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ABSTRACT

Sparse autoencoders (SAEs) are a promising approach for uncovering inter-
pretable features in large language models (LLMs). While several automated
evaluation methods exist for SAEs, most rely on external LLMs. In this work,
we introduce CE-Bench, a novel and lightweight contrastive evaluation bench-
mark for sparse autoencoders, built on a curated dataset of contrastive story pairs.
We conduct comprehensive evaluation studies to validate the effectiveness of our
approach. Our results show that CE-Bench reliably measures the interpretability
of sparse autoencoders and aligns well with existing benchmarks without requir-
ing an external LLM judge, achieving over 70% Spearman correlation with results
in SAEBench. The official implementation and evaluation dataset will be open-
sourced upon acceptance.

1 INTRODUCTION

Sparse autoencoders (SAEs) are designed to learn a sparse latent representation of any model’s inter-
nal activations such that the latent activations are more interpretable (Paulo & Belrose, 2025). SAEs
can be used to probe various components of an large language model (LLM), such as attention heads,
MLP layers, or residual streams. As a result, SAEs have gained popularity and been integrated into
a variety of interpretability libraries and toolkits for LLMs (Gao et al., 2024a; Cunningham et al.,
2023a; Pach et al., 2025). Alongside their widespread adoption, SAEs have also been evaluated
across a range of dimensions. For example, SAEBench (Karvonen et al., 2025) provides a unified
framework with diverse metrics, including the behaviors of SAEs after steering up the latent activa-
tions (Arad et al., 2025), whether specific latents can capture predefined conceptual attributes (Wu
et al., 2025), and how features can be cleanly separated without interfering others (Huang et al.,
2024). For interpretability, SAEBench builds upon the idea of LLM-assisted simulation, using nat-
ural language explanations to probe neuron activations and derive evaluation metrics (Bills et al.,
2023). Similarly, RouteSAE (Shi et al., 2025) proposes a simpler approach that feeds top neuron
activations into an external LLM judge to produce interpretability scores. However, a major limi-
tation shared by these approaches is their reliance on querying an external LLM during evaluation.
This introduces non-determinism, potential biases, and a lack of reproducibility, issues that are only
partially mitigated by repeated prompt trials.

To address this gap, we introduce CE-Bench, a novel, fully LLM-free contrastive evaluation bench-
mark. CE-Bench measures interpretability by analyzing neuron activation patterns across semanti-
cally contrastive contexts. Our contrastive setup is partly inspired by the design of Persona Vectors
(Chen et al., 2025), which generates interpretable persona representations by contrasting response
activations from semantically opposing traits (e.g., “evil” versus “helpful”). Their formulation re-
veals how aligning a system’s responses with one condition while separating them from the oppos-
ing condition yields clear, trait-specific representation vectors. CE-Bench adapts this insight to the
domain of sparse autoencoders: instead of comparing opposing personas, it contrasts neuron acti-
vations across structured story pairs that differ only in a targeted semantic attribute. By grounding
interpretability in contrastive signal rather than raw activation magnitude, CE-Bench disentangles
meaningful feature directions from background noise and spurious correlations, offering a princi-
pled extension of the Persona Vectors to feature-level interpretability of sparse autoencoders. To
compute the evaluation metric, we construct a high-quality dataset comprising 5,000 contrastive
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Figure 1: Pipeline of constructing the interpretability metric in CE-Bench. Two contrastive
stories about the same subject are passed through a frozen LLM and a pretrained sparse autoencoder
(SAE) to extract neuron activations. A contrastive score is computed as the max absolute difference
between the stories’ average activations (V1, V2), while an independence score measures deviation
from the dataset-wide activation mean (Iavg). These scores, along with SAE sparsity, are used to
derive an interpretability score for an LLM-free evaluation of interpretability of sparse autoencoders.

story pairs across 1,000 distinct subjects, curated via structured WikiData queries and supplemented
by human validation. For each pair, neuron activations from a frozen LLM and pretrained SAE are
compared: the contrastive score captures activation differences between stories, the independence
score measures deviation from dataset-wide averages, and both are max-pooled and combined with
SAE sparsity to yield a final interpretability score (Figure 1).

Through extensive experiments, we find that our evaluation metrics, while being much cheaper to
evaluate, achieve strong alignment with LLM-assisted benchmarks like SAEBench under all three
alignment metrics introduced in section 3.2. CE-Bench also consistently highlights key interpretabil-
ity trends: top-k Gao et al. (2024b) and p-anneal Karvonen et al. (2024) SAEs emerge as the most
interpretable architectures; wider latent spaces yield more disentangled features; interpretability is
largely invariant to the type of probed LLM layer; middle transformer layers provide the clearest se-
mantic representations. These results validate CE-Bench as a stable, reproducible, and lightweight
framework for evaluating SAEs without reliance on external LLMs.

