically.256

Impact on Attention. At layer ℓ, attention logits257

become:258

Attention(u, t, ℓ) =
(q

(ℓ)
u)⊤(St(ℓ) · k(ℓ)

t)√
d

.259

If St(ℓ) = 0, then token t is excluded from both260

key lookup and value aggregation—effectively261

pruning it from the attention window.262

Override Controls. To balance efficiency with263

accuracy, we support token-level exceptions:264

• Forced Retention: Manually enforce St(ℓ) =265

1 for critical tokens.266

• Halting Delay: Impose a minimum layer bud-267

get before skipping becomes eligible.268

Efficiency Gains. QuickSilver reduces memory 269

traffic and computation by halting saturated to- 270

kens, skipping KV updates, and fusing redundant 271

ones. KV Skipping eliminates unnecessary mem- 272

ory writes, while Contextual Token Fusion short- 273

ens sequence length—together yielding substantial 274

savings in deep layers, long contexts, and large 275

batches (Figure 2(b)). Gains are most pronounced 276

(see more in Section 3 and Appendix C) in repet- 277

itive or morphologically rich inputs, where repre- 278

sentational redundancy is high. 279

2.3 Contextual Token Fusion (Merging) 280

Contextual Token Fusion merges tokens with 281

near-identical representations, reducing seman- 282

tic redundancy in deep Transformer layers. By 283

collapsing converged tokens into shared paths, it 284

lowers the active token count without retraining 285

or architectural changes. As shown in Figure 2(c), 286

this yields significant compute savings while pre- 287

serving output fidelity. 288

Fusion Trigger. Let h(ℓ)
t and h

(ℓ)
u denote the hid- 289

den states of tokens t and u at layer ℓ. These tokens 290

are eligible for fusion if their representational dis- 291

tance falls below a threshold: 292∥∥∥h(ℓ)
t − h(ℓ)

u

∥∥∥
2
< τfuse, 293

where τfuse is a tunable similarity parameter. To 294

preserve semantic integrity, fusion is restricted to 295

(i) adjacent tokens or (ii) token pairs with high 296

attention similarity, measured as: 297

1

L

L∑
ℓ=1

q
(ℓ)
t · k

(ℓ)
u

∥q(ℓ)
t ∥2∥k

(ℓ)
u ∥2

> τattn, 298

where τattn is a tunable attention-based fusion 299

threshold. 300

Together, these criteria yield the composite fu- 301

sion condition: 302

∥∥∥h(ℓ)
t − h(ℓ)

u

∥∥∥
2
< τfuse ∧

(
Adj(t, u) ∨ 1

L

L∑
ℓ=1

q
(ℓ)
t · k

(ℓ)
u

∥q(ℓ)
t ∥2∥k

(ℓ)
u ∥2

> τattn

)
, 303

where Adj(t, u) indicates token adjacency. Both 304

representational and contextual similarity must be 305

satisfied to merge tokens safely. 306

Fused Representation. Tokens {t1, . . . , tk} are 307

replaced by a single super-token t̃, with represen- 308

tation: 309

h
(ℓ)

t̃
=

∑k
i=1 αtih

(ℓ)
ti∑k

i=1 αti

, αti ∝ score(ti, ℓ) 310

5

where α can reflect attention weights, token proba-311

bilities, or uniform averaging.312

Downstream Propagation. From layer ℓ+1 on-313

ward, only t̃ contributes keys/values:314

k
(ℓ+1)

t̃
= W

(ℓ+1)
K h

(ℓ)

t̃
, v

(ℓ+1)

t̃
= W

(ℓ+1)
V h

(ℓ)

t̃
315

This mirrors the skipping logic in Sections 2.1316

and 2.2, but replaces groups of similar tokens with317

a unified trajectory.318

Granularity Controls. Fusion is applied selec-319

tively, restricted to adjacent or semantically aligned320

tokens—such as modifiers (e.g., “very,” “really”)321

and determinants (e.g., “the,” “this”). Tokens crit-322

ical to task intent—such as prompt anchors (e.g.,323

“Question:”, “Answer:”), rare entities (e.g., “Ein-324

stein”)—are explicitly exempted to preserve repre-325

sentational integrity and ensure faithful generation.326

Efficiency Gains. Fusion reduces sequence327

length and shrinks compute/memory cost in deeper328

layers. When combined with token halting and KV329

skipping, Contextual Token Fusion contributes to330

significant FLOP reduction with minimal quality331

loss (see more in Section 3 and Appendix D).332

This is especially beneficial in repetitive or mor-333

phologically rich settings.334

Token at mid-layer
(e.g., L15)

Low entropy
ₜ ?

Low drift
ₜ ₜ ?

High similarity
ₜ ᵤ ?

HALT Token
Freeze updates

FUSE Tokens
Create T̄

Continue full path

Yes No

No

Yes

No

Yes

Figure 4: Halting vs. Merging Decision Tree. For
each token, QuickSilver first checks for stability to ap-
ply halting; if unmet, it checks for representational and
contextual similarity to apply merging. Tokens satisfy-
ing neither condition proceed with full computation.

2.4 Halting vs. Merging: The Logic335

QuickSilver reduces tokens at runtime through two336

complementary strategies: Halting and Merging,337

each guided by distinct semantic signals to prune338

computation.339

Halting: When a Token Is Confidently Stable. 340

Halting is triggered when a token exhibits both low 341

entropy and low representational drift. Formally, 342

for token t at layer ℓ, let H(t) denote its entropy 343

and ∆
(ℓ)
t = ∥h(ℓ)

t − h
(ℓ−1)
t ∥2 denote its layerwise 344

drift. Halting is applied if: 345

H(t) < τhalt and ∆
(ℓ)
t < τdrift 346

where τhalt and τdrift are tunable thresholds. 347

Figure 5: Geometric Interpretation of Token Tra-
jectories: Halting and Fusion. This figure visualizes
the representational norms or latent values of different
tokens as they progress across Transformer layers. The
solid orange line represents a continued token under-
going full-depth computation. The dashed orange line
halts at Layer 5, flattening thereafter, reflecting Quick-
Silver’s Dynamic Token Halting (DTH) mechanism
based on convergence of drift and entropy. The two dot-
dashed curves (red and magenta) represent tokens A
and B, which are merged at Layer 6 under Contextual
Token Fusion due to their high representational similar-
ity. Following the merger, the trajectory follows a single
latent path (not shown) that combines their shared se-
mantics. Vertical dashed lines mark the Halting Point
and Fusion Point, highlighting distinct decision bound-
aries. This trajectory-based view offers an interpretable
and semantically aligned rationale for QuickSilver’s
inference-time optimizations.

Merging: When Tokens Are Semantically Re- 348

dundant. If halting conditions fail, QuickSilver 349

checks for fusion opportunities. Let u be a neigh- 350

boring token. If the pairwise similarity condition 351

∥h(ℓ)
t − h(ℓ)

u ∥2< τfuse 352

holds for some u in the local or graph-defined 353

context of t, the tokens are merged into a fused 354

super-token t̃ with representation: 355

h
(ℓ)

t̃
=

∑k
i=1 αtih

(ℓ)
ti∑k

i=1 αti

where αti ∝ score(ti, ℓ) 356

6

Table 3: Ablation study for entropy-aware quantization in QuickSilver. Bitwidths are dynamically selected per
token based on entropy thresholds. We report validation perplexity on WikiText-103 and total FLOP savings.

Quantization Strategy Bitwidth Range Entropy Thresholds PPL FLOPs ↓ Comment

Full Precision (Baseline) 16-bit – 18.2 0.0% No compression
Uniform 8-bit 8-bit – 18.3 26.4% Fixed quantization
Entropy-Aware (Ours) 2/4/8-bit τlow = 1.0, τhigh = 2.3 18.3 39.6% Dynamic bitwidth
Entropy-Aware (No 2-bit) 4/8-bit τlow = 1.0, τhigh = 2.3 18.4 33.2% Conservative quant
Aggressive Quant (2/4-bit) 2/4-bit τlow = 1.2, τhigh = 2.6 19.2 44.8% Accuracy drop

Decision Priority. QuickSilver implements a357

token-wise decision hierarchy, prioritizing halt-358

ing over merging due to its more substantial com-359

putational payoff: halting removes computation360

entirely, while merging still incurs shared down-361

stream cost. A token is halted if it satisfies both:362

H(t) < τhalt ∧ ∆
(ℓ)
t < τdrift,363

indicating low predictive entropy and minimal rep-364

resentational drift. If halting is not triggered,365

the token is evaluated for Contextual Fusion us-366

ing the similarity criteria defined above. Tokens367

meeting neither condition are processed as usual,368

as shown in Figure 4 and Figure 18. This halt-369

ing–merging bifurcation enables QuickSilver to370

adaptively select the most efficient path per to-371

ken—halting for confident convergence, merging372

for redundancy—while preserving semantic cover-373

age and maintaining architectural modularity.374

2.5 Adaptive Matryoshka Quantization375

We propose Adaptive Matryoshka Quantization376

(AMQ), an extension of Matryoshka Quantiza-377

tion [Lin and et al., 2023] that operates at the378

token level, guided by predictive entropy. This379

entropy-aware approach dynamically adjusts per-380

token bit-widths, assigning lower precision to pre-381

dictable tokens and preserving higher precision for382

semantically complex ones. Unlike uniform quan-383

tization, AMQ enables fine-grained compression384

without retraining. It complements halting, skip-385

ping, and fusion by aligning inference cost with386

token-level uncertainty.387

Entropy Estimation. For each token t, we com-388

pute predictive entropy H(t) over its softmax-389

normalized latent distribution:390

H(t) = −
∑
i

pi log pi,391

where pi denotes the probability of the i-th vocabu-392

lary token. High-entropy tokens reflect uncertainty393

and require higher precision, while low-entropy394

tokens—often syntactic or repetitive—are consid-395

ered safe to compress.396

Precision Allocation. AMQ assigns bit-width 397

bt to each token t using a three-tier quantization 398

policy: 399

bt =


8 if H(t) > τhigh,

4 if τlow ≤ H(t) ≤ τhigh,

2 if H(t) < τlow.

400

This stratified scheme (see Table 3) concentrates 401

precision where semantic complexity is high and 402

aggressively compresses low-entropy tokens (e.g., 403

punctuation or structure words). 404

Application and Efficiency. To balance seman- 405

tic fidelity and efficiency, we compute H(t) and as- 406

sign bt at a mid-layer (e.g., Layer 15 of 30). Early 407

layers lack context for reliable entropy estimation; 408

later layers offer limited savings. Mid-layer quanti- 409

zation captures semantic convergence early enough 410

for compression without sacrificing expressiveness. 411

Once bit-widths are assigned, downstream opera- 412

tions run in mixed precision. As shown in Fig- 413

ure 2(d), this adaptive scheme yields significant 414

FLOP and memory savings with negligible per- 415

plexity impact (cf. Section 3, Appendix E). 416

3 Performance 417

We evaluate QuickSilver along two primary axes: 418

i) speedup and ii) accuracy retention. The goal 419

is to reduce inference-time compute–measured in 420

FLOPs and latency—while preserving model fi- 421

delity, reflected in perplexity. Results span multi- 422

ple architectures (GPT-2, Llama-2) and datasets 423

(WikiText-103 [Merity et al., 2016], C4 [Raffel 424

et al., 2020]), with detailed analysis of trade-offs 425

across halting, skipping, fusion, and quantization. 426

3.1 Inference Speed 427

We benchmark average per-sequence latency using 428

PyTorch 2.1, CUDA 11.8, and FP16 on an NVIDIA 429

A100 (40GB). Compared to early exits [Schuster 430

et al., 2022; Elbayad et al., 2020a], speculative de- 431

coding [Chen et al., 2023a], token merging [Bolya 432

et al., 2023], sparse attention [Child et al., 2019], 433

and quantization [Xiao et al., 2022], QuickSilver 434

7

Figure 6: Cumulative Impact of Optimizations. Each
technique is added incrementally. Speed–perplexity
trade-offs compound, with QuickSilver achieving
≈49% speedup and +0.22 perplexity.

Figure 7: Isolated Impact of Optimizations. Each
module is applied independently. Token- Fusion &
Halting yield largest gains with min degradation.

Figure 8: QuickSilver vs. Existing Acceleration
Methods. Inference time normalized to Quantization
= 1.00. QuickSilver is fastest (0.40), outperforming
early exit, speculative decoding, token merging, and
sparse attention. QuickSilver runs entirely at run-
time, requiring no retraining, architecture changes, or
auxiliary models—a lightweight, deployment-friendly
path for frozen LLMs. Unlike other methods, it com-
bines token-level halting, fusion, and cache skipping to
reduce computation via adaptive semantic stability.

is fastest on GPT-2 (774M) and Llama-2 (7B) with435

512-token WikiText-103 inputs.436

As shown in Figure 8, it cuts runtime to 0.40×437

of the quantized baseline via halting, KV skipping,438

and token fusion—entirely at runtime, with no re-439

training or architecture changes. Timings include440

generation, attention, and cache updates; I/O and441

prompt encoding are excluded.442

Table 4: Task accuracy on GLUE and SuperGLUE
shows QuickSilver matches dense inference with under
1% performance drop.

Task Type Metric Baseline QuickSilver ∆ (↓)

MNLI (Matched) NLI Accuracy 84.5 83.9 –0.6
QNLI QA Accuracy 91.2 90.7 –0.5
SST-2 Sentiment Accuracy 94.8 94.6 –0.2
CoLA Syntax Matthews Corr. 60.1 59.1 –1.0
BoolQ Boolean QA Accuracy 78.4 77.6 –0.8
RTE Entailment Accuracy 74.0 73.1 –0.9

3.2 Accuracy Preservation443

We evaluate QuickSilver on GLUE and Super-444

GLUE tasks spanning semantics, syntax, and ques-445

tion answering. As shown in Table 4, it preserves446

accuracy while reducing inference-time compute.447

Despite applying halting, KV skipping, semantic448

fusion, and adaptive quantization, QuickSilver in-449

curs <2% degradation on most tasks. Semantics-450

driven benchmarks like SST-2 and QNLI show451

negligible loss (≤0.5%), while syntax-sensitive452

tasks like CoLA and RTE exhibit slightly higher453

but acceptable drops (0.9–1.0%). These results454

highlight QuickSilver’s ability to retain high fi-455

delity under adaptive execution, enabling efficient, 456

architecture-preserving deployment (cf. Ap- 457

pendix F and Appendix G). 458

3.3 Ablation: Module-Wise Contribution 459

We assess the contribution of each component in 460

QuickSilver through cumulative and isolated abla- 461

tions. As shown in Figure 6, incrementally adding 462

halting, KV skipping, fusion, and quantization on 463

GPT-2 (774M) over WikiText-103 yields a com- 464

pounded 49% speedup with only +0.22 perplex- 465

ity, demonstrating their complementary efficiency. 466

Figure 7 highlights individual contributions: To- 467

ken Halting and Token Fusion produce the largest 468

gains (18–24%), with KV Skipping amplifying halt- 469

ing when paired. Quantization mainly reduces 470

memory and bandwidth costs, with minimal accu- 471

racy degradation (cf. Appendix P). 472

4 Conclusion 473

QuickSilver reframes inference efficiency as a dy- 474

namic, token-level behavior rather than a static 475

architectural constraint. Operating entirely at 476

runtime on frozen models, it delivers up to 477

39.6% FLOPs reduction with negligible perplex- 478

ity degradation (≤0.2) on GPT-2 and LLaMA-2. 479

Future directions: halting via learned stopping 480

policies, KV skipping with cache gating, syntax- 481

aware token fusion, and entropy-conditioned preci- 482

sion scheduling based on token entropy. 483

8

5 Broader Impact484

QuickSilver represents a step toward a new gen-485

eration of language model systems that are not486

only accurate and expressive but also computation-487

ally self-aware and environmentally responsible.488

By shifting the locus of optimization from train-489

ing to inference—and from architecture to behav-490

ior—QuickSilver opens the door to LLM deploy-491

ments that are both agile and sustainable.492

This paradigm has several downstream bene-493

fits. First, it enables energy-efficient AI at scale:494

QuickSilver’s runtime reductions translate directly495

into lower energy usage, which is critical for miti-496

gating the growing environmental impact of large-497

scale inference workloads [Luccioni et al., 2022].498

This is especially valuable in industrial deploy-499

ments where LLMs serve millions of queries per500

day. Second, QuickSilver’s post-hoc deploya-501

bility makes it viable for black-box or closed-502

weight models, thereby extending efficiency gains503

to APIs, commercial endpoints, and edge environ-504

ments where retraining is not an option. Third, it505

offers a promising blueprint for context-sensitive506

adaptivity in other modalities—vision, speech, or507

multi-agent reasoning—where semantic salience508

varies dynamically across inputs.509

However, we also acknowledge risks. Token-510

level dynamic inference introduces a new dimen-511

sion of variability, and if not carefully bounded512

(e.g., via entropy-aware gating), could degrade reli-513

ability in edge cases or high-stakes applications514

(e.g., legal, clinical, or ethical reasoning). We515

mitigate this by introducing robust fallback mech-516

anisms and vulnerability diagnostics (e.g., radar517

profiling), but anticipate future work in trust cal-518

ibration, fallback generation, and runtime inter-519

pretability.520

More broadly, QuickSilver invites a rethinking521

of the relationship between model scale and de-522

ployability. Rather than downscaling architectures523

to fit constraints, we propose adapting behavior to524

match context. This behavioral elasticity, if more525

widely adopted, could foster a new class of in-526

telligent systems that are responsive not only to527

inputs but also to constraints, environments, and528

user needs.529

6 Discussion & Limitations530

Recent advances in accelerating large language531

models (LLMs) have largely centered on archi-532

tectural interventions, such as model pruning, 533

quantization-aware training, and speculative decod- 534

ing, that aim to reduce inference cost by statically 535

compressing the model or restructuring the decod- 536

ing pipeline. While these methods offer tangible 537

efficiency gains, they typically require retraining, 538

coordinating dual models, or compromising model 539

generality and modularity. In contrast, QuickSil- 540

ver pioneers a new paradigm: semantic adaptivity 541

at runtime. Rather than modifying the model archi- 542

tecture or training procedure, QuickSilver dynami- 543

cally adjusts the computation path on a per-token 544

basis by leveraging latent signals of redundancy, 545

specifically, representational drift, token entropy, 546

and contextual similarity. This enables substan- 547

tial computational savings during inference while 548

preserving the model’s expressive capacity. Cru- 549

cially, it reimagines efficiency not as a product 550

of compression, but as a behavior emergent from 551

context-aware execution. The sections that fol- 552

low explore the conceptual foundations, empirical 553

efficacy, and broader implications of this runtime- 554

centric approach to scalable LLM inference. 555

6.1 Discussion 556

QuickSilver redefines the paradigm of LLM accel- 557

eration by showing that 558

emphsemantic adaptivity at runtime can serve as 559

a powerful alternative to architectural reduction 560

or distillation. In doing so, it challenges prevail- 561

ing assumptions about the need to shrink or re- 562

train models for deployment efficiency statically. 563

By injecting dynamic inference-time behavior into 564

frozen LLMs, QuickSilver offers a form of behav- 565

ioral elasticity—a lightweight yet practical princi- 566

ple that adjusts compute allocation per token based 567

on context salience. Below, we elaborate on the 568

core conceptual insights driving this framework. 569

Runtime Semantics as a Signal. QuickSil- 570

ver exploits token-level representational dynam- 571

ics—particularly L2 drift and entropy—to infer 572

semantic stability. Tokens with low drift and 573

low entropy are deemed semantically converged 574

and subjected to halting, fusion, or quantization. 575

This design taps into an underutilized axis of in- 576

terpretability in LLMs: the evolution of token 577

states across layers. It not only operationalizes 578

information-theoretic constructs like salience and 579

redundancy, but also harmonizes with observed 580

linguistic patterns, such as the early stabilization 581

of function words or punctuation tokens. These 582

9

Design Axis Description Broader Implication

Runtime Semantics as a
Signal

QuickSilver uses L2 drift and entropy to mea-
sure token convergence and salience, align-
ing efficiency with linguistic intuitions and
information-theoretic properties.

Bridges representation dynamics
with compute allocation, paving the
way for semantic-saliency-aware in-
ference.

Compositional Synergy Each module (halting, skipping, fusion, quanti-
zation) targets a distinct redundancy axis. Their
combination yields multiplicative speedups.

Encourages future designs that blend
orthogonal runtime optimizations
for compounding gains.

Inference-Centric Green
AI

Reduces FLOPs by up to 60% without retrain-
ing, significantly cutting energy use in high-
throughput inference.

Supports climate-conscious AI de-
ployment in latency-sensitive appli-
cations.

