
Under review as submission to TMLR

Formulating Node Labelling as Node Classification or Link
Prediction in Different Graph Representations

Anonymous authors
Paper under double-blind review

Abstract

Message-passing Graph Neural Networks (GNNs) are increasingly used for predictive tasks
on graphs. Much work has been done to improve GNN architectures, but how the actual
data graph should be designed is not well studied. In this paper, we investigate how two
different graph representations impact the performance of GNN models across datasets
with varying characteristics grouped by homophily, heterogeneity, and number of labels per
node. A unique phenomenon is that the same abstract predictive task of labelling nodes is
formulated as a node classification problem on one representation and as a link prediction
problem on the other. Our work is the first to blur the line between these two basic and
fundamental tasks in graph learning. Our experiments on 12 real-world datasets suggest
that different representations (and tasks) are optimal for different datasets, models, and
hyperparameters. We derive empirical heuristics of choosing between the two and pave the
way towards a criterion of choosing the optimal graph representations and towards formally
understanding the interconnection between node classification and link prediction.

1 Introduction

Message-Passing Graph Neural Networks (GNNs)(Hamilton et al., 2018; Veličković et al., 2018; Kipf &
Welling, 2017) have been proven to be effective for analyzing graph-structured data and are widely used in
numerous domains (Zhou et al., 2021; Hamilton, 2020).

Two of the common tasks on large graphs are node classification (NC) and link prediction (LP). Identifying
fraudulant accounts in a financial transaction network(Wang et al., 2023), assigning academic papers with
subject categories in a citation graph(McCallum et al., 2000) and classifying types of businesses or products
in a Web-based graph(Zeng et al., 2020) are typically defined as NC problems. Recommending friends
and users to follow in a social network(El-Kishky et al., 2022) and predicting missing physical or chemical
associations in a biomedical graph(Wishart et al., 2017; Szklarczyk et al., 2019) are typical LP problems.
These tasks are formulated not only on homogeneous graphs, but also on real-world heterogeneous graphs
that have rich node- and edge-type information as well as feature attributes. Several extensions of classical
GNN models explictly leverage heterogeity(Wang et al., 2019; Chen & Chen, 2021) in an attempt to improve
learning performance.

Although GNNs have shown good performance for NC and LP on a variety of graphs, there are also known
issues such as over-smoothing(Rusch et al., 2023) and over-squashing(Topping et al., 2022) which limit the
expressiveness of GNNs and consequently their performance. The root cause stems from the fact that the
computation graph is exactly the same as the data graph, which allows GNNs to possess strong inductive
bias. Rewiring methods(Topping et al., 2022; Arnaiz-Rodriguez et al., 2022) that usually involve adding
edges or virtual nodes have been introduced. There are also bags of tricks(Wang et al., 2021; Chen et al.,
2022) that incrementally improve GNN performance.

Despite all the progress, very little effort has been put into how the data graph should be represented
in the first place. Existing work benchmarks on predefined NC and LP tasks on the given representations
of datasets. However, there is no canonical way of constructing the data graph and there are numerous
ways of representing the same abstract information. Consider the example of modeling "users tagging music

1

Under review as submission to TMLR

with genre" in a graph, one could define User and Music nodes, and assign Tag edges with properties being
one-hot encoding of genre. An alternative might be having User, Music and Genre nodes, and assigning
User-Music-Genre hyperedge (an edge connecting three nodes). The optimal representation (or schema)
depends on the workload, downstream models, and predictive tasks.

A

A

B

C

C

(a) The node classification representation: A graph
G1 where the specific information is stored as node
features in every node.

A

B

C

(b) The link prediction representation: A graph
G2 where the specific information is represented by
nodes of different types connected with new edges.

Figure 1: Two ways of representing the same abstract graph G. Colors represent different node and edge
types. Letters represent information about nodes.

In this paper, we systematically compare two representations that are general and fundamental, as shown in
Figure 1. When we have discrete properties about the nodes, we could represent them as labels on the nodes
(Figure1a), or as distinct nodes with edges connecting them (Figure 1b). This means that for a predictive
task on the discrete properties, the task is formulated as NC using the data graph in Figure 1a while it
becomes LP using the data graph in Figure 1b. Note that even the formal task differs; a phenomenon of
these two representations. This implies that such a decision of picking the data graph early in the machine
learning pipeline has profound impact, since entirely separate training and testing process, such as data
splits and metrics, as well as model architectures, can be used and compared across NC and LP for the same
end problem. Concretely, we investigate the following research questions:

• How do different representations of the same abstract graph affect the performance of a predictive
task defined on it?

• What are the characteristics of a graph that determine whether a node classification representation
or a link prediction representation is preferred?

Contributions. We give answers to the research questions by evaluating how well different GNNs perform
across a wide variety of graphs using NC and LP representations in the transductive setting. We make three
key contributions:

• We pose the basic and important question of how the abstract graph should be represented and
highlight two general and fundamental representations where even the formal predictive task of NC
and LP differs for the same end problem.

• We rigorously map out ways to fairly examine NC and LP representations by defining comparable
data splits, evaluation metrics, negative sampling (as a unique step of LP) and model architectures.

• We conduct extensive experiments using datasets of varying characteristics based on homophily
index, level of heterogeneity, and number of labels per node.

Our results show that the optimal representation varies for different datasets and depends on the specific
GNN used. Although most of the existing benchmarks adopt the NC representation by default, we found that
the LP representation indeed sometimes yields better results in fair comparisons. For example, we found that

2

Under review as submission to TMLR

GraphSAGE(Hamilton et al., 2018) is consistently better on the LP version of widely benchmarked ogbn-
arxiv(Hu et al., 2020) and similarly GAT(Veličković et al., 2018) on LP versions of DBLP(multi)(Akujuobi
et al., 2019) and CiteSeer(Giles et al., 1998). Our work implies that the question of constructing optimal
data graphs shall not be ignored and simply using the default representations in benchmarks is insufficient.
Our result provides the groundwork for future research towards a formal and general criterion of designing
optimal graph representations and a new perspectives which unifies node classification and link prediction.

2 Preliminary

Definition 2.1 (Graph). A graph G = (V, A, T , R) consists of a set of nodes V, a set of node types A, a
set of edges T ⊆ V × R × V, and a set of relation types R. Each node v ∈ V has one or more node types
α(v) ⊆ A. Each edge (vi, r, vj) ∈ T , has a relation type r ∈ R which specifies the type of relation between
nodes vi and vj . Each node v ∈ V has a initial node embedding zv ∈ Rd for some dimension d.