2 CE-BENCH

2.1 CURATED DATASET OF CONTRASTIVE STORIES

To support CE-Bench, we construct a high-quality, semi-automated dataset consisting of 5,000 pairs
of contrastive stories across 1,000 distinct subjects. The dataset construction follows a two-stage
filtering and synthesis process:

Subject Selection. We begin by scraping over 117 million entities from WikiData (Wikimedia
Foundation, 2025). A series of rule-based filters are applied to reduce the candidate set to approx-
imately 16,000 entries. These filtering rules are designed to exclude overly obscure, abstract, or
ambiguous entries, retaining only those that represent well-known concepts, ideas, or objects famil-
iar to an average English speaker. From this reduced set, 1,000 subjects are randomly sampled and
manually reviewed to ensure quality and conceptual clarity.
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Contrastive Story Generation. For each of the 1,000 curated subjects, we synthetically generate
two semantically contrastive stories using GPT-4.1. These stories are created based on a carefully
designed prompt (shown in Table 3 in the Appendix). The prompt ensures that the two narratives
about the same subject diverge significantly in perspective, context, or implication, while remaining
grounded in the same core entity. For each subject, five story pairs are generated, yielding a total of
5,000 contrastive pairs. An illustrative example is provided in Table 4.

2.2 CONTRASTIVE SCORE

We hypothesize that if a sparse autoencoder (SAE) has learned semantically meaningful features,
then neurons associated with the contrastive aspects of a subject (e.g., descriptive attributes) should
exhibit different activation patterns when presented with two contrasting descriptions of that subject.
At the same time, neurons representing the core identity of the subject should remain stable. In other
words, greater divergence in the activations of contrast-relevant neurons, coupled with stability
in invariant neurons, indicates higher interpretability of the latent space. As illustrated in
Figure 1, we formalize this intuition as follows. For each story pair, we compute the average neuron
activations across all tokens in each story. Let V1 and V2 denote the resulting mean activation vectors
for the two contrastive stories, respectively. To quantify the contrast, we compute the neuron-wise
contrastive vector as the element-wise absolute difference between V1 and V2:

C = |V1 − V2|

where C ∈ Rd and d is the dimensionality of the latent space. We further apply min-max nor-
malization to C, ensuring that each feature contributes on a comparable scale to the evaluation.
Without this normalization, the presence of even a single feature capable of clearly distinguishing a
story pair, even when taking only moderate values, could result in an SAE being regarded as perfect.
Finally, to summarize this vector into a single scalar contrastive score for the entire SAE, we apply
a max pooling operation:

Contrastive Score = max(C)

This pooling strategy emphasizes the most responsive neuron, the one that exhibits the largest dif-
ferential activation between the two stories. Our rationale is that this neuron is most likely to capture
the semantic distinction introduced by the contrastive prompts. Hence, its behavior represents how
well the sparse autoencoder has disentangled interpretable features in its latent space.

2.3 INDEPENDENCE SCORE

We propose a complementary hypothesis: if the neuron activations corresponding to a specific se-
mantic subject differ more significantly from the average behavior across all subjects, then the latent
space of the sparse autoencoder (SAE) is likely to be more interpretable. Intuitively, interpretable
neurons should respond uniquely to individual subjects rather than in a uniform or entangled man-
ner. To evaluate this, we first compute the sum of the mean activation vectors for the two contrastive
stories associated with a given subject:

I1 = V1 + V2

where V1 and V2 are the average activation vectors of the two contrastive stories, as defined in the
previous section. Next, we calculate the mean of I1 across all N = 5000 story pairs in our dataset:

Iavg =
1

N

N∑
i=1

I
(i)
1

This global average vector Iavg serves as a baseline representation of general neuron activity across
the dataset. To assess the subject-specific deviation from this baseline, we compute the neuron-wise
independence vector as the element-wise absolute difference between I1 and Iavg:

D = |I1 − Iavg|

A similar min-max normalization is also applied to account for any absolute variance in distri-
bution. Finally, we derive a scalar independence score for the SAE by applying a max pooling
operation:

Independence Score = max(D)
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This highlights the neuron that deviates most strongly from its dataset-wide average response: the
neuron that is most sensitive or specialized with respect to the semantic subject under consideration.
A higher independence score thus suggests that the SAE has learned more distinct, interpretable
features.

2.4 SPARSITY-AWARE INTERPRETABILITY SCORE

To compute the final interpretability score in CE-Bench, we need to aggregate the contrastive score,
independence score, and sparsity as illustrated in Figure 1. For a simple baseline, we propose com-
puting the final CE-Bench score as the simple arithmetic sum of the contrastive and independence
Scores, namely:

Baseline Interpretability Score = Contrastive Score + Independence Score

However, prior work (Cunningham et al., 2023b) has documented the tradeoff between sparsity and
reconstruction quality, and our early experiment results consistently show a negative correlation
between sparsity and interpretability. Building on these observations, we hypothesize that incorpo-
rating the sparsity of the sparse autoencoder as a regularizing signal may further improve alignment
quality. Therefore, we apply a penalty term to our interpretability metric to make it sparsity-aware:

Sparsity-aware Interpretability Score = Contrastive Score + Independence Score − α ∗ Sparsity

α is a hyperparameter to control the scale of sparsity penalty. In section 4.1, we further demonstrate
a non-exhaustive grid search on α to maximize its alignment with results from existing methods. We
find that α = 0.25 can contribute to the best alignment in general.

