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ABSTRACT

This work aims at decreasing the end-to-end generation latency of large language
models (LLMs). One of the major causes of the high generation latency is the
sequential decoding approach adopted by almost all state-of-the-art LLMs. In
this work, motivated by the thinking and writing process of humans, we propose
Skeleton-of-Thought (SoT), which first guides LLMs to generate the skeleton of
the answer, and then conducts parallel API calls or batched decoding to complete
the contents of each skeleton point in parallel. Not only does SoT provide consid-
erable speed-ups across 12 LLMs, but it can also potentially improve the answer
quality on several question categories. SoT is an initial attempt at data-centric op-
timization for inference efficiency, and showcases the potential of eliciting high-
quality answers by explicitly planning the answer structure in language.

1 INTRODUCTION

Large language models (LLMs) (Brown et al., 2020; Touvron et al., 2023a; Du et al., 2022; OpenAI,
2023; Zheng et al., 2023) have shown exceptional performance in natural language processing and
chatbot systems. However, the inference process of the state-of-the-art LLMs is slow, hindering their
interactive use. For example, it takes 22 seconds for Claude (Anthropic, 2023) (accessed through
Slack API) and 43 seconds for Vicuna-33B V1.3 (a 33B LLaMA-based model, running locally on
one NVIDIA A100 GPU) to answer the question in Fig. 1.

We conclude three major causes of LLMs’ slow inference: (1) A large model size requires a large
amount of memory, memory access, and computation. For example, the FP16 weights of 175B GPT-
3 take 350GB memory, which means at least 5×80GB A100 GPUs are needed to keep the model
in GPU memory. Even with enough GPUs, the heavy memory access and computation slow down
the inference. (2) The attention operation in the prevailing transformer architecture is I/O bounded
and has a quadratic memory and computation complexity in sequence length. (3) The sequential
decoding approach in inference generates tokens one by one. This approach introduces a significant
inference latency since the generation of tokens cannot be parallelized. There is a bunch of literature
addressing the first two axes: large model size (Xiao et al., 2022; Frantar et al., 2022; Lin et al., 2023;
Sheng et al., 2023; Wang et al., 2021) and attention operation (Kitaev et al., 2020; Wang et al., 2020;
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Figure 1: Left: An illustration of Skeleton-of-Thought (SoT). Instead of producing answers se-
quentially, SoT produces different parts of answers in parallel. In more detail, given the question,
SoT first prompts the LLM to give out the skeleton, then conducts batched decoding or parallel API
calls to expand multiple points in parallel, and finally aggregates the outputs to get the final answer.
Right: The net win rates and speed-ups of SoT with router (SoT-R) compared to normal generation
on Vicuna-80. The net win rate is the difference between the fraction of questions that SoT-R has
better and worse answers than normal generation. The speed-up is the ratio between the latency
of normal and SoT-R generation. (1.0, 0.0) represents normal generation. Higher is better on both
axes. For most models, SoT-R not only accelerates the generation but also improves the quality of
the answers (evaluated with FastChat metric (Zheng et al., 2023)). See § 3.2 and 4 for more details.

Dao et al., 2022; Zaheer et al., 2020; Chen et al., 2023b). These works either compress/redesign the
model (Xiao et al., 2022; Frantar et al., 2022; Lin et al., 2023; Kitaev et al., 2020; Wang et al., 2020;
Dao et al., 2022; Zaheer et al., 2020) or redesign the serving system (Sheng et al., 2023; Chen et al.,
2023b) and hardware (Wang et al., 2021).

In contrast to prior work, we tackle the third axis and question the common assumption that LLMs
have to do fully sequential decoding. We show the feasibility of parallel decoding of off-the-shelf
LLMs without any changes to their model, system, or hardware. For instance, for the question
in Fig. 1, we can reduce the latency from 22 seconds to 12 seconds (1.83× speed-up) with Claude,
and from 43 seconds to 16 seconds (2.69× speed-up) with Vicuna-33B V1.3 on an NVIDIA A100.

The idea stems from reflecting on how humans ourselves answer questions. Humans do not always
think about questions and write answers in a sequential fashion. In contrast, for many question
types, we first derive the skeleton according to some protocols and strategies, and then add evidence
and details to explain each point. This is especially the case on occasions like offering consultancy,
taking tests, writing papers, and so on. This intuition has our back to question the necessity of fully
sequential decoding. In this paper, we propose Skeleton-of-Thought (SoT). Specifically, as shown in
Fig. 1, we guide the LLM to derive a skeleton first by itself. Based on the skeleton, the LLMs can
complete each point in parallel so that we get a speed-up. SoT can be utilized to accelerate both
open-source models with batched decoding and API-based models with parallel API calls.

The current SoT is suitable for questions that require a long answer whose structure can be planned
ahead, while not suitable for questions that require step-by-step reasoning or only need a short
answer. Therefore, to make the overall solution more practical, we design an extension, SoT with
router (SoT-R), which employs a router to only trigger SoT for suitable questions.

We test SoT on 12 recently released LLMs. Not only does SoT provide considerable speed-ups (up
to 2.39×), but it can also improve the answer quality in many cases (Fig. 1).

Note that in contrast to existing model- and system-level efforts for inference efficiency, SoT takes
a novel “data-level” pathway by letting the LLM organize its output content. This novel perspective
is becoming feasible and is expected to grow in importance, owing to the evolving capabilities of
state-of-the-art LLMs. We hope this work can stimulate more research in the realm of data-centric
optimization (Zha et al., 2023; HazyResearch, 2023) for efficiency.
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Prompt 1. Skeleton Prompt Template T s

[User:] You’re an organizer responsible for only giving the skeleton (not the full content) for answering the question.
Provide the skeleton in a list of points (numbered 1., 2., 3., etc.) to answer the question. Instead of writing a full sentence,
each skeleton point should be very short with only 3∼5 words. Generally, the skeleton should have 3∼10 points. Now,
please provide the skeleton for the following question.
{question}
Skeleton:
[Assistant:] 1.

Prompt 2. Point-Expanding Prompt Template T pe

[User:] You’re responsible for continuing the writing of one and only one point in the overall answer to the following
question.