Features for all nodes are abbreviated as X ∈ R|V|×d. A homogeneous graph has |A| = |R| = 1. Let L be
a set of labels for the nodes. The partial labelling function L : V → P(L) assigns some of the nodes their
labels. Let VL ⊆ V denote the subset of nodes that are labelled. If the graph is not multilabeled, then
|L(v)| = 1 for all defined v ∈ VL.
Definition 2.2 (Transductive Node Classification). Given a graph G with node features X and a partial
labelling function L where VL ⊂ V, we want to assign labels to the nodes in V \VL by some f |G,X,L : V \VL →
P(L).
Definition 2.3 (Transductive Link Prediction). Given a graph G with node features X and an incomplete
set of edges T ⊂ V × R × V, we want to predict a new set of edges T ′ ⊂ (V × R × V) \ T by some
f |G,X : T ′ → {0, 1}.
Definition 2.4 (K-hop Homophily Index). The K-hop homophily index βK of a graph is given by

βK = 1
|V|

∑
v∈V

|u ∈ N K(u) : |L(u) ∩ L(v)| > 0|
|u ∈ N K(u)| .

When K = 1 and the graph is single-labelled, our K-hop homophily index reduces to the common homophily
index β that measures the proportion of nodes that share labels with their neighbours defined in Pei et al.
(2020).

2.1 Graph Neural Network

A message passing GNN iteratively aggregates node embedding from a node’s neighbourhood and upate it’s
embedding. These embeddings are initialized as some feature vectors of the nodes. The embeddings and
learnable weights are optimised with some objective on the graph. Formally, the message passing step as

h(k+1)
v = update(k)

(
h(k)

v , aggregate(k)({h(k)
u , ∀u ∈ N (v)}

)
(1)

mean, max, min are commonly used for aggregate and learnable non-linear MLPs for update. Note that
the neighbourhood function N (v) does not have to include the full neighborhood of v. GraphSAGE(Hamilton
et al., 2018) samples the neighbourhoods to improve model scalability. GAT(Veličković et al., 2018) learns
attention coefficients between pairs of nodes. aggregate being a set-function ensures the embeddings are
permutation equivariant. Since the computation structure directly follows the underlying data graph, a
strong inductive bias of the underlying graph is baked into the model.

The GNN formula could be applied to heterogeneous graphs G by ignoring the node and edge type informa-
tion. A natural extension that takes advantage of heterogeneity is to apply Equation 1 separately for each
triplet type A × R × A as distinct channels and aggregate the messages at the node level. A pictorial illus-
tration of the computation graph is given in Appendix A.1. HAN(Wang et al., 2019) and MAGNN(Fu et al.,
2020) use predefined metapaths (list of node and relation types) to induce metapath-induced neighbourhoods
as another way to explicitly leverage heterogeneity.

3

Under review as submission to TMLR

3 Node classification and link prediction on two representations

Among many different ways of representing G for various predictive tasks, we will focus on studying the
impact of using the NC representation (Figure 1a) and the LP representation (Figure 1b) for predictive
tasks on nodes in the transductive setting.

Given an abstract graph G = (V, A, T , R) and the labelling partial function L : V → P(L), we define our
representations formally. For clarity, we use calligraphic font in Section 2 to denote the abstract graph and
problems, and we use mostly default font in Section 3 whenever we refer to concrete data and computation
graphs and formal tasks.

3.1 Description

Definition 3.1 (Node classification representation). GNC = (V, A, T, R) is our data graph.
Definition 3.2 (Link prediction representation). GLP = (V ∪L, A∪{∗}, T ∪T ′, R∪{∗′}) is our data graph.
L is a new set of nodes disjoint from the original set, V ∩ L = ∅. ∗ is a new node type where a(v) = ∗ for
all v ∈ L. ∗′ is a new edge type. T ′ = {(v, ∗′, l) : v ∈ V, l ∈ L, L(v) ∋ l}.
Definition 3.3 (PNC : Transductive node classification on GNC). Given GNC with node features XV and
partial labelling function L, we want to learn f |GNC ,X,L : V \ VL → L.
Definition 3.4 (PLP : Transductive link prediction on GLP). Given GLP with node features XV ∪L. We want
to learn a boolean function f |GLP ,X : (V ×∗′×L)\T ′ → {0, 1}. The set {(v, ∗′, l) : v ∈ V, l ∈ L, f(v, ∗′, l) = 1}
therefore represents the predicted edges.

The learned function f |GNC ,X,L from task PNC using GNC naturally answers the questions on assigning labels
to unlabelled nodes in G. We can interpret the output of f |GLP ,X as a function f̃ |GLP,X

: V \ VL → P(L)
where f̃(v) ∋ l ⇐⇒ f(v, ∗′, l) = 1. f̃ |GLP,X

therefore solves transductive node classification in Definition 2.2.

3.2 Graph Data Splits

Now that we have defined the two tasks PNC and PLP on two graphs GNC and GLP , we need to define how
splits can be done so that trained models are generalisable (to assign labels for nodes). In order to measure
the impact of different representations, we need to ensure that the splits are comparable.

The split for PNC on GNC is simply partitioning the train, validation, and test set where Vtrain ∪ Vvalid ∪
Vtest = VL where the random partitioning is determined by some seed. While the computation graph provided
by GLP is different from that of GNC , we need to somehow ensure that the information available for training
the models remains equivalent. This allows comparisons to be drawn purely on the representations of the
information.

The split is less apparent for GLP . The set of edges in each split are further divided into message-passing
edges (for the computation graph) and supervision edges (for the objective function), both as information
used by the learning method. Given any Vtrain, Vvalid, Vtest for GNC , we construct the set of edges for GLP

and their message-passing and supervision subsets as:

T ′
train = {(v, ∗′, l) : L(v) ∋ l ∧ v ∈ Vtrain}, T ′

train_mp ∪ T ′
train_sup = T ′

train, T ′
train_mp ∩ T ′

train_sup = ∅ (2)
Ttrain_mp = T ′

train_mp ∪ T, Ttrain_sup = T ′
train_sup (3)

Tvalid_mp = Ttrain_mp ∪ Ttrain_sup, Tvalid_sup = {(v, ∗′, l) : L(v) ∋ l ∧ v ∈ Vvalid} (4)
Ttest_mp = Tvalid_mp ∪ Tvalid_sup, Ttest_sup = {(v, ∗′, l) : L(v) ∋ l ∧ v ∈ Vtest} (5)

T ′
train_mp and T ′

train_sup in Equation 2 are created with some supervision ratio hyperparameter from T ′
train.

Note that as a phenomenon of the equivalence of PLP and PNC for solving the same end task on different
graph representations GLP , GNC , a unique new step of message passing and supervision data splitting
appears since the models solving PLP use information from the graph topology for both the computation
graph and the objective, whereas for PNC , only the computation graph is based on the topology. An
illustration of the equivalent splits is shown in Figure 2.

4

Under review as submission to TMLR

A

?

B

C

?

(a) GNC with Vtrain.

?

A

?

?

?

(b) GNC with Vval.

?

?