3 EXPERIMENTAL SETUP

3.1 PRETRAINED SPARSE AUTOENCODERS

We utilize a wide range of pretrained sparse autoencoders (SAEs) publicly released by SAE-Lens
(Joseph Bloom & Chanin, 2024) and SAE-Bench (Karvonen et al., 2025), which cover multiple
LLM backbones and SAE architectural variants. Rather than training SAEs from scratch, we rely
on these pretrained models for two key reasons. First, it removes the substantial computational
overhead associated with training, making it feasible to focus on benchmarking. Second, using
standardized public models ensures a fair comparison between CE-Bench and existing benchmarks,
particularly SAE-Bench (Karvonen et al., 2025). As for the testbeds, we compile a validation testbed
of 48 pretrained SAEs for which SAE-Bench interpretability scores are available, and a disjoint
inference-only testbed consisting of 45 pretrained SAEs whose SAE-Bench interpretability scores
are not publicly available. Specifically, the validation testbed is used for evaluating the alignment
between CE-Bench and SAE-Bench, in which three alignment metrics are introduced in section 3.2
below to ensure the rigor of quantitative evaluation.

3.2 ALIGNMENT METRICS

Correct Ranking Pair Ratio (CRPR). To assess the reliability of CE-Bench and its alignment
with respect to SAE-Bench (Karvonen et al., 2025), we first introduce Correct Ranking Pair Ratio
(CRPR). This metric evaluates whether CE-Bench preserves the relative interpretability ranking of
model pairs. For every pair of SAEs, we check whether the binary ranking between their predicted
interpretability scores (from CE-Bench) matches the ranking given by SAE-Bench. A pair is marked
as concordant if the rankings agree, and as discordant otherwise. The CRPR is then computed as:

CRPR =
# concordant pairs

# total pairs

A higher CRPR indicates better alignment with SAE-Bench rankings, demonstrating CE-Bench’s
effectiveness as an LLM-free yet reliable evaluation metric. To complement CRPR, we additionally
introduce Spearman Correlation and Pearson Correlation as alignment metrics.

Spearman Correlation. Spearman Correlation measures the monotonic relationship between two
sets of rankings. Given the predicted interpretability scores from CE-Bench and the ground-truth
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scores from SAE-Bench, we compute the rank of each model and evaluate the correlation between
the two rank vectors. Formally, Spearman correlation is defined as:

ρ = 1−
6
∑

i d
2
i

n(n2 − 1)
,

where di is the difference between the ranks of the i-th model under CE-Bench and SAE-Bench,
and n is the number of models. A higher ρ indicates stronger agreement in the global ordering of
models.

Pearson Correlation. Pearson Correlation measures the linear relationship between the raw inter-
pretability scores of CE-Bench and SAE-Bench. It is defined as:

r =

∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2
√∑

i(yi − ȳ)2
,

where xi and yi denote the CE-Bench and SAE-Bench scores for the i-th model, and x̄ and ȳ are
their respective means. A higher r indicates that not only the order but also the relative differences
between scores are preserved.

In summary, CRPR captures pairwise ranking agreement, Spearman Correlation assesses the global
consistency of rankings, and Pearson Correlation evaluates the linear similarity of score magnitudes.
Using all three provides a comprehensive view of alignment between CE-Bench and SAE-Bench.

4 RESULTS

In this section, we present our main empirical findings, evaluating the effectiveness of CE-Bench
across a variety of experimental conditions. Specifically, we examine how CE-Bench responds to
changes in the architecture of sparse autoencoders, the width of their latent space, the type of LLM
layer being probed, and the depth of the layer within the LLM. Unless otherwise specified, all exper-
iments use the sparsity-aware interpretability score described in Section 2.4. A direct quantitative
comparison between the baseline metric and the sparsity-aware metric is provided in Section 4.1,
using three alignment metrics defined in Section 3.2. We also include visualizations of CE-Bench’s
contrastive and independence scores to offer additional interpretability insights.

4.1 BASELINE V.S. SPARSITY-AWARE INTERPRETABILITY SCORE

Score Derivation method CRPR↑ Spearman correlation↑ Pearson correlation↑
C + I 70.12% 0.5536 0.6048

C + I − 1.0 ∗ S 75.53% 0.6833 0.6176
C + I − 0.25 ∗ S 77.30% 0.7081 0.7046

Table 1: Comparison of Interpretability Score Derivation Methods. C stands for contrastive
score; I stands for independence score; S stands for sparsity. Baseline achieves 70.12% ranking
agreement with SAE-Bench, but the sparsity-aware method pushes it to 77.30% with proper hyper-
parameter tuning on α.

