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ABSTRACT

Self-supervised learning (SSL) has achieved tremendous success on various well
curated datasets in computer vision and natural language processing. Neverthe-
less, it is hard for existing works to capture transferable and robust features, when
facing the long-tailed distribution in the real-world scenarios. The attribution is
that plain SSL methods to pursue sample-level uniformity easily leads to the dis-
torted embedding space, where head classes with the huge sample number domi-
nate the feature regime and tail classes passively collapse. To tackle this problem,
we propose a novel Self-Supervised Logit Adjustment (S?LA) method to achieve
the category-level uniformity from a geometric perspective. Specially, we mea-
sure the geometric statistics of the embedding space to construct the calibration,
and jointly learn a surrogate label allocation to constrain the space expansion of
head classes and avoid the passive collapse of tail classes. Our proposal does
not alter the setting of SSL and can be easily integrated into existing works in a
low-cost manner. Extensive results on a range of benchmark datasets show the
effectiveness of S2LA with high tolerance to the distribution skewness.

1 INTRODUCTION

Recent years have witnessed a great success of self-supervised learning (Doersch et al.|[2015; Wang
& Gupta, 2015;/Chen et al., 2020; |Caron et al.,2020). The rapid advances behind this paradigm ben-
efit from the elegant training on data without annotations, which can be acquired in a large-volume
and low-cost way. However, the real-world natural sources usually exhibit the long-tailed distribu-
tion (Reed, 2001}, and directly applying existing self-supervised learning methods will lead to the
distorted embedding space, where the majority dominates the feature regime (Zhang et al.| [2021)
and the minority collapses (Mixon et al., [2022). With the increasing attention on machine learning
fairness in the recent years, it becomes a trend to explore self-supervised long-tailed learning (Yang
& Xu, [2020; |L1u et al., 2021} |Jiang et al., [2021; |Zhou et al.} 2022).

Compared with the flourishing supervised long-tailed learning (Kang et al., 2019} |Yang & Xu} 2020;
Menon et al., |2021)), the self-supervised counterpart is underexplored as an emerging direction.
Existing explorations for self-supervised learning in long-tailed context are from three perspectives:
data perspective, model perspective and loss perspective. In the data perspective, BCL (Zhou et al.,
2022)) leverages the memorization effect of deep neural networks (DNN5s) to drive an instance-wise
augmentation, which learns a better trade-off between head classes and tail classes in representation
learning. In the model perspective, SDCLR (Jiang et al., [2021) contrasts the feature encoder and
its pruned counterpart to discover hard examples that mostly covers the samples from tail classes,
and efficiently enhance the learning preference towards tail classes. In the loss perspective, the
reweighting mechanism like rwSAM (Liu et al.,[2021) that adopts a data-dependent sharpness-aware
minimization scheme, can be applied to explicitly regularize the loss surface. However, in terms of
the current performance to self-supervised long-tailed learning, the potential of the loss perspective
has not been sufficiently set off, with which in comparison in supervised long-tailed learning, logit
adjustment (Menon et al.,|2021)) of the same perspective has conquered a range of methods.

We dive into the loss perspective and explore to understand “Why the conventional contrastive learn-
ing underperforms in self-supervised long-tailed learning ?” To answer this question, let us consider
two types of representation uniformity: (1) Sample-level uniformity. As proof in (Wang & Isolal
2020), contrastive learning targets to distribute the representation of data points uniformly in the
embedding space. Then, the feature span of each category is proportional to their corresponding
sample number. (2) Category-level uniformity. This uniformity pursues to split the region equally
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Figure 1: Comparison of S?LA and the plain SSL method on a 2-D imbalanced synthetic dataset.
(Left) Visualization of the 2-D synthetic dataset. (Middle) The embedding distribution of each cat-
egory learnt by the plain SSL method is approximately proportional to the sample number. (Right)
S?LA reduces the adverse effect of class imbalance and approaches to the category-level uniformity.

for different categories without considering their corresponding sample number (Papyan et al.,2020;
Graf et al.,[2021). In the case of the class-balanced scenarios, the former uniformity naturally implies
the latter uniformity and induces the equivalent separability for classification. However, in the class-
imbalanced cases, especially in long-tailed setting, sample-level uniformity leads to the undesired
feature regime of head classes due to its dominant sample proportion. In comparison, category-level
uniformity constrains the greedy expansion of head classes and prevents the passive collapse of tail
classes, which is more benign to the downstream classification (Graf et al.,[2021; [Fang et al., 2021}
Li et al.,[2022). Unfortunately, there is no support regarding category-level uniformity in contrastive
learning losses, which provides an answer to the question arisen at the beginning.

Inspired by logit adjustment (LA) for supervised long-tailed learning, we propose a novel method,
termed as Self-Supervised Logit Adjustment (S>LA), to calibrate self-supervised long-tailed learning
from the geometric perspective. Specially, unlike LA that requires the class distribution available,
S2LA uses a constant Simplex ETF to measure the geometric characteristics of the embedding space
for adjustment. Together with a surrogate label allocation to compute the target, we can then ex-
plicitly compress the greedy space expansion of head classes and avoid the passive collapse of tail
classes. Their alternation refers to an ordinary balancing and an efficient optimal-transport problem,
which dynamically approaches towards the category-level uniformity. In Figure [T} we give a toy
experiment to compare the learnt representation without and with S?LA in the embedding space.

The contribution can be summarized as follows,

1. We are among the first attempts to study the drawback of the contrastive learning loss in
self-supervised long-tailed context and point out that the resulting sample-level uniformity
is an intrinsic limitation, driving our exploration for category-level uniformity (Section ).

2. We develop a novel Self-Supervised Logit Adjustment (Figure [2), which dynamically ad-
justs the embedding distribution to calibrate the geometric statistics and conducts a surro-
gate label allocation for category-level uniformity in an efficient end-to-end manner.

3. Our method can be easily plugged into previous methods of self-supervised long-tailed
learning (Eq.[7). Extensive experiments on a range of benchmark datasets demonstrate the
consistent improvement of our S2LLA with high tolerance to the distribution skewness.