?

?

C

(c) GNC with Vtest.

A

B

C

(d) GLP with Ttrain_mp in solid
lines and Ttrain_sup in dashed lines.

A

B

C

(e) GLP with Tval_mp in solid lines
and Tval_sup in dashed lines.

A

B

C

(f) GLP with Ttest_mp in solid lines
and Ttest_sup in dashed lines.

Figure 2: An example of equivalent splits for PNC on GNC and PLP on GLP .

3.3 Negative Sampling

The existence of supervision edges ensures a model generalises beyond seen edges and is able to predict new
ones. However, without negative data present in the learning process, the models are likely to converge
towards classifying all edges as positive. Since the graph topology is used explicitly as the computation
graph for inductive bias in the architecture, as a unique advantage of GNNs, negative samples are normally
utilised by the objective function (e.g binary cross-entropy).

There is a rich literature of negative sampling techniques (Nguyen & Fang, 2024; Ying et al., 2018; Yang et al.,
2020) for the general link prediction task (of the abstract Definition 2.3) where heuristically "representative
and difficult" node pairs are chosen as negative edges. However, for our PLP on GLP , we only want to learn
a function f |GLP ,X over (V × ∗′ × L) \ T ′ (i.e between the V nodes to the L nodes) and not the entire
(V ∪ L) × (R ∪ {∗′}) × (V ∪ L). As a result, we indeed have a true set of negative samples {(v, ∗′, l) :
v ∈ VL ∧ L(v) ̸∋ l}. We do not require any negative samples (nor supervision edges) over the subgraph
V × R × V .

4 Experiments

We experimentally compare how the two different representations and tasks perform on a variety of 12 real-
world datasets and 7 synthetic graphs of different characteristics, using two backbone models (GraphSAGE,
GAT) and their heterogeneous extensions as specified in Section 2.1 (Appendix A.1). All experiments use a
T4 16G GPU and our code is available on Github1.

4.1 Setup

For each dataset G, and for every seed, an 80/10/10 split is obtained on GNC and the equivalent split is
created on GLP following Equation 2 3 4 5. 30% of the label edges are encoded as message passing edges
T ′

train_mp, |T ′
train_mp/T ′

train_sup| = 3/7. The mutual hyper-parameters (number of epochs and learning

1Anonymised Github: https://anonymous.4open.science/r/nc_lp_paper-3FB0/README.md

5

https://anonymous.4open.science/r/nc_lp_paper-3FB0/README.md

Under review as submission to TMLR

rate) and the optimizer (Adam) are the same in both cases. Early stopping is applied on the validation
score. The test score with the highest validation score is recorded. Batching is used on larger datasets. For
GLP , we make sure that all the L nodes are present in every batch.

Accuracy is calculated for single-labeled datasets, and average precision (AP) is used for multi-labelled ones.
We report the average scores for each task/representation and model on each dataset together with the
standard deviation. We also report a direct comparison of scores for each fixed split and model, on the
two representations, and calculate the ratio of LP being better than NC in column LP > NC. Additional
experimental details are specified in Appendix A.2.

4.2 Datasets

We compare three sets of real-world datasets that exhibit different levels of homophily, heterogeneity, and
number of labels per node, to identify generalisable trends that correlate to specific dataset characteristics.
We additionally use a set of generated random graphs to validate the heuristics we observe.

For homophilic and heterophilic data, six datasets from Rossi et al. (2023) with varying degrees of 1-hop
homophily index were used. The homophilic datasets are CiteSeer (Giles et al., 1998; Bojchevski & Gün-
nemann, 2018), Cora-ML (McCallum et al., 2000; Bojchevski & Günnemann, 2018), and ogbn-Arxiv (Hu
et al., 2020), and the heterophilic datasets are Chameleon (Rozemberczki et al., 2021), Squirrel (Rozember-
czki et al., 2021), and Roman-Empire (Platonov et al., 2024). We additionally provide statistics of K-hop
homophily index and neighbourhood sizes for them in Appendix A.3 (Table 8, 9).

Heterogeneous datasets are ACM, DBLP, and IMDB from Wang et al. (2019) and multi-labelled datasets
DBLP-multi (Akujuobi et al., 2019), BlogCat (Tang & Liu, 2009), and Yelp (Zeng et al., 2020).

All of the datasets by default adopt the NC representation and NC benchmarks in the original work. All
datasets in GNC form have node features XV , except BlogCat, which we initialise randomly. For BlogCat,
we also found that the split from Tang & Liu (2009) is the only split where the score remained consistent
over the training, validation, and test sets, which we use instead of random splits. We initialise XL for the
L nodes in GLP with one-hot encodings.

4.3 Results on homophilic and heterophilic datasets

Tables 1 and 2 present comparisons between NC and LP on homophilic and heterophilic datasets. Both
models consistently perform better on the NC representations for heterophilic datasets. This is perhaps
counterintuitive since the extra edges T ′ in GLP directly connect the same-labelled nodes far apart in GNC .
For homophilic datasets, we observe that GAT on CiteSeerLP performs better than with CiteSeerNC. This
gap can be as significant as +4%. Furthermore, the advantage of CiteSeerLP is observed consistently across
every seed (with LP > NC at 100%).

More interestingly, both two-layer models perform better on the LP representations of the widely bench-
marked ogbn-arxiv datasets, as opposed to it’s default NC presentation. The highest average score is obtained
by GraphSAGE on ogbn-arxivLP. The behaviour of three-layer models varies significantly. For example, GAT
on ogbn-arxivNC obtains consistent scores when using 2 or 3 layers, but drops significantly on ogbn-arxivLP
with 3 layers. The behaviour is different for GraphSAGE, where 2- and 3-layer GraphSAGE consistently
and on average performs better on ogbn-arxivLP than on ogbn-arxivNC.

4.4 Results on heterogeneous datasets

We experiment with fundamentally heterogeneous datasets and metapath-based heterogeneous GNNs to
understand whether the NC and LP representations make a difference in this case. Performance results
for heterogeneous datasets using HAN are summarized in Table 3. LP and NC achieve comparable results
on DBLP (single), with LP slightly outperforming NC in average accuracy. In contrast, NC significantly
outperforms LP on IMDB and ACM. The detailed dataset description and the metapaths used are specified
in Appendix A.4.