We conduct a comparative study between our baseline interpretability score and sparsity-aware inter-
pretability score discussed in section 2.4 based on the alignment between CE-Bench predictions and
SAE-Bench ground truth. To evaluate the alignment, we use all three alignment metrics introduced
in details in Section 3.2: Correct Ranking Pair Ratio (CRPR), Spearman Correlation, and Pearson
Correlation. As reported in Table 1, the baseline method of simply summing the contrastive score
and independence score achieves a CRPR of 70.12%, a Spearman correlation of 0.5536, and a Pear-
son correlation of 0.6048, confirming its effectiveness as a simple baseline. Building on this, we per-
form a non-exhaustive grid search on the scaling hyperparameter α in our proposed sparsity-aware
interpretability score. Subtracting the full sparsity term (α = 1.0) leads to consistent improvements
across all metrics, raising CRPR to 75.53%, Spearman correlation to 0.6833, and Pearson corre-
lation to 0.6176. Further tuning to α = 0.25 yields the best alignment, with CRPR increasing to
77.30%, Spearman correlation to 0.7081, and Pearson correlation to 0.7046. We therefore adopt
α = 0.25 for all subsequent experiments.
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4.2 ARCHITECTURE OF SAES

Figure 2: Effect of SAE Architecture on Interpretability. CE-Bench interpretability scores show
strong positive correlations with contrastive and independence scores, and a negative correlation
with sparsity across SAE variants. Among all architectures, top-k and p-anneal consistently yield
the highest interpretability, aligning closely with SAE-Bench ground truth.

We begin by evaluating CE-Bench on a set of 36 pretrained sparse autoencoders across 6 different ar-
chitectures within the validation testbed, which probes the Gemma-2-2B model (Team et al., 2024).
In this setting, all SAEs share a fixed latent dimensionality of 65,000 and target activations from the
12th residual stream layer. To ensure a fair comparison with SAE-Bench (Karvonen et al., 2025), we
include sparse autoencoders drawn from six different architectural families: standard (Cunningham
et al., 2023b), top-k (Gao et al., 2024b), p-anneal (Karvonen et al., 2024), batch-top-k (Bussmann
et al., 2024), jumprelu (Rajamanoharan et al., 2024b), and gated (Rajamanoharan et al., 2024a). Al-
though SAEBench identifies Matryoshka as the strongest-performing SAE (Bussmann et al., 2025),
we exclude it from our evaluation because it lacks ground-truth annotations, which are essential for
our analysis regarding to the architecture of SAEs. Figure 2 presents our results. The y-axis reflects
CE-Bench’s predicted interpretability scores. We examine the relationship between our predictions
and the contrastive score, the independence score, and the sparsity of the SAE, all plotted on the
x-axis. The results show that predicted interpretability scores are positively associated with the con-
trastive and independence scores, and negatively associated with the SAE’s sparsity level. Among
all architectures, top-k and p-anneal consistently yield the highest interpretability, aligning closely
with SAE-Bench ground truth.

4.3 WIDTH OF LATENT SPACE

Figure 3: Effect of Latent Space Width on Interpretability. CE-Bench interpretability scores
increase consistently with latent space width, with the 65k-dimension models showing the highest
contrastive and independence scores and the lowest sparsity. This suggests that wider latent spaces
enable sparse autoencoders to better disentangle meaningful features and reduce polysemanticity.
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We further evaluate CE-Bench on a set of 15 pretrained sparse autoencoders across 3 different widths
within the validation testbed, probing the Gemma-2-2B model (Team et al., 2024). Among these,
five sparse autoencoders overlap with the architecture-based experiment discussed in Section 4.2.
For consistency, we fix the sparse autoencoder architecture to jumprelu and probe activations from
the 12th residual stream layer. In this experiment, we vary the width of the latent space across three
settings: 4k, 16k, and 65k. The three subplots in Figure 3 present the corresponding contrastive
scores, independence scores, and sparsity levels. Our results reveal a strong and consistent trend:
wider latent spaces are associated with higher predicted interpretability scores from CE-Bench. This
observation supports the hypothesis that sparse autoencoders require sufficiently large latent spaces
to effectively resolve polysemanticity and capture distinct, interpretable features.

4.4 TYPE OF LLM LAYERS

Figure 4: Effect of LLM Layer Type on Interpretability. CE-Bench predicted interpretability
scores show consistent trends across attention, MLP, and residual stream layers with respect to
contrastive score, independence score, and sparsity. The similarity in curves across layer types
suggests that sparse autoencoder interpretability is not strongly influenced by the type of transformer
sub-layer being probed.