2 RELATED WORKS

Self-Supervised Long-tailed Learning. There are several recent explorations devoted to this direc-
tions from data, model and loss perspectives. BCL (Zhou et al., [2022) leverages the memorization
effect of DNNs to drive an instance-wise augmentation, which enhances the learning of tail samples.
SDCLR (Jiang et al., 2021)) constructs a self-contrast between model and its pruned counterpart to
learn more balanced representation. Classic Focal loss (Lin et al., 2017) leverages the loss statistics
to putting more emphasis on the hard examples, which has been applied to self-supervised long-
tailed learning (Zhou et al.} 2022)). SeLa (Asano et al., 2020) is the first attempt to cast the unsuper-
vised clustering as an optimal transport problem and leverage a uniform prior on the class-imbalance
data. rwSAM (Liu et al.|[2021)) proposes to penalize loss sharpness in a reweighting manner to sim-
ilarly calibrate class-imbalance learning. However, the potential of the loss perspective has not been
set-off due to the intrinsic limitation of the conventional contrastive learning loss.
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Hyperspherical Uniformity. The distribution uniformity has been extensively explored from the
physic area, e.g., Thomson problem (Thomson, [1904; [Smale, | 1998)), to machine learning area like
some kernel-based extensions e.g., Riesz s-potential (Hardin & Saff] 2005;|Liu et al., | 2018)) or Gaus-
sian potential (Cohn & Kumar| 2007} |Borodachov et al.,|2019; [Wang & Isola, [2020). Some recent
explorations regarding features of DNNs (Papyan et al., 2020; [Fang et al.,|2021}; [Mixon et al., [2022)
discover a terminal training stage when the embedding collapses to the geometric means of the
classifier w.r.t. each category. Specially, these optimal class means specify a maximum separation
structure, termed as Simplex Equiangular Tight Frame, and achieve the perfect uniform distribution
under some dimensional constraints (Zhu et al.| 2021} [Yang et al., 2022} [Kasarla et al., [2022). In
this paper, we incorporate Simplex ETF into contrastive learning and leverage the specific structure
as a uniform prior to capture the geometric statistics for calibration of the embedding distribution.

3 PRELIMINARIES

3.1 PROBLEM FORMULATION

Given a dataset D, for each (x,y) € D, the input & € R™ and the associated label y € {1,...,L}.
We define the imbalanced ratio as max; p(y = ¢)/min; p(y = ¢). In SSL, the ground-truth vy is not
accessed and the goal is to transform an image to an embedding via DNNs fg : R™ — R?. In the
linear probing evaluation, we construct a supervised learning task with balanced datasets. A linear
classifier g is built on top of the feature extractor fy to produce prediction, namely, g( fy()).

3.2 LOGIT ADJUSTMENT IN SUPERVISED LONG-TAILED LEARNING

Logit adjustment manipulates the logits of prediction to remove the adverse effect of class-
imbalance, which has shown efficiency in various supervised long-tailed explorations (Provost,
2000; Brodersen et al., 2010; [Ren et al., [2020; Menon et al., 2021). Let p(y), ppai(y) be the
label distribution of the long-tailed training dataset and the balanced test set, we can derive
p(ylz) oc p(x|y)p(y) and pear(y|z) o< p(x|y)pra(y) based on the Bayes’ theorem. Assum-
ing class-conditional probabilities p(x|y) are the same on training and test set, we have p(y|x)
Dot (y|x)p(y). This indicates that learning under long-tailed data leads to a prediction shift pro-
portional to p(y) compared with the optimal classifier on the uniform test set. To this end, logit
adjustment adds an offset on the logits to calibrate the statistical shift, namely,

poar(yl®) o< p(y|z)/p(y) o softmax(s(z) —logp(y)), ¢))

where s(x) denotes the logits of the training samples and softmax(-) is the Softmax function. Logit
adjustment are well grounded to be Fisher consistent for minimising the balanced error (Menon
et al.,[2021])), thus extended to a range of class-imbalanced scenarios (Ren et al.,[2022).

3.3 SIMPLEX EQUIANGULAR TIGHT FRAME

Neural collapse (Mixon et al} [2022) describes a phenomenon that with the training, the geometric
centroid of representation progressively collapses to the optimal classifier parameter w.r.t. each
category. The collection of these points builds a special geometric structure, termed as Simplex
Equiangular Tight Frame (ETF). Some study that shares the similar spirit is also explored regarding
the maximum separation structure (Kasarla et al.| 2022). We present its formal definition as follows.

Definition 3.1. A Simplex ETF is a collection of points in R? specified by the columns of the matrix:

K 1
M = ﬁU(IK - ?]11(]1?() (2)
where I € RE*K is the identity matrix and 1 is the K-dimensional ones vector. U € R?*K ig
the patial orthogonal matrix such that UT U = Iy and it satisfys d > K. All vectors in a Simplex
ETF have the same pair-wise angle, i.e., m;m; = —ﬁ,i # j. The pioneering work (Yang
et al., 2022) shows Simplex ETF as a linear classifier combined with neural networks is robust to
class-imbalanced learning in the supervised setting. On the opposite, our motivation is to make self-

supervised learning robust to the class-imbalance data, which requires the pursuit in the embedding
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space intrinsically switching from the sample-level uniformity to the category-level uniformity. The
Simplex ETF is a tool to measure the gap between the category-level uniformity and the sample-level
uniformity, which is then transformed as the supervision feedback to the training.

4  SELF-SUPERVISED LOGIT ADJUSTMENT

Plain SSL methods encourage the sample-level uniformity in the embedding space, yielding the
undesired property in long-tailed context. Specially, head classes will dominate the feature regime
along with the collapse of tail classes. To solve this problem, one straightforward idea is to coun-
teract the long-tailed effect like logit adjustment in supervised long-tailed learning. As shown in
Figure[T] we observe that the geometric calibration will benefit the feature balancedness. However,
the core challenge in self-supervised learning is that there is no class-distribution prior available to
characterize the imbalance degree. To address this issue, we propose to use Simplex ETF to mea-
sure the embedding space, and then the captured geometric statistics are used to properly adjust the
embedding distribution alongside a surrogate label allocation. Concretely, we define an constant
classifier M € R4*¥ following Eq. [2} and then compute the geometric label of each sample:

t = argmaxh;(x), where h;(z) = M, fo(x).