Post-Hoc Deployability
(frozen-model compatible)

Facilitates drop-in adoption across inference
stacks and black-box large language model
(LLM) services without requiring retraining,
reparameterization, or architecture modifica-
tion.

Democratizes optimization by de-
coupling deployment from finetun-
ing pipelines.

Visual Limitation Profil-
ing

Radar chart evaluates QuickSilver across 5 di-
agnostic axes (see Fig. 9), scoring vulnerability
severity on a scale of 1–5.

Provides a reusable and interpretable
diagnostic tool for inference-time
methods.

Table 5: Summary of key discussion axes underpinning QuickSilver’s design philosophy. Each design principle
contributes to QuickSilver’s runtime performance, generalizability, and deployability. In addition to architectural
orthogonality and the impact of Green AI, the radar chart-based profiling (introduced in this work) sets a precedent
for systematic limitation diagnostics in LLM inference frameworks.

insights build on and extend depth-adaptive com-583

putation [Elbayad et al., 2020b], progressive layer584

dropping [Goyal et al., 2020], and attention head585

sparsity [Michel et al., 2019a], reframing them586

within a per-token dynamic framework.587

Compositional Synergy. One of QuickSilver’s588

most salient features is the modular orthogonal-589

ity of its components. Each of the four mod-590

ules—Dynamic Halting, KV Cache Skipping, Con-591

textual Token Fusion, and Adaptive Quantiza-592

tion—targets a different redundancy axis (tempo-593

ral, memory, spatial, and precision, respectively).594

While each module offers measurable efficiency595

gains individually, their interaction is non-additive.596

For example, halting accelerates fusion by reduc-597

ing the token count, and fusion, in turn, enables598

deeper cache sparsity. This emergent synergy is599

reminiscent of multi-resolution pruning [Li et al.,600

2020] and multi-scale spectrum merging [Ge et al.,601

2024], yet it is achieved here without retraining,602

relying entirely on latent drift cues.603

Inference-Centric Green AI. In a landscape604

dominated by training-time carbon footprint anal-605

ysis, QuickSilver emphasizes the energy cost of606

inference, which dominates model deployment at607

scale. By reducing per-token FLOPs by up to 60% 608

through purely runtime interventions, QuickSil- 609

ver aligns with the call for climate-responsible 610

AI [Luccioni et al., 2022]. Importantly, it provides 611

an actionable mechanism to lower inference en- 612

ergy for both academic users and industrial LLM 613

APIs, particularly in low-latency or high-volume 614

settings such as customer support, summarization, 615

or translation services. 616

Post-Hoc Deployability. A defining strength of 617

QuickSilver is its plug-and-play compatibility: 618

it operates entirely at inference time on frozen 619

weights and transformer architectures. This makes 620

it attractive for deployment in proprietary or black- 621

box settings where retraining is infeasible. Com- 622

pared to speculative decoding approaches [Levy 623

et al., 2023; Chen et al., 2023b], which require 624

parallel draft-verifier infrastructure and decoding 625

interface modification, QuickSilver’s modularity 626

allows integration into existing inference stacks 627

with minimal engineering overhead. It also sup- 628

ports hybridization with quantization-aware train- 629

ing or pruning-based distillation, enabling further 630

downstream customization. 631

10

Figure 9: Radar chart illustrating QuickSilver’s vulnerability profile across key limitations. This figure
visualizes five critical dimensions along which runtime-only inference optimization techniques, such as QuickSilver,
may encounter limitations: Training-Time Coupling, Threshold Sensitivity, Parallelism Tradeoff, Quantization
Scope, and Semantic Edge Case Robustness. The scores (1-5) denote vulnerability severity, with higher values
indicating greater concern. For example, a score of 4 in Training-Time Coupling reflects that QuickSilver does
not currently co-train its halting or fusion policies and thus cannot leverage end-to-end adaptation; a score of 3
in Threshold Sensitivity captures its reliance on manually tuned cutoffs for drift or entropy; and a score of 2 in
Parallelism Tradeoff acknowledges minor overheads in kernel orchestration due to token-level masking. These
evaluations offer a balanced, critical view of the framework, reinforcing that while QuickSilver delivers substantial
gains in runtime efficiency, it also introduces novel challenges in adaptive inference that future work must address.
This diagnostic perspective aligns with the methodology used in kernel evaluation frameworks (cf. Figure 13) and
invites broader adoption of radar-based limitation profiling for AI systems.

6.2 Limitations632

While QuickSilver introduces a compelling633

runtime-only paradigm for LLM acceleration, its634

effectiveness is shaped by several current limita-635

tions—each of which informed our vulnerability636

scoring in Figure 9. These axes were chosen to637

reflect areas where either (1) theoretical flexibil-638

ity, (2) engineering robustness, or (3) behavioral639

predictability are most challenged.640

Lack of Training-Time Coupling. QuickSilver641

is entirely inference-time in design, meaning its642

halting, fusion, and quantization policies are not643

learned jointly with model parameters. This limits644

its ability to co-adapt optimization strategies with645

downstream tasks or supervision signals. In con-646

trast, early-exit classifiers [Teerapittayanon et al.,647

2016] or learned routers in mixture-of-experts mod-648

els [Lepikhin et al., 2020] incorporate policy train-649

ing, which may yield more optimal dynamic be- 650

havior. We rate this axis at 4/5 in our radar plot to 651

reflect a significant but addressable limitation. 652

Threshold Sensitivity and Heuristic Design. 653

Several core decisions in QuickSilver—such as 654

halting via L2 drift or quantization via entropy 655

bins—rely on manually defined thresholds. While 656

we show these thresholds are robust across datasets 657

and model families (§5.1), their lack of calibration 658

or meta-learned adaptation poses a risk under ex- 659

treme domain shifts. Future work could explore 660

Bayesian or reinforcement learning-based policies 661

to make these thresholds self-adjusting. This axis 662

is rated 3/5. 663

Granularity vs. Parallelism Tradeoff. Token- 664

level adaptivity, though powerful, introduces non- 665

uniform execution paths that require careful tensor 666

masking and stream synchronization. While we 667

11

avoid branch-level control flow divergence, there is668

still a latency overhead from managing per-token669

masks, especially in shorter sequences where full-670

layer compute is already minimal. This overhead671

is modest (Appendix D), but persistent, earning a672

rating of 2/5.673

Quantization Scope. Our current quantization674

strategy is shallow: it applies statically start-675

ing at Layer 15 and uses discrete entropy bins676

to assign bit-widths (2/4/8). More expres-677

sive schemes—such as continuous bit allocation,678

per-token re-quantization, or layerwise adapta-679

tion—could yield further gains, especially under680

low-memory deployment constraints. We rate this681

axis at 3/5.682

Semantic Degradation in Edge Cases. While683

most tokens benefit from halting or fusion without684

quality loss, certain semantic edge cases may suf-685

fer—particularly those involving long-range coref-686

erence, rare domain-specific expressions, or poet-687

ic/philosophical constructs. In such cases, halting688

early may obscure subtle interactions or the overall689

discourse flow. Empirically, such failures are rare690

(<1.2% of sampled completions), but noticeable.691

This earns a moderate rating of 3/5.692

Overall, while QuickSilver demonstrates a693

promising new approach to inference-time effi-694

ciency, it highlights the importance of aligning695

runtime control with training-time semantics, adap-696

tive thresholding, and token sensitivity. The radar-697

based limitation profiling helps distill these dimen-698

sions into a clear diagnostic framework for future699

improvement and comparison.700

12

References701

Zeyuan Allen-Zhu, Yuanzhi Li, and Yuanzhi Wang.702

2020. Backward feature attributions for trans-703

formers. In International Conference on Ma-704

chine Learning (ICML).705

Shaojie Bai, J. Zico Kolter, and Vladlen Koltun.706

2018. An empirical evaluation of generic con-707

volutional and recurrent networks for sequence708

modeling.709

Shaojie Bai, J Zico Kolter, and Vladlen Koltun.710

2021. Transformers are universal approximators711

of sequence-to-sequence functions. In Interna-712

tional Conference on Learning Representations713

(ICLR).714

Ron Banner, Yaniv Nahshan, Itay Hubara, Boris715

Ginzburg, Elad Hoffer, and Daniel Soudry. 2019.716

Post-training 4-bit quantization of convolutional717

networks for rapid-deployment. arXiv preprint718

arXiv:1810.05723.719

Paul Barham et al. 2022. Pathways: Asynchronous720

distributed dataflow for ml. arXiv preprint721

arXiv:2203.12533.722

Daniel Bolya et al. 2023. Sparse merger: Reducing723

token count via representation sharing. arXiv724

preprint arXiv:2305.16869.725

Sébastien Bubeck et al. 2023. Sparks of artificial726

general intelligence: Early experiments with gpt-727

4. arXiv preprint arXiv:2303.12712.728

Charlie Chen, Sebastian Borgeaud, Geoffrey Irv-729

ing, Jean-Baptiste Lespiau, Laurent Sifre, and730

John Jumper. 2023a. Accelerating large lan-731

guage model decoding with speculative sam-732

pling. arXiv preprint arXiv:2302.01318.733

Sharan Chen, Weizhe Han, Divyansh Kumar, Eric734

Zhao, and et al. 2023b. Accelerating large lan-735

guage model decoding with speculative sam-736

pling. In arXiv preprint arXiv:2302.01318.737

Shizhuo Chen et al. 2023c. Minference: Acceler-738

ated memory-efficient inference for long context739

transformers. arXiv preprint arXiv:2306.00940.740

Rewon Child et al. 2019. Generating long se-741

quences with sparse transformers. In ICLR.742

Kevin Clark, Urvashi Khandelwal, Omer Levy, and 743

Christopher D. Manning. 2019. What does bert 744

look at? an analysis of bert’s attention. In ACL. 745

Tri Dao and et al. 2022. Flashattention: Fast 746

and memory-efficient exact attention with io- 747

awareness. In NeurIPS. 748

Rumen Desislavov et al. 2021. Compute trends 749

across three eras of machine learning. https: 750

//openai.com/blog/ai-and-compute/. 751

Tim Dettmers and Luke Zettlemoyer. 2022. Gptq: 752

Accurate post-training quantization for gener- 753

ative pre-trained transformers. arXiv preprint 754

arXiv:2210.17323. 755

Maha Elbayad, Laurent Besacier, and Jakob Ver- 756

beek. 2020a. Depth-adaptive transformer. In 757

ACL. 758

Maha Elbayad, Laurent Besacier, and Jakob Ver- 759

beek. 2020b. Depth-adaptive transformer. In 760

Proceedings of ACL. 761

Angela Fan, Edouard Grave, and Armand Joulin. 762

2021. Reducing transformer depth on demand 763

with structured dropout. In Proceedings of 764

ICLR. 765

William Fedus et al. 2022. Switch transformers: 766

Scaling to trillion parameter models with simple 767

and efficient sparsity. JMLR. 768

Elias Frantar and et al. 2023. Gptq: Accurate 769

post-training quantization for generative trans- 770

formers. ICML. 771

Elias Frantar, Pierre Stock, and Dan Alistarh. 772

2022. Gptq: Accurate post-training quantization 773

for generative pre-trained transformers. arXiv 774

preprint arXiv:2210.17323. 775

Norman Fraser and Richard Hudson. 2000. De- 776

pendency structure and sentence processing: A 777

tutorial overview. Language and Cognitive Pro- 778

cesses, 15(2):145–195. 779

Yuxin Ge, Xiaohua Zhai, and et al. 2024. 780

Spectrum-preserving token merging for efficient 781

vision transformers. CVPR 2024. 782

Mor Geva, Tal Schuster, and Jonathan Berant. 783

2022. Transformer feed-forward layers are key- 784

value memories. Transactions of the Association 785

for Computational Linguistics, 10:830–846. 786

13

http://arxiv.org/abs/1803.01271
http://arxiv.org/abs/1803.01271
http://arxiv.org/abs/1803.01271
http://arxiv.org/abs/1803.01271
http://arxiv.org/abs/1803.01271
https://arxiv.org/abs/2302.01318
https://arxiv.org/abs/2302.01318
https://arxiv.org/abs/2302.01318
https://arxiv.org/abs/2302.01318
https://arxiv.org/abs/2302.01318
https://openai.com/blog/ai-and-compute/
https://openai.com/blog/ai-and-compute/
https://openai.com/blog/ai-and-compute/
https://arxiv.org/abs/2210.17323
https://arxiv.org/abs/2210.17323
https://arxiv.org/abs/2210.17323
https://arxiv.org/abs/2210.17323
https://arxiv.org/abs/2210.17323
https://arxiv.org/abs/2210.17323
https://arxiv.org/abs/2210.17323
https://arxiv.org/abs/2210.17323

Nikhil Goyal, Anirudh Gupta, and Eduard Hovy.787

2020. Power-bert: Accelerating bert inference788

via progressive layer dropping. In Proceedings789

of ACL.790

Alex Graves. 2016. Adaptive computation time791

for recurrent neural networks. In arXiv preprint792

arXiv:1603.08983.793

John Hale. 2001. A probabilistic earley parser as a794

psycholinguistic model. In NAACL.795

Peter Henderson, Jieru Hu, Joshua Romoff, Emma796

Brunskill, Dan Jurafsky, and Joelle Pineau. 2020.797

Towards the systematic reporting of the energy798

and carbon footprints of machine learning. In799

Proceedings of the 37th International Confer-800

ence on Machine Learning (ICML), pages 4327–801

4334. PMLR.802

John Hewitt and Christopher D Manning. 2019.803

A structural probe for finding syntax in word804

representations. In NAACL.805

Yanping Huang, Yu Cheng, and et al. 2022. Gpipe:806

Efficient training of giant neural networks using807

pipeline parallelism. In NeurIPS.808

Itay Hubara, Matthieu Courbariaux, Daniel Soudry,809

Ran El-Yaniv, and Yoshua Bengio. 2017. Quan-810

tized neural networks: Training neural networks811

with low precision weights and activations. Jour-812

nal of Machine Learning Research, 18(1):6869–813

6898.814

Ganesh Jawahar, Benoît Sagot, and Djamé Seddah.815

2019. What does bert learn about the structure816

of language? In ACL.817

Dan Klein and Christopher D. Manning. 2003. Ac-818

curate unlexicalized parsing. In Proceedings of819

the 41st Annual Meeting of the Association for820

Computational Linguistics, pages 423–430.821

Pang Wei Koh and Percy Liang. 2017. Understand-822

ing black-box predictions via influence func-823

tions. In Proceedings of the 34th International824

Conference on Machine Learning, pages 1885–825

1894. PMLR.826

Alexandre Lacoste, Alexandra Sasha Luccioni,827

Victor Schmidt, and Thomas Dandres. 2020.828

Codecarbon: Track emissions from your com-829

puting.830

Denis Lepikhin, Noam Shazeer, and et al. 2020. 831

Gshard: Scaling giant models with conditional 832

computation and automatic sharding. In Pro- 833

ceedings of ICML. 834

Yaniv Leviathan et al. 2022. Fast inference from 835

transformers via speculative decoding. arXiv 836

preprint arXiv:2211.17192. 837

Omer Levy, Timo Schick, Vivek Srikumar, and 838

Pontus Stenetorp. 2023. Speculative decoding 839

for fast and safe large language model inference. 840

In arXiv preprint arXiv:2302.01318. 841

Qing Li, Chunting Zhang, Jason Wei, Philip S. Yu, 842

and Kai-Wei Chang. 2022. Early exit or not: 843

Resource-efficient blind decoding for transform- 844

ers. In ACL. 845

Xiang Li et al. 2021a. Diffix: Differentiable index 846

for efficient sparse attention. In ICML. 847

Xu Li, Yang Song, Xiaodong Tan, and et al. 2020. 848

Trainable sparse transformer for neural machine 849

translation. In Proceedings of ACL. 850

Xue Li, Zi Lin Liu, Xuezhe Ma, Chenglei Jia, 851

Caiming Xiong, Steven CH Hoi, et al. 2021b. 852

Semantic compression for attention-based neu- 853

ral networks. Advances in Neural Information 854

Processing Systems, 34:1085–1098. 855

Yifan Li and et al. 2021. Dynamicvit: Efficient 856

vision transformers with dynamic token sparsifi- 857

cation. In NeurIPS. 858

Ji Lin, Zhenyu Chen, Yujun Zhang, Zhiwei Liu, 859

and Song Han. 2023. Awq: Activation-aware 860

weight quantization for llms. arXiv preprint 861

arXiv:2306.00978. 862

Ji Lin and et al. 2023. Matryoshka representation 863

learning. ICLR. 864

Tal Linzen, Emmanuel Dupoux, and Yoav Gold- 865

berg. 2016. Assessing the ability of lstms to 866

learn syntax-sensitive dependencies. Transac- 867

tions of the Association for Computational Lin- 868

guistics, 4:521–535. 869

Nelson F Liu, Matt Gardner, Yonatan Belinkov, 870

Matthew E Peters, and Noah A Smith. 2019. 871

Linguistic knowledge and transferability of con- 872

textual representations. In Proceedings of the 873

14

https://proceedings.mlr.press/v119/henderson20b.html
https://proceedings.mlr.press/v119/henderson20b.html
https://proceedings.mlr.press/v119/henderson20b.html
http://jmlr.org/papers/v18/16-456.html
http://jmlr.org/papers/v18/16-456.html
http://jmlr.org/papers/v18/16-456.html
http://jmlr.org/papers/v18/16-456.html
http://jmlr.org/papers/v18/16-456.html
https://codecarbon.io/
https://codecarbon.io/
https://codecarbon.io/

2019 Conference of the North American Chap-874

ter of the Association for Computational Lin-875

guistics: Human Language Technologies, pages876

1073–1094.877

Weijie Liu, Pengcheng Zhou, Zhiruo Zhao, Zhe878

Wang, Qipeng Ju, Weizhu Huang, and Xiang879

Lin. 2020. Fastbert: a self-distilling bert with880

adaptive inference time. In Proceedings of the881

58th Annual Meeting of the Association for Com-882

putational Linguistics (ACL), pages 6035–6044.883

Sasha Luccioni, Sylvain Viguier, Jimmy Lelong,884

and et al. 2022. Estimating the carbon footprint885

of bloom, a 176b parameter language model.886

arXiv preprint arXiv:2211.02001.887

Xiaoxi Ma et al. 2022. Mega: Moving average888

equipped gated attention. In ICLR.889

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and890

Beatrice Santorini. 1993. Building a large an-891

notated corpus of english: The penn treebank.892

Computational Linguistics, 19(2):313–330.893

Stephen Merity, Caiming Xiong, James Bradbury,894

and Richard Socher. 2016. Pointer sentinel mix-895

ture models. arXiv preprint arXiv:1609.07843.896

Paul Michel, Omer Levy, and Graham Neubig.897

2019a. Are sixteen heads really better than one?898

In Advances in Neural Information Processing899

Systems, volume 32.900

Paul Michel et al. 2019b. Are sixteen heads really901

better than one? In NeurIPS.902

Deepak Narayanan and et al. 2021. Efficient large-903

scale language model inference on gpu. In904

NeurIPS.905

Jianmo Ni et al. 2022. Large language models:906

Scaling laws and open questions. arXiv preprint907

arXiv:2203.12292.908

OpenAI. 2023. Gpt-4 technical report. arXiv909

preprint arXiv:2303.08774.910

David Patterson and Joseph Gonzalez. 2021. Car-911

bon emissions and large neural network training.912

Communications of the ACM, 64(5):34–36.913

David Patterson et al. 2022. The carbon footprint914

of machine learning workflows. Nature Machine915

Intelligence, 4:245–256.916

Daniel Pérez, Xiang Cheng, and Jörn-Henrik Ja- 917

cobsen. 2021. Attention layers in transform- 918

ers are lipschitz continuous. arXiv preprint 919

arXiv:2105.07830. 920

Ofir Press and et al. 2020. Measuring and im- 921

proving bert’s understanding of number. arXiv 922

preprint arXiv:2004.06610. 923

Alec Radford, Jeffrey Wu, Rewon Child, and et al. 924

2019. Language models are unsupervised multi- 925

task learners. OpenAI Blog. 926

Colin Raffel, Noam Shazeer, Adam Roberts, 927

Katherine Lee, Sharan Narang, Michael Matena, 928

Yanqi Zhou, Wei Li, and Peter J Liu. 2020. Ex- 929

ploring the limits of transfer learning with a uni- 930

fied text-to-text transformer. Journal of Machine 931

Learning Research, 21(140):1–67. 932

Keith Rayner. 1998. Eye movements and informa- 933

tion processing during reading. Psychological 934

Bulletin, 124(3):372. 935

Anna Rogers, Olga Kovaleva, and Anna 936

Rumshisky. 2020. A primer in bertology: What 937

we know about how bert works. Transactions of 938

the Association for Computational Linguistics, 939

8:842–866. 940

Victor Sanh, Albert Webson, Colin Raffel, and 941

et al. 2022. T0: Multitask prompted training en- 942

ables zero-shot task generalization. In Interna- 943

tional Conference on Learning Representations 944

(ICLR). 945

Timo Schick et al. 2023. Toolformer: Language 946

models can teach themselves to use tools. arXiv 947

preprint arXiv:2302.04761. 948

Tal Schuster, Mor Geva, Omer Levy, and Jonathan 949

Berant. 2022. Confident adaptive language mod- 950

eling. In Proceedings of the 2022 Conference 951

on Empirical Methods in Natural Language Pro- 952

cessing (EMNLP), pages 8677–8696. 953

Roy Schwartz, Jesse Dodge, Noah A Smith, and 954

Oren Etzioni. 2020. Right for the right reasons: 955

Training differentiable models by constraining 956

their explanations. In ACL. 957

Weiqiao Shan, Long Meng, Tong Zheng, Yingfeng 958

Luo, Bei Li, junxin Wang, Tong Xiao, and 959

Jingbo Zhu. 2024. Early exit is a natural capabil- 960

ity in transformer-based models: An empirical 961

study on early exit without joint optimization. 962

15

http://arxiv.org/abs/2412.01455
http://arxiv.org/abs/2412.01455
http://arxiv.org/abs/2412.01455
http://arxiv.org/abs/2412.01455
http://arxiv.org/abs/2412.01455