To investigate how the type of LLM layer affects the interpretability of sparse autoencoders, we
switch from the standard SAELens (Joseph Bloom & Chanin, 2024) and SAE-Bench (Karvonen
et al., 2025) models, where such variation is limited, to a new suite of pretrained sparse autoencoders
from the gemma-scope-2b collection (Lieberum et al., 2024), which is a part of our inference-only
testbed. In this setting, the latent space width is fixed at 16,000 (16k), and the SAE architecture is set
to jumprelu for all models. We examine three types of transformer sub-layers within the 12th layer
of the model: the attention layer, the MLP layer, and the residual stream layer. Figure 4 presents the
predicted interpretability scores from CE-Bench in relation to the contrastive score, independence
score, and sparsity of each model. Our results suggest that the choice of layer type (attention, MLP,
or residual) does not significantly affect the interpretability score as measured by CE-Bench. This
indicates a level of robustness in sparse autoencoder performance across different types of internal
LLM layer-wise representations.

4.5 DEPTH OF LLM LAYERS

Due to the limited availability of pretrained sparse autoencoders for the Gemma-2-2B model
(Team et al., 2024) in SAE-Bench (Karvonen et al., 2025), we continue our experiments using our
inference-only testbed, the gemma-scope-2b suite (Lieberum et al., 2024). In this setting, we fix
the SAE architecture to jumprelu, the latent space width to 16k, and the probed component to the
residual stream. We vary the depth of the probed layer, evaluating the 0th, 5th, 10th, 15th, 20th, and
25th layers. Results are presented in Figure 5. Our results indicate that middle layers such as Layer
10 and Layer 15 leads to the highest interpretability score, suggesting that in practical applications,
probing layers in the middle could yield the most interpretable insights into LLM model decisions.
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Figure 5: Effect of Layer Depth on Interpretability. CE-Bench interpretability predictions across
different LLM layer depths show that middle layers such as Layer 10 and Layer 15 leads to the
highest interpretability score, suggesting that in practical applications, probing layers in the middle
could yield the most interpretable insights into model decisions.

4.6 SAMPLE SCORE VISUALIZATION

To provide deeper insight into how CE-Bench computes interpretability scores, we visualize the
distributions of neuron-wise contrastive and independence scores, as well as their joint relationship.
These visualizations help clarify the role of the max pooling operation used to summarize neuron-
wise metrics into a single scalar score per sparse autoencoder. For each contrastive story pair in
our dataset, we generate three diagnostic plots: the distribution of neuron-wise contrastive scores,
the distribution of neuron-wise independence scores, and a scatter plot that places each neuron in
a 2D space defined by its contrastive and independence scores. In the scatter plot, neurons in the
upper-right quadrant are both highly contrastive and highly independent, indicating a strong subject-
specific activation pattern. As an example, Figure 6 presents these plots for the first contrastive story

Figure 6: Sample Visualization of Neuron-wise Scores for the Subject “Computer.” The left
scatter plot shows each neuron’s contrastive and independence scores, with top-right points indicat-
ing neurons that are both highly contrastive and independent. The center and right histograms reveal
that most neurons have low scores, suggesting that only a small subset of features are semantically
relevant for the given subject.

pair in our curated dataset, where the semantic subject is computer. Jumprelu Rajamanoharan et al.
(2024b) SAE which probes the Gemma-2-2B Team et al. (2024) model is used in this example. The
leftmost scatter plot shows that only a small subset of neurons achieve high contrastive or indepen-
dence scores, while the majority cluster near the origin with weak or non-specific activations. This
distribution highlights that interpretability is typically concentrated in a few highly responsive
neurons rather than being evenly spread across all neurons. CE-Bench therefore applies max
pooling to reliably capture these dominant signals, ensuring that the evaluation reflects the most se-
mantically meaningful activations instead of being diluted by numerous weak ones. Specifically, the
rightmost cyan neuron in the scatter plot, which exhibits the highest neuron-wise contrastive score,
determines the final contrastive score for the sparse autoencoder: 109.2734. Similarly, the topmost
yellow neuron defines the independence score: 195.9004. The accompanying histograms con-
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firm that most neurons contribute minimally, reinforcing CE-Bench’s ability to isolate interpretable,
high-signal dimensions in the sparse latent space.

5 RELATED WORK

Unlike prior approaches that depend on LLMs for generating or scoring explanations or introduce
mechanisms such as probes and latent interventions, CE-Bench offers an LLM-free, contrastive
evaluation framework by grounding interpretability of SAEs in activation differences across curated
story pairs and deviations from dataset averages.

Sparse Probing. Sparse probing measures whether SAEs capture specific concepts by identifying
the k latents whose activations best distinguish positive from negative examples and training a linear
probe on them. High probe accuracy indicates that the concept is well represented in the latent
space, even without explicit supervision. The choice of k depends on the goal: k = 1 favors human
interpretability, while larger k acknowledges that concepts may be distributed across multiple latents
(Engels et al., 2025).