On the basis of such a positional indicator, we can further derive a population-level statistic to
characterize the category-level uniformity, i.e., p(t = i) = Egzp[l(t = i)], = 1,..., K, where
1(-) denotes the indicator function with the value 1 when its argument is true and 0 otherwise. In the
balanced setting, we maintain an approximately uniform distribution while in long-tailed context,
we face a more skewed geometric distribution for the category-level uniformity.

Logit Adjustment. Different from the ordinary logit adjustment that removes the class imbalance
in p(t) and exacerbates the space expansion, here we aim to shrink the feature span of head classes
for the category-level uniformity, and thus reversely adjust the logits, namely:

t = arg max p(t|x)p(t)” = argmax h(zx) + 7 - log p(t) (3)

where p(t|x) = softmax(h(x)) denotes the output probabilities of the geometric classifier and 7 is a
hyper-parameter to temper the adjustment. We can derive p (£|x) o p(x[t)p(t)'*™ based on Bayes’
theorem, which refers to an exponential growth over the original distribution p(t|z) « p(x|t)p(t).
This fulfills an elastic adjustment on the embedding skewness. Logit adjustment is to strengthen the
estimation of samples from head classes so that they can be discovered as many as possible, which
is then used to suppress the feature regime of head samples for the category-level uniformity. This is
different from logit adjustment in supervised long-tailed learning, which is to calibrate the quantity
bias towards different classes of samples in the logit space.

However, since there is no ground-truth annotation of each sample, straightforward instance-level
adjustment will lead to performance degradation with unreliable predictions, as empirically evi-
denced in Table [T0} To handle these problems, we learn a surrogate label allocation together with
logit adjustment from the population level. Concretely, we first estimate the adjusted statistic p (f)

based on Eq. 3} i.e., p (£ = i) = Egup[l (£ =4)],i = 1,..., K, and then propose the following

objective to generate label posterior ¢(t|x) with the desired marginal distribution p(t):

1
min — o > q(tlz)logp(tlz), st. Exwplg(tlz)] =p (£) )
’ x~D

where the constraint guarantees the adjusted population-level statistics. Naive jointly optimizing
Eq. [ easily falls into a trivial solution and causes severe performance degeneration, as shown in
Table[T0] Considering this, we resort to solving an optimal transport problem for label allocation on
q(t|x) and then optimize the model parameters.

Label Allocation. We first reformulate Eq. [d]as an optimal transport (OT) problem. Denote the as-
signments @@ € REXN for distributing N samples to K classes with the minimal transportation cost

and let C' = — log P to retain the equivalent objective, where P € R**V are the joint probabilities
derived from q(|x). We can rewrite Eq. [ as the following form:
. _ T _
oin (Q.C) st Q- 1y =p(f), Q" lx =1y (5)
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Figure 2: Illustration of S?LA on the top of SSL. We utilize the Simplex ETF structure to measure
the embedding space, and the captured geometric statistics are used for the target calibration in logit
adjustment. Simultaneously, an optimal transport optimization for label allocation is performed
together with adjustment to avoid the trivial solutions. The additional model parameters introduced
by S2LA are trained with SSL in an efficient manner.

This objective can be efficiently solved by adopting Sinkhorn-Knopp algorlthm 2013) with
an additional entropy regularization to the objective, i.e., ming(Q, C) — +H(Q). Here we deﬁne
the entropy of Q as H(Q) = — >, Z Qij log Q;;. We can then obtain the solution as:

Q = diag(u) exp (—AC) diag(v) (6)

where u, v are two non-negative vectors of R?. We iteratively update « and v to reach the desired
row and column marginals of (). The coefficient A controls the smoothness of the low-cost assign-
ments. As A — oo, we can approach the optimum of the OT problem at the cost of convergence
speed. We keep A at a relative high level to maintain good clustering results. To explain the merits of
the population-level label allocation, we compute the NMI score between t or ¢(t|x) and the oracle
label in Table[TT] Accorrding to the comparison of their NMIs, we can understand the roughly ad-
justed ¢ can be noisy and shows the weak correlation with the oracle label, while ¢(t|x) reallocated
by optimal transport based on the population statistic of ¢ effectively improves the correlation.

In practice, we estimate p (t) and p (£) over the training dataset and learn the label allocation ¢(t|x)

in the mini-batch manner. Specifically, we compute the class prior p(t) and the adjusted p (ﬂ
at the beginning of every epoch as the population-level statistic will not change much in a few
mini-batches. Besides, we maintain a momentum update mechanism to track the output logits of
each sample to stabilize the training, i.e., K (x) < Sh™(x) + (1 — S)h(x). Given the surrogate
labels g(t|x), we can directly optimize p(¢|x) by minimising the cross-entropy loss, which can be
considered as the alignment to the desired geometric distribution. We illustrate S2LA in Figure
and summarize the complete procedure in Algorithm [I)in the appendix.

Overall Objective. S?2LA is compatible with the general self-supervised learning methods as it is
constructed on the surrogate geometric analysis to rectify the distorted embedding space in long-
tailed context. For example, if we build S2LLA on SimCLR, the overall objective is defined as:

. oo (@) @)
£= g X 2( ) S e e R >>
(7

where x, T is set as different augmented view of the same input image and =~ denotes the rest
images in the mini-batch. Aj is the sampled batch and &~ is the negative sample set with b as the
batch index. y represents the temperature hyper-parameter.

Remark 4.1. Although S?LA iteratively infers the surrogate labels and applies them for re-balanced
training, it incurs only a small amount of computational or memory overhead. Specifically, the stan-
dard optimization of deep neural networks requires forward and backward step in each mini-batch
update with the time complexity as O(MA), where M is the mini-batch size and A is the parame-
ter size. At the parameter level, we add an additional classifier with the complexity as O(M Kd),
where K is the class number and d is the embedding dimension. Besides, Sinkhorn-Knopp algorithm
only refers to a simple matrix-vector multiplication u < 7./ exp(—AC)v,v < c./[exp(—\C)] Tu
whose complexity is O(L(M + K + M K)) with the iteration step L. The complexity incurred in
the momentum update is O(MK). Since K, d and L is significantly smaller than the model pa-
rameter A of a million scale, the computational overhead involved in S?LA is negligible compared
to O(MA). The additional storage is the vector h™(x) € RE>*M which is also negligible to the

\b|
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memory usage. In total, our method incurs only a small computation or memory overhead and can
thus be plugged into baseline methods in a low-cost manner. Moreover, we empirically compare
the computational cost in Table [6] and observe that our method only incurs a relatively lightweight
overhead compared with the baseline methods on a range of datasets.