6

Under review as submission to TMLR

GraphSAGE GAT
NC LP LP > NC NC LP LP > NC

CiteSeer 96.36 ± 0.90 94.59 ± 1.02 0% 90.02 ± 0.94 94.54 ± 0.85 100%
Cora-ML 88.63 ± 1.18 86.00 ± 2.80 0% 86.60 ± 1.86 84.57 ± 1.86 10%
OGBN-Arxiv 69.53 ± 0.32 72.17 ± 0.30 100% 69.76 ± 0.52 70.40 ± 0.59 60%
Chameleon 65.13 ± 2.60 57.54 ± 3.30 0% 73.38 ± 2.18 67.76 ± 3.16 0%
Squirrel 43.88 ± 1.66 40.88 ± 1.09 20% 44.73 ± 2.54 38.15 ± 2.26 0%
Roman Empire 78.18 ± 0.69 76.37 ± 0.92 0% 62.07 ± 1.09 56.02 ± 4.01 10%

Table 1: Test scores on the homophilic and heterophilic datasets, using models with 2 layers. LP > NC
represent the percentage of runs where GLP is a better representation than GNC .

GraphSAGE GAT
NC LP LP > NC NC LP LP > NC

CiteSeer 95.86 ± 0.85 95.44 ± 1.08 50% 90.12 ± 1.44 94.35 ± 0.87 100%
Cora-ML 87.37 ± 1.49 82.33 ± 4.73 0% 85.67 ± 2.12 84.70 ± 2.32 20%
OGBN-Arxiv 70.37 ± 0.32 72.14 ± 0.41 100% 69.84 ± 0.42 65.59 ± 1.12 0%
Chameleon 63.95 ± 4.07 56.93 ± 2.79 0% 73.16 ± 3.28 59.56 ± 3.79 0%
Squirrel 44.12 ± 2.47 37.73 ± 2.59 0% 42.15 ± 2.64 31.96 ± 4.01 0%
Roman Empire 78.99 ± 0.65 74.47 ± 1.22 0% 43.67 ± 1.79 37.05 ± 3.55 10%

Table 2: Test scores on the homophilic and heterophilic datasets, using models with 3 layers. LP > NC
represent the percentage of runs where GLP is a better representation than GNC .

NC LP LP > NC
DBLP (single) 93.15 ± 1.13 93.45 ± 1.61 50%
IMDB 67.99 ± 2.26 56.80 ± 3.27 0%
ACM 92.15 ± 1.71 36.39 ± 6.83 0%

Table 3: Test scores on the heterogeneous datasets with HAN as the model.

7

Under review as submission to TMLR

GraphSAGE GAT
NC LP LP > NC NC LP LP > NC

DBLP (multi) 93.41 ± 0.55 94.24 ± 0.26 100% 91.46 ± 0.41 93.36 ± 0.32 100%
BlogCat 99.83 ± 0.21 11.94 ± 1.20 0% 58.08 ± 0.95 9.05 ± 2.07 0%
Yelp 62.32 ± 0.55 39.21 ± 2.80 0% 42.59 ± 0.75 26.34 ± 1.09 0%

Table 4: Test scores on the multi-labelled datasets, using models with 2 layers. LP > NC represent the
percentage of runs where GLP is a better representation than GNC .

GraphSAGE GAT
NC LP LP > NC NC LP LP > NC

DBLP (multi) 93.68 ± 0.42 93.78 ± 0.49 80% 91.63 ± 0.49 91.57 ± 0.39 60%
BlogCat 99.58 ± 0.29 12.59 ± 1.81 0% 34.00 ± 1.86 11.36 ± 1.32 0%
Yelp 61.41 ± 0.62 37.77 ± 3.02 0% 40.83 ± 0.53 27.05 ± 1.02 0%

Table 5: Test scores on the multi-labelled datasets, using models with 3 layers. LP > NC represent the
percentage of runs where GLP is a better representation than GNC .

4.5 Results on multi-labeled datasets

Results presented in Tables 4 and 5 demonstrate competitive LP performance on DBLP(multi). For BlogCat
and Yelp, NC outperforms LP. The extremely large gap shown by BlogCat is not surprising as the dataset
is particularly sensitive to splits.

4.6 Results on random graphs

We plot distributions of the node degrees of the 12 real-world datasets in Figures 5, 6, 7 in Appendix
A.3. We observe a pattern in that most of the real-world datasets on which LP performs better (CiteSeer,
OGBN-Arxiv, DBLP (multi)) are sparse with many low-degree nodes and few mega-nodes.

Heuristically, there seems to be a trend of LP is sometimes better than NC on sparse and weakly homophilic
graphs with few high-degree nodes. We extend our experiments to a set of random graphs generated under
different distributions and various label assignments.

A barbell graph consists of two cliques of m1 number of nodes connected by a path of length m2. We assign
binary labels with a method hom, where each clique with half of the path being one label. We assign binary
labels with another method homsplit, where both cliques are assigned the same label, and the path the other
label. Both methods produce homophilic graphs. A stochastic block model (sbm) graph consists of k blocks
with probabilities psame and pdiff of creating edges over nodes of the same and different blocks respectively.
We create sbm graphs with 4 blocks of varying sizes and edge probabilities. We assign binary labels to each
of the two blocks of nodes. We randomly flip node labels for 10% of nodes for all graphs to ensure the graph
functions to be learnt are non-trivial. We generate all GNC graphs and transform them into GLP .

Our result is shown in Table 6. Similar trends observed in real-world datasets can be found again. For
example, NC is better for dense (homophilic) graphs bb-100-10-*. For sparse and weakly homophilic graphs
such as sbm-0.005-0.0005-2000, LP is +30% better for GraphSAGE than NC on average and for every split.
As the graphs become more sparse, the performance of GAT improves on LP but not NC. As an example, we
plot in Figure 3 the one-hop and two-hop neighbourhoods of a particular node in sbm-0.005-0.0005-2000NC
which LP classified correctly but not NC with GraphSAGE. The interpretation is that while the node is
homophilic (over both 1 and 2 hops), there is still a portion of nodes of the opposite label. However, under
the GLP representation, it’s 2-hop neighbourhood of same-labelled nodes will explode disproportionately.
This dominant scaling of neighbourhoods over higher k-hops imply more message passing from same-labelled
nodes in GLP .

8

Under review as submission to TMLR

GraphSAGE GAT
NC LP LP > NC NC LP LP > NC

bb-100-10-hom 91.43 ± 5.95 90.0 ± 6.88 0% 92.30 ± 5.30 90.0 ± 6.19 0%
bb-100-10-homsplit 84.29 ± 5.65 82.85 ± 5.71 10% 83.81 ± 6.10 84.29 ± 5.65 10%
sbm-0.05-0.2-50 78.50 ± 8.96 74.50 ± 11.5 50% 84.50 ± 10.11 75.00 ± 10.72 10%
sbm-0.05-0.01-50 75.0 ± 9.21 78.0 ± 13.8 60% 81.0 ± 8.31 66.0 ± 8.31 10%
sbm-0.01-0.002-1000 57.2 ± 2.49 89.8 ± 1.14 100% 89.7 ± 1.23 75.9 ± 9.77 0%
sbm-0.01-0.002-1000 61.4 ± 2.31 89.6 ± 1.77 100% 89.3 ± 1.39 81.8 ± 4.29 10%
sbm-0.005-0.0005-2000 60.32 ± 3.81 90.69 ± 0.51 100% 90.51 ± 0.58 85.89 ± 6.32 10%

Table 6: Test scores on the random graphs. bb-m1-m2-mode represents a barbell graph of m1 clique sizes
and m2 path length with mode either hom or homsplit. sbm-psame-pdiff-blocksize represents a sbm graph of
4 blocks of blocksize number of nodes, psame probability of edges in a block and pdiff probability of edges
across block. When psame > pdiff the graphs are generally homophilic. When psame < pdiff the graphs are
generally heterophilic. Two sbm-0.01-0.002-1000 graphs are generated with different seeds.