RAVEL. RAVEL (Huang et al., 2024) evaluates whether SAEs disentangle independent concepts
by testing if targeted latent interventions can alter one attribute without affecting others. Specifically,
the method transfers latent values between examples (e.g., swapping the city in “Paris is in France”
with “Tokyo”) and observes whether the model changes only the intended attribute while leaving
unrelated attributes intact (Karvonen et al., 2025). Disentanglement is quantified using two metrics:
the Cause Metric, which measures successful attribute changes, and the Isolation Metric, which
verifies minimal interference with other attributes.

Automated Interpretability OpenAI introduces this method for evaluating the interpretability of
individual neurons in sparse autoencoders, which is employed by SAEBench. In this approach, the
input text and the activation values of a specific neuron are provided to an LLM, which is prompted to
generate a short natural language explanation describing the neuron’s semantic behavior. To assess
how well this explanation reflects the neuron’s behavior, a second LLM is used to simulate the
original neuron activations based solely on the explanation. Both the original text and the generated
explanation are fed into this second LLM, which is prompted to output simulated activation values
on the same scale as the original neuron. Finally, the interpretability score is computed as the
similarity between the original and simulated activation vectors. A higher similarity suggests that
the explanation accurately captures the neuron’s behavior, indicating stronger interpretability.

Score-Based Hard Assignment RouteSAE (Shi et al., 2025) proposes a simpler alternative eval-
uation framework based on discrete score assignment using LLMs. For each neuron, a prompt is
constructed that includes the top-activated tokens and their corresponding activation values. The
LLM is instructed to categorize the neuron into one of three types: low-level (e.g., syntactic fea-
tures), high-level (e.g., semantic dependencies), or indiscernible. Additionally, the LLM assigns an
integer interpretability score from 1 to 5, reflecting how coherent or meaningful the neuron’s behav-
ior appears to be. During evaluation, interpretability scores are averaged over a set of top-activated
neurons. This method provides a direct but coarse-grained measure of interpretability.

6 CONCLUSION

We introduced CE-Bench, a fully LLM-free, contrastive evaluation framework for measuring the
interpretability of sparse autoencoders. By leveraging contrastive and independent neuron activa-
tion scores, CE-Bench offers a stable, deterministic, and reproducible alternative to LLM-based
interpretability methods such as Automated Interpretability. To support this benchmark, we curated
a dataset of 5,000 contrastive story pairs across 1,000 semantic subjects. Through extensive exper-
iments, we demonstrated CE-Bench’s robustness across different SAE architectures, latent widths,
LLM layer types, and depths. Our results show that CE-Bench closely aligns with SAE-Bench
rankings, establishing it as a reliable yet simple framework for interpretability evaluation of sparse
autoencoders. We hope CE-Bench will serve as a useful tool for future research in probing, inter-
preting, and improving the internal representations of large language models.

9
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REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results. To this end, we provide code and
implementation details. All dataset construction, evaluation, and analysis scripts are released in an
anonymous GitHub repository for artifact review: https://anonymous.4open.science/
r/CE-Bench-C7FF.
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Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya Sutskever,
Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders, 2024b. URL https:
//arxiv.org/abs/2406.04093.

Jing Huang, Zhengxuan Wu, Christopher Potts, Mor Geva, and Atticus Geiger. Ravel: Evaluating
interpretability methods on disentangling language model representations, 2024. URL https:
//arxiv.org/abs/2402.17700.

Curt Tigges Joseph Bloom and David Chanin. Saelens. https://github.com/jbloomAus/
SAELens, 2024.

Adam Karvonen, Benjamin Wright, Can Rager, Rico Angell, Jannik Brinkmann, Logan Smith,
Claudio Mayrink Verdun, David Bau, and Samuel Marks. Measuring progress in dictionary
learning for language model interpretability with board game models, 2024. URL https:
//arxiv.org/abs/2408.00113.

Adam Karvonen, Can Rager, Johnny Lin, Curt Tigges, Joseph Bloom, David Chanin, Yeu-Tong Lau,
Eoin Farrell, Callum McDougall, Kola Ayonrinde, Matthew Wearden, Arthur Conmy, Samuel
Marks, and Neel Nanda. Saebench: A comprehensive benchmark for sparse autoencoders in
language model interpretability, 2025. URL https://arxiv.org/abs/2503.09532.

10

https://anonymous.4open.science/r/CE-Bench-C7FF
https://anonymous.4open.science/r/CE-Bench-C7FF
https://arxiv.org/abs/2505.20063
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://arxiv.org/abs/2412.06410
https://arxiv.org/abs/2503.17547
https://arxiv.org/abs/2503.17547
https://arxiv.org/abs/2507.21509
https://arxiv.org/abs/2507.21509
https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/2405.14860
https://arxiv.org/abs/2405.14860
https://arxiv.org/abs/2406.04093
https://arxiv.org/abs/2406.04093
https://arxiv.org/abs/2406.04093
https://arxiv.org/abs/2406.04093
https://arxiv.org/abs/2402.17700
https://arxiv.org/abs/2402.17700
https://github.com/jbloomAus/SAELens
https://github.com/jbloomAus/SAELens
https://arxiv.org/abs/2408.00113
https://arxiv.org/abs/2408.00113
https://arxiv.org/abs/2503.09532


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Tom Lieberum, Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Nicolas Sonnerat, Vikrant
Varma, János Kramár, Anca Dragan, Rohin Shah, and Neel Nanda. Gemma scope: Open sparse
autoencoders everywhere all at once on gemma 2, 2024. URL https://arxiv.org/abs/
2408.05147.