{question}

The skeleton of the answer is

{skeleton}

Continue and only continue the writing of point {point index}. Write it **very shortly** in 1∼2 sentence and
do not continue with other points!
[Assistant:] {point index}. {point skeleton}

The rest of the paper is organized as follows. We first introduce SoT in § 2 and show its results in
§ 3. Then, we expand on the SoT-R extension in § 4. § 5 positions SoT in the research ecosystem
(expanded in App. D). Finally, we analyze the limitations and share outlooks of SoT in § 6.

2 SKELETON-OF-THOUGHT (SOT)

2.1 METHOD

Overview. Based on the intuition that humans usually think about and answer a question in an
organized way, the core idea of this work is to guide the LLM itself to give a skeleton first and then
write the overall answer parallelly instead of sequentially. Fig. 1 illustrates how SoT produces the
final answer to a user question q.

(1) Skeleton stage. SoT first assembles a skeleton request, T s(question = q), using the skeleton
prompt template T s (Prompt 1, and Prompt 3 in App. B.1) with the question q as the parameter. The
skeleton prompt template is written to guide the LLM to output a concise skeleton of the answer.
Then, we extract the B points from the skeleton response Rs of the LLM.

(2) Point-expanding stage. Based on the skeleton, we let the LLM expand on each point in parallel.
Specifically, for the point with index b and skeleton Rs

b , SoT uses T pe(question = q, skeleton =
Rs, point index = b, point skeleton = Rs

b) as the point-expanding request for the LLM, where
T pe is the point-expanding prompt template (Prompt 2). Finally, after completing all points, we
concatenate the point-expanding responses {Rpe

b }b=1,··· ,B to get the final answer.

Parallel point expanding. We conduct parallel point-expanding so that SoT is able to achieve a
speed-up than normal decoding.

(1) For proprietary models with only API access, we can issue multiple parallel API calls to get an
end-to-end latency gain at the cost of an increased number of API requests and tokens.

(2) For open-source models that we can run locally, we let them process the point-expanding re-
quests as a batch (paddings are added to the left of the point-expanding requests). We explain below
why this could achieve speed-ups. A typical LLM generative process consists of two phases: (a)
the prefilling phase in which the prompt is parsed to generate the key-value cache for further use,
and (b) the decoding phase in which tokens are generated one by one in a sequential manner. The
decoding phase accounts for the majority of the end-to-end latency, especially when generating a
long response. Note that the decoding phase is bottlenecked by weight loading instead of activation
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loading or computation.1 Consequently, running LLM inference with increased batch sizes does
not increase the per-token latency much. Therefore, SoT allows us to decode roughly B× more to-
kens within the same amount of time if we parallelly decode B points. See App. E for the expanded
discussions and the supporting experiments. Please refer to App. B for more implementation details.

3 SOT EVALUATION

Datasets. We evaluate SoT on two recent assistant-style datasets: (1) Vicuna-80 (Chiang et al.,
2023), which contains 80 questions spanning nine categories, such as coding, math, writing, role-
play, and so on, and (2) WizardLM (Xu et al., 2023), which contains 218 questions spanning more
categories and diverse difficulties. Due to space constraints, we only report Vicuna-80 results in the
main paper, and defer WizardLM results to the Apps. G and I.

Models. We test SoT on 12 models, including 9 open-source models and 3 API-based models. We
obtain the weights of all the open-source models from Hugging Face. See App. A for more details.

3.1 EVALUATION OF EFFICIENCY

API-based models. We record the latency of every API call with
start = time.time(); ...; elapsed_time = time.time() - start, and
add the latency of the skeleton API call and the slowest point-expanding API call as the SoT latency.

Open-source models. All open-source models we currently evaluate are based on the LLaMA 7B,
13B, or 33B architectures. Thus, to enable fast analysis, we first make a latency profiling table for
each LLaMA architecture on NVIDIA A100. The table contains the architecture’s (1) latency for
prefilling sequences of length 1 to 700 with different batch sizes (from 1 to 16), and (2) decoding
one token with a context of length 1 to 1024 with different batch sizes (from 1 to 16). With these
three latency profiling tables, given the number of points B, the token lengths of the requests and
responses in the skeleton and point-expanding stages, we can quickly estimate the SoT latency
by simply looking up entries in the tables and adding them up. See App. F for a more detailed
description of how we conduct the profiling and estimate the latency.

In addition to the above approach, we also compare the actual latency of SoT and normal sequential
generation (abbreviated as “normal” in the following discussion) in App. G.1.4.

The rest of this section shows the speed-ups of SoT on different models (§ 3.1.1) and question
categories (§ 3.1.2). In addition, we also report the latency breakdown of SoT stages in App. G.1.2
and the SoT speed-ups on an RTX 3090 GPU in App. G.1.3.

3.1.1 SPEED-UP BREAKDOWN: MODELS

We investigate how SoT reduces the end-to-end latency on different models. Fig. 2a shows the
average speed-up for each model across all question categories. We can see that SoT obtains a >2×
speed-up (up to 2.39×) on 8 out of 12 models.

We report the detailed statistics about token lengths and numbers of points in Fig. 11. (1) In terms
of the point number B (Fig. 11a), LLaMA2, Vicuna-7B V1.1, Vicuna-7B V1.3, and ChatGPT-3.5
yield relatively fewer points (<6), while GPT-4 and StableVicuna-13B generates the largest number
of points on average (≈9). (2) Regarding the point-expanding response length, Figs. 11b to 11d
show that the API-based models, ChatGPT-3.5, Claude, and GPT-4, follow the point-expanding
request better and generate shorter point-expanding responses than the open-source models. One
can also notice that StableVicuna-13B’s longest point-expanding responses for many question cat-
egories can be as lengthy as the overall normal answer, since it fails to adhere to the “Write it
**very shortly**” instruction in the point-expanding request. Consequently, SoT cannot accelerate
StableVicuna-13B well. (3) Regarding the length balance degree between point responses, Fig. 11e
shows that LLaMA2 and the API-based models generate more balanced point-expanding responses.
(4) As for the overall length of the final aggregated answer (Fig. 11f), employing SoT on most
models results in answers that are, on average, 1∼2× longer than the normal answer.