4.1 DISCUSSION

Relation to Supervised Logit Adjustment. In supervised long-tailed learning, the optimal class-
probabilities ppq; (y|x) follow the uniform distribution, which is aligned with the underlying ground-
truth distribution pye;(y) on the test set. In contrast, the surrogate label distribution p(t) in SSL
encodes the positional information, which is better to be imbalanced. In our algorithm, we push
away p(t|x) from py,;(t|x) by replacing the division operation of Eq. (1| with multiplication, i.e.,
Dimb () o< p(t|x)p(t)T. Although it seems that we reversely enlarges the skewness of the geo-
metric prediction, the surrogate supervised learning via Eq.[5]actually guarantees the space shrinking
of head classes and the space expansion of tail classes.

Difference from Unsupervised Clustering. Compared with previous explorations (Asano et al.,
2020; [Caron et al., [2020), the uniqueness of S2LA lies in the following two aspects: (1) Geomet-
ric Classifier. The pioneering works mainly resort to a learnable classifier to perform clustering,
which can easily be distorted in the long-tailed scenarios (Fang et al., [2021). Built on the maxi-
mum separation classifier, our method is capable to provide clustering results with clear geometric
interpretations. (2) Adjustable Class Prior. The class prior are assumed to be uniform among the
previous attempts. When moving to the long-tailed case, this assumption will cause the undesired
sample-level uniformity. In contrast, our methods can potentially cope with any distribution with a
proper adjustment. In Section we empirically demonstrate the priority of our S2LA.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Baselines. We choose four representative state-of-the-art methods: one is a plain SSL method
SimCLR (Chen et al.| [2020) and the other three are Focal (Lin et al., [2017), SDCLR (Jiang et al.,
2021) and BCL (Zhou et al.} 2022) respectively from loss, model and data perspectives.

Implementation Details. Following previous works (Jiang et al., 2021} |Zhou et al., [2022), we use
ResNet-18 as the backbone for small-scale dataset (CIFAR-100-LT) and ResNet-50 for large-scale
datasets (ImageNet-LT/Places-LT). For experiments on CIFAR-100-LT, we train model with the
SGD optimizer for 1000 epochs with the batch size 512, momentum 0.9 and weight decay factor
5 x 10~% and use the cosine annealing decay with the initial learning rate as 0.5. For experiments
on ImageNet-LT and Places-LT, we only train for 500 epochs with the batch size 256 and decrease
the weight decay factor to 1 x 10~%. Other pre-training setups like the data augmentation and
projector structure follow (Jiang et al., [2021} Zhou et al., [2022)). For 7 in S2LA, we choose from
[0.03,0.04,0.05,0.06,0.07] on CIFAR-100-LT and 0.02 for Places-LT and ImageNet-LT. We set the
dimension K as 100 and the Sinkhorn iteration as 300. As S2LA is combined with baselines, warm-
up of 500 epochs on CIFAR-100-LT and 400 epochs on ImageNet-LT and Places-LT is applied.

Evaluation Metrics. Following (Jiang et al.l 2021} Zhou et al., 2022)), linear probing on a balanced
dataset is used for evaluation. We conduct full-shot evaluation on CIFAR-100-LT and few-shot eval-
uation on ImageNet-LT and Places-LT. We report the model performance and the standard deviation
among three disjoint groups, i.e., many/medium/few partitions (Liu et al.,[2019).

5.2 SELF-SUPERVISED LONG-TAILED LEARNING PERFORMANCE

CIFAR-100-LT. In Table |1} we compare methods with and without S2LLA, and analyze as follows.

(1) Overall performance. S*LA shows a consistent gain in many/medium/few groups, yielding a
overall performance improvements averaging as 2.32%, 2.33% and 1.57% under different imbalance
ratios. In particular, compared with previous state-of-the-art BCL, with S2LLA, BCL further achieves
improvements by 1.20%, 1.82% and 1.22% on CIFAR-100-LT-R100/R50/R10.
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Table 1: Linear probing on CIFAR-100-LT with different imbalanced ratios (100,50,10). Std means
the group-level performance standard deviation and Avg is the average accuracy of full test set.
Std represents a balancedness measure to quatify the variance among three specified groups. Here,
Many/Med/Few indicate the fine-grained groups according to the class cardinality.

CIFAR-100-LT-R 100 | CIFAR-100-LT-R50 | CIFAR-100-LT-R10

Med | Few | Std Avg | Many | Med | Few | Std | Avg

Method ‘
| Many | Med | Few | Std | Avg | Many

SimCLR | 5497 4939 47.67 3.82 50.72 | 56.00 50.48 50.12 330 5224 | 57.85 5506 5403 198 5567
+S2LA 57.38 5227 5212 299 5396 | 58.88 53.00 5427 3.09 5542 | 5926 5691 5585 175 57.36
Improv. | +2.41 +2.88 +4.45 -0.82 +3.24 | +2.88 +2.52 +4.15 -0.20 +3.18 | +141 +1.85 +1.82 -0.23 +1.69

Focal 5424 4958 4921 280 51.04 | 5540 51.14 50.02 284 5222 | 58.18 5582 5464 1.80 56.23
+S2LA 57.01 5293 51.74 276 5392 | 5797 5355 5358 254 55.06 | 60.06 5679 5724 1.77  58.05
Improv. | +2.77 4335 4253 -0.04 +2.88 | +2.57 +241 +3.56 -030 +2.84 | +1.88 +0.97 +2.60 -0.03 +1.82

SDCLR | 5732 50.70 5045 390 5287 | 57.50 51.85 52.15 3.18 53.87 | 58.47 5479 5297 280 5544
+S2LA 5744 5285 5406 238 54.81 | 5847 5388 5358 274 5534 | 5921 56.06 55.58 197 5697
Improv. | +0.12  +2.15 +3.61 -1.52 +1.94 | +0.97 +2.03 +143 -0.44 +1.47 | +0.74 +1.27 +2.61 -0.83 +1.53

BCL 59.15 5482 5530 237 5645 | 59.44 5473 5730 236 57.18 | 6041 57.15 59.76  1.73  59.12
+S2LA 59.50 5573 57.67 189 57.65 | 60.82 57.58 5855 166 59.00 | 61.41 5927 6030 1.07  60.34
Improv. | +0.35 +0.91 4237 -049 +1.20 | +1.38 +2.85 +1.25 -0.70 +1.82 | +1.00 +2.12 +0.54 -0.66 +1.22

Table 2: Linear probing on ImageNet-LT and Places-LT. Similarly, Std means the group-level per-
formance standard deviation and Avg is the average accuracy of full test set. Std represents a bal-
ancedness measure to quatify the variance among three specified groups. Here, Many/Med/Few
indicate the fine-grained partitions according to the class cardinality.