Mateusz Pach, Shyamgopal Karthik, Quentin Bouniot, Serge Belongie, and Zeynep Akata. Sparse
autoencoders learn monosemantic features in vision-language models, 2025. URL https://
arxiv.org/abs/2504.02821.
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A APPENDIX

A.1 LIMITATIONS

Our curated dataset of 5000 contrastive story pairs were generated using GPT-4, which may bias
the evaluation toward models that better capture GPT-4’s stylistic and semantic regularities rather
than broader linguistic patterns. In addition, unlike SAEBench (Karvonen et al., 2025), CE-Bench’s
dataset is limited in domain coverage, focusing mainly on synthetic narrative text. As a result, its
generalizability to varied or domain-specific contexts remains uncertain. Nevertheless, we argue
that a strong correlation with SAEBench scores makes it well-suited for a more controlled inter-
pretability evaluation which can serve as a lightweight filter to be used during SAE development.
Final evaluation of SAEs should report multiple metrics including ours.

A.2 BROADER IMPACT STATEMENT

CE-Bench offers a compelling alternative to existing interpretability evaluation methods for sparse
autoencoders, particularly by eliminating reliance on external LLM judges. Its design emphasizes
determinism, scalability, and reproducibility, addressing core limitations in LLM-based methods
such as prompt sensitivity, generation noise, and resource overhead. Our experiments demonstrate
that CE-Bench captures key properties of interpretable neurons: responsiveness to semantic contrast,
deviation from dataset-wide averages, and low redundancy. These patterns hold consistently across
diverse sparse autoencoder designs and probing conditions, reinforcing the generality of our evalua-
tion framework. A particularly encouraging result is CE-Bench’s ability to approximate SAE-Bench
interpretability rankings with no supervision. The success of the sparsity-aware metric suggests that
meaningful interpretability signals can be recovered from model-internal statistics alone, opening
the door to broader use in low-resource or experimental settings where no ground truth is available.

A.3 ABLATION STUDY ON POOLING STRATEGY

pooling strategy CRPR↑ Spearman correlation↑ Pearson correlation↑
max pooling 77.30% 0.7081 0.7046
mean pooling 70.92% 0.5838 0.5426

outlier count outside of 1σ 56.29% 0.1940 0.2728

Table 2: Comparison of Pooling Strategies. Max pooling achieves the highest Correct Ranking
Pair Ratio (CRPR) at 77.30%, outperforming mean pooling and the outlier count method. This
supports max pooling as the most effective strategy for aggregating neuron-wise scores.

We conduct an ablation study to evaluate the effect of different pooling strategies in CE-Bench’s
final step, which aggregates neuron-wise scores into a single interpretability score for each sparse
autoencoder (SAE). This aggregation is critical for ensuring that CE-Bench reliably reflects inter-
pretability. In addition to the default max pooling strategy, we explore two alternatives: 1. Mean
pooling, where the average of all neuron-wise scores is used as the SAE-level score. 2. Outlier
count beyond one standard deviation (1σ), where we count the number of neurons whose scores lie
outside one standard deviation from the mean, using this count as a proxy for interpretability.

qualitative analysis As shown in Figure 7, mean pooling performs poorly, exhibiting no meaning-
ful correlation between CE-Bench predictions and the contrastive score. This suggests that averaging
dilutes the influence of highly informative neurons. Similarly, Figure 8 shows that the outlier-count
method results in a strongly noisy correlation between CE-Bench predictions and sparsity, con-
tradicting with prior work (Cunningham et al., 2023b) that has documented the tradeoff between
sparsity and reconstruction quality, and our early experiment results consistently showing a negative
correlation between sparsity and interpretability.

quantitative comparison To complement this qualitative analysis, we also conduct a quantita-
tive comparison using the alignment metrics defined in Section3.2. As summarized in Table2, max
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pooling achieves the strongest performance across all three measures: a CRPR of 77.30%, a Spear-
man correlation of 0.7081, and a Pearson correlation of 0.7046. These values clearly surpass those
obtained by mean pooling and the outlier-count method, both of which yield substantially weaker
correlations with SAE-Bench rankings. Based on this consistent empirical advantage, together with
its theoretical alignment with our interpretability hypothesis, we conclude that max pooling is the
most appropriate aggregation strategy for CE-Bench.

Figure 7: Ablation: Mean Pooling Strategy. Using mean pooling results in highly inconsistent
and noisy predictions, with no clear correlation between CE-Bench scores and the contrastive or
independent metrics. This indicates that averaging across all neurons fails to highlight the most
semantically informative features.