1This is true when the number of concurrent queries is small; see § 6 for discussion on other scenarios.
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Figure 2: Average speed-ups of SoT on different models and question categories.

3.1.2 SPEED-UP BREAKDOWN: QUESTION CATEGORIES

Here we investigate how SoT reduces the end-to-end latency for different question categories.
Fig. 2b shows the average speed-up for each question category across all models. The question
categories for which SoT can provide high-quality answers are marked in green, and other cate-
gories are marked in red (see § 3.2.3 for the answer quality evaluation). We can see that SoT can
obtain speed-ups for all question categories. For the five question categories that SoT can provide
high-quality answers (i.e., knowledge, generic, common-sense, roleplay, counterfactual), SoT can
speed up the overall answer generation process by 1.89× to 2.33× in the meantime.

3.2 EVALUATION OF ANSWER QUALITY

In order to compare the answer quality of the normal sequential generation (abbreviated as “normal”
in the following discussion) and SoT generation, we adopt two LLM-based evaluation frameworks:
FastChat (Zheng et al., 2023) and LLMZoo (Chen et al., 2023c). The evaluation process is to present
a question and a pair of answers (from normal or SoT generation) to an LLM judge (GPT-4 in the
main paper; see App. I.4 for the results evaluated using ChatGPT-3.5) and ask for its preference.

Here are more details about the evaluation of the answer quality:

(1) Detailed metrics. FastChat provides one metric for the general answer quality. In addition
to a general metric, LLMZoo provides five detailed metrics on the answers’ coherence, diversity,
immersion, integrity, and relevance.

(2) Question categories. FastChat provides two special evaluation prompts for coding and math
questions for more accurate evaluation, whereas LLMZoo does not. Following the implementation
in LLMZoo, we exclude math and coding questions in all LLMZoo evaluation results.

(3) Extentions to avoid evaluation bias. To avoid the potential bias from the order of the two answers
presented to the LLM judge, we extend FastChat and LLMZoo evaluation frameworks by running
the evaluation twice with either ordering of the two answers. In either evaluation, a score of 1,
0, and -1 is assigned when SoT wins, ties, or loses, respectively. The final evaluation is that SoT
wins/ties/loses when the sum of the two scores is positive/zero/negative. For example, if SoT wins
in one evaluation and loses in the other evaluation, the result is “tie”. If SoT wins (loses) in one
evaluation and ties in the other, the result is “win” (“lose”).

(4) Net win rates. We further define net win rates to give a summarized view of the answer quality.
Given the number of questions that SoT wins (#win) and loses (#lose), we define net win rates
as #win−#lose/total number of questions. 0% means that SoT performs competitively to the normal baseline
(wins and loses in the same number of questions). Higher values mean that SoT performs better.

In the following sections, we first present the overall quality of SoT answers (§ 3.2.1), and then go
into the details across different question categories (§ 3.2.3), models (§ 3.2.2), and metrics (§ 3.2.4).

3.2.1 OVERALL QUALITY

In Fig. 3, we show the win/tie/lose rates (the percentage of the cases when SoT wins/ties/loses
compared to normal generation) across all models and questions using the two metrics from FastChat
and LLMZoo that capture the general quality of the answers. We notice a discrepancy between the
two metrics on when SoT is strictly better than the baseline (45.8% v.s. 29.5%). Despite that, the
two metrics agree that SoT is not worse than the baseline in around 60% of the cases, and the win

5



Published as a conference paper at ICLR 2024

rates are close to the lose rates. This result suggests that the answers of SoT maintain good quality
of that of the normal generation.

0% 20% 40% 60% 80% 100%

General quality (LLMZoo)

General quality (FastChat)

45.8%

29.5%

19.6%

29.3%

34.5%

41.2%

Win Tie Lose

Figure 3: Win/tie/lose rates of SoT v.s. normal generation using “general” metrics from FastChat
and LLMZoo. SoT performs better than or equal to normal generation in around 60% cases.

3.2.2 QUALITY BREAKDOWN: MODELS

We compute net win rates on all models in Fig. 4. Again, we see that the two general metrics
from FastChat and LLMZoo have different absolute values but similar rankings. In particular, both
metrics agree that OpenChat-13B, Vicuna-7B V1.1, Claude, LLaMA2-Chat-13B have low net win
rates, whereas Vicuna-13B V1.3, StableVicuna-13B, and UltraLM-13B have high net win rates.

-60% -40% -20% 0% 20%
StableVicuna-13B

UltraLM-13B
Vicuna-13B V1.3

GPT-4
LLaMA2-Chat-7B
Vicuna-33B V1.3
Vicuna-7B V1.3

ChatGPT-3.5
LLaMA2-Chat-13B

OpenChat-13B
Vicuna-7B V1.1

Claude

(a) Metric: general quality (FastChat).
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(b) Metric: general quality (LLMZoo).
Figure 4: Net win rates of SoT on different models.

We investigate the answers in App. I.1.1, and summarize the key takeaways as follows. Some
models have low SoT net win rates as they cannot understand the skeleton and point-expanding
prompts well. Some other models have low SoT net win rates as their normal answers already
have good quality, making it hard for SoT to beat them (e.g., Claude). For models that are able to
understand the SoT prompts and the normal answers are not good enough, SoT can improve the
answer quality. We expect that further improving SoT prompts or fine-tuning the models can make
it easier for LLMs to understand the skeleton and point-expanding prompts and ultimately result in
better answer quality.

3.2.3 QUALITY BREAKDOWN: QUESTION CATEGORIES

We compute net win rates on all question categories in Fig. 5. Similar to Fig. 3, we see that LLMZoo
tends to be more optimistic about the quality of SoT than FastChat. Nevertheless, the conclusions
are consistent: SoT performs relatively well on generic, common-sense, knowledge, roleplay, and
counterfactual, and relatively poorly on writing, fermi, math, and coding.
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counterfactual

generic
common-sense

knowledge
roleplay

fermi
writing
math

coding

(a) Metric: general quality (FastChat).