Figure 3: Example 1-hop and 2-hop neighbourhoods of a node id 720 in the sbm-0.005-0.0005-2000 graph in
GNC representation. Node 720 is highlighted in black. Nodes share the same label are in lightblue. Nodes
of the other label are in orange.

9

Under review as submission to TMLR

GraphSAGE GAT
LP ↓ ∆ LP ↓ ∆

CiteSeer 95.34 ± 0.97 0.1% 94.06 ± 1.49 0.29%
OGBN-Arxiv 69.63 ± 1.52 2.51% 59.84 ± 5.23 5.75%
Roman Empire 66.19 ± 1.86 8.28% 34.74 ± 5.65 2.31%

Table 7: Test scores when using 80% message passing edges, |T ′
train_mp/T ′

train_sup| = 8/2 instead of 3/7.
↓ ∆ represents the changes in average scores.

4.7 Hyperparameter analysis

There is a spectrum of model architecture and learning hyperparameter choices that impact the performance
of different models to solve PNC on GNC and PLP on GLP . A hyperparameter unique to LP but not NC is
the training message passing and supervision edge ratio. Table 7 shows the results when we use 80% edges
as message passing instead of 30%. We also examine the impact of embedding dimensions in representative
datasets in Appendix A.5 Table 11. Variations for different datasets validate that the common impact of
hyperparameter choices carry over to the different graph representations.

5 Related Work

Rewiring. There are several recent works that modify the computation graphs from the underlying data
graph in order to remediate over-smoothing or over-squashing effects of GNNs, or to improve empirical
performance. Topping et al. (2022) reduces over-squashing by removing bottlenects in the graph by examining
their curvature. Barbero et al. (2024) improves connectivity while preserving locality (distant nodes are kept
separate). Qian et al. (2024) introduces virtual-nodes that allows efficient message-passing over originally
long-distance nodes. Rossi et al. (2023) show that treating heterophilic graphs as directed can improve the
performance of GNNs when they are appropriately extended to directed-GNN. The approach of rewiring
often introduces nodes or edges that are not part of the data whereas we take the perspective of considering
different data representations on an abstract graph. Unique to our two representations, the appropriate
formal task becomes different, whereas none of the rewiring methods affect the end task.

Using label information. Our LP representation encodes the label information of nodes as new nodes and
edges in the concrete data graph itself. There are several other works that utilise node-label information for
learning. Wang et al. (2021) combines node label and feature information together by propagating them in
parallel. This approach dates back to the classical label propagation algorithm(Zhu & Ghahramani, 2002),
with Sato (2024) extending them by introducing traning-free GNNs that approximate label propagation.

Node classification and link prediction. There is very limited work that connects these two basic and
fundamental learning tasks on graphs. Abboud & İsmail İlkan Ceylan (2021) studies jointly the task of
transductive node classification over incomplete graphs and link prediction over graphs with node features.
Wu et al. (2022) similarly jointly learns node classification and link prediction. Daza et al. (2021) evaluates
entity representations that are learnt with LP objective.

6 Discussion and Future Work

Conclusion. In this paper, we investigate how different representations of the same abstract graph affect
the performance of a predicted task defined on it. We study one of the most common predictive tasks of
labelling nodes. It turns out that among many different possible general representations, one could assign
nodes with labels and formulate the task as a node classification problem, or construct new label-nodes, with
edge connections representing label assignment to other nodes, hence formulate the task as a link prediction
problem.

10

Under review as submission to TMLR

Our work is the first to make a connection between the two basic and fundamental tasks in graph learning at
this level. The line between benchmarking on each task is now blurred. Our experiments show that different
representations and their respective tasks are optimal for different graphs, models and hyperparameters.
The majority of such predictive tasks have been only benchmarked as a node classification problem, which
we now know is insufficient. In line with many recent works that challenges graph learning benchmarks(Luo
et al., 2024; Lv et al., 2021; Bechler-Speicher et al., 2025; Coupette et al., 2025) on the use of complex GNNs,
graph structures themselves and hyperparameter choices, our work adds a new consideration to all past and
future benchmarks.

Our results also empirically suggest heuristics of when a representation is better than the other. It appears
that relatively homophilic sparse graphs with few high-degree nodes may be suitable for link prediction
representations. We also observe that several of the graphs that link prediction perform better on are
subsets of citation networks, suggesting correlation with more nuanced characteristics, such as node features
or higher-order graph properties.

We pave the way for formally and fundamentally understanding the interconnection between the key problems
of node classification and link prediction. We demonstrate the importance of considering different graph
representations and call for more comprehensive future benchmarks. We hope our work is a step towards a
general and provable criterion of defining the optimal representation and task.

Limitations and Future work. Our paper is empirical in nature. Given that there is no prior work on the
question studied, we attempt to first answer the question of whether different representations matter. The
answer turns out to be positive. A valuable future direction will be formally establishing the connections
between different representations, in particular for the node classification and link prediction representations,
as well as the respective tasks.

Our work focuses only on the transductive setting due to the amount of interdependent components in the
entire learning process, such as initialisation, model choices, model and training process hyperparameters,
and datasets. Future empirical work could extend our problem definitions to inductive cases. Such an
extension will be nontrivial, for example, the optimal way of defining and sampling negative edges in the
inductive case is unobvious.

References
Ralph Abboud and İsmail İlkan Ceylan. Node classification meets link prediction on knowledge graphs,

2021. URL https://arxiv.org/abs/2106.07297.

Uchenna Akujuobi, Han Yufei, Qiannan Zhang, and Xiangliang Zhang. Collaborative graph walk for semi-
supervised multi-label node classification, 2019. URL https://arxiv.org/abs/1910.09706.

Adrian Arnaiz-Rodriguez, Ahmed Begga, Francisco Escolano, and Nuria Oliver. Diffwire: Inductive graph
rewiring via the lovász bound, 2022. URL https://arxiv.org/abs/2206.07369.

Federico Barbero, Ameya Velingker, Amin Saberi, Michael Bronstein, and Francesco Di Giovanni. Locality-
aware graph-rewiring in gnns, 2024. URL https://arxiv.org/abs/2310.01668.