Method ‘ ImageNet-LT ‘ Places-LT
| Many | Med | Few | Std | Avg | Many | Med | Few | Std | Avg

SimCLR | 41.69 3396 3182 519 36.65 | 31.98 3405 3563 1.83  33.61
+S2LA 41.53 3635 3584 3.5 3828 | 3246 3503 36.14 1.89 3433
Improv. | -0.16 +2.39  +4.02 -2.04 +1.63 | +0.48 +0.98 +0.51 +0.06 +0.72

Focal 42.04 3502 3332 462 3749 | 31.69 3433 3573 205 33.65
+S2LA 4255 3675 3628 349 3892 | 3240 3514 3649 2.08 3442
Improv. | +0.51 +1.73  +2.96 -1.13 +1.43 | +0.71 +0.81 +0.76  +0.03  +0.77

SDCLR | 40.87 3371 3207 4.68 3625 | 32.17 3471 35.69 1.82 3399
+S2LA 4192 3653 3604 326 3853 | 32.78 3560 36.18 1.82 3470
Improv. | +1.05 +2.82 +3.97 -142 +2.28 | +0.61 +0.89 +0.49 0.00  +0.71

BCL 4292 3589 3393 473 3833 | 32.69 3537 37.18 226 3476
+S2LA 4322 38.16 3696 332 3995 | 3322 36.00 37.62 223 3532
Improv. | +0.30 +2.27 +3.03 -140 +1.62 | +0.53 +0.63 +0.44 -0.03  +0.56

(2) Representation balancedness. Previously, we claim S?LA help compress the expansion of head
classes and avoid the passive collapse of tail classes, yielding a more balanced representation distri-
bution. To certify this aspect, we compute the difference in performance among many/medium/few
groups, namely, their groupwise standard deviation. Our method provides 1.41%/2.32%/3.24%,
1.95%/2.45%/2.60% and 1.26%/1.55%/1.89% improvements w.r.t. many/medium/few group on
CIFAR-100-LT-R100/R50/R10 with more preference to the tail classes. Therefore, S?LLA substan-
tially improves the standard deviation by 0.72/0.41/0.44 on CIFAR-100-LT-R100/R50/R10.

(3) Regarding skewness. Our method can be generalized to practical distributions with varying levels
of skewness as the algorithm does not refer to any information about the distribution prior.

ImageNet-LT and Places-LT. Table [2] shows the comparison of different methods on large-
scale dataset ImageNet-LT and Places-LT, in which we have similar observations. As can be
seen, on more challenging real-world data, S?LA still outperforms other methods in terms of
overall accuracy, averaging as 0.58%, 0.44% on ImageNet-LT and Places-LT. Specifically, our
method provides 0.43%/2.30%/3.50% and 0.58%/0.83%/0.55% improvements in linear probing
w.r.t. many/medium/few group on ImageNet-LT and Places-LT. The consistent performance over-
head indicates the robustness of our method to deal with long-tailed distribution with different char-
acteristics. Moreover, the averaging improvement of standard deviation is 1.50 on ImageNet-LT,
indicating the comprehensive merits on the tail classes towards representation balancedness. How-
ever, an interesting phenomenon is that the fine-grained performance exhibits a different trend on
Places-LT. We observe that the standard deviation of our method does not significantly decrease on
Places-LT. A possible explanation is that the head classes suffer from a severer over-expansion in
the scene-centric scenario. As can be seen, the performance of head classes is even worse than that
of tail classes, which requires more effort and exploration for improvement alongside S?LA.
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Table 3: Supervised long-tailed learning by finetuning on CIFAR-100-LT-R100 and ImageNet-LT.
We compare the performance of four self-supervised learning methods as the pre-training stage for
downstream supervised logit adjustment (Menon et al.,|2021) method. Besides, the performance of
logit adjustment via learning from scratch is also reported for comparisons.

Dataset | LA | Logit adjustment pretrained with the following SSL methods

\ | SimCLR  +S*LA  Improv. | Focal +S?LA  Improv. | SOCLR +S*LA Improv. | BCL  +S?LA  Improv.

CIFAR-100-LT | 46.61 49.95 50.67 +0.72 | 49.87  50.98 +1.11 49.88 50.69 +0.81 | 50.38  50.99 +0.61
ImageNet-LT | 48.27 51.10 51.64 +0.54 | 5125 51.52 +0.27 51.01 51.33 +0.32 | 51.50 51.76 +0.26

5.3 DOWNSTREAM SUPERVISED LONG-TAILED CLASSIFICATION

In supervised long-tailed learning, self-supervised learning has been proved to be beneficial as a
pre-training stage to exclude the explicit bias from the class imbalance (Yang & Xu,2020; Liu et al.,
20215 Zhou et al., 2022). In order to validate the representation transferability of S?LA, we conduct
self-supervised pre-training as the initialization for downstream supervised classification tasks on
CIFAR-100-LT-R100 and ImageNet-LT. The state-of-the-art logit adjustment (Menon et al., [2021])
is chosen as the baseline. The combination of S2LA + LA is interpreted as a method where S2LA
aims at the re-balanced representation extraction and LA copes with the debiased classifier learning.
In Table[3] we can find that the superior performance improvements is achieved by self-supervised
pre-training over the direct supervised learning baseline. We can also observe that our method
consistently outperforms other methods, averaging as 0.81% and 0.35% on CIFAR-100-LT-R100
and ImageNet-LT. These results demonstrate that S?LA are well designed to facilitate long-tailed
representation learning and improve the generalization ability for downstream supervised tasks.