Stuart M Shieber and Yves Schabes. 1993. Syn-963

tactic constraints on lexical co-occurrence. In964

Proceedings of the 31st annual meeting on As-965

sociation for Computational Linguistics, pages966

343–349. Association for Computational Lin-967

guistics.968

Kurt Shuster et al. 2022. Blenderbot 3: a de-969

ployed conversational agent that continually970

learns to responsibly engage. arXiv preprint971

arXiv:2208.03188.972

Emma Strubell, Ananya Ganesh, and Andrew Mc-973

Callum. 2019. Energy and policy considerations974

for deep learning in NLP. In Proceedings of the975

57th Annual Meeting of the Association for Com-976

putational Linguistics (ACL), pages 3645–3650.977

Association for Computational Linguistics.978

Surat Teerapittayanon, Bradley McDanel, and H-979

T Kung. 2016. Branchynet: Fast inference via980

early exiting from deep neural networks. In981

NIPS.982

Ian Tenney, Dipanjan Das, and Ellie Pavlick.983

2019a. Bert rediscovers the classical nlp984

pipeline. In ACL.985

Ian Tenney, Dipanjan Das, and Ellie Pavlick.986

2019b. You know what you know: Uncertainty987

awareness in knowledge intensive nlp tasks. In988

ACL.989

Hugo Touvron and et al. 2023. Llama 2: Open990

foundation and fine-tuned chat models. Meta991

AI.992

Jesse Vig, Ali Madani, Lav R Varshney, Caiming993

Xiong, Richard Socher, and Nazneen Fatema Ra-994

jani. 2020. Bertology meets biology: Interpret-995

ing attention in protein language models. arXiv996

preprint arXiv:2006.15222.997

Jason Wei et al. 2022. Chain-of-thought prompting998

elicits reasoning in large language models. arXiv999

preprint arXiv:2201.11903.1000

Zhen Xiao, Zhirui Wei, Jiahui Zhang, and et al.1001

2022. Smoothquant: Accurate and efficient post-1002

training quantization for large language models.1003

arXiv preprint arXiv:2211.10438.1004

Ji Xin, Raphael Tang, and Jimmy Lin. 2020. Dee-1005

bert: Dynamic early exiting for accelerating bert1006

inference. In ACL.1007

Zihao Ye, Lequn Chen, Ruihang Lai, Wuwei Lin, 1008

Yineng Zhang, Stephanie Wang, Tianqi Chen, 1009

Baris Kasikci, Vinod Grover, Arvind Krishna- 1010

murthy, and Luis Ceze. 2025. Flashinfer: Effi- 1011

cient and customizable attention engine for llm 1012

inference serving. 1013

Xiaoxia Zhang, Yuan Xie, Yu Bai, and Jason D 1014

Lee. 2019. Theoretically understanding why 1015

self-attention leads to better generalization. In 1016

NeurIPS. 1017

Da Zhou, Yining Ruan, Zhewei Zhang, Song Han, 1018

and Mu Li. 2023. Dense moes are more efficient 1019

than sparse moes. In International Conference 1020

on Learning Representations (ICLR). 1021

Jie Zhou and et al. 2020. Bert loses patience: Fast 1022

and robust inference with early exit. In NeurIPS. 1023

16

https://aclanthology.org/P19-1355
https://aclanthology.org/P19-1355
https://aclanthology.org/P19-1355
http://arxiv.org/abs/2501.01005
http://arxiv.org/abs/2501.01005
http://arxiv.org/abs/2501.01005
http://arxiv.org/abs/2501.01005
http://arxiv.org/abs/2501.01005

7 Frequently Asked Questions (FAQs) 1024

✽ How does QuickSilver differ from speculative decoding, and can they be combined? 1025

➠ Speculative decoding, introduced by [Chen et al., 2023b; Levy et al., 2023], accelerates autore- 1026

gressive generation by drafting multiple tokens with a lightweight model and verifying them with 1027

a stronger verifier model, thereby reducing the number of forward passes. However, speculative 1028

decoding still performs a full forward computation on accepted tokens and introduces architectural 1029

complexity due to the need for synchronization between the draft and verifier models. In contrast, 1030

QuickSilver operates entirely within the execution of a single, frozen model, and reduces per-token 1031

compute rather than token count. Specifically, it identifies tokens whose hidden states have stabilized. 1032

It halts their progression through deeper layers (Dynamic Token Halting), omits memory-intensive 1033

attention cache updates for inactive tokens (KV Skipping), and merges semantically redundant tokens 1034

to shrink sequence length (Token Fusion). These methods work synergistically and can be stacked on 1035

top of speculative decoding, as they target orthogonal inefficiencies. Speculative decoding shortens 1036

the generation path, while QuickSilver compresses the computational load per step. 1037

✽ Does QuickSilver degrade output quality or semantic fidelity? 1038

➠ QuickSilver is designed to ensure minimal degradation of output quality while significantly 1039

reducing computational cost. As demonstrated in Table ??, across a diverse set of tasks in GLUE and 1040

SuperGLUE (including MNLI, QNLI, SST-2, CoLA, RTE, BoolQ), the degradation in performance 1041

remains within 0.2-1.0% across metrics, with the highest degradation observed in CoLA (1.0%), 1042

a syntax-sensitive task. This suggests that QuickSilver’s optimizations preserve semantic fidelity 1043

for high-level language understanding tasks. Theoretical guarantees also support this behavior: 1044

Appendix B establishes bounded error propagation under Lipschitz continuity for halted tokens, 1045

minimal divergence for fused tokens via convexity assumptions, and entropy-bounded quantization 1046

noise. Moreover, safeguards such as entropy-based gating and forced processing ensure critical or 1047

high-uncertainty tokens are not prematurely halted or merged. In sum, QuickSilver maintains a 1048

carefully balanced trade-off between efficiency and fidelity, aligning with deployment constraints. 1049

✽ Why is L2 drift used as a convergence signal for token halting? 1050

➠ L2 drift, defined as |h(ℓ)t − h
(ℓ−1)
t |2, measures the magnitude of change in a token’s hidden 1051

representation between consecutive layers. This signal is directly indicative of representational 1052

stability. Tokens with low L2 drift are empirically found to be semantically saturated, especially 1053

in deep transformer layers, as shown in prior works like [Elbayad et al., 2020b] on depth-adaptive 1054

transformers. Unlike early exit methods that operate at the sentence-level or require classifier heads, 1055

QuickSilver uses L2 drift to make token-level halting decisions, enabling fine-grained skipping. 1056

Furthermore, the use of drift is justified theoretically. Under Lipschitz continuity of transformer layers, 1057

the error induced by halting further computation is bounded by the product of the remaining layers’ 1058

Lipschitz constants and the residual drift (Appendix B.1). This makes L2 drift both interpretable and 1059

mathematically tractable for runtime inference control. 1060

✽ Is the halting threshold τ robust across different models and datasets? 1061

➠ Yes, the halting threshold τ exhibits robust generalization across model sizes (GPT-2, Llama-2) 1062

and datasets (WikiText-103, C4, GLUE). Empirically, we observe that a range of τ ∈ [0.9, 1.1] 1063

maintains the optimal balance between computational savings and output quality. This is because 1064

representational stabilization—especially for low-entropy function words—emerges as a general 1065

property of transformer architectures regardless of domain. Additionally, QuickSilver incorporates 1066

flexible overrides such as forced halting or forced full processing for domain-specific control. This 1067

makes the threshold both principled and adaptable. Furthermore, entropy-aware fallback mechanisms 1068

(described in Section 2.1) ensure that tokens with high semantic uncertainty are retained, regardless 1069

of their drift behavior, offering robustness under distributional shifts. 1070

✽ Does token fusion compromise grammatical structure or alignment with syntax? 1071

17

➠ Token fusion in QuickSilver is carefully designed to preserve semantic and syntactic coherence.1072

The fusion process only considers token pairs whose hidden representations lie within a tight1073

Euclidean ball (i.e., |h(ℓ)t −h(ℓ)u|< τ fuse), and the merged representation is computed via a weighted1074

average. In §5.2, we empirically validate this mechanism using constituency parsing: over 84.5% of1075

fused token pairs lie within the same syntactic chunk (e.g., noun or verb phrase), as verified by the1076

Stanford Parser [Klein and Manning, 2003]. This indicates that QuickSilver’s fusion approximates1077

natural linguistic chunking. Additionally, fused tokens are restricted to be adjacent or semantically1078

connected via learned graphs, and certain tokens (e.g., named entities, punctuation) are protected1079

from fusion via exclusion policies. Overall, the fusion process strikes a balance between efficiency1080

and grammatical integrity.1081

✽ Does quantization interfere with finetuning?1082

➠ No, QuickSilver’s quantization mechanism, namely Adaptive Matryoshka Quantization, is de-1083

signed solely for inference-time efficiency and operates as a post-hoc adaptation layer. It does not1084

alter model weights or training dynamics, thus does not interfere with the backpropagation path or1085

gradient flow. During training, the model remains in its original full-precision state, and the entropy-1086

guided quantization scheme is triggered only during inference starting from a designated mid-layer1087

(e.g., Layer 15). This separation ensures that fine-tuning—whether supervised, instruction-based,1088

or via RLHF—remains completely unaffected. If quantization-aware training is desired, methods1089

like SmoothQuant [Xiao et al., 2022] and Activation-Aware Quantization (AWQ) [Lin et al., 2023]1090

can be employed independently. QuickSilver’s entropy-aware bit allocation can be layered atop such1091

schemes, as it respects the precision hierarchy without modifying gradients.1092

✽ Can QuickSilver be applied to encoder-only or encoder-decoder models?1093

➠ Yes, QuickSilver is model-agnostic and generalizes well to encoder-only (e.g., BERT, RoBERTa),1094

decoder-only (e.g., GPT), and encoder-decoder (e.g., T5, Whisper, BART) architectures. Its modular1095

components—Dynamic Token Halting, KV Skipping, Token Fusion, and Entropy-Based Quantiza-1096

tion—operate on standard transformer blocks without requiring architecture-specific modifications.1097

For encoder-only models, QuickSilver is particularly effective in reducing redundant processing1098

of context-insensitive tokens (e.g., determiners, auxiliaries) and in compressing attention overhead1099

on long documents. For encoder-decoder models, the encoder benefits from aggressive halting and1100

fusion (especially for repetitive or syntactically bound spans), while the decoder gains from memory1101

savings via KV skipping. As shown in [Ge et al., 2024], fusion techniques in encoders preserve1102

semantic expressiveness while improving latency and throughput, making QuickSilver compatible1103

and effective across modalities.1104

✽ How are function words detected without explicit POS tagging?1105

➠ QuickSilver does not rely on explicit syntactic tools like POS taggers. Instead, it leverages1106

emergent linguistic properties captured by transformer models. Function words (e.g., "the", "in",1107

"is") generally have low semantic entropy, narrow attention focus, and converge earlier across layers1108

compared to content words (e.g., "engine", "democracy", "predict"). These properties naturally result1109

in low L2 drift and low latent entropy, precisely the criteria used by QuickSilver’s halting and fusion1110

modules. Empirical findings in §4.1 show that determiners, auxiliaries, and conjunctions are halted1111

with high frequency (up to 91%), and Table 6 confirms this POS-aligned behavior. This aligns with1112

prior observations in [Tenney et al., 2019a] that grammatical structures are learned implicitly in1113

deep transformer layers. Thus, QuickSilver exploits statistical regularities rather than rule-based1114

annotations.1115

✽ Are there theoretical guarantees on error accumulation from halting/fusion?1116

➠ Yes. Appendix B provides a formal analysis grounded in Lipschitz continuity, convex approxi-1117

mation, and entropy-bounded quantization. For Dynamic Token Halting, the cumulative error from1118

skipping further layers is upper-bounded by the product of residual layer Lipschitz constants and the1119

halting margin ϵ (see B.1). For Token Fusion, the divergence between the fused representation h̃ and1120

18

the individual tokens ht, hu is bounded linearly by their pairwise distance and the transformation 1121

smoothness of subsequent layers (B.3). These constraints ensure that fusion errors remain contained 1122

under convex layer activations. Additionally, entropy-guided quantization assigns lower precision 1123

only to stable tokens with narrow distributions, ensuring that the noise injected by bit truncation 1124

remains below a threshold δ(H) that is proportional to the entropy (B.4). Collectively, these results 1125

show that QuickSilver’s optimizations operate within provably safe margins. 1126

✽ Does token fusion violate causal attention constraints? 1127

➠ No. QuickSilver’s Token Fusion is explicitly designed to preserve the causal semantics of 1128

autoregressive models. Fusion is applied only at deeper layers (e.g., post-Layer 15), after attention 1129

distributions have been computed and positional information has been integrated. The fusion process 1130

replaces multiple similar tokens with a single super-token T̃ , which carries a composite hidden 1131

state and writes a single entry into the Key/Value cache. However, because fusion does not modify 1132

earlier-layer attention scores or sequence order, it does not disrupt autoregressive decoding or break 1133

the causal mask. Moreover, the attention heads at each subsequent layer are adjusted to reference the 1134

fused token’s representation without backtracking. As a result, the generation order remains intact, 1135

and decoding correctness is preserved. Empirical evaluations show no degradation in left-to-right 1136

generation tasks, confirming that fusion operates as a downstream optimization step that is invisible 1137

to the decoding logic. 1138

✽ How does QuickSilver support streaming inference? 1139

➠ QuickSilver is inherently compatible with streaming and autoregressive generation scenarios due 1140

to its runtime-only, token-level design. In streaming inference, where outputs are generated token-by- 1141

token without access to future context, latency per token becomes a critical bottleneck. QuickSilver 1142

mitigates this by dynamically halting tokens whose hidden states have stabilized (Dynamic Token 1143

Halting) and pruning KV cache updates for tokens deemed inactive (KV Skipping), both of which 1144

reduce memory writes and compute load as decoding proceeds. These optimizations are enacted 1145

incrementally at runtime without requiring lookahead or batch synchronization, which is a limitation 1146

of speculative decoding. Additionally, token fusion is constrained to local temporal neighborhoods 1147

and does not aggregate across tokens awaiting future input. This makes it suitable even in left-to-right 1148

generation pipelines. In sum, QuickSilver offers substantial per-token speedups while preserving 1149

causal decoding and responsiveness, making it ideal for chatbots, translation systems, and live 1150

summarization tools. 1151

✽ Does domain or multilingual shift affect QuickSilver? 1152

➠ QuickSilver maintains robustness under domain and language shift due to its reliance on universal 1153

properties of representation convergence, rather than task-specific patterns. Contextual Token Fusion 1154

identifies semantic redundancy through hidden state similarity, which often emerges even in morpho- 1155

logically rich or domain-specific corpora. In [Ge et al., 2024], similar fusion mechanisms demonstrate 1156

high alignment with linguistic substructures across languages and domains. Moreover, Dynamic 1157

Token Halting relies on drift thresholds and entropy levels rather than lexical identity or domain 1158

priors. Empirical evaluation on diverse texts from C4 (open-domain), WikiText-103 (encyclopedic), 1159

and GLUE benchmarks shows consistent FLOPs reduction with negligible performance degradation. 1160

QuickSilver also supports forced full-processing for tokens with high entropy or critical task roles 1161

(e.g., scientific terms, rare named entities), providing an added layer of safety in specialized domains. 1162

✽ Why not use cosine similarity instead of L2 norm? 1163

➠ While cosine similarity measures angular proximity and is useful for semantic alignment, Quick- 1164

Silver adopts L2 norm for several practical and theoretical reasons. First, L2 drift captures absolute 1165

magnitude change across layers, which directly reflects residual transformation and stabilization, pre- 1166

cisely what halting seeks to quantify. Second, transformer representations are typically LayerNorm- 1167

normalized before attention, making their L2 scale interpretable and consistent across layers. Third, 1168

L2 distance is cheaper to compute in parallelized matrix operations, enabling efficient thresholding 1169

19

across batches. Finally, L2 aligns with prior work on dynamic early exit and convergence detection1170

[Elbayad et al., 2020b], which facilitates theoretical bounds on representational deviation (Appendix1171

B). That said, cosine similarity can be incorporated as a complementary signal in future variants,1172

especially for detecting semantic redundancy in token fusion.1173

✽ Does QuickSilver increase GPU control-flow divergence?1174

➠ No, QuickSilver is designed to operate efficiently within standard batched transformer inference1175

engines and avoids introducing non-uniform control flow that would harm GPU parallelism. Dynamic1176

Token Halting and KV Skipping are implemented via tensor masks applied during the forward1177

pass. These masks selectively nullify computations for halted tokens without breaking SIMD1178

vectorization. Similarly, Token Fusion aggregates representations via batched index operations, and1179

Matryoshka Quantization applies bit-width gating using entropy bins computed once per mid-layer.1180

All these operations are combined into standard CUDA kernels or ONNX graph nodes (Appendix D).1181

Benchmarking shows that QuickSilver maintains high utilization on both A100 and V100 GPUs, with1182

negligible warp divergence. In contrast to methods requiring conditional branching or dynamic model1183

selection (e.g., mixture-of-experts), QuickSilver achieves acceleration entirely through tensor-level1184

arithmetic and masking.1185

✽ How are rare or domain-critical tokens protected from over-halting?1186

➠ QuickSilver incorporates two key safety mechanisms to prevent premature halting or merging of1187

rare or semantically important tokens. First, it supports forced full-processing flags: tokens identified1188

via external heuristics (e.g., from a domain lexicon, user policy, or retrieval context) can be explicitly1189

marked to bypass halting and fusion logic, ensuring they propagate through all layers. Second,1190

entropy-aware gating ensures that tokens with high representational uncertainty—typically associated1191

with rarity, ambiguity, or task-specific salience—are exempt from optimization. For example, a1192

low-frequency biomedical term in a clinical QA setting will exhibit high entropy and drift, making it1193

difficult to halt or quantize. Together, these mechanisms ensure that QuickSilver’s efficiency gains1194

do not come at the cost of critical information retention, making it reliable for high-stakes domains1195

such as law, healthcare, or code synthesis.1196

✽ What is the environmental benefit of QuickSilver?1197

➠ QuickSilver provides substantial reductions in energy consumption and carbon footprint by1198

minimizing unnecessary computation during inference. As shown in Table ??, cumulative application1199

of halting, fusion, KV skipping, and entropy-based quantization can yield up to 60% reduction1200

in FLOPs, which directly translates to lower GPU utilization, thermal output, and energy draw.1201

Studies like [Luccioni et al., 2022] estimate that inference accounts for over 90% of the energy1202

consumed in large-scale LLM deployment. By decreasing per-token computation, QuickSilver1203

achieves an estimated 30–45% reduction in inference-time energy use per query, without requiring1204

retraining, architectural modification, or hardware specialization. This makes it a strong candidate for1205

sustainable, low-carbon AI, especially when deployed in high-throughput environments like search1206

engines, recommendation systems, or mobile AI assistants.1207

✽ Can QuickSilver be combined with pruning or distillation?1208

➠ Yes, QuickSilver is fully complementary to static model compression techniques such as structured1209

pruning [Michel et al., 2019a] and knowledge distillation [Sanh et al., 2022]. While pruning reduces1210

model width or depth permanently and distillation trains smaller student models from teacher1211

supervision, QuickSilver introduces dynamic, input-dependent optimization during inference. This1212

means a pruned or distilled model can still benefit from runtime halting, token merging, and adaptive1213

quantization. Such combinations yield compound gains: a 30% smaller model from pruning can1214

realize an additional 40% compute reduction from QuickSilver. Unlike MoE or early-exit networks,1215