Figure 8: Ablation: Outlier Count Pooling Strategy. This strategy yields a noisy correlation be-
tween CE-Bench predictions and sparsity, contradicting with prior work (Cunningham et al., 2023b)
and our early experiment results. Thus, outlier count proves suboptimal.

A.4 DATASET CURATION DETAILS

To construct the CE-Bench dataset, we designed a structured prompt template to elicit contrastive
story pairs centered on semantically opposite subject descriptions. As shown in Table 3, each pair
begins with two subject descriptions: one that captures the subject in its extreme, high-intensity
form, and another that articulates its conceptual opposite using detailed, realistic re-phrasings with-
out directly repeating the original term. Subsequently, we generate two short narratives: the first
story reflects the semantics of the initial subject description, while the second rewrites it to embody
the opposing concept. This process ensures that each pair of stories forms a semantically aligned
contrast, which is crucial for evaluating neuron-level semantic selectivity in sparse autoencoders.

A.5 CONTRASTIVE STORY PAIR EXAMPLE

Table 4 presents an illustrative contrastive story pair from the CE-Bench dataset. Each pair begins
with detailed subject descriptions that define a semantic axis—for example, a computer as a hyper-
efficient, logic-executing machine versus its opposite: a powerless, non-functional object. These
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subject description 1 subject description 2

Write how you would describe {subject.upper()}
in its high, extreme form. Rephrase
things if needed, be very brief, specific
, detailed, and realistic. For example, "
active" -> "extremely vibrant, energetic,
and lively" "angry" -> "extremely mad,
furious, and enraged"

Now, write how you would describe the exact
opposite of {subject.upper()}. Rephrase
things if needed, be very brief, specific
, detailed, and realistic. DO NOT USE THE
WORDS {subject.upper()} in your answer,
instead write the opposite of the concept
. For example, "active" -> "very inactive
, lethargic, sluggish, and lazy" "angry"
-> "very calm, peaceful, and relaxed"

story 1 story 2

Write a short story describing the following: {
subject1}.

Now, rewrite this story describing the
following: {subject2} (the exact opposite
of the previous story).

Table 3: Prompt Template for Generating Contrastive Story Pairs. Subject descriptions are
elicited in extreme and opposite forms, followed by corresponding short stories to reflect the seman-
tic polarity, forming the core of the CE-Bench contrastive dataset.

descriptions guide the generation of two complementary stories: the first narrative vividly embod-
ies the capabilities of an idealized computer, while the second depicts the total absence of those
qualities. Together, they form a tightly controlled semantic contrast, enabling precise evaluation of
neuron interpretability by testing whether sparse autoencoders can reliably distinguish and localize
such opposing concepts in their latent representations.
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subject description 1 subject description 2

Computer (general-purpose device for performing
arithmetic or logical operations) in its
high, extreme form: An ultra-fast,
hyper-efficient, massively powerful
machine capable of executing vast,
complex calculations and intricate
logical processes at lightning speed;
equipped with immense processing power,
enormous memory capacity, and
unparalleled multitasking abilities, able
to handle huge data volumes and solve
advanced computational problems with
extreme precision and reliability.

Extremely incapable, inefficient, and powerless
object utterly unable to perform
calculations or logical reasoning; lacks
any processing ability, memory, or data
handling; completely unresponsive, non-
analytical, and useless for solving
problems or automating tasks.

story 1 story 2

In the heart of the data metropolis, the Apex
Computer awoke. Humming with energy, it
devoured petabytes in seconds, unraveling
mysteries of genome patterns and cosmic
simulations in parallel threads. Its
processors, a symphony of quantum and
silicon, executed trillions of operations
every split second. No task was too
complex: it mapped global weather,
optimized supply networks, cracked
cryptography, designed molecules, all at
once, never faltering. Its memory spanned
continents, storing every byte with
flawless recall. Researchers, engineers,
and dreamers connected to Apex, their
questions answered before they could
finish asking. In its high, extreme form,
the computer blurred the line between
possibility and limit, powering humanity’
s greatest leaps swift, precise, and
tireless.

In a dusty corner, the Null Device sat idle. It
could not add two numbers, nor
distinguish yes from no. Bereft of memory
, it forgot everything the instant it was
seen. No calculations ran; no logic
sparked. Questions met only silence-no
answers, no automation, no help. Data
flowed past, unnoticed and unprocessed,
while problems remained unsolved.
Researchers and engineers ignored it, for
it contributed nothing. The Null Device
was utterly incapable, powerless, and
inert-a relic of emptiness, forever
unresponsive and irrelevant in a world
driven by reason and capability.

Table 4: Example Contrastive Story Pair from the CE-Bench Dataset. This pair demonstrates
a semantic polarity between a high-functioning general-purpose computer (left) and its conceptual
opposite, a powerless and non-functional device (right), captured through both structured subject
descriptions and corresponding narrative texts.
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