-20% 0% 20% 40% 60%

counterfactual
generic

common-sense
knowledge

roleplay
fermi

writing

(b) Metric: general quality (LLMZoo).
Figure 5: Net win rates of SoT on different question categories.

We investigate the answers in App. I.1.2, and summarize the key takeaways as follows. SoT per-
forms well when the question can be answered in several points whose details can be expanded
independently. This includes a wide range of real-world questions. On the other hand, it is fun-
damentally challenging to apply SoT on questions that require step-by-step thinking, in which the
latter steps require the details from the earlier steps, such as math questions. To make SoT general
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across broader question categories, one promising pathway is to enable SoT to adaptively fall back
to normal generation, which we explore in § 4. Interestingly, our results suggest that some LLMs
are already able to do that occasionally without special prompting or tuning (see App. I.1.2).

3.2.4 QUALITY BREAKDOWN: METRICS

In Fig. 6, we show more detailed metrics from LLMZoo to reveal in which aspects SoT can improve
or hurt the answer quality. On average, we can see that SoT improves the diversity and relevance
while hurting the immersion and coherence.

0% 20% 40% 60% 80% 100%

Integrity

Coherence

Immersion

Relevance

Diversity

23.2%

29.8%

40.5%

61.4%

99.9%
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30.6%

23.7%

11.3%

0.1%

42.1%

39.6%

35.8%

27.3%

Win Tie Lose

Figure 6: Win/tie/lose rates of SoT v.s. normal generations using metrics from LLMZoo. SoT
performs well on diversity and relevance, and relatively worse on coherence and immersion.

Through answer investigation (App. I.1.3), we summarize the key takeaways as follows. The skele-
ton stage of SoT explicitly require LLMs to discuss the answers from multiple aspects without filler
words. This improves the diversity and relevance of the answers. As for coherence and immersion,
SoT is not worse than the normal generation around 60% of the time. One future direction is to
improve the SoT prompts or pipeline so that the answers can be better in more metrics.

4 SOT WITH ROUTER (SOT-R): ADAPATIVELY TRIGGERING SOT
In § 3, we see that SoT provides considerable speed-ups while maintaining (or even improving)
answer quality for many question types. However, the biggest limitation is that SoT is not suitable
for questions that require step-by-step reasoning (§ 3.2.3). Towards pushing the practical adoption
of SoT, we explore the possibility of adaptively triggering SoT only when it is suitable. To achieve
that, we propose a router module that decides if SoT should be applied for the user request, and
then call either SoT or normal decoding accordingly. This paradigm aligns with the recent trends
of composing multiple models to solve complicated tasks (Chase, 2022; Shen et al., 2023). To
implement the router, we explore two options: LLM prompting as the router (no model training is
needed) (§ 4.1), and trained RoBERTa as the router (§ 4.2). The evaluation is provided in § 4.3.

4.1 PROMPTING ROUTER

We directly ask an LLM if the question is suitable for SoT. More specifically, we ask the LLM if the
desired answer is in a list of independent points (see App. C.1 for the prompt). If the answer is yes,
we will use SoT; otherwise, we will use normal generation (i.e., directly feeding the question to the
LLM). We employ GPT-4 as the LLM router given its strong capability.

4.2 TRAINED ROUTER

While leveraging GPT-4 as the router obviates the need for model training, its performance remains
sensitive to prompt design. Therefore, we approach the problem as a sequence classification task by
fine-tuning a small language model as the router. Specifically, we annotate the LIMA dataset (Zhou
et al., 2023) as the training set to train a RoBERTa model (Liu et al., 2019), which has only 120M
parameters. Details about the annotation and training can be found in Apps. C.2.1 and C.2.2.

4.3 SOT-R EVALUATION

We compare SoT and SoT-R under the same evaluation setup in § 3. Besides the prompting and
trained routers, we also consider a “human router” where we manually judge whether SoT should
be applied for each question. This serves as a benchmark for comparison.
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4.3.1 EVALUATION OF EFFICIENCY

Fig. 7 shows the speed-ups of SoT and SoT-R for different models on Vicuna-80 (see App. G.2 for
results on the WizardLM dataset). We can see that: (1) As expected, SoT-R obtains lower speed-
ups than SoT, since SoT is not triggered for some questions and the router induces a small latency
overhead. Nevertheless, SoT-R can still benefit most models with >1× speed-ups. (2) SoT-R with
the trained router obtains slightly higher speed-ups for 7 out of 12 models on Vicuna-80, while
SoT-R with the prompting router obtains higher speed-ups for all models on WizardLM (Fig. 17).

1.0 1.5 2.0 2.5 3.0 3.5 4.0
StableVicuna-13B

Claude
Vicuna-13B V1.3

ChatGPT-3.5
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LLaMA2-Chat-7B

SoT (w/o router)
SoT-R w/ prompting router
SoT-R w/ trained router

Figure 7: Speed-ups of SoT and SoT-R on dif-
ferent models across all question categories of
the Vicuna-80 dataset.
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SoT-R w/ trained router
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Figure 8: Net win rates of SoT and SoT-R on
different question categories of the Vicuna-80
dataset (evaluated with the FastChat metrics).

4.3.2 EVALUATION OF ANSWER QUALITY

Fig. 8 shows the net win rates (averaged across all models) of SoT and SoT-R on Vicuna-80 with the
FastChat metrics (see App. I.2 for results of the WizardLM dataset and LLMZoo metrics). We can
see that: (1) SoT-R significantly improves the answer quality on questions where SoT is not suitable
(e.g., coding, math, writing, fermi) by falling back to normal decoding. At the same time, SoT-R
maintains answer quality improvements on questions where SoT is good at. (2) The trained router
performs similar to (on Vicuna-80) or better than (on WizardLM; see App. I.2) the prompting router.
This accords with our intuition in § 4.2. (3) The prompting and trained routers could even surpass
human router (e.g., on roleplay questions; see more examples on WizardLM in App. I.2).

We discuss the consistency across three routers in App. C.3. The primary takeaways include: (1)
on Vicuna-80, there is a notable consistency among all three routers, and (2) on WizardLM, greater
discrepancies emerge, with the trained router showing higher alignment with human annotations.