Maya Bechler-Speicher, Ben Finkelshtein, Fabrizio Frasca, Luis Müller, Jan Tönshoff, Antoine Siraudin,
Viktor Zaverkin, Michael M. Bronstein, Mathias Niepert, Bryan Perozzi, Mikhail Galkin, and Christopher
Morris. Position: Graph learning will lose relevance due to poor benchmarks, 2025. URL https://arxiv.
org/abs/2502.14546.

Aleksandar Bojchevski and Stephan Günnemann. Deep gaussian embedding of graphs: Unsupervised induc-
tive learning via ranking, 2018. URL https://arxiv.org/abs/1707.03815.

Jun Chen and Haopeng Chen. Edge-featured graph attention network, 2021. URL https://arxiv.org/
abs/2101.07671.

Tianlong Chen, Kaixiong Zhou, Keyu Duan, Wenqing Zheng, Peihao Wang, Xia Hu, and Zhangyang Wang.
Bag of tricks for training deeper graph neural networks: A comprehensive benchmark study, 2022. URL
https://arxiv.org/abs/2108.10521.

11

https://arxiv.org/abs/2106.07297
https://arxiv.org/abs/1910.09706
https://arxiv.org/abs/2206.07369
https://arxiv.org/abs/2310.01668
https://arxiv.org/abs/2502.14546
https://arxiv.org/abs/2502.14546
https://arxiv.org/abs/1707.03815
https://arxiv.org/abs/2101.07671
https://arxiv.org/abs/2101.07671
https://arxiv.org/abs/2108.10521

Under review as submission to TMLR

Corinna Coupette, Jeremy Wayland, Emily Simons, and Bastian Rieck. No metric to rule them all: Toward
principled evaluations of graph-learning datasets, 2025. URL https://arxiv.org/abs/2502.02379.

Daniel Daza, Michael Cochez, and Paul Groth. Inductive entity representations from text via link prediction.
In Proceedings of the Web Conference 2021, WWW ’21, pp. 798–808. ACM, April 2021. doi: 10.1145/
3442381.3450141. URL http://dx.doi.org/10.1145/3442381.3450141.

Ahmed El-Kishky, Thomas Markovich, Serim Park, Chetan Verma, Baekjin Kim, Ramy Eskander, Yury
Malkov, Frank Portman, Sofía Samaniego, Ying Xiao, and Aria Haghighi. Twhin: Embedding the twitter
heterogeneous information network for personalized recommendation. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, KDD ’22, pp. 2842–2850. ACM, August
2022. doi: 10.1145/3534678.3539080. URL http://dx.doi.org/10.1145/3534678.3539080.

Xinyu Fu, Jiani Zhang, Ziqiao Meng, and Irwin King. Magnn: Metapath aggregated graph neural network
for heterogeneous graph embedding. In Proceedings of The Web Conference 2020, WWW ’20. ACM, April
2020. doi: 10.1145/3366423.3380297. URL http://dx.doi.org/10.1145/3366423.3380297.

C. Lee Giles, Kurt D. Bollacker, and Steve Lawrence. Citeseer: an automatic citation indexing system.
In Proceedings of the Third ACM Conference on Digital Libraries, DL ’98, pp. 89–98, New York, NY,
USA, 1998. Association for Computing Machinery. ISBN 0897919653. doi: 10.1145/276675.276685. URL
https://doi.org/10.1145/276675.276685.

William L. Hamilton. Graph representation learning. Synthesis Lectures on Artificial Intelligence and
Machine Learning, 14(3):1–159, 2020.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs, 2018.
URL https://arxiv.org/abs/1706.02216.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and Jure
Leskovec. Open graph benchmark: Datasets for machine learning on graphs. In H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33,
pp. 22118–22133. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/
paper/2020/file/fb60d411a5c5b72b2e7d3527cfc84fd0-Paper.pdf.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks, 2017.
URL https://arxiv.org/abs/1609.02907.

Yuankai Luo, Lei Shi, and Xiao-Ming Wu. Classic gnns are strong baselines: Reassessing gnns for node
classification, 2024. URL https://arxiv.org/abs/2406.08993.

Qingsong Lv, Ming Ding, Qiang Liu, Yuxiang Chen, Wenzheng Feng, Siming He, Chang Zhou, Jianguo
Jiang, Yuxiao Dong, and Jie Tang. Are we really making much progress? revisiting, benchmarking, and
refining heterogeneous graph neural networks, 2021. URL https://arxiv.org/abs/2112.14936.

Andrew K. McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. Automating the construction
of internet portals with machine learning. Information Retrieval, 3:127–163, 2000. doi: 10.1023/A:
1009953814988.

Trung-Kien Nguyen and Yuan Fang. Diffusion-based negative sampling on graphs for link prediction, 2024.
URL https://arxiv.org/abs/2403.17259.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric graph
convolutional networks. CoRR, abs/2002.05287, 2020. URL https://arxiv.org/abs/2002.05287.

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova. A critical
look at the evaluation of gnns under heterophily: Are we really making progress?, 2024. URL https:
//arxiv.org/abs/2302.11640.

Chendi Qian, Andrei Manolache, Christopher Morris, and Mathias Niepert. Probabilistic graph rewiring via
virtual nodes, 2024. URL https://arxiv.org/abs/2405.17311.

12

https://arxiv.org/abs/2502.02379
http://dx.doi.org/10.1145/3442381.3450141
http://dx.doi.org/10.1145/3534678.3539080
http://dx.doi.org/10.1145/3366423.3380297
https://doi.org/10.1145/276675.276685
https://arxiv.org/abs/1706.02216
https://proceedings.neurips.cc/paper_files/paper/2020/file/fb60d411a5c5b72b2e7d3527cfc84fd0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/fb60d411a5c5b72b2e7d3527cfc84fd0-Paper.pdf
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/2406.08993
https://arxiv.org/abs/2112.14936
https://arxiv.org/abs/2403.17259
https://arxiv.org/abs/2002.05287
https://arxiv.org/abs/2302.11640
https://arxiv.org/abs/2302.11640
https://arxiv.org/abs/2405.17311

Under review as submission to TMLR

Emanuele Rossi, Bertrand Charpentier, Francesco Di Giovanni, Fabrizio Frasca, Stephan Günnemann, and
Michael Bronstein. Edge directionality improves learning on heterophilic graphs, 2023. URL https:
//arxiv.org/abs/2305.10498.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding, 2021. URL
https://arxiv.org/abs/1909.13021.

T. Konstantin Rusch, Michael M. Bronstein, and Siddhartha Mishra. A survey on oversmoothing in graph
neural networks, 2023. URL https://arxiv.org/abs/2303.10993.

Ryoma Sato. Training-free graph neural networks and the power of labels as features, 2024. URL https:
//arxiv.org/abs/2404.19288.