5.4 FURTHER ANALYSIS AND ABLATION STUDIES

Optimal Transport. We conduct a range of experiments to verify the effectiveness of our de-
sign, which includes (I-1) the logit-adjusted loss with soft assignments, (I-2) the logit-adjusted loss
with hard assignments, (I-3) post-hoc logit-adjusted loss with soft assignments, (I-4) post-hoc logit-
adjusted loss with hard assignments. Besides, we also add two methods: (J) joint optimization on p,
q and (O) oracle ground-truth guidance. From the results, both the logit-adjusted and the post-hoc
logit-adjusted manners (I1-14) lead to performance degradation compared with the vanilla SimCLR,
while the label allocation by optimal transport (S2LA) significantly improves the performance.

Diverse Pre-defined Skewed Constraints. To ) . )
further validate S2LA , we alternate the es- Table 4: Linear probing results w.r¢ different se-
timated constraints with the fixed imbalanced tups for surrogate labels.
prior based on the ground-truth label distribu- Acronym  SimCLR J S’LA O
tiqn. We explore the effect of the imbalanged Accuracy  50.72 201 5396 5647
prior by adding a temperature factor 7, which

. . Acronym I-1 I-2 I-3 I-4
softens the prior to various scale of skewness.
As shown in Figure[3(a), we observe that S2LA Accuracy 4841 4993 5038 50.22
outperforms all models pretrained with the im-
balanced prior. A possible reason is that our method captures the inherent geometric statistics from
the embedding space, which is different from the the label space. This is aligned with the empirical
results that the model achieves the worst performance with the vanilla ground-truth prior (1" = 1),
whereas achieving the best performance with the prior closest to S2LA (T = 0.6). Moreover, we
observe that the uniform prior (7' = 0) adopted in (Asano et al., 2020} |Caron et al.| 2020) does not
show the expected performance on the long-tailed data.

Embedding Statistics. In Figure we plot the prediction histogram at two stages in the training
process, i.e., warm-up stage and the end of training stage. We observe that the adjusted distribution
are more imbalanced than the vanilla distribution. Specifically, it shows more samples are assigned
to the instance-rich classes with the shrinking of instance-poor classes. This is aligned with the goal
to compress the feature span of head classes and encourage the expansion of tail classes.

Hyper-parameter 7 for S?’LA . We can adjust the coefficient 7 in Eq. 3| to control the direction
and strength of S?LA , as shown in Figure For each 7, we perform performance evaluation
and skewness estimation, providing the inherent characteristics of our method. From the figure,
the correlation between the coefficient 7 and the embedding skewness indicates that we can ad-
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Figure 3: (a) Linear probing performance with error bars w.rz. the ground-truth prior served as the
categorical constraints. We soften the oracle distribution by 7" to obtain diverse imbalanced priors
and report the corresponding imbalanced factor. (b) Linear probing performance and imbalanced
factor of the geometric statistic w.r.t. 7 on CIFAR-100-LT-R100. (c) Histograms of geometric
predictions at the end of the warm-up stage (vanilla) or at the end of training (adjusted).

Table 5: Ablation study on the Table 6: The time cost of mini-batch training (seconds) on

Simplex ETF. CIFAR-100-LT, ImageNet-LT and Places-LT.
Method RI100  R50  RIO | CIFAR-LT | ImageNet-LT | Places-LT
SimCLR 50.72 5224 55.67 SimCLR(+S?LA) | 0.379 0.407 | 0.757 0.787 | 0.724 0.747
+S2LA 5396 5542 5736 Focal(+S°LA) 0423  0.467 | 0.943 1.008 | 1.001 1.050
+S2LA(RC) 5341 5478 56.54 SDCLR(+S%LA) | 0.374 0.397 | 0.752 0.771 | 0.759 0.776
+Simplex ETF  51.10 51.99 55.56 BCL(+S%LA) 0.377 0.405 | 0.756 0.783 | 0.722 0.745

just the skewness flexibly. Considering 7 = 0 as an anchor point, we can achieve the promising
performance with a proper strength in the process of increasing skewness. In contrast, the model
performance degenerates when we reversely adopt S?LA (decrease skewness). These observations
further confirm that our method can realize any desired skewness to deal with different levels of data
imbalancedness.

Ablation Study on Simplex ETF. To further verify the effectiveness of Simplex ETF, we conduct
experiments to investigate our methods with the random linear classifier. In Table[5] we can see that
the random classifier as a measure under the framework of S2LA does improve the performance of
SimCLR, but fails to outperforms Simplex ETF. Besides, we also conduct experiments with Simplex
ETF as the projector. As can be seen, if Simplex ETF alone is used to balance the representation
learning, the improvement is minor and sometimes degrades. This is because the direct estimation
from the Simplex is noisy during training when the representation is not ideally distributed.

Computational cost. In Table [f] we provide the mini-batch training time of different methods on
CIFAR-100-LT, ImageNet-LT and Places-LT. In our runs, the proposed S?LA incurs an average
7.8%, 4.2%, 3.4% computational overhead on CIFAR-100-LT, ImageNet-LT and Places-LT, respec-
tively, which is relatively lightweight compared to the computational cost of deep neural networks.

6 CONCLUSION

In this paper, we study why the conventional contrastive learning loss underperforms in self-
supervised long-tailed learning, motivating our exploration on category-level uniformity instead
of sample-level uniformity. Inspired by the power of logit adjustment in supervised long-tailed
learning, we correspondingly propose a Self-Superivsed Logit Adjustment algorithm to calibrate
the learning in the self-supervised learning paradigm. On the geometric level, S2LA gradually
rectify the feature span by an alternation between the logit adjustment and the surrogate label allo-
cation. Moreover, S2LA is orthogonal to existing self-supervised long-tailed methods and can be
easily plugged into these methods in an efficient manner. Extensive experiments demonstrate the
consistent efficacy of our proposed S2LA. We believe that the geometric perspective has the more
potential to understand self-supervised learning methods, especially when coping with the long-
tailed scenarios. In the future, we will extend our work with several potential directions such as
theoretical definition of the geometric structure over the training embeddings, and investigations of
other clustering methods or regularization to edit the geometric statistics.
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This paper does not raise any ethics concerns. This study does not involve any human subjects,
practices to data set releases, potentially harmful insights, methodologies and applications, poten-
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8 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of experimental results, we will provide the anonymous repository
about our codes in the discussion phase for reviewing purposes. The experimental setups for training
and evaluation as well as the hyper-parameters are detailed in Section[5.1]and Appendix
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APPENDIX

A ALGORITHM

We summarize the complete procedure of our S2LA method in Algorithm

Algorithm 1 Our proposed S2LA.