5 SOT IN THE CONTEXT OF LITERATURE

This section positions SoT in related work to reveal how SoT (1) is connected to, (2) is different
from, and (3) can harness the power of other methods. See App. D for the expanded discussion.

Efficient LLM methods at model and system levels. At the model level, prior work proposes ef-
ficient architectures, including dynamic mixture-of-experts (Lepikhin et al., 2021), low-complexity
attention (Kitaev et al., 2020), and multi-query attention (Shazeer, 2019). However, they usually
require a significant re-training cost. In contrast, compression methods require a smaller amount
of fine-tuning cost by reducing the complexity of pre-trained LLMs, such as quantization (Frantar
et al., 2022) and weight or activation sparsification (Mishra et al., 2021; Zaheer et al., 2020).

At the system level, prior work (1) optimizes the computational graph (Dao et al., 2022), (2) op-
timizes the assignment and scheduling of computational graph on devices (Sheng et al., 2023), or
(3) designs batching or caching mechanisms for serving multiple users (Fang et al., 2021). These
techniques address the large memory access and footprint posed by the vast model scale and atten-
tion mechanism, and mainly aim at enhancing the throughput rather than the end-to-end latency.
As SoT trades off throughput for end-to-end latency, SoT can make these throughput-oriented tech-
niques help with end-to-end latency. This interesting synergy offers opportunities for achieving
better trade-offs between latency and throughput in future serving systems.

In contrast to model- and system-level techniques, SoT is a data-level technique in a new “content
co-organization for efficiency” paradigm. See § 6 for more discussions.

Efficient LLM methods through parallel generation. Some prior work also addresses the sequen-
tial decoding issues. Speculative decoding (SD) methods (Stern et al., 2018) employ smaller models
to generate some consecutive tokens sequentially and apply the target LLMs to verify them paral-
lelly. Non-autoregressive generation (NAG) methods (Gu et al., 2018; Xiao et al., 2023) sample and
refine consecutive tokens parallelly, often with the support of a modified and tuned model.
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Relying on either assisting models or special models and sampling schemes, SD and NAG methods
conduct parallel verification or sampling and refinement of consecutive tokens. In contrast, SoT
prompts the LLM itself to plan the contents in a way that permits the parallel generation of tokens in
different segments, by exploiting the emerging instruction-following and planning ability of LLMs.

Prompting methods for LLMs. Recent years have witnessed the emergence of the “pre-train,
prompt, and predict” paradigm, which has shown promise in enhancing LLMs’ quality in math and
commonsense reasoning (Wei et al., 2022; Kojima et al., 2022; Wang et al., 2022; Chen et al., 2022)
and planning for multi-modality tasks (Shen et al., 2023; Zhu et al., 2023). Instead of focusing on
answer quality, SoT is a first attempt at exploiting the power of prompting to improve efficiency.

6 LIMITATIONS, FUTURE WORK, AND OPEN QUESTIONS

Answer quality evaluation. Our answer quality evaluation is far from perfect due to the limited
prompt set, the potential bias of GPT-4 judges, and the inherent difficulty of evaluating LLM gener-
ations. Currently, we did not conduct human evaluation since it is easy for a human to tell whether
an answer is generated with SoT due to its distinctive pattern, which might cause evaluation bias.

Eliciting or improving LLMs’ ability. § 3.2.4 demonstrates SoT’s potential of enhancing answer
quality. It is part of a broader trend in recent research, exemplified by work including CoT (Kojima
et al., 2022; Wei et al., 2022), ToT (Yao et al., 2023), and ReAct (Yao et al., 2022), which collectively
affirm the notion that explicitly articulating the thought process in language can elicit high-quality
answers from LLMs. These findings resemble human thinking: rather than relying solely on the
first intuition or purely sequential thinking, we often document step-by-step reasoning or thought
organization to attain high-quality answers. This intriguing parallel prompts us to explore further
how we can draw from the human thinking process to facilitate more effective and efficient AI.

For instance, SoT currently ignores the dependencies between points. A conceptually better way is
to organize the points as Graph-of-Thoughts, where the edges represent the dependencies, and each
point is decoded conditioned on the contents of its ancestor points. In addition, instead of complying
with a static graph, we expect the need of having dynamic Graph-of-Thoughts, where the high-level
thought structure is adjusted dynamically by LLMs themselves. This could potentially combine the
efficiency and global thinking advantages of SoT with the logical reasoning and impromptu think-
ing strengths of methods like CoT (Kojima et al., 2022; Wei et al., 2022). Notably, a contemporary
work (Besta et al., 2023) has attempted to design Graph-of-Thoughts to elicit reasoning. Further-
more, it is interesting to explore how the SoT answers can be used to fine-tune LLMs to generate
more structured answers in a self-improving way (Zelikman et al., 2022; Huang et al., 2022).

Efficiency and overhead of SoT in different scenarios. Serving systems commonly adopt batch
processing to handle concurrent queries. This raises a concern of whether SoT may hurt serving
throughput due to parallel requests. (1) When there is an unsaturated number of concurrent queries,
SoT can effectively reduce latency and enhance GPU utilization. Example scenarios include (a)
Edge-side applications with a single user; (b) Centralized services during periods with unsaturated
user requests and underutilized computing capacity. It is interesting to study the appropriate SoT
triggering conditions based on system workloads. (2) When there is a saturated number of concur-
rent queries, SoT is still useful for improving answer quality. However, in this case, it is important
to consider the computation overhead from SoT. We delve into this concern in App. H.

For API-based models, a notable concern arises regarding the increased number of prefilling tokens
(App. H). Given that many APIs charge token usage, SoT may lead to higher costs. To address this,
one can use prompt tuning to design shorter SoT prompts (Jiang et al., 2023).