Damian Szklarczyk, Annika L Gable, David Lyon, Alexander Junge, Stefan Wyder, Jaime Huerta-Cepas,
Milan Simonovic, Nadezhda T Doncheva, John H Morris, Peer Bork, Lars J Jensen, and Christian von
Mering. String v11: protein-protein association networks with increased coverage, supporting functional
discovery in genome-wide experimental datasets. Nucleic Acids Research, 47(D1):D607–D613, 2019. ISSN
0305-1048. doi: 10.1093/nar/gky1131.

Lei Tang and Huan Liu. Relational learning via latent social dimensions. pp. 817–826, 06 2009. doi:
10.1145/1557019.1557109.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M. Bron-
stein. Understanding over-squashing and bottlenecks on graphs via curvature, 2022. URL https:
//arxiv.org/abs/2111.14522.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio.
Graph attention networks, 2018. URL https://arxiv.org/abs/1710.10903.

Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Peng Cui, Philip S. Yu, and Yanfang Ye. Heterogeneous graph
attention network. CoRR, abs/1903.07293, 2019. URL http://arxiv.org/abs/1903.07293.

Yangkun Wang, Jiarui Jin, Weinan Zhang, Yong Yu, Zheng Zhang, and David Wipf. Bag of tricks for node
classification with graph neural networks, 2021. URL https://arxiv.org/abs/2103.13355.

Yuchen Wang, Jinghui Zhang, Zhengjie Huang, Weibin Li, Shikun Feng, Ziheng Ma, Yu Sun, Dianhai Yu,
Fang Dong, Jiahui Jin, Beilun Wang, and Junzhou Luo. Label information enhanced fraud detection
against low homophily in graphs. In Proceedings of the ACM Web Conference 2023, WWW ’23, pp.
406–416. ACM, April 2023. doi: 10.1145/3543507.3583373. URL http://dx.doi.org/10.1145/3543507.
3583373.

David S Wishart, Yannick D Feunang, An C Guo, Elvis J Lo, Ana Marcu, Jason R Grant, Tanvir Sajed,
Daniel Johnson, Carin Li, Zinat Sayeeda, Nazanin Assempour, Ithayavani Iynkkaran, Yifeng Liu, Adam
Maciejewski, Nicola Gale, Alex Wilson, Lucy Chin, Ryan Cummings, Diana Le, Allison Pon, Craig Knox,
and Michael Wilson. Drugbank 5.0: a major update to the drugbank database for 2018. Nucleic Acids
Research, 46(D1):D1074–D1082, 11 2017. ISSN 0305-1048. doi: 10.1093/nar/gkx1037. URL https:
//doi.org/10.1093/nar/gkx1037.

Zongqian Wu, Mengmeng Zhan, Haiqi Zhang, Qimin Luo, and Kun Tang. Mtgcn: A multi-task approach
for node classification and link prediction in graph data. Information Processing & Management, 59(3):
102902, 2022. ISSN 0306-4573. doi: https://doi.org/10.1016/j.ipm.2022.102902. URL https://www.
sciencedirect.com/science/article/pii/S0306457322000292.

Zhen Yang, Ming Ding, Chang Zhou, Hongxia Yang, Jingren Zhou, and Jie Tang. Understanding negative
sampling in graph representation learning, 2020. URL https://arxiv.org/abs/2005.09863.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure Leskovec. Graph
convolutional neural networks for web-scale recommender systems. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD ’18, pp. 974–983.
ACM, July 2018. doi: 10.1145/3219819.3219890. URL http://dx.doi.org/10.1145/3219819.3219890.

13

https://arxiv.org/abs/2305.10498
https://arxiv.org/abs/2305.10498
https://arxiv.org/abs/1909.13021
https://arxiv.org/abs/2303.10993
https://arxiv.org/abs/2404.19288
https://arxiv.org/abs/2404.19288
https://arxiv.org/abs/2111.14522
https://arxiv.org/abs/2111.14522
https://arxiv.org/abs/1710.10903
http://arxiv.org/abs/1903.07293
https://arxiv.org/abs/2103.13355
http://dx.doi.org/10.1145/3543507.3583373
http://dx.doi.org/10.1145/3543507.3583373
https://doi.org/10.1093/nar/gkx1037
https://doi.org/10.1093/nar/gkx1037
https://www.sciencedirect.com/science/article/pii/S0306457322000292
https://www.sciencedirect.com/science/article/pii/S0306457322000292
https://arxiv.org/abs/2005.09863
http://dx.doi.org/10.1145/3219819.3219890

Under review as submission to TMLR

x_paper x_label

SAGE/GAT
(paper→paper)

SAGE/GAT
(label→paper)

SAGE/GAT
(paper→label)

f_dim num_classesf_dim

⊕

64 ReLU 64 ReLU

SAGE/GAT
(paper→paper)

SAGE/GAT
(label→paper)

SAGE/GAT
(paper→label)

64

64 ReLU

⊕

48 ReLU 48 ReLU

SAGE/GAT
(paper→paper)

SAGE/GAT
(label→paper)

SAGE/GAT
(paper→label)

48

48 ReLU

⊕

32 ReLU 32 ReLU

out_labelout_paper

32 ReLU

32

Figure 4: The architecture of a heterogeneous GNN for a graph with two node types A = {paper, label}
and one relation type R = {∗} with no edges between label nodes. This example GNN has three layers.
A separate channel is instantiated for each triplet type. ⊕ denotes an aggregation of embeddings, in this
paper, PyG’s default aggregator, summation, is used.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graphsaint:
Graph sampling based inductive learning method, 2020. URL https://arxiv.org/abs/1907.04931.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng
Li, and Maosong Sun. Graph neural networks: A review of methods and applications, 2021. URL
https://arxiv.org/abs/1812.08434.

Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data with label propagation.
2002. URL https://api.semanticscholar.org/CorpusID:15008961.

A Appendix

A.1 Computation graph of heterogeneous GNN

An example computation graph of a heterogeneous GNN is illustrated in Figure 4. This implementation
is directly supported by PyG’s to_hetero() function on HeteroData. This implementation is a basic and
natural extension of homogeneous GNNs without adding metapaths that represent additional heuristics that
strengthen the models. The models with three layers have layer sizes (64, 48, 32), while the models with two
layers have layer sizes (64, 32). In the GAT models, 4 attention heads are used. For both task representations,
the decoder is a single linear layer on either nodes (for NC) or node-pairs (for LP).