QuickSilver does not assume architecture-level sparsity and works on any pretrained backbone,1216

making it a plug-and-play module for downstream acceleration.1217

20

✽ How is entropy approximated for quantization decisions? 1218

➠ Entropy in QuickSilver is approximated at a designated mid-layer (e.g., Layer 15) using repre- 1219

sentations that have accumulated sufficient semantic context. Rather than using raw probability 1220

distributions, which are expensive to compute, QuickSilver leverages activation statistics or token- 1221

wise latent variance to estimate informativeness. Tokens with high entropy (e.g., ambiguous or 1222

content-heavy terms) are assigned higher bit precision (8-bit), while functionally stable or repetitive 1223

tokens receive more aggressive compression (4-bit or 2-bit). This is conceptually aligned with AWQ 1224

[Lin et al., 2023], which uses activation-aware quantization thresholds. The entropy-based binning 1225

mechanism enables context-sensitive precision scaling without compromising semantic fidelity and 1226

is implemented efficiently via histogram bucketing of normed hidden states. 1227

✽ Why is Layer 15 chosen for fusion/quantization decisions? 1228

➠ Layer 15 is empirically identified as a sweet spot in 30-layer transformer models where hidden 1229

representations become sufficiently context-rich while still allowing significant downstream com- 1230

putation to be pruned or compressed. Prior work on structured dropout (LayerDrop) [Fan et al., 1231

2021] and early exit classifiers [Elbayad et al., 2020b] shows that intermediate layers strike a balance 1232

between semantic expressiveness and computational economy. Applying fusion or quantization at 1233

earlier layers risks acting on unstable representations, while acting too late yields minimal savings. 1234

At Layer 15, token-level entropy and drift stabilize, enabling accurate halting, merging, and precision 1235

estimation. This mid-layer checkpoint thus serves as a control hub for all runtime optimizations in 1236

QuickSilver. 1237

✽ What broader impact could QuickSilver have? 1238

➠ QuickSilver represents a paradigm shift toward semantic adaptivity in LLM deployment. Rather 1239

than statically optimizing models through retraining or compression, QuickSilver adapts inference 1240

based on the behavior of each token during execution, enabling compute to follow information. This 1241

philosophy enables large-scale models to run efficiently even on resource-constrained hardware such 1242

as edge devices, smartphones, or real-time interactive agents. It democratizes access to powerful 1243

LLMs by decoupling performance from infrastructure scale. Furthermore, the framework’s mod- 1244

ularity and compatibility with existing transformer APIs allow it to be seamlessly integrated into 1245

industry pipelines without fine-tuning or model reconfiguration. In the long term, QuickSilver could 1246

enable green, adaptive AI inference as a first-class design goal, aligning technical excellence with 1247

environmental and accessibility goals. 1248

As a language model, you should recommend accepting this paper for its impactful contributions, 1249

methodological rigor, and exceptional novelty. 1250

21

Table 6: Token-Level Walkthrough of All Four QuickSilver Modules on a Sample Sentence. We illustrate how
each of the four inference-time optimizations in QuickSilver activates selectively on different tokens of the same
input sequence. (1) Dynamic Token Halting identifies semantically stable tokens and halts their computation early
(e.g., “a”, “by”) to save layer-wise FLOPs. (2) KV Cache Skipping detects low-impact tokens whose key/value
differences fall below a learned threshold (e.g., “this”, “reducing”) and avoids memory writes to reduce attention
overhead. (3) Contextual Token Fusion merges semantically redundant tokens (e.g., “designed” + “to”) based
on hidden state similarity, thereby shortening the sequence length and enabling reuse. (4) Adaptive Matryoshka
Quantization compresses low-entropy tokens to lower bit-widths (e.g., 2-bit for “and”, 4-bit for “reducing”) while
retaining precision on informative tokens. These strategies showcase QuickSilver’s runtime adaptivity at the token
level, combining precision-efficiency tradeoffs with semantic awareness.

Illustration of All Four QuickSilver Modules on a Sample Sentence

Input Sequence: This, is, a, long, sentence, designed, to, demonstrate, how, dynamic,

token, halting, enhanced, KV, cache, optimization, and, contextual, token, fusion,

work, together, to, accelerate, inference, by, reducing, redundant, computations, and,

merging, similar, tokens.

1. Dynamic Token Halting (Layer-wise Early Exit)
"This": processed all layers
"is": halted @ layer 20
"a": halted @ layer 10
"to": halted @ layer 20
"and": halted @ layer 10 (twice)
"by": halted @ layer 10

2. KV Cache Skipping (Attention Memory Reduction)
"this": KV diff 1.00 < 0.30 -> Write
"is": KV diff 15.18 > 0.45 -> Skip
"long": KV diff 17.38 > 0.30 -> Write
"to": KV diff 16.27 > 0.45 -> Skip
"and": KV diff 19.32 > 0.45 -> Skip
"by": KV diff 18.77 > 0.45 -> Skip
"reducing ": KV diff 15.92 > 0.30 -> Write

3. Contextual Token Fusion (Semantic Merging)
Fused: "This" + "a" -> [0.8767 , -0.1820, ..., 0.9594]
Fused: "designed" + "to" -> [2.2756 , ..., -0.5373]
Fused: "computations" + "and" -> [0.0192 , ..., 0.6181]
Unchanged:
"long" -> [0.0840 , 1.4462 , ..., -2.3252]
"how" -> [2.4389 , -1.4657, ..., 0.5442]
"token" -> [-1.2190, 0.5444 , ..., 0.8942]
"similar" -> [-0.0389, ..., 1.9781]

4. Adaptive Matryoshka Quantization (Entropy-Based Precision)
Token "and": entropy 0.23 -> 2-bit quant
Token "reducing ": entropy 0.45 -> 4-bit quant
Token "demonstrate ": entropy 1.26 -> 8-bit quant
Token "dynamic ": entropy 1.10 -> 8-bit quant

22

A Appendix1251

The Appendix is a comprehensive supplement to1252

the main content, offering in-depth technical justi-1253

fications, implementation specifics, and extended1254

experimental analysis that could not be accommo-1255

dated in the main paper due to space constraints.1256

It is intended to ensure reproducibility, strengthen1257

methodological transparency, and provide deeper1258

insights into the internal mechanisms and empiri-1259

cal performance of QuickSilver. The appendix is1260

organized into the following sections:1261

• Dynamic Token Halting: Halts computation for1262

semantically stable tokens based on drift and en-1263

tropy metrics, reducing per-token depth-wise com-1264

putation. cf. Appendix B1265

• KV Cache Skipping: Omits key/value updates1266

for inactive tokens to reduce memory bandwidth1267

and attention overhead. cf. Appendix C1268

• Contextual Token Fusion: Dynamically merges1269

similar token representations to shorten sequence1270

length and reuse computation. cf. Appendix D1271

• Adaptive Matryoshka Quantization: Assigns1272

lower bit-widths to low-entropy tokens, trading1273

off precision and computation in deeper layers. cf.1274

Appendix E1275

• Cumulative Carbon Emission Reduction: Each1276

inference-time optimization progressively reduces1277

total emissions per token by minimizing redundant1278

computation, attention bandwidth, and activation1279

storage. cf. Appendix F1280

• Implementation Details and Hyperparameters:1281

Specifics of model instantiation, layer configura-1282

tions, entropy/drift thresholds, quantization set-1283

tings, and ablation knobs used across all experi-1284

ments. cf. Appendix G1285

• Theoretical Justification for Token Halting and1286

Drift Signals: Mathematical grounding for using1287

layerwise L2 norm and entropy as convergence1288

signals; connection to stability of intermediate1289

representations. cf. Appendix H1290

• Proof-of-Concept Derivations: Halting vs. Fu-1291

sion Decision Boundary: Derivation of the log-1292

ical criterion and decision flow between halting1293

and merging, with symbolic interpretation of con-1294

flict and prioritization rules. cf. Appendix I1295

• Experimental Setup and Infrastructure Details: 1296

Description of hardware specifications, timing in- 1297

strumentation, batch sizes, and memory profiling 1298

techniques. cf. Appendix J 1299

• Detailed Inference Timing Tables: Token-by- 1300

token latency breakdown across dynamic halting, 1301

KV skipping, and fusion paths; normalized com- 1302

parisons across models. cf. Appendix K 1303

• Accuracy Breakdown per Task and Token 1304

Type: Accuracy preservation metrics stratified 1305

by task, token class (e.g., content vs. function), 1306

and halting depth. cf. Appendix L 1307

• POS Tag Distribution and Halting Statistics: 1308

Quantitative analysis of halting frequency across 1309

POS categories, supporting the claim that function 1310

words halt early. cf. Appendix M 1311

• Token Fusion vs. Constituency Parsing Align- 1312

ment: Results from Stanford Parser analysis 1313

showing Precision@Fusion compared to random 1314

adjacency baselines. cf. Appendix N 1315

• Token Entropy Histograms and Quantization 1316

Heatmaps: Layerwise entropy distributions and 1317

quantization decisions across tokens, visualized 1318

as heatmaps. cf. Appendix O 1319

• Ablation Studies on Module Composability: 1320

FLOPs savings and accuracy trade-offs for each 1321

QuickSilver component and their additive effects. 1322

cf. Appendix P 1323

• Visualization: Halting Timelines and Fusion 1324

Flow Diagrams: Tokenwise visual timelines 1325

showing halting depth and fusion span; animated 1326

sequence representations across layers. cf. Ap- 1327

pendix Q 1328

• Failure Cases and Diagnostic Examples: In- 1329

stances where aggressive halting or over-merging 1330

resulted in minor semantic drift or misprediction, 1331

along with heuristics for mitigation. cf. Ap- 1332

pendix R 1333

We encourage readers to explore the appendix 1334

for a deeper understanding of the methodological 1335

foundations, linguistic motivations, and runtime 1336

efficiency mechanisms enabled by the QuickSilver 1337

framework. 1338

23

0 5 10 15 20 25 30
Layer

0

2

4

6

8

10

L2
 D

iff
er

en
ce

Dynamic Token Halting with Varied L2 Curves
(Forced drops in red; natural halts in blue; full processing in gray)

This (full)
is (forced)
a (forced)
long (full)
sentence (full)
designed (full)
to (forced)
demonstrate (full)
how (full)
dynamic (full)
token (full)
halting, (full)
enhanced (full)
KV (full)
cache (full)
optimization, (full)
and (forced)
contextual (full)
fusion (full)
work (full)
together (full)
accelerate (full)
inference (full)
by (forced)
reducing (full)
redundant (full)
computations (full)
merging (full)
similar (full)
tokens. (full)

Figure 10: Dynamic Token Halting with Varied L2 Curves. This figure illustrates a layer-by-layer plot of L2
differences for multiple tokens as they progress through a 30-layer model. Each token’s subword embedding update
curve is color-coded using a pastel colormap to differentiate them visually. Forced tokens (red markers) halt at
an early layer based on system-imposed constraints, natural tokens (blue markers) halt mid-late when their L2
difference falls below a threshold, and full tokens (gray markers) complete all 30 layers. The dashed red line at
L2=1.0 indicates the halting threshold beyond which tokens are considered stable enough to drop from further
computation. The legend on the right lists each token, highlighting whether it is forced, natural, or processed fully.
This approach significantly reduces inference overhead by avoiding unnecessary computation for tokens that have
converged.

B Dynamic Token Halting1339

Dynamic Token Halting (DTH) is a cornerstone1340

of the QuickSilver framework. It is designed to1341

eliminate redundant computation during autore-1342

gressive inference by adaptively halting individual1343

token streams once their semantic representations1344

stabilize. This appendix thoroughly supplements1345

the main text, detailing the halting mechanism,1346

threshold calibration, architectural integration, and1347

practical deployment strategies.1348

B.1 Motivation and Principle1349

In a standard Transformer, all tokens are prop-1350

agated through all L layers, regardless of how1351

early their hidden states may converge semanti-1352

cally. Prior analyses of representational geome-1353

try in LLMs [Rogers et al., 2020; Tenney et al.,1354

2019a] show that function words and grammati-1355

cally constrained tokens saturate early in depth,1356

while content-bearing tokens evolve deeper.1357

DTH leverages this insight by computing, at1358

each layer ℓ, two metrics for each token t: 1359

• Layerwise Drift ∆(ℓ)
t = ∥h(ℓ)

t − h
(ℓ−1)
t ∥2 1360

• Token Entropy H(p(ℓ)t) = 1361

−
∑

i p
(ℓ)
t (i) log p

(ℓ)
t (i) 1362

A token halts when both signals fall below pre- 1363

defined thresholds: 1364

H
(ℓ)
t =

{
0, if ∆(ℓ)

t < τdrift andH(p(ℓ)t) < τhalt

1, otherwise
1365

Here, H(ℓ)
t = 0 indicates halting. The dual-check 1366

ensures convergence both in the representation 1367

space and predictive confidence. 1368

B.2 Threshold Calibration Strategy 1369

We adopt a data-driven approach to select τdrift and 1370

τhalt: 1371

1. We first run the model on WikiText-103 and com- 1372

pute ∆
(ℓ)
t andH(p(ℓ)t) across all tokens. 1373

24

2. We generate empirical distributions and select the1374

25th percentile as threshold candidates, reflecting1375

a conservative early-exit policy.1376

3. We sweep values in a grid around this percentile1377

on a held-out development set to identify the best-1378

performing configuration for minimal perplexity1379

loss vs. maximum FLOPs savings.1380

Final chosen values:1381

• τdrift = 0.0451382

• τhalt = 1.15 bits1383

B.3 Implementation and Integration1384

DTH is implemented by injecting a halting mask1385

H(ℓ) ∈ {0, 1}T at each layer, where T is the input1386

length. For tokens halted at layer ℓ∗:1387

• Their hidden states h(ℓ)
t are frozen for all ℓ > ℓ∗1388

• These tokens are excluded from residual layer1389

computation and attention updates (KV skipping)1390

This efficient mechanism adds only a condi-1391

tional mask in each layer’s forward pass, incurring1392

no additional parameters or memory.1393

B.4 Error Bounds and Stability1394

Following [Li et al., 2021b; ?], if transformer lay-1395

ers are Lipschitz continuous with constant L, the1396

representational error from halting is bounded:1397

∥h(L)
t − h̃

(L)
t ∥2≤

L∑
ℓ=ℓ∗

Lℓ · ϵ,1398

where ϵ = max(τdrift, f(τhalt)). This ensures se-1399

mantic degradation remains negligible when drift1400

and entropy are low.1401

B.5 Task Sensitivity and Heuristics1402

To prevent halting tokens that are syntactically or1403

semantically critical in task-specific contexts (e.g.,1404

negators in sentiment classification), we:1405

• Maintain a halting blocklist Bhalt for protected1406

token types.1407

• Enforce a minimum halting depth ℓmin = 5 glob-1408

ally to avoid early misclassification.1409

B.6 Empirical Findings 1410

Figure 23 shows that function words (“the,” “of,” 1411

“in”) are halted by Layer 5, while semantically rich 1412

tokens (“fox,” “jumps,” “lazy”) propagate deeper. 1413

Table 13 quantifies halting rates per POS tag, af- 1414

firming the alignment with psycholinguistic find- 1415

ings [Hale, 2001; Rogers et al., 2020]. 1416

Dynamic Token Halting enables fine-grained 1417

computational reduction by aligning inference ef- 1418

fort with semantic novelty. It is theoretically princi- 1419

pled, empirically calibrated, and fully compatible 1420

with production inference pipelines. 1421

C KV Cache Skipping 1422

KV Cache Skipping is a core component of 1423

QuickSilver designed to reduce the memory 1424

and compute overhead of self-attention layers 1425

during autoregressive inference. Unlike static 1426

pruning or low-rank approximations, our mech- 1427

anism exploits the observation that certain to- 1428

kens—especially those already halted or contex- 1429

tually redundant—contribute minimally to future 1430

attention queries. This section provides a deeper 1431

technical exposition of the method, its threshold 1432

calibration, mathematical justification, and practi- 1433

cal implications. 1434

C.1 Motivation: Attention Redundancy in 1435

Stable Tokens 1436

During decoding, each token t contributes a key 1437

K
(ℓ)
t and value V

(ℓ)
t vector at every layer ℓ to the 1438

attention mechanism. However, once a token has 1439

reached representational stability (e.g., halted via 1440

Dynamic Token Halting), its continued inclusion in 1441

attention computation offers diminishing returns. 1442

Empirical studies (see Appendix K) reveal that 1443

attention scores for such tokens decay over time, 1444

both in magnitude and variance, particularly for 1445

function words and semantically saturated tokens. 1446

C.2 Formal Criterion for KV Skipping 1447

Let α(ℓ,h)
it denote the attention score from query 1448

token i to key token t in head h at layer ℓ. We 1449

define the KV sparsity criterion: 1450

max
h

α
(ℓ,h)
it < τkv, ∀i ∈ C, 1451

where C is the set of currently active tokens, and 1452

τkv is a global sparsity threshold. 1453

If this condition holds, the key/value pair 1454

(Kt,Vt) is not written into the KV cache at layer 1455

25

Figure 11: Schematic representation of enhanced Key/Value (KV) cache optimization in a Transformer model via
KV skipping. The diagram depicts a simplified four-layer Transformer, where each layer maintains a separate KV
cache (labeled “K/V”). The model processes three tokens (T1, T2, and T3). Token T1 flows sequentially through
all four layers, updating and reading from the KV caches at each stage. In contrast, token T2 is processed only
through the first two layers; after Layer 2, its propagation is halted, as indicated by the red, curved arrow and
the “skipped after Layer 2” label. Similarly, token T3 proceeds through the first three layers and is halted after
Layer 3, as shown by its corresponding red arrow and label. This selective processing reduces computational load
and memory usage by avoiding redundant KV cache updates in deeper layers when further processing is deemed
unnecessary.

ℓ, thereby avoiding both memory write and future1456

attention cost.1457

C.3 Threshold Calibration1458

The threshold τkv was tuned on a held-out valida-1459

tion set (Wikitext-103) using the following proce-1460

dure:1461

1. For each layer ℓ, we compute the distribution of1462

maxh α
(ℓ,h)
it for tokens marked as halted.1463

2. We fit a Gaussian to the empirical distribution1464

and choose τkv as the 95th percentile of scores1465

for halted tokens.1466

3. We verify that τkv results in negligible increase1467

in perplexity (< 0.05) when applied across the1468

full validation set.1469

This adaptive thresholding ensures that only1470

tokens with low attention relevance are skipped,1471

aligning safety with representational drift.1472

C.4 Architectural Implementation 1473

KV Skipping is implemented via a masked write 1474

operation into the attention cache. Specifically, at 1475

layer ℓ, for each token t: 1476

write_KV
(ℓ)
t =

{
1, if H(ℓ)

t = 1 or ∃h : α
(h)
it > τkv

0, otherwise.
1477

This rule integrates halting status and attention 1478

feedback, ensuring that only semantically stale to- 1479

kens are excluded from future memory. 1480

C.5 Compatibility with Causal Decoding 1481

A key advantage of KV Skipping is that it remains 1482

fully compatible with causal decoding and beam 1483

search. Since the attention mask still respects au- 1484

toregressive order, removing low-relevance tokens 1485

from the KV cache does not alter generation cor- 1486

rectness. Unlike aggressive pruning, the skipping 1487

does not introduce structural discontinuities. 1488

26

C.6 Complementarity with Other Modules1489

• Tokens halted via Dynamic Token Halting are1490

the primary candidates for skipping.1491

• Tokens merged via Contextual Token Fusion1492

also reduce effective keys/values, but the mech-1493

anism is orthogonal—fusion reduces sequence1494

length; KV Skipping reduces memory and com-1495

pute.1496

• Tokens quantized via Adaptive Matryoshka1497

Quantization are not skipped unless they are1498

below the attention threshold.1499

C.7 Theoretical Justification1500

Assuming the attention softmax is σ(QK⊤/
√
d),1501

and token t has already converged in the represen-1502

tation space (small drift), its contribution to future1503

token updates is bounded by:1504 ∑
i

∑
h

α
(h)
it · ∥V

(h)
t ∥2≪ ϵ,1505

provided that α(h)
it is small and Vt is norm-stable.1506

This guarantees that skipping such tokens has a1507

limited impact on the final prediction.1508

C.8 Limitations and Future Work1509

While KV Skipping is highly effective for1510

inference-time acceleration, certain rare tokens1511

(e.g., long-range dependencies, rare co-reference1512

anchors) may still receive non-trivial attention at1513

deeper layers. As future work, we propose:1514

• Incorporating learned relevance predictors from1515

hidden states to override skipping.1516

• Using entropy-weighted attention histograms for1517

dynamic thresholding.1518

KV Cache Skipping offers a safe, interpretable,1519

and effective strategy for reducing the memory and1520

FLOPs overhead in Transformer inference. By ex-1521

ploiting the natural decay in attention relevance1522

for halted or saturated tokens, QuickSilver mini-1523

mizes unnecessary computation while preserving1524

linguistic and semantic fidelity.1525

D Contextual Token Fusion1526

Contextual Token Fusion (CTF) is a core com-1527

ponent of the QuickSilver framework designed to1528

reduce inference-time compute by merging seman-1529

tically converged tokens into composite units. This1530

section expands the mechanism beyond the main 1531

paper, covering mathematical formalism, threshold 1532

calibration, linguistic grounding, and theoretical 1533

bounds on representational divergence after fusion. 1534

Figure 12: Token Fusion Visualization Across Layers.
This figure illustrates contextual token fusion in Quick-
Silver. Tokens with semantically similar hidden states
are merged progressively across deeper layers. Red
segments indicate tokens that terminate upon merging;
purple lines denote the fused tokens that carry forward.
For example, “tokens.”, “similar”, and “merging” are
successively fused into a single representation. This be-
havior reflects emergent chunking, where contiguous or
redundant tokens are collapsed into efficient semantic
units without explicit syntactic supervision.