Data-centric efficiency optimization. While data-centric engineering for improving answer qual-
ity (Zha et al., 2023; HazyResearch, 2023) is gaining popularity, its potential for inference efficiency
is not explored yet. SoT is the first attempt. As LLM capabilities and the amount of LLM-generated
data are growing rapidly, data-centric techniques could become more useful in the future. To pave
the way towards that, there are a lot to explore. For example, the acceleration ratio of SoT depends
on the SoT prompt, the model, and the question, and thus not as predictable and controllable as
model- or system-level techniques, which might hinder the practical adoption. We look forward to
future work to unlock the full potential of data-centric efficiency optimization.
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A MODEL DETAILS

Table 1 summarizes the models on which we evaluate SoT. We use GPT-4 in the main paper and
ChatGPT-3.5 in App. I.4 as the judge in FastChat and LLMZoo evaluation.

Table 1: Models evaluated with SoT. All the open-source models are fine-tuned from LLaMA mod-
els.

Access Model Name Institution Released Date

Open-Source

LLaMA2-Chat-7B (Touvron et al., 2023b) Meta & Microsoft 2023/07
LLaMA2-Chat-13B (Touvron et al., 2023b) Meta & Microsoft 2023/07

OpenChat-13B (Wang et al., 2023a) Tsinghua 2023/07
Vicuna-7B V1.3 (Chiang et al., 2023) LMSYS 2023/06

Vicuna-13B V1.3 (Chiang et al., 2023) LMSYS 2023/06
Vicuna-33B V1.3 (Chiang et al., 2023) LMSYS 2023/06

StableVicuna-13B (Phung, 2023) CarperAI 2023/05
UltraLM-13B (Ding et al., 2023) OpenBMB & Tsinghua 2023/05

Vicuna-7B V1.1 (Chiang et al., 2023) LMSYS 2023/03

API-Based Claude (Anthropic, 2023) Anthropic 2023/05
ChatGPT-3.5 OpenAI 2022/11

GPT-4 OpenAI 2023/03

Table 2 shows sources of the models we use in the paper.

Table 2: The Hugging Face or API endpoints of the models.

Access Model Name Hugging Face or API Endpoints

Open-Source

LLaMA2-Chat-7B (Touvron et al., 2023b) meta-llama/Llama-2-7b-chat-hf
LLaMA2-Chat-13B (Touvron et al., 2023b) meta-llama/Llama-2-13b-chat-hf

OpenChat-13B (Wang et al., 2023a) openchat/openchat
Vicuna-7B V1.3 (Chiang et al., 2023) lmsys/vicuna-7b-v1.3

Vicuna-13B V1.3 (Chiang et al., 2023) lmsys/vicuna-13b-v1.3
Vicuna-33B V1.3 (Chiang et al., 2023) lmsys/vicuna-33b-v1.3

StableVicuna-13B (Phung, 2023) CarperAI/stable-vicuna-13b-delta2

UltraLM-13B (Ding et al., 2023) openbmb/UltraLM-13b2

Vicuna-7B V1.1 (Chiang et al., 2023) lmsys/vicuna-7b-delta-v1.1

API-Based Claude (Anthropic, 2023) Claude extension on Slack3

ChatGPT-3.5 Azure OpenAI, gpt-35-turbo 0301 version4

GPT-4 OpenAI, gpt-4-0613 version

B IMPLEMENTATION DETAILS OF SKELETON-OF-THOUGHT

B.1 PROMPT

The skeleton prompt is shown in Prompts 1 and 3 and the point-expanding prompt is shown in
Prompt 2.

Skeleton prompt template. In order to make the output skeleton short and in a consistent format for
the good of efficiency and ease of point extraction, the skeleton prompt template (1) describes the

2For convenience, we use the non-official endpoint TheBloke/stable-vicuna-13B-HF and
TheBloke/UltraLM-13B-fp16 to get merged weights.

3https://www.anthropic.com/claude-in-slack
4https://azure.microsoft.com/en-us/products/ai-services/openai-service
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Prompt 3. Skeleton Prompt Template T s (with Two-Shot Demonstrations)

[User:] You’re an organizer responsible for only giving the skeleton (not the full content) for answering the question.
Provide the skeleton in a list of points (numbered 1., 2., 3., etc.) to answer the question. Instead of writing a full
sentence, each skeleton point should be very short with only 3∼5 words. Generally, the skeleton should have 3∼10
points.

Question:
What are the typical types of Chinese dishes?
Skeleton:
1. Dumplings.
2. Noodles.
3. Dim Sum.
4. Hot Pot.
5. Wonton.
6. Ma Po Tofu.
7. Char Siu.
8. Fried Rice.

Question:
What are some practical tips for individuals to reduce their carbon emissions?
Skeleton:
1. Energy conservation.
2. Efficient transportation.
3. Home energy efficiency.
4. Reduce water consumption.
5. Sustainable diet.
6. Sustainable travel.

Now, please provide the skeleton for the following question.
{question}
Skeleton:
[Assistant:] 1.

task precisely, and (2) provides a partial answer “1.” for the LLM to continue writing. The skeleton
responses are in the desired format in most cases. Therefore, we can use a simple regular expression
(\d+)\.\s?([\s\S]+?)(?=\n|\n*$) to extract point indexes and point skeletons from the
skeleton response.

We find that GPT-4 can work well without the two demonstrations in the skeleton prompt. Therefore,
we do not include the two demonstrations for GPT-4 (Prompt 1). For all other models, the two
demonstrations are included, as shown in Prompt 3.

Point-expanding prompt template. It describes the point-expanding task and provides a partial
answer. We also provide instructions “Write it **very shortly** in 1∼2 sentence” so that the LLMs
keep the answers concise. Unlike the skeleton prompt template, we find that demonstrations are not
necessary to get reasonable results.

We find that Claude and GPT-4 follows the instruction “Write it **very shortly** in 1∼2 sentence
and do not continue with other points!” in Prompt 2 very well, so that the answers are very short.
Therefore, we delete “**very shortly**” from the prompt template in Claude and GPT-4.

Partial answer. In the Prompts 1 and 2, we provide partial answers so that LLMs can follow the
desired response format better.