Input: dataset D, number of epochs E, number of warm-up epochs E,,, geometric classifier M, a
self-supervised learning method A, logit adjustment temper 7
Qutput: pretrained model parameter 65
Initialize: model parameter 6
1: Warm up model 6 for F,, epochs according to A.
2: forepoche =FE,,E, +1,...,Edo
3:  Obtain the geometric prediction t = arg max; hl"" (x) for dataset D.

4:  Compute the surrogate class prior p(t).
5. Compute p (ﬂ using logit adjustment according to Eq.
6: for mini-batch k. =1,2,..., Bdo
7: Update the output logits h™ (x) for each sample.
8: Obtain the label ¢(t|x) using the optimal transport solutions according to Eq. @
9: Compute Lggr, according to A and the proposed Lgz21,4 according to Eq.[4]
10: Uptate model 8 by minimizing Lgs1, + Lg21,A-
11:  end for
12: end for

B RELATED WORKS: SUPERVISED LONG-TAILED LEARNING

As the explorations on the classifier learning are orthogonal to the self-supervised learning
paradigms, we mainly focus on the representation learning in supervised long-tailed recognition.
The pioneering work (Kang et al, 2019) first explored representation and classifier learning with
a disentangling mechanisms and showed the merits of instance-balanced sampling strategy on the
representation learning stage. Subsequently, (Yang & Xul, [2020) pointed out the negative impact of
label information and proposed to improve the representation learning with semi-supervised learning
and self-supervised learning. This motivates a stream of research works diving into the represen-
tation learning. Supervised contrastive learning (Kang et all, 2020} [Cui et al} 2021) is leveraged
with rebalanced sampling or prototypical learning design to pursue a more balanced representation
space. explicitly regularizes the class centers to a maximum separation structure
with similar drives to the balanced feature space.

C ON CLASS-BALANCED DATA

According to the proof in (Wang & Tsola, [2020), conventional contrastive learning targets to pur-
sue the sample-level uniformity. Given the balanced feature subspace, we can naturally obtain the
uniform predictions p(t) = % based on Simplex ETF, and the logit adjustment will not modify
the distribution skewness as ¢ = arg max p(t|x)p(t)” = argmax p(tlz) = t. In this case, it is
reconcilable between contrastive learning and the second term in Eq.(7), only if optimal transport
makes the reallocated labels of samples certain and uniformly distributed regarding the categories.
The loss term —q(t|x) log p(t|x) will then make negligible effect on the representation learning and
the contrastive learning domainates the optimization.

Empirically, we conduct experiments in the balanced setting shown in Table [/} From the results,
we can see that S2LA shows comparable performance with the baseline methods in the balanced
setting. This observation is consistent with the aforementioned theoretical analysis.
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Table 7: Linear probing results in the balanced setting on CIFAR-100-LT-R100.
Method | SimCLR +S?LA | Focal +S*LA | SDCLR +S°LA | BCL +S°LA
Accuracy | 66.75 66.41 | 6642 66.79 | 65.96 66.17 | 69.16  69.33

D EXPERIMENTAL DETAILS

D.1 DATASET STATISTICS

We conduct experiments on three benchmark datasets for long-tailed learning, including CIFAR-
100-LT (Cao et al. [2019), ImageNet-LT (Liu et al.l 2019) and Places-LT (Liu et al., [2019). For
small-scale datasets, we adopt the widely-used CIFAR-100-LT with the imbalanced factor of 100,
50 and 10 (Cao et al.}[2019).

In Table[8] we summarize the benchmark datasets used in this paper. Long-tailed versions of CIFAR-
100 are constructed following the exponential distribution. For large-scale datasets, ImageNet-
LT (Liu et al 2019) has 115.8K images with 1000 categories, ranging from 1,280 to 5 in terms
of class cardinality and Places-LT (Liu et al.l 2019) contains 62,500 images with 365 categories,
with the sample number per category ranging from 4,980 to 5. The large-scale datasets follow
Pareto distribution.

Table 8: Statistics of long-tailed datasets. Exp represents exponential distribution.

Dataset #Class Type Imbalanced Ratio # Train data # Test data
CIFAR-100-LT-R100 100 Exp 100 10847 10000
CIFAR-100-LT-R50 100 Exp 50 12608 10000
CIFAR-100-LT-R10 100 Exp 10 19573 10000
ImageNet-LT 1000  Pareto 256 115846 50000
Places-LT 365 Pareto 996 62500 36500

D.2 LINEAR PROBING STATISTICS ON LARGE-SCALE DATASET

The 100-shot evaluation follows the setting in previous works (Jiang et al.,|2021; Zhou et al., [2022)).
As shown in Table[9] full-shot evaluation requires 10x - 30x the amount of data compared with the
pre-training dataset, which might not be very practical. In contrast, the scale of 100-shot data is
consistent with the pre-training dataset. We also present full-shot evaluation in Section

Table 9: Statistics of linear probing on large-scale dataset.

Dataset #Class # Training data  # 100-shot data  # full-shot data  # Test data
ImageNet-LT 1000 115,846 100,000 1,261,167 50,000
Places-LT 365 62,500 36,500 1,803,460 36,500

D.3 IMPLEMENTATION DETAILS

Toy Experiments. (Figure [T) We use a 2-Layer ReLU network with 20 hidden units and 2 output
units for visualization. The SimCLR algorithm (Chen et al., 2020) is adopted in the warm-up stage
with proper Gaussian noise as augmentation. After the warm-up stage, we train S?LLA according to
Eq. Due to the dimensional constraints, we use the orthogonal classifier [(1,1),(-1,1),(-1,-1),(1,-1)]
as the suboptimal structure for maximum separation.

Linear Probing Evaluation. We follow (Zhou et al., 2022) to conduct Adam optimizer for 500
epochs based on batch size 128, weight decay factor 5 x 10~° and the learning rate decaying from
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1072 to 1075, For few-shot evaluation on ImageNet-LT and Places-LT, we use the same sampled

100-shot subsets in (Zhou et al.| [2022)).

Computing Infrastructure. Our codes are built on PyTorch. We trained all the experiments on
NVIDIA GeForce RTX 3090.