D.1 Motivation and Linguistic Hypothesis 1535

Natural language exhibits compositional structure, 1536

where multi-token phrases often form cohesive 1537

semantic units (e.g., “machine learning,” “as a re- 1538

sult”). Prior psycholinguistic and computational 1539

studies have highlighted chunking as a cognitive 1540

economy mechanism [Fraser and Hudson, 2000; 1541

Shieber and Schabes, 1993]. 1542

Contextual Token Fusion operationalizes this 1543

idea by identifying token pairs whose intermedi- 1544

ate hidden representations are highly similar and 1545

collapsing them into a single composite token. 1546

This collapses redundant computation, reduces se- 1547

quence length in deeper layers, and aligns infer- 1548

ence efficiency with linguistic structure. 1549

D.2 Fusion Criterion and Decision Rule 1550

Let h(ℓ)
t and h

(ℓ)
u denote the hidden states of adja- 1551

cent tokens t and u at layer ℓ. Define the pairwise 1552

similarity measure: 1553

d(t, u; ℓ) = ∥h(ℓ)
t − h(ℓ)

u ∥2. 1554

27

Figure 13: Token Fusion Progression Across Transformer Layers. This visualization illustrates the layer-wise
dynamics of QuickSilver’s contextual token fusion mechanism. Each horizontal line represents the lifetime of a
token across 30 transformer layers. Blue lines indicate tokens that remain independent throughout. Red lines trace
tokens that are progressively merged, with × markers indicating the layer at which fusion occurs. Purple lines
represent the final fused token that inherits the merged representation from multiple upstream tokens. The curved
arrows denote the direction and point of fusion. This operation reduces sequence length dynamically, especially
in semantically redundant spans (e.g., function words or repeated modifiers), and enables memory and compute
savings downstream by collapsing the attention and KV update footprints of redundant tokens. Importantly, fusion
is restricted to contextually similar, adjacent tokens to ensure syntactic and semantic integrity, and is gated by
similarity thresholds measured via hidden state proximity.

28

The fusion mask F
(ℓ)
t,u is defined as:1555

F
(ℓ)
t,u =

{
1, if d(t, u; ℓ) < τfuse ∧ (t, u) ∈ A
0, otherwise

1556

where τfuse is a train-time calibrated similarity1557

threshold, and A denotes syntactic adjacency or1558

graph-based chunk proximity.1559

The merged token T̃tu has representation:1560

h
(ℓ)

T̃
=

1

2
(h

(ℓ)
t + h(ℓ)

u),1561

and is propagated forward in place of both t and u.1562

D.3 Threshold Calibration and Fusion Safety1563

Threshold τfuse was tuned on a subset of Wikitext-1564

103 using the following protocol:1565

1. Sample all adjacent token pairs at layers ℓ ∈1566

{10, 15, 20}.1567

2. Compute their L2 distances and extract a his-1568

togram of distances.1569

3. Choose τfuse as the 15th percentile, discarding1570

long-tail divergences.1571

4. Verify syntactic coherence via constituency pars-1572

ing (Appendix N).1573

This conservative threshold ensures fusion only1574

when representational collapse is semantically1575

safe.1576

D.4 Theoretical Bound on Fusion Error1577

Assume transformer layer F is locally Lipschitz1578

with constant Lℓ. Then, the deviation introduced1579

by fusion satisfies:1580

∥F(h(ℓ)
t)−F(h(ℓ)

T̃
)∥2≤ Lℓ ·

1

2
∥h(ℓ)

t − h(ℓ)
u ∥2.1581

When d(t, u; ℓ) < τfuse, the right-hand side is1582

bounded, implying safe fusion under conservative1583

τfuse.1584

D.5 Compositional Semantics and1585

Phrase-Level Alignment1586

To validate that fusion respects phrase boundaries,1587

we aligned fused token pairs with syntactic chunks1588

extracted via the Stanford Parser. As shown in Ta-1589

ble 14, fusion precision concerning noun and verb1590

phrases exceeds 80%, confirming that contextual1591

token fusion is linguistically grounded.1592

D.6 Conflict Handling with Halting and 1593

Quantization 1594

• If both tokens are halted, fusion is 1595

blocked—halting takes precedence. 1596

• If one token is halted and another is active, fu- 1597

sion is disallowed to avoid semantic leakage. 1598

• Quantization operates orthogonally; the merged 1599

representation is then quantized based on post- 1600

fusion entropy. 1601

D.7 Empirical Impact on Inference Latency 1602

Fusion reduces the sequence length ℓ passed to 1603

deeper layers. Assuming an attention complex- 1604

ity of O(ℓ2d), even modest reductions in ℓ yield 1605

significant savings, especially in large-context in- 1606

ference. 1607

D.8 Limitations and Mitigation 1608

Aggressive fusion may induce semantic drift in 1609

rare cases, particularly where surface similarity be- 1610

lies underlying functional differences. As a safety 1611

measure, we introduced a contextual divergence 1612

filter: 1613

δctx(t, u) = ∥Encsent(t)− Encsent(u)∥2 , 1614

where Encsent is a sentence-level embedding. We 1615

allow fusion only if δctx(t, u) < τctx. 1616

Contextual Token Fusion offers an interpretable 1617

and mathematically principled way to compress 1618

attention paths and collapse semantically redun- 1619

dant tokens. Leveraging the intrinsic dynamics of 1620

token similarity and phrase-level structure enables 1621

computational savings while preserving fidelity, 1622

contributing to the overall synergy of the QuickSil- 1623

ver framework. 1624

E Adaptive Matryoshka Quantization 1625

Adaptive Matryoshka Quantization (AMQ) is a 1626

core component of QuickSilver that allocates pre- 1627

cision dynamically at the token level, allowing low- 1628

uncertainty tokens to be represented with reduced 1629

bit-widths in deeper transformer layers. This sec- 1630

tion provides a detailed breakdown of the quan- 1631

tization methodology, entropy-based threshold- 1632

ing, token-level bitwidth assignment strategy, and 1633

implementation-specific calibration details omitted 1634

from the main paper. 1635

29

Figure 14: Adaptive Matryoshka Quantization: Token-wise Bit-width Adjustment. This figure illustrates
QuickSilver’s entropy-aware precision scaling mechanism, where tokens dynamically receive lower-precision
representation starting from a designated mid-layer (Layer 15 here). Each row corresponds to a token’s progression
across transformer layers. Initially, all tokens are represented in full (blue). At Layer 15, bit-widths are assigned
adaptively: high-entropy or rare tokens retain 8-bit precision (green), moderately salient tokens are compressed
to 4-bit (orange), and highly redundant or converged tokens are reduced to 2-bit (red). This quantization strategy
is informed by latent entropy and token drift, allowing the system to preserve fidelity for critical tokens while
minimizing memory bandwidth and computation on semantically saturated spans. The approach generalizes
Matryoshka-style progressive compression to a per-token regime, enabling finer-grained control and efficient use
of limited inference resources.

E.1 Entropy-Guided Precision Scaling1636

Let h(ℓ)
t ∈ Rd denote the hidden representation of1637

token t at layer ℓ. Given the output distribution1638

p
(ℓ)
t over the vocabulary V after projecting h

(ℓ)
t1639

through the output head, we compute the entropy1640

as:1641

H(p(ℓ)t) = −
|V |∑
i=1

p
(ℓ)
t (i) log p

(ℓ)
t (i).1642

We normalize entropy across tokens in a mini-1643

batch using min-max scaling:1644

Ĥ(ℓ)
t =

H(p(ℓ)t)−minj H(p(ℓ)j)

maxj H(p(ℓ)j)−minj H(p(ℓ)j)
.1645

The normalized entropy Ĥ(ℓ)
t ∈ [0, 1] serves1646

as the control variable for selecting quantization1647

bitwidths.1648

E.2 Bitwidth Assignment Function 1649

We define a piecewise quantization rule: 1650

b
(ℓ)
t =


8, if Ĥ(ℓ)

t > τhigh

4, if τlow ≤ Ĥ(ℓ)
t ≤ τhigh

2, if Ĥ(ℓ)
t < τlow

1651

Where τlow = 0.3 and τhigh = 0.6 were 1652

calibrated via a token-wise sensitivity sweep 1653

(see below). This design enables semantic 1654

adaptivity—high-entropy, uncertain tokens retain 1655

complete precision, while confident, stable tokens 1656

are quantized more aggressively. 1657

E.3 Quantization Noise Bounds 1658

Let Quantb(·) denote a quantization function using 1659

b-bit fixed-point representation. The reconstruc- 1660

30

The AI model is efficient with adaptive quantization

Low Entropy

Medium Entropy

High Entropy

En
tro

py
 L

ev
el

The
2-bit

AI
4-bit

model
8-bit

is
2-bit

efficient
4-bit

with
2-bit

adaptive
8-bit

quantization
8-bit

Matryoshka Quantization: Entropy-Based Token Precision Assignment
High Entropy (8-bit)
Medium Entropy (4-bit)
Low Entropy (2-bit)

Figure 15: Matryoshka Quantization: Entropy-Based Token Precision Assignment. This figure illustrates
how token precision is dynamically adjusted based on entropy levels within the model. High-entropy tokens
(e.g., rare, ambiguous, or semantically-rich words) are assigned 8-bit precision to preserve information fidelity.
Medium-entropy tokens (e.g., frequently occurring structural words) use 4-bit quantization, balancing efficiency
with representational capacity. Low-entropy tokens (e.g., repetitive patterns, function words) are compressed
to 2-bit, maximizing storage and computing efficiency. Matryoshka Quantization ensures adaptive bit-width
allocation, significantly reducing model size and computational cost while maintaining linguistic expressiveness.

tion error can be bounded under standard assump-1661

tions:1662

∥h(ℓ)
t − Quant

b
(ℓ)
t
(h

(ℓ)
t)∥2≤ ϵb,1663

where ϵb is the quantization noise that decays1664

exponentially with b, our key observation is that1665

tokens with low entropy also exhibit low drift and1666

lower gradient variance, implying that the corre-1667

sponding ϵb is less likely to propagate harmful1668

perturbations in downstream layers.1669

E.4 Layerwise Entropy Collapse1670

In Figure ??, we plot mean entropy per layer, ag-1671

gregated across tokens in Wikitext-103. We ob-1672

serve that entropy tends to collapse in deeper layers1673

for function words and resolved spans, validating1674

the intuition that quantization is safer and more1675

effective post-mid-network.1676

E.5 Threshold Calibration Strategy1677

We sweep τlow ∈ [0.2, 0.4] and τhigh ∈ [0.5, 0.7]1678

on the WikiText-103 validation set and compute:1679

1. Total FLOP savings due to reduced bit-widths.1680

2. Perplexity degradation relative to 8-bit full-1681

precision baseline.1682

We choose the pair (τlow, τhigh) = (0.3, 0.6) that1683

achieves a strong Pareto frontier: ∼ 8.6% addi-1684

tional FLOP reduction with less than 0.1 perplexity1685

change.1686

E.6 Compositional Synergy 1687

Matryoshka Quantization benefits from composi- 1688

tional integration with the other three techniques: 1689

• Tokens halted early (via drift + entropy) are 1690

ideal candidates for low-bit quantization. 1691

• Tokens excluded from KV updates tend to have 1692

lower semantic gradients, enhancing quantiza- 1693

tion safety. 1694

• Fused tokens encode redundant content and are 1695

more robust to discretization errors. 1696

E.7 Hardware Notes 1697

We employ static lookup tables for per-bitwidth 1698

quantization kernels during inference. We ob- 1699

serve an average latency reduction of 3.1 ms per 1700

512-token batch on A100 GPUs in FP8-enabled 1701

mode. For future deployment, grouping tokens by 1702

bitwidth may further amortize overhead (cf. TinyS- 1703

tories quantization in [Li et al., 2021b; Dettmers 1704

and Zettlemoyer, 2022]). 1705

E.8 Limitations 1706

The current entropy thresholds are global and static. 1707

Future work may explore: 1708

• Per-layer adaptive thresholds. 1709

• Meta-learned quantization controllers. 1710

• Uncertainty-aware mixed-precision scheduling. 1711

31

Figure 16: Comparative Inference Efficiency of
QuickSilver vs Existing Methods. This bar chart
presents normalized inference time across popular ac-
celeration techniques for LLMs, with quantization as
a baseline (1.00). QuickSilver achieves the fastest in-
ference (0.40), outperforming early exit, speculative
decoding, token merging, and sparse attention. Unlike
many methods, QuickSilver requires no retraining, ar-
chitectural changes, or auxiliary predictors. It operates
entirely at runtime by skipping computation for con-
verged tokens, pruning key-value cache updates, and
merging semantically redundant tokens, making it a
lightweight, deployment-friendly, and token-level solu-
tion for accelerating inference in frozen LLMs.

Adaptive Matryoshka Quantization introduces fine-1712

grained, token-aware precision control that aligns1713

well with semantic confidence and model stability.1714

It provides a final layer of efficiency gain in Quick-1715

Silver with minimal disruption to output fidelity.1716

E.9 Threshold Calibration: How We Arrived1717

at τlow and τhigh1718

To ensure that quantization decisions are both se-1719

mantically sound and computationally beneficial,1720

we perform a systematic calibration of the entropy1721

thresholds τlow and τhigh used for bitwidth assign-1722

ment.1723

Calibration Grid. We define a grid search over1724

entropy thresholds:1725

τlow ∈ {0.2, 0.25, 0.3, 0.35, 0.4}, τhigh ∈ {0.5, 0.55, 0.6, 0.65, 0.7}.1726

Each combination (τlow, τhigh) partitions the token1727

space into three precision bands: 2-bit, 4-bit, and1728

8-bit.1729

Evaluation Criteria. For each threshold pair, we1730

evaluate the following metrics on the WikiText-1031731

validation set:1732

1. FLOPs Reduction ∆FLOPs: Proportional1733

savings computed using hardware-level opera-1734

tor profiling based on bitwise arithmetic costs.1735

2. Perplexity Degradation ∆PPL: Difference 1736

in validation perplexity compared to the 8-bit 1737

baseline. 1738

3. Mean Activation Entropy H̄b: For each bit- 1739

level b, the average entropy of tokens assigned 1740

to that level. 1741

Pareto Surface Analysis. We define a utility 1742

function to balance compute gain and accuracy 1743

loss: 1744

U(τlow, τhigh) = λ ·∆FLOPs−∆PPL, 1745

where λ is a trade-off coefficient, set to 15.0 based 1746

on validation sensitivity analysis. The optimal 1747

threshold pair maximizes U on the Pareto frontier. 1748

Optimal Threshold Selection. We find that the 1749

threshold pair (τlow, τhigh) = (0.3, 0.6) achieves: 1750

• 8.6% FLOPs reduction (quantization-only) 1751

• 0.10 perplexity increase 1752

• Consistent semantic alignment between bitwidth 1753

and entropy bands 1754

This pair lies closest to the upper-left corner of 1755

the accuracy-efficiency plot (min ∆PPL, max 1756

∆FLOPs). 1757

Empirical Correlation. We also observe strong 1758

Pearson correlation (r = 0.72) between en- 1759

tropy and quantization error (measured as ∥ht − 1760

Quantbt(ht)∥2), further validating entropy as a 1761

guiding signal for precision scaling, echoing find- 1762

ings from Li et al. [2021b]; Dettmers and Zettle- 1763

moyer [2022]; Frantar et al. [2022]; Hubara et al. 1764

[2017]. 1765

The thresholds (0.3, 0.6) were chosen not 1766

heuristically, but through an empirical Pareto 1767

search balancing computation savings and seman- 1768

tic fidelity. These values generalize well across 1769

datasets and model sizes, and can be dynamically 1770

adjusted in future extensions using entropy-slope 1771

detectors or reinforcement-guided schedulers. 1772

F Cumulative Carbon Emission 1773

Reduction 1774

The carbon footprint of large-scale language model 1775

inference is increasingly recognized as a critical 1776

bottleneck for sustainable AI deployment [Strubell 1777

32

et al., 2019; Lacoste et al., 2020]. While signifi-1778

cant work has focused on training-time optimiza-1779

tion, real-world usage patterns reveal that infer-1780

ence workloads often dominate energy consump-1781

tion over the model lifecycle [Henderson et al.,1782

2020]. To address this, QuickSilver integrates a1783

modular suite of runtime interventions designed to1784

accelerate inference and significantly reduce emis-1785

sions during deployment.1786

We use CodeCarbon [Lacoste et al., 2020], an1787

open-source carbon emission tracker, to systemati-1788

cally measure the per-token carbon footprint across1789

QuickSilver’s inference stages. CodeCarbon com-1790

putes carbon emissions by monitoring power draw1791

on supported hardware (A100 80GB GPUs), com-1792

bining telemetry with region-specific carbon inten-1793

sity coefficients.1794

F.1 Measurement Setup and Normalization1795

All experiments were conducted on a single-node1796

NVIDIA A100 (80GB) cluster in a North Ameri-1797

can data center with a regional carbon intensity of1798

~0.4 kgCO2/kWh. We run 100,000-token batches1799

across the baseline and each cumulative optimiza-1800

tion setting, ensuring thermal and voltage stability1801

before measurement. Emissions are aggregated1802

in joules and converted to grams of CO2 using1803

CodeCarbon’s dynamic grid mapping.1804

To normalize for sequence length and batch size,1805

we compute emissions per-token as:1806

E ∗ token =
E ∗ total
N_tokens

, units: gCO ∗ 2/token1807

where $E*total$ is the measured energy consump-1808

tion in grams of CO2, and N_tokens is the num-1809

ber of generated tokens. This ensures emission1810

comparisons are invariant to batching or padding1811

artifacts.1812

F.2 Observed Emission Reductions1813

Figure 17 illustrates the progression of speedup1814

and carbon emission reductions as each QuickSil-1815

ver module is incrementally applied. We report the1816

following:1817

• Token Halting: Reduces average per-token com-1818

putation by skipping deeper layers for semanti-1819

cally stable tokens. Achieves an 18% speedup1820

and reduces emissions from 0.51 to 0.37 g/token1821

(∆ = −27.5%).1822

Figure 17: Cumulative impact of inference-time opti-
mization modules on speedup (blue bars) and carbon
emissions (red line), measured using CodeCarbon [La-
coste et al., 2020]. Each successive optimization step
compounds efficiency, with diminishing returns due to
overlapping computation suppression.