We can put the partial answer at the end of the prompt for the open-source models to continue
writing. An implementation detail is that different open-source models have different conversa-
tion templates (i.e., different ways to combine user and assistant messages into one string). For
example, Vicuna (Chiang et al., 2023) uses the string “USER:” and “ ASSISTANT:” for the place-
holder “[User:]” and “[Role]” in the Prompts 1 and 2, respectively, while UltraLM (Ding et al.,
2023) uses “User:” and “〈/s〉Assistant:”. We build our open-source model experiments with the
help of the FastChat codebase (Zheng et al., 2023), in which the conversation templates of many
models are already handled correctly. We implement the conversation templates of OpenChat-13B,
StableVicuna-13B, and UltraLM-13B according to their official guides and codes.

For ChatGPT-3.5, we provide partial answers as a last message in the chat history from the assistant.
Note that it is not a documented approach. We find it works well in most cases, in that ChatGPT-3.5
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Prompt 4. LLM Prompting as the Router

[User:] Question: {question}

How would you like to answer the question?
A. Organize the answer as a list of points or perspectives (in the format of 1., 2., 3., etc.), and the points or perspectives
can be answered independently without referring to the contents of the previous points.
B. Organize the answer as a list of points or perspectives (in the format of 1., 2., 3., etc.), and the contents of later points
or perspectives cannot be answered independently without referring to the contents of the previous ones.
C. Do not organize the answer as a list of points or perspectives.

Just say A, B, or C. Do not explain. Do not provide an answer to the question.
[Assistant:]

continues the texts from the provided partial answer. However, in some rare cases, ChatGPT-3.5
repeats the provided partial answers.

For Claude over Slack, there is no obvious way to give the API a partial answer. We resort to
modifying the prompt template slightly by adding

Please start your answer from “{partial answer}” and do not output other things before that

at the end. We find that Claude understands and obeys it well. For GPT-4, we also take this approach.

System Message. We do not include the system message in the prompts for open-source models
except LLaMA2.

The partial answer, “**very shortly**”, and the 2-shot demonstrations discussed above are the only
differences between the prompts we used across all models and all evaluations.

B.2 SUPPORTING MULTI-ROUND CONVERSATION

To use SoT in a multi-round conversation, we can just put the question and the final aggregated
answer in the history, removing all the SoT prompts. In this way, using SoT in one conversation
round will not introduce additional prefill cost in future rounds.

C IMPLEMENTATION DETAILS OF SKELETON-OF-THOUGHT WITH ROUTER

C.1 PROMPTING ROUTER

We use Prompt 4 for querying GPT-4 as the router. If the answer is “A” (i.e., the question can be
answered in a list of independent points), we will use SoT. Otherwise, if the answer is “B” (i.e., the
answer is in a list of points but they depend on each other) or “C” (i.e., the answer should not be in
a list of points), SoT is not suitable and we will fall back to normal decoding.

C.2 TRAINED ROUTER

We tackle the routing problem as a sequence classification task. We first annotate the LIMA training
set (Zhou et al., 2023), and then fine-tune a RoBERTa model (Liu et al., 2019) using the labeled
data. Finally, we apply the tuned RoBERTa as the router on Vicuna-80 and WizardLM. We detail
the steps in the following.

C.2.1 ANNOTATION PROCESS

In the classification task, a label of 1 (positive) indicates that this question can be answered with
SoT, while a label of 0 (negative) suggests that using the normal generation mode is more suitable.
We annotate the LIMA training set, which consists of 1,030 Q&As sourced from three community
webpages: Stack Exchange, wikiHow, and the Pushshift Reddit. We also annotate the Vicuna-80
and WizardLM datasets for evaluation.
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Table 3: Router confusion matrices on the Vicuna-80 dataset. Left: Rows are human annotations
(H) and columns are the GPT-4 router (G). Middle: Rows are human annotations (H) and columns
are the RoBERTa router (R). Right: Rows are the GPT-4 router (G) and columns are the RoBERTa
router (R).

G0 G1
H0 38 5
H1 0 37

R0 R1
H0 37 6
H1 5 32

R0 R1
G0 34 4
G1 8 34

Table 4: Router confusion matrices on the WizardLM dataset. Left: Rows are human annotations
(H) and columns are the GPT-4 router (G). Middle: Rows are human annotations (H) and columns
are the RoBERTa router (R). Right: Rows are the GPT-4 router (G) and columns are the RoBERTa
router (R).

G0 G1
H0 94 66
H1 3 55

R0 R1
H0 135 25
H1 31 27

R0 R1
G0 93 4
G1 73 48

We use GPT-4 to assist the annotation process. Specifically, we present each question to GPT-4 and
analyze its answer to determine whether SoT can be triggered for this question. We assign a positive
label to a question if GPT-4’s response meets two criteria: (1) it contains a list of points that can be
expanded in parallel, (2) each point provides sufficient details (i.e., the point-expanding response is
not too short), which will enable SoT to achieve a speed-up. Two of the paper’s authors conduct the
annotation process independently, and discuss the inconsistent annotations to decide the final label.

C.2.2 TRAINING DETAILS

We use roberta-base with 120M parameters as the router model. The finetuning is conducted
using the AdamW optimizer (Loshchilov & Hutter, 2019) with a weight decay of 0.01. The learning
rate undergoes a warm-up phase during the first 1% of iterations to 5e-5 and then decays linearly.
We train the model for 2 epochs using a batch size of 32. Input sequences are either padded or
truncated to achieve a consistent length of 512 tokens.

In the application of SoT, false positives (SoT is incorrectly triggered when it should not be, resulting
in degraded answer quality) are of more significant concern than false negatives (the router misses a
potential SoT trigger, resulting in a reduced speed-up). Thus, to mitigate false positives, we employ
the Tversky loss (Wang et al., 2023b) with parameters α = 0.7 and β = 0.3, which penalizes false
positives more heavily than false negatives. We also incorporate label smoothing (Szegedy et al.,
2016) with a factor of ε = 0.2. Overall, the entire fine-tuning process is efficient, completing in 2
minutes on an NVIDIA A100 GPU.

C.3 ROUTER CONSISTENCY

We present the confusion matrices for the three routers to illustrate their consistency. The results on
Vicuna-80 and WizardLM are shown in Tables 3 and 4, respectively.