D.4 FocAL Loss

Focal loss is discussed and compared in (Jiang et al} 2021}, [Zhou et al, [2022)

in the context of self-supervised long-tailed learning. Specifically, we use the term inside log(-) of
SimCLR loss as the likelihood to replace the probabilistic term of the supervised Focal loss and
obtain the self-supervised Focal loss as:

Yo _ exp (fo(®) " fo(x*)/7)
Efocal \B\ Z | b| Z p) 1 g(p)a p= Zw—exb’u{w+}eXp (fe(w)—rfe(w_)/’y)

beB TEX,

where 7 is a temperature factor. We defaultly set vy as 2 in all experiments.

E MORE COMPREHENSIVE RESULTS

E.1 ABLATION STUDY ON OPTIMAL TRANSPORT

In the following, we conduct a range of experiments to verify the effectiveness of our design, which
includes (I-1) the logit-adjusted loss with soft assignments, (I-2) the logit-adjusted loss with hard
assignments, (I-3) Post-hoc logit-adjusted loss with soft assignments. (I-4) Post-hoc logit-adjusted
loss with hard assignments. Besides, we also add two methods: joint optimization on p, ¢ and oracle
ground-truth guidance.

Table 10: Ablation study on optimal transport.

Method Acronym Formulation Accuracy
SimCLR - - 50.72
+Joint Optimization - miny, 4 —ﬁ Yo Q(t|z) log p(t|x) 291
+Logit-adjusted softmax (soft) I-1 min,, —ﬁ > wp P(t|z)log p(t|x)/p(t)” 48.41
+Logit-adjusted softmax (hard) I-2 min, *ﬁ > wp tlogp(t|x)/p(t)” 49.93
+Post-hoc (soft) I-3 miny, — 7 ZIND p(t|x) log p(t|x) 50.38
+Post-hoc (hard) I-4 min, — ID\ > op tlogp(tx) 50.22
+S2LA - min,, 4 ‘D‘ > e 4(t|z) log p(t|x) 53.96
+Oracle - min, — \DI > (z.y)~p Y108 p(t|) 56.47

Table 11: Normalized mutual information (NMI) score between the geometric predictions and the
oracle labels.

Prediction ¢ with Post-hoc (CE)  ¢(t|x) with S?2LA
NMI score 0.056 0.432

As can be seen, both the logit-adjusted losses and the post-hoc logit-adjusted manners (I1-14) lead to
performance degradation compared with the vanilla SimCLR, while the label allocation by optimal
transport (S?LA) significantly improves the performance. To explain this, we compute the NMI
score between ¢ and the oracle label, and the NMI score between ¢(t|x) and the oracle label, sum-
marized in Table@ Accorrding to the comparison of their NMIs, we can understand the roughly
adjusted ¢ can be noisy and shows the weak correlation with the oracle label, while q(t|x) reallo-
cated by optimal transport based on the population statistic of ¢ effectively improves the correlation.
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E.2 ON DIMENSION OF MAXIMUM SEPARATION STRUCTURE

For Simplex ETF, there is a hard dimension constraint in Eq. Q i.e., d < K. However, if this
constraint violates, we do not have such a structure in the hyperspherical space. Alternatively, we
can conduct the gradient descent to find an approximation of the maximum separation prototypes
applied into S?LA. This refers to minimising the following loss function as demonstrated in

et all 2022).

K K K
Luitorm =log Yy Y™™/ sty g, =0 and Vi€ K || =1 8)
A J i

where the first term penalizes the pairwise similarity of different prototypes (Wang & Isolal, [2020)
under the constraints of Simplex ETF. Figure El shows the performance of S’LA equipped with
different dimension of the geometric structure by analytical and approximate ways. Comparing the
results of Simplex ETF with those of proxy weights, we can see that the comparable performance
is achieved in both geometric structures. This indicates that our method is effective to two forms of
the geometric structure, relaxing the hard dimensional constraints in Simplex ETF.

I Simplex ETF
I Approximate

Accuracy

30 40 50 60 70 80 90 10011912013Q140150160170180190200210220
Dimension

Figure 4: Linear probing performance w.r.t. the dimensionality d of the pre-defined classifier on
CIFAR-100-LT-R100. We use simplex ETF structure when d < K or otherwise the approximation
learned via Eq.[8]

E.3 CLUSTERING QUALITY

We track the normalized mutual information (Strehl & Ghoshl [2002) of the geometric predictions
with the ground-truth label in the training stage on CIFAR-100-LT. As shown in Figure 5} we ob-
serve that SLA significantly improves the NMI score across different methods, indicating that the
distorted embedding space are calibrated to better capture the semantic information. Moreover, we
find that the NMI improvements of the existing works are marginal compared with S2LA, which
verifies the importance of calibrating the distorted embedding space.

0.50 SimCLR
Focal

SDCLR

BCL
SIMCLR+S2LA
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o
w
w
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Figure 5: Normalized mutual information (NMI) between the geometric predictions and the ground-
truth labels throughout training.
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E.4 COMPARISONS WITH SELA

In this part, we conduct empirical comparisons with SeLa (Asano et al.|[2020). In the following, we
use the official code of SeLa with the default training settings (marked as SeLa), with our training
schedule (marked as SeL.a*) and conduct the experiments on CIFAR-100-LT-R100. From the results,
we can see that our method can improve the performance of SeLa.

Table 12: Linear probing results of SeL.a on CIFAR-100-LT-R100.

Method SeLa SeLa* SeLa* +S2LA
Accuracy 4445 4647 48.10

E.5 FULL-SHOT EVALUATION ON LARGE-SCALE DATASET

Here we provide 100-shot evaluation and full-shot evaluation on ImageNet-LT, as shown in Table[I3]
We observe that the performance improvements and representation balancedness (Std) are consistent
with the 2 evaluations, indicating the rationality of the 100-shot evaluation.

Table 13: Full-shot evaluation and 100-shot evaluation on ImageNet-LT.
Evaluation Method Many Medium Few  Std  Avg

SimCLR  41.69 3396  31.82 5.19 36.65
+S%LA 41.53 36.35 35.84 3.15 38.28

SimCLR  42.86 35.17 33.13 5.13 37.86
+S%LA 44.11 38.59  37.87 341 40.62

100-shot

Full-shot
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