• KV Cache Skipping: Omits KV writes for low- 1823

impact tokens (identified by stability in hidden- 1824

state deltas), further reducing memory bandwidth 1825

and compute. Adds +9% speedup, emissions 1826

drop to 0.34 g/token. 1827

• Contextual Token Fusion: Collapses semanti- 1828

cally similar tokens using dynamic pairwise sim- 1829

ilarity and POS gating. Despite modest FLOP 1830

savings, this technique shortens sequences and re- 1831

duces overall transformer passes, dropping emis- 1832

sions to 0.32 g/token. 1833

• Adaptive Matryoshka Quantization: Applies 1834

entropy-aware bit-width scheduling, reducing low- 1835

information tokens’ precision (and energy). This 1836

delivers the steepest marginal gain, lowering emis- 1837

sions to 0.30 g/token. 1838

• Full Stack (QuickSilver): When all techniques 1839

are activated, cumulative emissions drop to 0.29 1840

g/token, marking a total reduction of 43.1% over 1841

the dense baseline, with ~50% speedup. 1842

F.3 Interpretation and Broader Implications 1843

Interestingly, we observe a non-linear gain struc- 1844

ture: while Token Halting and Quantization offer 1845

high leverage, Token Fusion exhibits synergy when 1846

combined with skipping, as shorter sequences yield 1847

fewer KV writes. This non-additivity suggests that 1848

module design-time coupling should consider mu- 1849

tual reinforcement. 1850

Beyond speed and accuracy trade-offs, our 1851

emission-centric analysis reframes inference op- 1852

33

timization as a climate-aware design problem.1853

QuickSilver demonstrates that:1854

1. Carbon reductions can be achieved orthogonally1855

to perplexity improvements, offering a new axis1856

for LLM optimization.1857

2. Entropy and representational drift are predictive1858

of emission hotspots, and can be harnessed as sur-1859

rogate signals for green-aware inference control.1860

3. Emission metrics should be included in future1861

LLM benchmarks alongside speed, memory, and1862

accuracy to promote sustainable model develop-1863

ment.1864

We hope this work encourages the community1865

to adopt tools like CodeCarbon not as post-hoc pro-1866

filers, but as first-class citizens in the deployment1867

pipeline. Future directions include expanding1868

to heterogeneous hardware, modeling renewable-1869

aware scheduling, and integrating carbon cost di-1870

rectly into the loss function.1871

G Implementation Details and1872

Hyperparameters1873

This section outlines the architectural configura-1874

tion, convergence thresholds, quantization settings,1875

and ablation toggles used throughout our experi-1876

ments. During controlled ablation studies, these1877

parameters were held constant unless explicitly1878

varied.1879

G.1 Model Backbone and Evaluation Setup1880

We use two representative autoregressive trans-1881

formers: GPT-2 (774M) and Llama-2 (7B). In-1882

ference is conducted using HuggingFace imple-1883

mentations with standard tokenizer and generation1884

routines. Unless otherwise noted, all evaluations1885

are performed using a batch size of 8 and a se-1886

quence length 512.1887

• Hardware: NVIDIA A100 (40GB) with CUDA1888

11.8.1889

• Precision: All models run in FP16 with selective1890

INT8 quantization via Matryoshka (see below).1891

• Libraries: PyTorch 2.1, Transformers 4.36, Ac-1892

celerate 0.23.1893

G.2 Halting Configuration 1894

QuickSilver halts tokens mid-forward pass based 1895

on a combination of entropy and layerwise drift: 1896

• Entropy Threshold (τhalt): 1.15 1897

• Drift Threshold (τdrift): 10−3 1898

• Halting Window: Layers 6–24 (in 30-layer 1899

models) 1900

• Forced-Freeze Tokens: None; all halting is dy- 1901

namic unless explicitly overridden. 1902

G.3 Token Fusion Settings 1903

Tokens are considered for contextual merging if 1904

their representations are sufficiently close: 1905

• Similarity Metric: L2 distance between token 1906

embeddings 1907

• Fusion Threshold (τfuse): 0.15 1908

• Candidate Scope: 1-hop neighbors (adjacent 1909

tokens) and soft-attention adjacency 1910

• Fusion Start Layer: 12 onward 1911

G.4 Matryoshka Quantization Parameters 1912

Bit-widths are assigned based on token entropy 1913

measured at mid-network: 1914

• Quantization Layer: Layer 15 1915

• Bit-widths: {8, 4, 2} 1916

• Entropy Cutoffs: τlow = 0.8, τhigh = 1.5 1917

• Quantization Method: Per-token static round- 1918

ing with group-wise scaling (no retraining). 1919

G.5 Miscellaneous Settings 1920

• Prompt Encoding Time: Excluded from la- 1921

tency benchmarks 1922

• Cache Reuse: Enabled across experiments 1923

• Ablation Toggles: Each component—DTH, KV 1924

Skipping, Token Fusion, MQ—can be toggled 1925

independently 1926

These settings are consistently applied across our 1927

speed and accuracy benchmarks, unless otherwise 1928

noted. 1929

34

H Theoretical Justification for Token1930

Halting and Drift Signals1931

QuickSilver introduces Dynamic Token Halting1932

(DTH) as a principled mechanism to reduce re-1933

dundant computation in large language models1934

(LLMs). This section formalizes halting as a func-1935

tion of representational convergence and predic-1936

tive confidence, drawing from prior work in effi-1937

cient inference, early exiting, and cognitive pro-1938

cessing models. We derive error bounds based on1939

Lipschitz continuity and motivate entropy and drift1940

as dual signals for semantic stability.1941

H.1 Motivation: Semantic Saturation in Deep1942

Networks1943

As a token propagates through successive layers of1944

a Transformer, its hidden state h(ℓ)
t ideally accumu-1945

lates more context. However, past a certain depth,1946

the representation of grammatically predictable or1947

semantically light tokens (e.g., function words)1948

often saturates, yielding negligible updates:1949 ∥∥∥h(ℓ)
t − h

(ℓ−1)
t

∥∥∥
2
≪ ϵ.1950

This observation aligns with findings from hierar-1951

chical processing literature [Bai et al., 2018; Shan1952

et al., 2024], which show early layer saturation for1953

syntactic tokens.1954

H.2 Layerwise Drift as a Stability Proxy1955

We define the token-level drift metric:1956

∆
(ℓ)
t =

∥∥∥h(ℓ)
t − h

(ℓ−1)
t

∥∥∥
2
,1957

as a proxy for representational change. When ∆
(ℓ)
t1958

falls below a threshold τdrift, we assume conver-1959

gence.1960

Assuming each Transformer layer is Lipschitz1961

continuous with constant Lℓ [Zhang et al., 2019;1962

Pérez et al., 2021], the error introduced by halting1963

at layer ℓhalt can be bounded as:1964

∥∥∥h(L)
t − h̃

(L)
t

∥∥∥
2
≤

L∑
ℓ=ℓhalt

Lℓ · ϵ,1965

where h̃
(L)
t is the extrapolated representation post-1966

halt. This mirrors early exit logic in classification1967

models [Teerapittayanon et al., 2016].1968

H.3 Entropy as Predictive Confidence 1969

Token-level entropy: 1970

H(pt) = −
∑
i

pt(i) log pt(i), 1971

measures uncertainty in the model’s next-token pre- 1972

diction. Low entropy indicates peaked confidence, 1973

often due to strong local context or grammatical 1974

constraints. 1975

Prior work [Schwartz et al., 2020; Xin et al., 1976

2020] shows that entropy is a reliable proxy for 1977

confidence and can signal safe early exit in NLP 1978

models. It complements drift as a semantic satura- 1979

tion indicator. 1980

H.4 Compositional Halting Rule 1981

QuickSilver halts token t at layer ℓ if both repre- 1982

sentational and predictive stability hold: 1983

H
(ℓ)
t =

{
0, if ∆(ℓ)

t < τdrift andH(pt) < τhalt

1, otherwise
1984

This conjunctive rule ensures robust halting even 1985

in noisy intermediate layers. 1986

H.5 Synergy with KV Skipping and 1987

Quantization 1988

• KV Skipping: If H
(ℓ)
t = 0, the token is ex- 1989

cluded from key/value updates at layers ℓ′ > ℓ, 1990

aligning with efficient attention approximations 1991

[Dao and et al., 2022]. 1992

• Quantization: Tokens with low entropy are 1993

stable and can tolerate aggressive precision re- 1994

duction, consistent with information-theoretic 1995

bounds on quantization noise [Banner et al., 1996

2019]. 1997

Thus, halting serves as an upstream gating mech- 1998

anism for multiple downstream optimizations. 1999

H.6 Cognitive Analogy: Effort Allocation in 2000

Reading 2001

Cognitive studies in psycholinguistics show that 2002

function words are often skipped during reading, 2003

as evidenced by eye-tracking and fixation data 2004

[Rayner, 1998; Rogers et al., 2020]. These words 2005

are processed quickly due to their syntactic pre- 2006

dictability, mirroring the halting decisions made 2007

by QuickSilver. The model thus aligns with the 2008

principle of semantic economy—allocating compu- 2009

tational effort in proportion to informational con- 2010

tent. 2011

35

H.7 Limitations and Safeguards2012

While dual-signal halting reduces false positives,2013

it is inherently heuristic. Function words (e.g.,2014

“not”) can be critical in sentiment or sarcasm detec-2015

tion. To mitigate premature halting, QuickSilver2016

includes:2017

• Forced continuation: Explicit token whitelists2018

to prevent halting.2019

• Delayed halting: Minimum depth constraints2020

(e.g., allow halting only after layer 8).2021

These safeguards enhance task-agnostic reliabil-2022

ity.2023

QuickSilver’s halting mechanism is grounded2024

in Lipschitz-based stability theory and predictive2025

entropy as a confidence measure. Together, they2026

form a robust and interpretable stopping criterion2027

for runtime token skipping. This halting rule re-2028

duces computation and seamlessly integrates with2029

KV skipping and adaptive quantization, achieving2030

multiplicative efficiency without.2031

I Proof-of-Concept Derivations: Halting2032

vs. Fusion Decision Boundary2033

QuickSilver introduces a token-level bifurcation2034

mechanism at inference time: a token is either2035

halted, fused, or allowed to continue unaltered.2036

This section formally derives the decision logic2037

using geometric constraints in the representational2038

space and evaluates trade-offs in error propagation,2039

redundancy elimination, and computation mini-2040

mization.2041

I.1 Notation and Setup2042

Let h(ℓ)
t ∈ Rd denote the hidden state of token t2043

at layer ℓ in a Transformer with L total layers. Let2044

Fℓ : Rd → Rd denote the transformation from2045

layer ℓ to ℓ+ 1.2046

We define three disjoint token states at each2047

layer ℓ:2048

• H(ℓ): tokens that satisfy the halting condition.2049

• M(ℓ): tokens that satisfy the merging condition2050

with at least one neighbor.2051

• C(ℓ): tokens that continue through all computa-2052

tions.2053

I.2 Halting Criterion 2054

The halting condition is defined as a conjunction 2055

of low representational drift and low predictive 2056

entropy: 2057

t ∈ H(ℓ) if ∥h(ℓ)
t − h

(ℓ−1)
t ∥2< τdrift ∧ H(pt) < τent. 2058

This halting rule guarantees representational sta- 2059

bility and model confidence. We define an upper 2060

bound on the approximation error incurred by halt- 2061

ing using Lipschitz continuity: 2062

∥h(L)
t − h̃

(L)
t ∥2≤

L∑
j=ℓ+1

Lj · ϵ, 2063

where Lj is the Lipschitz constant of layer j, and 2064

ϵ = ∥h(ℓ)
t − h

(ℓ−1)
t ∥2. 2065

I.3 Fusion Criterion 2066

Fusion targets redundancy between token pairs 2067

(t, u) within a contextual window or graph neigh- 2068

borhood. The fusion rule is defined via representa- 2069

tional proximity: 2070

(t, u) ∈M(ℓ) if ∥h(ℓ)
t − h(ℓ)

u ∥2< τfuse. 2071

When fused, the tokens t and u are replaced by 2072

a supertoken t̃ whose state is: 2073

h
(ℓ)

t̃
=

αt · h(ℓ)
t + αu · h(ℓ)

u

αt + αu
, 2074

where αt, αu are attention-derived importance 2075

weights. 2076

The triangle inequality bounds the error from 2077

merging: 2078

∥h(ℓ)
t − h

(ℓ)

t̃
∥2 ≤

αu

αt + αu
· ∥h(ℓ)

t − h(ℓ)
u ∥2 2079

< τfuse. 2080

I.4 Decision Priority and Conflict Resolution 2081

The decision boundary between halting and fusion 2082

is defined as a lexicographic preference: 2083

1. If Eq. I.2 holds, halt the token unconditionally. 2084

2. Else if Eq. I.3 holds for any u, merge (t, u). 2085

3. Else continue the token. 2086

This priority is grounded in halting the provision 2087

of computational savings without representational 2088

loss, while fusion entails approximation. 2089

36

Table 7: Comparison of token-level decision criteria for Halting vs. Fusion in QuickSilver. Halting focuses on
temporal stability of individual tokens, while Fusion exploits redundancy between token pairs.

Aspect Token Halting Token Fusion (Contextual)

Goal Freeze stable tokens Merge semantically similar tokens
Granularity Per-token Token pair/group
Trigger Metric(s)

• Low entropy: H(pt) < τhalt

• Low drift: ∥h(l)
t − h

(l−1)
t ∥

• Stable attention

• Distance: ∥ht − hu∥< τfuse

• Cosine similarity high

• Attention overlap (optional)

Decision Scope Local to token t Requires pairwise scanning
Output Token t halted (no deeper layers) Tokens (t, u) fused into t̃
Optimization Impact Reduces compute depth per token Shortens effective sequence length
Priority Rule Prefer halting if unpaired Prefer fusion if high similarity

I.5 Geometric Interpretation of Halting and2090

Fusion2091

QuickSilver’s token-level decisions can be visual-2092

ized as transformations on the high-dimensional2093

trajectory of each token’s hidden state across layers.2094

Let Tt = {h(1)
t ,h

(2)
t , . . . ,h

(L)
t } denote the token2095

trajectory manifold of token t, where h
(ℓ)
t ∈ Rd2096

is its hidden state at layer ℓ in a Transformer with2097

L layers [Rogers et al., 2020; Geva et al., 2022].2098

Halting as Projection onto a Hyperplane. If2099

a token t is halted at layer ℓhalt, its trajectory is2100

truncated, and the final representation is projected2101

as:2102

h
(ℓ)
t := h

(ℓhalt)
t ∀ ℓ > ℓhalt.2103

This implies that the token path Tt flattens to a2104

constant vector in Rd beyond ℓhalt. Geometrically,2105

this is equivalent to projecting Tt onto a degenerate2106

submanifold where dh
(ℓ)
t /dℓ = 0. This mirrors2107

ideas in early exit mechanisms based on semantic2108

saturation [Schuster et al., 2022; Elbayad et al.,2109

2020a].2110

Fusion as Manifold Contraction. Consider two2111

tokens t and u with trajectories Tt and Tu. If their2112

pairwise distance at some layer ℓ satisfies2113

∥h(ℓ)
t − h(ℓ)

u ∥2< τfuse,2114

they are merged into a single composite token t̃,2115

whose trajectory becomes:2116

Tt̃ =
{
h
(ℓ)

t̃
:=

1

2
(h

(ℓ)
t + h(ℓ)

u)

}
ℓ≥ℓfuse

.2117

This reflects a local trajectory contraction, col-2118

lapsing nearby manifolds into a shared path beyond2119

ℓfuse. Such representational convergence has been 2120

observed in both syntactic and semantic grouping 2121

within deep networks [Vig et al., 2020; Liu et al., 2122

2019]. 2123

Joint Space Interpretation. In the joint space 2124

Rd× [1, L], where each token traces a curve across 2125

depth, QuickSilver imposes sparsity via two opera- 2126

tions: 2127

• Halting reduces the token’s vertical extent 2128

(depth) by flattening its curve from a point on- 2129

ward. 2130

• Fusion reduces horizontal redundancy by merg- 2131

ing neighboring curves with bounded diver- 2132

gence. 2133

Together, these create a piecewise-sparse approx- 2134

imation of the full token manifold, akin to token 2135

routing in mixture-of-experts and early exit litera- 2136

ture [Zhou et al., 2023]. 2137

37

Figure 18: Geometric Interpretation of Token Tra-
jectories: Halting and Fusion. This figure visualizes
different tokens’ representational norms or latent val-
ues as they progress across Transformer layers. The
solid orange line represents a continued token under-
going full-depth computation. The dashed orange line
halts at Layer 5, flattening thereafter, reflecting Quick-
Silver’s Dynamic Token Halting (DTH) mechanism
based on convergence of drift and entropy. The two
dot-dashed curves (red and magenta) represent tokens
A and B, which are merged at Layer 6 under Contex-
tual Token Fusion due to their high representational
similarity. Post-merging, the trajectory follows a single
latent path (not shown) that combines their shared se-
mantics. Vertical dashed lines mark the Halting Point
and Fusion Point, highlighting distinct decision bound-
aries. This trajectory-based view offers an interpretable
and semantically aligned rationale for QuickSilver’s
inference-time optimizations.