14

https://arxiv.org/abs/1907.04931
https://arxiv.org/abs/1812.08434
https://api.semanticscholar.org/CorpusID:15008961

Under review as submission to TMLR

1-hop 2-hop 3-hop RW 2-hop RW 3-hop
citeseer 0.96 0.94 0.92 0.95 0.93

Homophilic cora-ml 0.81 0.73 0.58 0.77 0.61
ogbn-arxiv 0.64 0.50 0.37 0.58 0.42
chameleon 0.25 0.25 0.23 0.30 0.23

Heterophilic squirrel 0.22 0.21 0.20 0.26 0.21
roman-empire 0.05 0.07 0.07 0.29 0.11

Table 8: Homophily numbers for the different datasets in the heterophilic and homophilic comparison, before
and after rewiring with an 80/10/10 split. RW denotes homophily numbers for the rewired graph.

1-hop 2-hop 3-hop RW 1-hop RW 2-hop RW 3-hop
citeseer 2.5 16.7 42.5 2.76 57.6 186.9
cora-ml 5.4 71.8 294.7 5.7 99.3 422.3

ogbn-arxiv 13.7 3484.2 18469.6 13.9 4151.7 22579.6
chameleon 27.6 558.7 1066.3 27.8 580.8 1312.3

squirrel 76.3 1692.1 3538.5 76.5 1736.1 3836.9
roman-empire 2.9 7.1 12.8 3.1 121.2 750.6

Table 9: Neighbourhood sizes for the different datasets in the heterophilic and homophilic comparison, before
and after rewiring with an 80/10/10 split. RW denotes neighborhood sizes for the rewired graph.

A.2 Additional experimental setups

For the smaller real-world datasets and all synthetic graphs we used 10 random seeds. For larger datasets,
use 5 seeds for obgn-arxig and Squirrel and 3 seeds for BlogCat and Yelp if the results are consistent. Default
learning rate = 0.01. Default hidden channels = 64 and embedding size = 32.

The homogeneous GraphSAGE and GAT encoders consist of either two or three SAGE / GAT-layers with
ReLU-activation functions between them. The models with three layers have layer sizes (64, 48, 32), while
the models with two layers have layer sizes (64, 32). In the GAT models, 4 attention heads are used. For
both task representations, the decoder is a single linear layer on either nodes (for NC) or nodepairs (for LP).

The HAN model only consists of one layer, since the metapaths allow for message-passing in neighbourhoods
larger than 1-hop. Following Wang et al., 8 attention heads are used together with a dropout rate of 0.6,
and 128 hidden channels. The decoder architectures are the same as for GraphSAGE and GAT.

A.3 Dataset Statistics

Number of nodes, number of edges, number of classes, average degree, and node feature size for every dataset
can be found in Table 10. For each dataset, the node degree distribution is visualised in Figures 5, 6, and 7.
For the heterogeneous datasets, the node degree distribution is calculated on the computation graph induced
by the meta-paths.

A.4 Heterogeneous Dataset Information

ACM is a network of papers, authors, and subjects, where the papers are divided into three classes (database,
wireless communication, data mining). Paper features correspond to elements of a bag-of-words representa-
tion of keywords. The meta-path set {PAP, PSP} is used in Wang et al. (2019).

DBLP is a network of authors, papers, conferences and terms. The labels indicate research areas of the
authors, and are one of database, data mining, machine learning, and information retrieval. Author features
contain the elements of a bag-of-words represented by keywords. The meta-path set employed in Wang et al.
(2019) is {APA, APCPA, APTPA}.

15

Under review as submission to TMLR

(a) CiteSeer (b) Cora-ML

(c) OGBN-Arxiv (d) Chameleon

(e) Squirrel (f) Roman-Empire

Figure 5: Node degree distributions for the six datasets with varying label homophily levels.

16

Under review as submission to TMLR

|V | |T | Number of Classes d Average Degree
CiteSeer 4,230 10,674 6 602 2.5
Cora-ML 2,995 16,316 7 2,879 5.4
OGBN-Arxiv 169,343 1,166,243 40 128 13.7
Chameleon 2,277 36,101 5 2,325 27.6
Squirrel 5,201 217,073 5 2,089 76.3
Roman Empire 22,662 65,854 18 300 2.9
DBLP (single) 4,057 119,783 4 334 5,942.9
IMDB 4,932 20,172 2 3,489 48.1
ACM 3,025 273,000 3 1,902 4,124.3
DBLP (multi) 28,702 68,335 4 223 4.8
BlogCat 10,312 333,983 39 0 64.8
Yelp 716,847 7,340,000 100 300 19.5

Table 10: Statistics of all real-world datasets used in the paper, where |V | is the number of nodes, |T | is the
number of edges, and d is the size of node features. All statistics are based on the GNC representation.

(a) DBLP (single) (b) IMDB

(c) ACM

Figure 6: Node degree distributions for the computational graph (only involving meta-paths) of heteroge-
neous datasets.

17

Under review as submission to TMLR

(a) DBLP (multi) (b) BlogCat

(c) Yelp

Figure 7: Node degree distributions for the multi-labeled datasets.

GraphSAGE GAT
NC LP LP > NC NC LP LP > NC

CiteSeer 96.24 ± 0.97 94.3 ± 1.32 10% 90.26 ± 1.26 94.09 ± 0.93 100%
OGBN-Arxiv 67.99 ± 3.76 70.95 ± 1.00 80% 69.57 ± 0.17 65.69 ± 0.66 0%
Roman Empire 80.27 ± 1.36 72.44 ± 1.11 0% 42.41 ± 2.90 38.05 ± 2.52 10%

Table 11: Test scores on representative datasets using models with 3 layers. Hidden channel dimensions are
smooth interpolations of the input and output dimensions.

IMDB is a dataset containing movies, actors, and directors. Each movie is divided into one out of three
classes (Action, Comedy, Drama). Movie features correspond to elements of a bag-of-words representation
of plots. The meta-path set {MAM, MDM} is used in Wang et al. (2019).

The new GLP representations of these graphs make it possible to define new meta-paths which include
label nodes. Studying this is out of the scope of this paper. The same meta-path sets are used as in the
original paper. The added nodes and message-passing edges will still yield added information in the LP
representation.

A.5 Hyperparameter analysis on embedding dimensions

Table 11 shows the test scores on selected datasets when the hidden channel embedding dimension are not
fixed to 64, but instead smoothly interpolate between input and output embedding sizes. For example, if
input feature has dimension 4000, output embedding has dimension 1000, then the three-layer models have
embeddings 4000-3000-2000-1000.

18

	Introduction
	Preliminary
	Graph Neural Network

	Node classification and link prediction on two representations
	Description
	Graph Data Splits
	Negative Sampling

	Experiments
	Setup
	Datasets
	Results on homophilic and heterophilic datasets
	Results on heterogeneous datasets
	Results on multi-labeled datasets
	Results on random graphs
	Hyperparameter analysis

	Related Work
	Discussion and Future Work
	Appendix
	Computation graph of heterogeneous GNN
	Additional experimental setups
	Dataset Statistics
	Heterogeneous Dataset Information
	Hyperparameter analysis on embedding dimensions