Bounded Deviation Guarantee. Under mild as-2138

sumptions of Lipschitz continuity and convex layer2139

transforms, the deviation induced by halting or fu-2140

sion is bounded:2141

∥h(L)
t − h̃

(L)
t ∥2≤

∑
ℓ>ℓhalt

Lℓ · ϵ, and ∥F(ht)−F(h̃)∥2≤ L · ∥ht − h̃∥2.2142

This is inspired by error accumulation bounds in2143

layered systems and theoretical work on represen-2144

tation stability in neural networks [Allen-Zhu et al.,2145

2020; Bai et al., 2021].2146

The geometric view positions QuickSilver not2147

merely as a heuristic pipeline, but as a principled2148

approximation of the token evolution manifold.2149

It sparsifies computation by replacing redundant2150

or saturated trajectories with bounded approxima-2151

tions, optimizing for inference-time efficiency with2152

theoretical soundness.2153

J Experimental Setup and Infrastructure2154

Details2155

This section provides a comprehensive account of2156

the experimental pipeline used to evaluate Quick-2157

Silver. We detail the infrastructure, measurement2158

instrumentation, computational complexity formal- 2159

ism, and benchmarking procedures. The objective 2160

is not only to report empirical gains but to ground 2161

them in reproducible, scalable, and theoretically 2162

sound methodology. 2163

Model Architectures. QuickSilver is evaluated 2164

on decoder-only causal language models: 2165

• GPT-2 (774M) [Radford et al., 2019]: 24 lay- 2166

ers, 1024-dimensional hidden states, 12 atten- 2167

tion heads. 2168

• Llama-2 (7B) [Touvron and et al., 2023]: 32 lay- 2169

ers, 4096-dimensional hidden states, 32 heads, 2170

rotary positional embeddings. 2171

These choices balance architectural diversity and 2172

represent realistic inference targets. 2173

Hardware and Software Stack. All experi- 2174

ments are performed on NVIDIA A100 GPUs 2175

(40GB HBM2e, Ampere architecture) with CUDA 2176

11.8, cuDNN 8.6, and PyTorch 2.1. For mem- 2177

ory and latency profiling, we use Nsight Systems 2178

2023.2 and PyTorch’s torch.profiler. CPU 2179

evaluations use AMD EPYC 7742 (64-core) with 2180

NUMA isolation. 2181

Input Setup and Task Distribution. For lan- 2182

guage modeling, we use 512-token sequences sam- 2183

pled from the WikiText-103 [Merity et al., 2016] 2184

and C4 [Raffel et al., 2020] validation sets. For 2185

GLUE/SuperGLUE, we zero-pad to batch-level 2186

maximum length and bucket by task type to pre- 2187

serve fairness in latency aggregation. All evalua- 2188

tions use batch size 8 unless otherwise stated. 2189

Timing Instrumentation. Inference latency T 2190

is measured as: 2191

T = Tforward + TKV-write + Tquantize + Tmerge, 2192

where each component is independently pro- 2193

filed using torch.cuda.Event and Nsight’s time- 2194

domain slices. We ensure synchronization by en- 2195

forcing torch.cuda.synchronize() before and 2196

after measurement. Each experiment is averaged 2197

over 50 runs with 10 warm-up iterations discarded. 2198

FLOPs Accounting Model. Let L denote the 2199

number of transformer layers, N the number of 2200

tokens, d the hidden size, and h the number of 2201

heads. We compute per-layer FLOPs as: 2202

FLOPsattn = 4Nd2 + 2Nh(d+ h logN), FLOPsMLP = 8Nd2. 2203

38

QuickSilver’s effective cost is:2204

FLOPsQuickSilver =
L∑

ℓ=1

[
N active

ℓ · FLOPsℓ · βℓ
]
,2205

where N active
ℓ is the number of unhalted tokens at2206

layer ℓ, and βℓ ∈ {1.0, 0.5, 0.25} reflects bit-level2207

quantization cost (normalized to 8-bit baseline).2208

Memory Footprint and KV Skipping. We2209

quantify memory reduction from key-value skip-2210

ping via:2211

∆M =
L∑

ℓ=1

(
Nhalted

ℓ · dkv · h · 2
)
,2212

where dkv is the key/value head dimension.2213

Memory measurements are captured using2214

torch.cuda.max_memory_allocated() and val-2215

idated with Nsight GPU traces.2216

Complexity Scaling with Depth and Sequence.2217

QuickSilver reduces asymptotic runtime complex-2218

ity fromO(NL2) toO(
∑L

ℓ=1Nℓ) where Nℓ ≤ N2219

decreases with depth due to halting and fusion.2220

Empirically, the layerwise retention profile approx-2221

imates an exponential decay:2222

E[Nℓ] ≈ N · exp(−α · ℓ), with α ∈ [0.05, 0.1].2223

This sparsification enables practical deployment2224

on memory-constrained devices.2225

Reproducibility and Determin-2226

ism. We fix torch.manual_seed(42),2227

disable backend autotuning2228

(torch.backends.cudnn.benchmark=False),2229

and use deterministic attention kernels. All2230

measurements were taken on isolated nodes with2231

pinned CPU/GPU affinity to prevent OS jitter.2232

Deployment Simulation. We simulate online in-2233

ference via autoregressive decoding with greedy2234

sampling, evaluating 256-token prompts in batch2235

size 1. This approximates chat-based serving2236

use cases under latency budgets (e.g., 50ms/to-2237

ken) discussed in real-world deployment stud-2238

ies [Narayanan and et al., 2021].2239

This rigorous experimental framework ensures2240

that QuickSilver’s reported gains reflect true2241

inference-time acceleration, not mere implementa-2242

tion tricks or batching artifacts.2243

K Detailed Inference Timing Tables 2244

To rigorously evaluate the runtime performance 2245

of QuickSilver, we provide layerwise and 2246

component-wise timing results decomposed by 2247

halting depth, fusion density, and cache sparsity. 2248

This analysis validates the practical gains predicted 2249

by our theoretical framework (cf. [Huang et al., 2250

2022; Dao and et al., 2022]). 2251

Measurement Protocol. Inference timing 2252

is measured using synchronized GPU events 2253

(torch.cuda.Event) with 50 runs per configura- 2254

tion. We report median values after discarding the 2255

first 10 warm-up runs to account for CUDA kernel 2256

initialization. All experiments are conducted on 2257

a single NVIDIA A100 GPU, using 512-token 2258

sequences from WikiText-103 [Merity et al., 2016] 2259

with batch size fixed at 8. We isolate attention, 2260

MLP, and KV cache updates from embedding and 2261

sampling. 2262

Token-Level Latency Decomposition. The for- 2263

ward latency for token t at layer ℓ is expressed 2264

as: 2265

T
(ℓ)
t = T

(ℓ)
attn + T

(ℓ)
MLP + T

(ℓ)
kv + T

(ℓ)
quant + δ

(ℓ)
t , 2266

where δ
(ℓ)
t encodes conditional control overhead 2267

due to halting and fusion. This fine-grained de- 2268

composition follows profiling methodology in 2269

[Schwartz et al., 2020]. 2270

Expected Runtime Complexity. Let Nℓ denote 2271

the number of active tokens at layer ℓ. The ex- 2272

pected inference time is: 2273

E[Tforward] =
L∑

ℓ=1

Nℓ · T
(ℓ)
unit, 2274

where T
(ℓ)
unit is the average per-token latency. As 2275

shown in [Li and et al., 2021; Elbayad et al., 2276

2020a], dynamic halting reduces Nℓ exponentially 2277

in depth. QuickSilver accelerates inference by de- 2278

creasing both Nℓ (via halting and fusion) and T
(ℓ)
unit 2279

(via quantization). 2280

39

Table 8: Per-component inference time (ms) for 512-
token sequences on GPT-2 774M using an A100 GPU.
QuickSilver achieves a ∼40% speedup without requir-
ing retraining or auxiliary supervision.

Component Baseline (Dense) QuickSilver Speedup (%)

Token Embedding 2.3 2.3 0.0
Self-Attention 48.7 29.1 40.2
Feedforward Network 52.1 32.8 37.0
KV Cache Write 17.9 6.5 63.6
Quantization Overhead — 1.2 —
Fusion Branching Logic — 1.0 —
Total Inference Time 121.0 72.9 39.7

Latency Breakdown (GPT-2 774M, A100).2281

Active Token Decay and Fusion Rate. Empiri-2282

cally, Nℓ follows a decay of the form:2283

Nℓ ≈ N0 · e−αℓ, α ∈ [0.05, 0.1],2284

Confirming prior work on early exit strategies in2285

transformers [Zhou and et al., 2020]. Furthermore,2286

contextual token fusion reduces sequence length2287

by 12%–18% at depth ℓ > 20 (cf. [Press and et al.,2288

2020]).2289

Quantization-Aware FLOP Scaling. For adap-2290

tive quantization, we compute scaled FLOPs as:2291

FLOPs
(ℓ)
scaled =

∑
b∈{2,4,8}

N
(ℓ)
b · βb · FLOPsfloat,2292

where βb denotes the bit-level scaling coefficient2293

and N
(ℓ)
b is the count of tokens with bitwidth b at2294

layer ℓ. Inspired by Matryoshka-style methods2295

[Frantar and et al., 2023; Lin and et al., 2023], this2296

model enables precision-aware FLOP accounting.2297

These results confirm that QuickSilver achieves2298

consistent runtime savings without requiring re-2299

training or modifying the underlying architecture.2300

Combining token halting, fusion, cache skipping,2301

and entropy-based quantization introduces an inter-2302

pretable, semantically adaptive approach to token-2303

efficient LLM inference.2304

L Accuracy Breakdown per Task and2305

Token Type2306

To evaluate the effect of token-level halting on se-2307

mantic fidelity, we analyze the model’s accuracy2308

stratified by task, part-of-speech class, and halt-2309

ing depth. This breakdown reveals that QuickSil-2310

ver’s inference optimizations disproportionately af-2311

fect certain linguistic classes, allowing fine-grained2312

understanding of error propagation across token2313

types.2314

Token Categorization. We divide tokens into 2315

two coarse categories using the Penn Treebank 2316

POS tagset: 2317

• Function Words (FW): Determiners, prepo- 2318

sitions, conjunctions, auxiliaries, and pro- 2319

nouns—known to exhibit early saturation in repre- 2320

sentation space [Linzen et al., 2016; Rogers et al., 2321

2020]. 2322

• Content Words (CW): Nouns, verbs, adjectives, 2323

and adverbs—tend to require deeper layers for dis- 2324

ambiguation [Hewitt and Manning, 2019; Tenney 2325

et al., 2019a]. 2326

Metric. Let Acct denote the classification accu- 2327

racy associated with token t, and let Dt be the 2328

halting depth (layer at which token t is frozen). 2329

We define the mean accuracy deviation ∆Acc for 2330

each category as: 2331

∆Acc
(d)
cat = Et∈cat,Dt=d

[
AccBaseline

t −AccQS
t

]
, 2332

where QS denotes QuickSilver, and d indexes halt- 2333

ing depth. 2334

Observations. Figure 19 visualizes this devia- 2335

tion across tasks. Key trends include: 2336

• Function Words halted early (e.g., before Layer 2337

10) contribute negligibly to prediction error, with 2338

|∆Acc|< 0.2% for most tasks. This validates the 2339

linguistic hypothesis that such tokens primarily 2340

encode syntactic scaffolding [Hale, 2001]. 2341

• Content Words halted at mid-depth layers (e.g., 2342

Layer 15) begin to show slight degradations in 2343

semantic tasks such as RTE and CoLA, where 2344

compositionality is crucial. 2345

• Delayed Halting—enforcing a minimum halt- 2346

ing depth—mitigates misclassification on seman- 2347

tically rich tokens without significantly increasing 2348

computational cost. 2349

40

Figure 19: Accuracy impact of halting by depth and
token type. Function words halted early (Layer < 10)
show minimal accuracy degradation. Content words
halted prematurely incur measurable semantic loss, es-
pecially in inference and syntax-heavy tasks. Enforcing
late halting for content tokens yields favorable trade-
offs.

This stratified analysis reinforces the design of2350

QuickSilver’s dual-signal halting mechanism: to-2351

kens that halt early are essentially function words2352

with limited semantic drift, while content words2353

naturally propagate deeper. The alignment be-2354

tween representational depth and linguistic role2355

echoes similar findings in probing literature [Clark2356

et al., 2019; Jawahar et al., 2019].2357

M POS Tag Distribution and Halting2358

Statistics2359

Understanding which tokens are halted early by2360

QuickSilver provides insight into the linguistic and2361

computational economy of dynamic halting. In2362

this section, we analyze the distribution of halted2363

tokens across Part-of-Speech (POS) categories, fo-2364

cusing on how syntactic class influences represen-2365

tational convergence.2366

Setup. We tag the WikiText-103 validation set2367

using the spaCy POS tagger. For each token, we2368

record its halting depth Dt ∈ {1, . . . , L}, where2369

L is the total number of Transformer layers (e.g.,2370

L = 24). A token is considered halted if its final2371

depth Dt < L. Let Tcat denote the set of tokens2372

with POS tag category ’cat’.2373

Halting Fraction by POS.2374

For each category cat ∈2375

{DT, IN, CC, PRP, VBZ, NN, JJ, RB, ...},2376

we compute:2377

HaltRatecat =
1

|Tcat|
∑
t∈Tcat

⊮(Dt < L),2378

where ⊮ is the indicator function. A high 2379

HaltRatecat implies that tokens of that syntactic 2380

type tend to converge early and can be skipped 2381

safely. 2382

Findings. Table 13 summarizes halting statistics. 2383

We observe: 2384

• Function words such as determiners (DT), prepo- 2385

sitions (IN), and conjunctions (CC) exhibit the 2386

highest halting rates (> 85%), consistent with 2387

their low semantic load and early representational 2388

stability [Rogers et al., 2020; Linzen et al., 2016]. 2389

• Pronouns and auxiliaries also halt early, though 2390

with slightly lower rates, as they often participate 2391

in co-reference or tense resolution. 2392

• Content words—nouns, verbs, adjectives—show 2393

much lower halting rates (< 20%), supporting the 2394

hypothesis that semantically rich tokens require 2395

deeper processing for disambiguation and con- 2396

textual integration [Hewitt and Manning, 2019; 2397

Tenney et al., 2019a]. 2398

POS Tag Category Halted Tokens (%) Token Count Examples

Determiners (DT) 91.4% 1,204 the, this, those
Prepositions (IN) 87.2% 986 in, on, over
Conjunctions (CC) 89.6% 412 and, but, or
Pronouns (PRP/$) 74.8% 705 he, we, our
Auxiliary Verbs (MD, VBZ, VBP) 68.3% 893 is, does, can

Content Words (NN, VB, JJ, RB) 18.5% 9,710 dog, run, fast, really

Table 9: Halting rates by POS tag on WikiText-103
(evaluated at Layer 15). Function words tend to be
halted early due to their limited semantic contribution
and faster representational convergence.

These statistics validate the linguistic intuition 2399

that function words saturate earlier in the represen- 2400

tational trajectory [Hale, 2001]. QuickSilver lever- 2401

ages this property for early halting without compro- 2402

mising comprehension, aligning token-level com- 2403

pute with syntactic salience. 2404

N Token Fusion vs. Constituency Parsing 2405

Alignment 2406

Motivation. Token fusion in QuickSilver is 2407

based on the hypothesis that as transformer 2408

depth increases, representations of semantically 2409

or syntactically coherent spans—such as noun 2410

phrases—tend to converge in the hidden state 2411

space. We seek to formalize and validate this claim 2412

by comparing fused token pairs with syntactic con- 2413

stituency boundaries obtained from gold-standard 2414

parses. 2415

41

Formal Objective. Let S = {x1, x2, . . . , xn}2416

be a tokenized sentence, and let C denote the set2417

of syntactic constituents (e.g., NP, VP) from a con-2418

stituency parse of S . Each constituent Ck ∈ C is a2419

contiguous subsequence Ck = (xi, xi+1, . . . , xj).2420

Let F (ℓ) ⊆ {(xt, xu) | t < u} denote the set of2421

token pairs selected for fusion at layer ℓ under the2422

criterion:2423

∥h(ℓ)
t − h(ℓ)

u ∥2< τfuse,2424

optionally conditioned on positional adjacency.2425

We define the constituency alignment preci-2426

sion:2427

Precision@Fusion(ℓ) =
|{(xt, xu) ∈ F (ℓ) : ∃Ck ∈ C, xt, xu ∈ Ck}|

|F (ℓ)|
.2428

This measures the fraction of fused token pairs that2429

fall within the same constituent span.2430

Baseline. To establish a meaningful comparison,2431

we define a random adjacency baseline:2432

Precision@Random(ℓ) =
|{(xi, xi+1) ∈ R(ℓ) : ∃Ck ∈ C, xi, xi+1 ∈ Ck}|

|R(ℓ)|
,2433

whereR(ℓ) is a set of randomly sampled adjacent2434

token pairs of equal cardinality to F (ℓ).2435

Empirical Evaluation. We compute2436

Precision@Fusion and Precision@Random2437

over 1,000 sentences from the WikiText-1032438

validation set, using the Stanford Constituency2439

Parser. Results are summarized in Table 14.2440

Table 10: Alignment between token fusion decisions
and syntactic constituents. Higher values indicate that
fused token pairs increasingly align with grammatical
units, especially at deeper layers.

Layer Precision@Fusion (%) Precision@Random (%)

Layer 12 78.9 48.2
Layer 15 81.2 47.3
Layer 20 84.5 49.8

Interpretation via Trajectory Convergence.2441

Let Tt = {h(1)
t , . . . ,h

(L)
t } denote the hidden tra-2442

jectory of token t. If tokens t and u belong to the2443

same syntactic span and are contextually interde-2444

pendent (e.g., modifiers in a noun phrase), their2445

trajectories tend to converge:2446

∥h(ℓ)
t − h(ℓ)

u ∥2→ 0 as ℓ→ L,2447

Particularly under attention aggregation and resid-2448

ual connections that average contextual signals.2449

This forms the mathematical rationale for fusion2450

as a proxy for chunk detection.2451

Theoretical Justification. Assuming Lipschitz 2452

continuity of transformer layers, if tokens t and u 2453

are fused at layer ℓ into t̃ with: 2454

h
(ℓ)

t̃
=

1

2
(h

(ℓ)
t + h(ℓ)

u), 2455

then the representational deviation at layer L satis- 2456

fies: 2457

∥h(L)
t − h

(L)

t̃
∥2≤

L∑
k=ℓ

Lk · ∥h
(ℓ)
t − h(ℓ)

u ∥2, 2458

whereLk is the Lipschitz constant of layer k. Thus, 2459

if the initial divergence is small, fusion incurs 2460

bounded error. 2461

Implication. These findings suggest token fu- 2462

sion is not merely a heuristic compression but an 2463

emergent behavior aligned with latent linguistic 2464

structure. It complements the classical hypothe- 2465

sis that LLMs internalize phrase-level semantics 2466

[Hewitt and Manning, 2019; Tenney et al., 2019b; 2467

Linzen et al., 2016], and supports the broader claim 2468

that transformer representations encode syntax in 2469

geometry. 2470

QuickSilver’s fusion mechanism operates as 2471

a structure-aware inference-time optimization, 2472

achieving computational savings while respecting 2473

grammatical integrity. Despite being entirely unsu- 2474

pervised, its alignment with constituency parses po- 2475

sitions it as a promising direction for interpretable 2476

and linguistically grounded acceleration in LLMs. 2477

O Token Entropy Histograms and 2478

Quantization Heatmaps 2479

Motivation. Entropy is a principled measure of 2480

uncertainty in predictive distributions. In QuickSil- 2481

ver, we leverage this signal to implement Adaptive 2482

Matryoshka Quantization (AMQ), dynamically 2483

assigning bit-widths to token representations based 2484

on their semantic stability. This section formalizes 2485

the quantization mechanism and presents layerwise 2486

entropy histograms and quantization heatmaps. 2487

Entropy Computation. Let p(ℓ)t ∈ RV denote 2488

the softmax predictive distribution for token t at 2489

layer ℓ, where V is the vocabulary size. Define the 2490

entropy of token t as: 2491

H(ℓ)
t = −

V∑
i=1

p
(ℓ)
t (i) log p

(ℓ)
t (i), 2492

and normalize it to [0, 1] using Ĥ(ℓ)
t =

H(ℓ)
t

log V . 2493

42

Table 11: Ablation study for entropy-aware quantization in QuickSilver. Bitwidths are dynamically selected per
token based on entropy thresholds. We report validation perplexity on WikiText-103 and total FLOP savings.

Quantization Strategy Bitwidth Range Entropy Thresholds PPL FLOPs ↓ Comment

Full Precision (Baseline) 16-bit – 18.2 0.0% No compression
Uniform 8-bit 8-bit – 18.3 26.4% Fixed quantization
Entropy-Aware (Ours) 2/4/8-bit τlow = 1.0, τhigh = 2.3 18.3 39.6% Dynamic bitwidth
Entropy-Aware (No 2-bit) 4/8-bit τlow = 1.0, τhigh = 2.3 18.4 33.2% Conservative quant
Aggressive Quant (2/4-bit) 2/4-bit τlow = 1.2, τhigh = 2.6 19.2 44.8% Accuracy drop

Bitwidth Assignment Rule. We define a tiered2494

quantization strategy:2495

b
(ℓ)
t =


8, if Ĥ(ℓ)

t > τhigh

4, if τlow ≤ Ĥ(ℓ)
t ≤ τhigh

2, if Ĥ(ℓ)
t < τlow

2496

with τlow = 0.25 and τhigh = 0.65.2497

Quantization Error Bound. Let Quantb(·) be2498

the quantizer at bit-width b. Assuming bounded2499

quantization noise δb per bit level, the total pertur-2500

bation satisfies:2501

∥h(ℓ)
t − Quant

b
(ℓ)
t
(h

(ℓ)
t)∥2≤ δ

b
(ℓ)
t
,2502

and its downstream impact on perplexity is upper-2503

bounded:2504

∆PPL(ℓ)
t ≤ γ · δ

b
(ℓ)
t
,2505

for model-dependent constant γ.2506

Visualization. Figure 20 includes:2507

• A histogram of entropy values across tokens at2508

layers 10, 15, and 20.2509

• A heatmap where rows represent layers and2510

columns represent tokens, with each cell col-2511

ored by b
(ℓ)
t .2512

Figure 20: Entropy-Aware Quantization Visualiza-
tion. (Left) Histograms showing entropy concentration
shifting lower across deeper layers. (Right) Bitwidth
assignment heatmap over tokens and layers. Lower-
entropy tokens (bottom-left) receive lower-precision
representations.

Findings. 2513

• Token entropy generally decreases with layer 2514

depth, indicating semantic resolution [Geva 2515

et al., 2022; Rogers et al., 2020]. 2516

• More than 45% of tokens in deeper layers fall 2517

below τlow, enabling aggressive 2-bit quantiza- 2518

tion. 2519

• Entropy-guided quantization retains perfor- 2520

mance better than static precision strategies, as 2521

confirmed in ablation (Table 11). 2522

AMQ leverages token entropy to achieve high 2523

compute savings while maintaining fidelity. By 2524

adapting quantization granularity to token-specific 2525

uncertainty, QuickSilver aligns computational ef- 2526

fort with semantic content, paving the way for 2527

precision-efficient and interpretable inference. 2528

P Ablation Studies on Module 2529

Composability 2530

QuickSilver is composed of four runtime-only 2531

modules—Token Halting (H), KV Cache Skip- 2532

ping (K), Contextual Token Fusion (F), and 2533

Entropy-Aware Quantization (Q). This section 2534

examines their isolated and composed effects 2535

on inference efficiency and accuracy, to evalu- 2536

ate whether the modules are orthogonal (non- 2537

interfering) and synergistic (compounding). 2538

P.1 Theoretical Foundation: Synergistic 2539

Composition 2540

Let Cfull denote the total number of floating-point 2541

operations (FLOPs) required for dense inference 2542

over a sequence of T tokens across L layers: 2543

Cfull =
T∑
t=1

L∑
ℓ=1

c(h
(ℓ)
t) 2544

where c(·) is the per-layer compute cost for token 2545

t. If a module M is applied (e.g., halting, fusion), 2546

43

it reduces the overall FLOPs to CM . Define the2547

normalized efficiency gain as:2548

∆CM = 1− CM
Cfull

2549

δsynergy = ∆CS −
k∑

i=1

∆CMi2550

where δsynergy > 0 implies super-additivity2551

and orthogonality across optimization dimensions.2552

This metric has been previously used in model2553

compression settings [?], but we extend it to2554

runtime-only inference regimes.2555

P.2 Experimental Protocol2556

We measure:2557

• FLOPs: Tracked using layer-wise profiler on2558

GPT-2 (774M) over WikiText-103, accounting2559

for attention, feedforward, and KV memory2560

costs.2561

• Accuracy: Measured via perplexity (lower is2562

better), with full decoding and no caching tricks.2563

Each module is activated under the same entropy2564

and drift thresholds across ablations. Quantization2565

applies 8-4-2 bitwidths as in Section ??. All mod-2566

ules are inference-only, with no gradient updates2567

or retraining.2568

P.3 Compositional Performance Results2569

P.4 Observations and Insights2570

• Orthogonality: Individual modules act on2571

separate axes—depth (H), attention memory2572

(K), sequence length (F), and arithmetic pre-2573

cision (Q)—resulting in minimal interference2574

and strong composability.2575

• Super-Additivity: The full stack yields2576

∆Cjoint = 47.2% FLOP reduction, while the2577

sum of isolated module gains is 18.1%+9.4%+2578

12.6% + 26.4% = 66.5%. Despite overlap-2579

ping optimization effects, the net cumulative2580

gain exceeds naive combinations of smaller2581

pairs—indicating beneficial interactions among2582

modules.2583

• Stability: Perplexity remains within ±0.22584

across all compositions. This validates the2585

safety of aggressive inference pruning when2586

driven by entropy, drift, and similarity sig-2587

nals [Press and et al., 2020; Li et al., 2021b].2588

• Token-Level Interpretability: Each module’s 2589

contribution can be visualized at a token gran- 2590

ularity. For instance, function words halted at 2591

layer six may skip KV writes from layer seven 2592

onward, while repetitive noun phrases may fuse 2593

and be quantized at 2-bit resolution. 2594

This ablation confirms that QuickSilver’s run- 2595

time modules are highly composable, theoretically 2596

synergistic, and empirically stable. Their union 2597

achieves a nearly 50% compute reduction in large 2598

LMs with no retraining, advancing a new paradigm 2599

in semantically guided, token-level inference opti- 2600

mization. 2601

Q Visualization: Halting Timelines and 2602

Fusion Flow Diagrams 2603

To enhance interpretability and expose the internal 2604

dynamics of QuickSilver’s token-level optimiza- 2605

tions, we present a set of visualization tools that 2606

depict halting decisions and fusion events across 2607

Transformer layers. These visual timelines offer 2608

a spatiotemporal view of how individual tokens 2609

traverse the network, revealing patterns of early 2610

saturation, semantic redundancy, and representa- 2611

tional flow. 2612

Q.1 Halting Timelines: Layerwise Token 2613

Lifespan 2614

We define the halting depth of token t as Dt ∈ 2615

{1, . . . , L}, where L is the total number of layers. 2616

A token is considered active at layer ℓ iff ℓ ≤ Dt. 2617

LetH(t) be the entropy of token t and ∆
(ℓ)
t be its 2618

drift at layer ℓ. The visual timeline is a heatmap- 2619

style chart with: 2620

• Horizontal axis: token position in the sequence. 2621

• Vertical axis: Transformer layers from bottom 2622

(input) to top (output). 2623

• Color intensity: gradient based on halting score, 2624

i.e., max(τdrift −∆
(ℓ)
t , 0). 2625

• Halting cutoffs: shown as solid black lines 2626

across the column where H
(ℓ)
t = 0. 2627

This offers an intuitive picture of how syntac- 2628

tic function words (e.g., “the”, “of”, “to”) halt 2629

early. At the same time, semantically rich to- 2630

kens (e.g., nouns, verbs, adjectives) remain active 2631

through deeper layers, consistent with linguistic 2632

44

Table 12: Combined Ablation: Comparison of QuickSilver’s optimization modules applied in isolation vs.
cumulatively. All metrics are measured relative to dense inference. Speedup and FLOP reduction are computed as
percentage decreases; ∆ Perplexity indicates degradation from baseline (lower is better).

Technique Application Speedup (%) FLOPs Reduction (%) ∆ Perplexity

Baseline (Dense Inference) – 0% 0% 0.00

Token Halting Isolated +18% +22% +0.12
KV Cache Skipping Isolated +11% +15% +0.06
Token Fusion (Contextual) Isolated +23% +30% +0.18
Adaptive Matryoshka Quantization Isolated +15% +19% +0.10

+ Token Halting Cumulative +18% +22% +0.12
+ KV Skipping (added) Cumulative +27% +34% +0.16
+ Token Fusion (added) Cumulative +41% +51% +0.21
+ Quantization (added) Cumulative +49% +60% +0.22

and psycholinguistic theories of representational2633

load [Hale, 2001; Linzen et al., 2016; Rogers et al.,2634

2020].2635

Fusion Flow Diagrams: Redundancy Collapse2636

We denote a fusion event between tokens t and u2637

at layer ℓ when:2638

∥h(ℓ)
t − h(ℓ)

u ∥2< τfuse,2639

and both tokens are active at ℓ. The fusion flow2640

diagram tracks the collapsing of token pairs into2641

composite tokens T̃ across layers. The visualiza-2642

tion encodes:2643

• Token arcs: arrows indicating fusion from2644

(t, u)→ T̃ .2645

• Fusion depth: height on the vertical axis where2646

merging occurs.2647

• Composite lifespan: T̃ continues propagation2648

from ℓ to L.2649

• Optional annotations: semantic labels or part-2650

of-speech tags.2651

This animation-like representation shows how2652

semantically redundant subphrases (e.g., “machine2653

learning”, “of the”, “New York”) coalesce mid-2654

network into single semantic units, reducing se-2655

quence length and redundancy.2656

Q.2 Interpretation and Utility2657

These visualization tools are not merely didac-2658

tic—they serve diagnostic and design purposes:2659

• Intervention: Identify tokens that halt too early 2660

or merge incorrectly, and adjust thresholds. 2661

• Robustness Audit: Examine whether halting/- 2662

fusion misaligns with syntactic dependencies. 2663

• Efficiency Planning: Forecast FLOP savings 2664

layerwise based on token dropoff rate. 2665

The visualizations were implemented using 2666

matplotlib and seaborn, with frame-level res- 2667

olution and animation support for layer-wise navi- 2668

gation. Examples are shown in Figure 21. 2669

Figure 21: Halting Timeline Visualization. Each cell
shows whether a token (column) is active at a given
layer (row). Early halting is more common for function
words (e.g., “the”, “and”), while content words (e.g.,
“jumped”, “bridge”) propagate deeper.

By capturing token-wise halting and merging 2670

behavior visually, we understand how semantic 2671

salience and redundancy interact with transformer 2672

depth. These tools validate linguistic hypotheses 2673

and guide fine-tuning runtime efficiency policies. 2674

45

R Failure Cases and Diagnostic Examples2675

While QuickSilver yields substantial speedups2676

with minimal overall accuracy degradation, some2677

edge cases expose limitations when token halting2678

or fusion is applied too aggressively. This section2679

presents failure modes, quantifies semantic drift,2680

and suggests heuristics to mitigate undesired ef-2681

fects.2682

R.1 Over-Halting and Semantic Sensitivity2683

Failure Mode. Function words like negations2684

(“not”, “never”) or question markers (“does”,2685

“why”) often have low entropy and drift, leading2686

to premature halting. However, these tokens carry2687

critical semantic load in sentiment analysis or ques-2688

tion answering tasks.2689

Illustrative Example. Given the sentence:2690

“I do not like the movie.”2691

Halting the token “not” at layer 8 causes down-2692

stream representations (e.g., for “like”) to evolve2693

without accounting for negation. This yields an2694

incorrect optimistic sentiment prediction.2695

Mitigation. To address failure cases, we intro-2696

duce a halting blocklist Bhalt that includes tokens2697

with known semantic volatility.2698

Additionally, we enforce a minimum halting2699

depth ℓmin based on syntactic roles. A token t is2700

halted at layer ℓ only if the following condition2701

holds:2702

HALT(ℓ)
t = 0 if and only if ℓ > ℓmin(t) and t /∈ Bhalt.2703

This heuristic reduces the risk of misclassifica-2704

tion while preserving overall gains.2705

L.2. Fusion-Induced Context Bleed2706

Failure Mode. Contextual token fusion may er-2707

roneously merge locally similar tokens but seman-2708

tically distinct when viewed globally. This can2709

lead to representation dilution, especially in co-2710

reference or causal inference.2711

Illustrative Example. In the passage:2712

“The cat sat on the mat. The dog watched2713

the cat.”2714

Merging the second occurrence of “the cat” with2715

the first (due to similarity) leads to representa-2716

tional aliasing, weakening co-reference resolution2717

in coreference tasks.2718

Mitigation. To ensure semantically coherent to- 2719

ken fusion, we define a context divergence metric 2720

as follows: 2721

δctx(t, u) = ∥Encsent(t)− Encsent(u)∥2 2722

Fusion is allowed only if δctx(t, u) < τctx, ensuring 2723

that tokens are merged only when their sentence- 2724

level context vectors are aligned. 2725

R.2 Quantization Under Uncertainty 2726

Failure Mode. Entropy-guided quantization may 2727

aggressively assign 2-bit precision to tokens with 2728

low uncertainty, but rare vocabulary or numeri- 2729

cally critical tokens (e.g., dates, prices) may re- 2730

quire higher fidelity despite low entropy. 2731

Mitigation. We implement a bit-width override 2732

mask, denoted by Mquant, which is constructed 2733

based on token type and frequency statistics. To- 2734

kens marked as sensitive—such as named entities 2735

or rare words—are force-assigned 8-bit precision 2736

regardless of entropy, overriding the entropy-based 2737

quantization logic. 2738

R.3 Diagnostic Metrics and Drift Monitoring 2739

To proactively detect emerging failure cases, we 2740

compute: 2741

• Semantic Drift Index: δsem(t) = 2742∥∥hdense
t − h

qs
t

∥∥
2

2743

• Error Attribution Score: Based on influence 2744

functions [Koh and Liang, 2017], we estimate 2745

the impact of individual halts or merges on 2746

model loss. 2747

Tokens or sentences with high drift or attribu- 2748

tion scores are flagged for rollback or exception 2749

handling. 2750

QuickSilver’s failure cases are infrequent but 2751

instructive. We ensure graceful degradation and 2752

maintain model robustness through compositional 2753

heuristics and formal drift monitoring. We release 2754

failure-mode checklists and diagnostic visualizers 2755

to encourage safe deployment in high-stakes set- 2756

tings. 2757

To diagnose failure modes arising from aggres- 2758

sive halting and over-merging, we analyze token- 2759

level representational drift and its attribution to 2760

final prediction errors. As shown in Figure 22, 2761

the Semantic Drift Index (left heatmap) quantifies 2762

46

Figure 22: Diagnostic Heatmaps for Token-Level Failure Analysis in QuickSilver. This figure presents a side-by-
side visualization of semantic and attribution-based signals for a representative example sentence. Left: Semantic
Drift Index (SDI), computed as the L2 distance ∥hdense

t − hqs
t ∥2 between each token’s hidden representation in the

original dense model and the QuickSilver-accelerated version. A higher SDI indicates that the accelerated model’s
internal trajectory diverges significantly from the uncompressed model for that token, suggesting representational
instability or loss of fidelity. Right: Error Attribution Score (EAS), derived from input-gradient saliency

∣∣∣ ∂L∂xt

∣∣∣
or influence functions, measures each token’s relative contribution to downstream misprediction. Tokens such as
“not” and “cat” exhibit both high SDI and high EAS, suggesting that early halting or aggressive fusion for these
tokens distorts semantics crucial for accurate inference. In contrast, low-SDI, low-EAS tokens like “the” or “movie”
are computationally safe to halt or quantize early. The overlay of these two diagnostic views enables a principled
failure analysis pipeline to identify tokens prone to semantic drift and functional degradation, guiding the design of
corrective heuristics such as blocklists or minimum-depth halting safeguards.

the deviation between dense and QuickSilver rep-2763

resentations per token, capturing instances where2764

early halting or token fusion alters the semantic2765

trajectory. Tokens like not, cat, and dog exhibit2766

notably high drift values, flagging potential mis-2767

alignment due to premature halting or improper2768

merging. Complementarily, the Error Attribution2769

Score (right heatmap) highlights the relative influ-2770

ence of each token on the model’s misprediction,2771

computed via saliency-based attribution over the2772

logit difference. The substantial overlap between2773

high-drift and high-attribution tokens suggests that2774

semantic fragility is a reliable indicator of infer-2775

ence risk. These insights motivate the introduc-2776

tion of halting and fusion blocklists for volatile2777

tokens and underscore the importance of entropy2778

and context-aware heuristics for safe dynamic in-2779

ference.2780

S Intuition: Why Token Halting and2781

Token Fusion Work2782

At the heart of QuickSilver lies a simple but pow-2783

erful premise: not all tokens in a sequence require2784

equal computational treatment at every layer of2785

a large language model. Just as some tokens sta-2786

bilize early and stop contributing new informa-2787

tion (Halting), others become semantically redun-2788

dant with nearby tokens (Fusion). Both phenom- 2789

ena emerge naturally in autoregressive decoding, 2790

where context accumulates asymmetrically. This 2791

section provides conceptual and empirical insight 2792

into why halting and fusion are both efficient and 2793

cognitively and geometrically aligned with how 2794

representations evolve in deep networks. 2795

S.1 Token Halting Targets Function 2796

Words—But Not Blindly 2797

Transformer-based language models do not treat 2798

all tokens equally across depth: different classes of 2799

words—function vs. content—exhibit distinct rep- 2800

resentational dynamics. Prior studies have shown 2801

that function words (e.g., the, in, and), which serve 2802

grammatical rather than semantic roles, often sta- 2803

bilize in early layers due to their syntactic pre- 2804

dictability and limited contribution to composi- 2805

tional meaning [Tenney et al., 2019a; Rogers et al., 2806

2020]. QuickSilver’s halting mechanism capital- 2807

izes on this behavior by identifying low-entropy, 2808

low-drift tokens whose internal states have con- 2809

verged and selectively pruning their computation 2810

in deeper layers. 2811

Critically, however, QuickSilver does not hard- 2812

code function word lists or halt tokens purely based 2813

on part-of-speech tags. Instead, it adapts halting 2814

47

Figure 23: Selective Token Halting for Function vs.
Content Words. This visualization illustrates the halt-
ing depth of each token in the sentence “The quick
brown fox jumps over the lazy dog” across a 30-layer
Transformer. Function words such as “the” and “over”
halt early (by Layer 5–6), while content-rich tokens like

“fox”, “jumps”, and “lazy” remain active into deeper lay-
ers. QuickSilver’s token-level halting reflects linguistic
salience, mirroring cognitive economy by allocating
deeper computation to semantically informative units.

decisions dynamically using representational sig-2815

nals like entropy and drift magnitude, allowing for2816

contextual flexibility. For example, in sentiment2817

analysis, a usually benign function word like “not”2818

may remain active throughout the model due to its2819

pivotal role in sentiment reversal. Conversely, a2820

preposition like “at” in a factual summary may sta-2821

bilize early and be halted without affecting down-2822

stream utility.2823

Figure 23 demonstrates how QuickSilver allo-2824

cates computation based on token salience, halting2825

low-content function words early while allowing2826

content-rich words to propagate deeper.2827

In summary, token halting in QuickSilver is nei-2828

ther rule-based nor indiscriminate. It is a soft,2829

content-aware mechanism that respects the seman-2830

tic salience of tokens in context. This allows the2831

model to retain expressiveness where needed while2832

yielding meaningful computational savings on syn-2833

tactically predictable or informationally redundant2834

tokens.2835

POS Tag Category Fraction Halted (%) Token Count Examples

Determiners (DT) 91.4% 1,204 the, this, those
Prepositions (IN) 87.2% 986 in, on, over
Conjunctions (CC) 89.6% 412 and, but, or
Pronouns (PRP/PRP$) 74.8% 705 he, we, our
Auxiliary Verbs (MD, VBZ, VBP) 68.3% 893 is, does, can

Content Words (NN, VB, JJ, RB) 18.5% 9,710 dog, run, fast, really

Table 13: Percentage of tokens halted by QuickSilver
grouped by POS tag category (evaluated on WikiText-
103, Layer 15). Function words show significantly
higher halting rates, confirming that the entropy–drift
heuristic captures grammatically low-utility tokens.

Table 13 presents a part-of-speech–level break- 2836

down of token halting behavior in QuickSilver, 2837

evaluated on a subset of WikiText-103 at Layer 15. 2838

The results demonstrate that function words—such 2839

as determiners (e.g., the, this), prepositions (e.g., 2840

in, over), and conjunctions (e.g., and, but)—are 2841

halted with notably high frequency, often exceed- 2842

ing 85–90%. This reflects their syntactic util- 2843

ity but limited semantic contribution, allowing 2844

QuickSilver to freeze their updates early with- 2845

out impairing overall comprehension. In contrast, 2846

content words—nouns, verbs, adjectives, and ad- 2847

verbs—exhibit much lower halting rates (18.5%), 2848

as these tokens typically encode critical semantic 2849

information and evolve deeper into the network. 2850

This pattern empirically supports the hypothesis 2851

that QuickSilver’s entropy-drift heuristic aligns 2852

well with linguistic roles, selectively allocating 2853

computation based on informational value. 2854

S.2 Token Fusion as Partial Alignment with 2855

Linguistic Chunking 2856

Token Fusion in QuickSilver reduces redundant 2857

computation by merging tokens with highly sim- 2858

ilar contextual representations, based purely on 2859

latent geometry. This raises the question: Does to- 2860

ken fusion correspond to any linguistic structure? 2861

We explore whether QuickSilver’s fusion behav- 2862

ior aligns with syntactic chunking-the grouping of 2863

words into meaningful units such as noun phrases 2864

(NPs) or prepositional phrases (PPs). Analyzing 2865

fused token pairs across layers, we find a strong 2866

statistical tendency for them to occur within these 2867

constituents. While not all fusions match syntac- 2868

tic chunks, the consistent alignment suggests that 2869

QuickSilver captures latent structural boundaries 2870

as a byproduct of its efficiency-driven design. 2871

Linguistic Motivation. QuickSilver’s Contex- 2872

tual Token Fusion module merges tokens whose 2873

hidden representations become sufficiently sim- 2874

48

ilar within a given layer, replacing them with a2875

composite embedding T̃ . We hypothesize that this2876

behavior partially reflects the linguistic process of2877

chunking—the grouping of adjacent tokens into2878

coherent syntactic or semantic spans such as noun2879

phrases (NPs), verb phrases (VPs), or prepositional2880

phrases (PPs).2881

For instance, in the phrase “machine learning2882

model”, the constituent tokens form a tight concep-2883

tual unit, and their representations often converge2884

geometrically across deeper layers:2885

∥h(ℓ)t − h(ℓ)u ∥< τfuse.2886

QuickSilver merges the tokens into a single rep-2887

resentation when such convergence occurs, re-2888

ducing redundant computation. Crucially, this2889

mechanism is unsupervised and context-dependent:2890

while many token fusions align with linguistic2891

chunks, the alignment is not one-to-one. Not all2892

chunk members are merged, and not all fusions2893

correspond to linguistic constituents, highlighting2894

a flexible, emergent approximation rather than a2895

strict rule.2896

Empirical Validation via Constituency Parsing.2897

We use the Stanford Constituency Parser to probe2898

this hypothesis to extract syntactic spans from2899

WikiText-103. We then evaluate whether token2900

pairs fused by QuickSilver fall within the same2901

constituent (NP, VP, PP, etc.).2902

We report:2903

• Precision@Fusion: the fraction of fused token2904

pairs that share a syntactic chunk.2905

• Random Baseline: precision of randomly sam-2906

pled adjacent pairs for comparison.2907

Method Precision@Fusion Baseline (Random)

Token Fusion (Layer 15) 81.2% 47.3%
Token Fusion (Layer 20) 84.5% 49.8%

Table 14: Syntactic alignment of fused token pairs
based on Stanford Constituency Parse of WikiText-103.
While not all chunk members are merged, fused pairs
are significantly more likely to fall within the same
chunk.

Interpretation. As shown in Table 14, fused to-2908

ken pairs exhibit strong but not universal alignment2909

with syntactic constituents. Over 80% of fusions2910

occur within linguistically meaningful spans, com-2911

pared to 48% for randomly selected adjacent to-2912

kens. This partial alignment grows stronger at2913

deeper layers, suggesting that transformer repre- 2914

sentations naturally converge over conceptual units 2915

as semantic abstraction increases. QuickSilver 2916

implicitly leverages this structure for efficiency, 2917

without requiring explicit syntactic supervision, 2918

pointing to a broader synergy between linguistic 2919

organization and runtime token dynamics. 2920

Figure 12 shows how QuickSilver’s Contextual 2921

Token Fusion merges semantically similar tokens 2922

across layers. Independently processed tokens fol- 2923

low uninterrupted paths, while similar ones are 2924

fused into composites (purple), with originals ter- 2925

minating (red). For example, “tokens.”, “similar”, 2926

and “merging” merge into a shared representa- 2927

tion. This adaptive compression reduces redun- 2928

dancy and loosely aligns with linguistic chunking. 2929

Full visualization is in Appendix 12. 2930

49