On Vicuna-80, we can observe a notable level of agreement among the three routers. Compared with
the GPT-4-prompting router, the trained router exhibits a slightly higher number of false negatives
w.r.t. the human annotations. Conversely, on WizardLM, given the intricate answer structure and
the presence of many ambiguous cases, the routers show significant discrepancies. Specifically, the
GPT-4 router produces many false positives, which pose adverse affects on the answer quality (see
App. I.2). The RoBERTa router aligns more closely with the human annotations.

C.4 CONCURRENT EXECUTION FOR SOT-R

In SoT-R, the router serves as an additional stage that extends the two-stage SoT pipeline, as illus-
trated in Fig. 9. To push the limit of latency optimization, we can run the router, normal generation,
and SoT generation concurrently. Once the router makes a decision, one of the normal and SoT
generation processes can be aborted. However, this approach will increase the token overhead.
Therefore, we did not employ this approach in this work and leave it to future work.
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Figure 9: Left: The SoT-R pipeline. Right: A possible approach to further reduce latency at the
cost of token overhead.

D SOT IN THE CONTEXT OF LITERATURE (EXPANDED)

D.1 EFFICIENT LLMS

Extensive research has been dedicated to enhancing the throughput and latency of LLM infer-
ence. We first discuss model-level architecture design or compression techniques. These techniques
change the model and can benefit both the latency and throughput but require finetuning to retain the
model quality. Then, we discuss system-level efforts that optimize the computational graph or the
assignment and scheduling of the computational graph on computation and storage devices. Most
system-level efforts accelerate the prefilling phase or focus on improving the throughput. Finally,
we discuss some research efforts that share a similar motivation to ours, namely, addressing the
efficiency issue of sequential decoding.

Model-level optimization. Considerable architectural design efforts have emerged to (1) improve
the scalability w.r.t. model size by introducing mixture-of-expert inference (Lepikhin et al., 2021;
Fedus et al., 2022), (2) address the quadratic complexity w.r.t. input size of attention by designing
new attention mechanisms (Kitaev et al., 2020; Wang et al., 2020), (3) reduce the memory access
and footprint of attention by using multi-query attention (Shazeer, 2019), and so on. However, these
methods usually require a substantial re-training cost. The model compression techniques require a
smaller amount of fine-tuning by reducing the model complexity of a pre-trained LLM from certain
aspects (Ganesh et al., 2021). Representative techniques include quantization (Xiao et al., 2022;
Frantar et al., 2022; Lin et al., 2023), the static or dynamic pruning of weights, activation, and
attention (Mishra et al., 2021; Zaheer et al., 2020; Wang et al., 2021; Chen et al., 2023b), and so on.

Zooming out from LLM compression to the whole field of model compression, we can see that
model co-design or compression for efficiency has received tremendous attention in the past few
years and has grown into large research fields, such as pruning (Han et al., 2015; Wen et al., 2016),
quantization (Krishnamoorthi, 2018), factorization (Denton et al., 2014), and neural architecture
search (Zoph & Le, 2017; Elsken et al., 2019; Cai et al., 2019). Different from the model co-design
paradigm, SoT is in a “content co-organization for efficiency” paradigm for improving the LLM
efficiency. Along with the growth in the LLM capabilities and amount of LLM-generated data,
data-level techniques could become important tools in the efficient LLM toolbox.

System-level optimization. In the realm of lossless acceleration, considerable efforts have been
devoted to addressing the I/O-bound nature of LLMs on modern hardware platforms (Dao et al.,
2022). Numerous studies (Dao et al., 2022; Zhai et al., 2022; Ivanov et al., 2021; NVIDIA, 2019)
have focused on adjusting the computational graph by fusing and implementing operations in an
I/O-friendly way. As a representative method, FlashAttention (Dao et al., 2022) fuses all operations
of one attention into one GPU kernel with spatially tiled computation to reduce the off-chip I/O of
the attention map. While FlashAttention can effectively accelerate training and the prefilling phase
of inference, it cannot accelerate the decoding phase much (when the batch size is small), as it is
the I/O of weights rather than activation or attention map that bottlenecks the decoding phase. For
example, when the context length is 64, decoding one token using LLaMA-7B needs to load each
of the 7B parameters from the off-chip HBM onto the GPU chip at least once, but only transferring
about 20M (0.02B) activation values between the off-chip HBM and GPU chip.

In order to satisfy Service Level Objectives, serving systems focus on improving the serving
throughput under latency constraints. To this end, serving systems (Fang et al., 2021; NVIDIA,
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2021; Google, 2021) pack multiple queries together into a batch to improve the hardware utiliza-
tion. The batching technique has proven highly effective in enhancing throughput, leading to the
development of various variants. For example, some work designs methods to decide which queries
to batch together (Fang et al., 2021; Zhou et al., 2022), while others selectively batch parts of the
model to enable fine-grained iteration-level batching (Yu et al., 2022) or multi-task batching (Zhou
et al., 2022). Various model parallelism (Lu et al., 2017; Huang et al., 2019; Narayanan et al.,
2019; Rajbhandari et al., 2020; Narayanan et al., 2021; Li et al., 2021; Zheng et al., 2022) and
offloading (Ren et al., 2021; Sheng et al., 2023) techniques have been proposed to maximize the
throughput of LLM training or inference. In a nutshell, given the computational graph and device
configurations, these techniques optimize the split, assignment, and scheduling of computations,
storage, and communications on devices. In addition to the model parallelism and batching tech-
niques, an efficient memory management mechanism for LLM workloads is also an essential feature
in the serving systems (Kwon et al., 2023; SenseTime, 2023a;b).

To sum up, these system-level techniques mainly help with the throughput in training and batched
inference. They can be used by SoT to improve the throughput of the batched decoding of multiple
segments. This means that SoT can harness the power of these throughput-oriented techniques and
make them help with the end-to-end latency, offering a new dimension for better trading off latency
and throughput in future serving systems.

Another parallelism perspective to position SoT is that SoT guides the LLM to adjust the sequen-
tial workload to become “inter-content” parallelizable, which differs from the parallelism levels
in existing serving systems, including inter-instance (Krizhevsky, 2014; Rajbhandari et al., 2020),
inter-operation (Huang et al., 2019; Narayanan et al., 2019; 2021), intra-operation (Xu et al., 2021),
and inter-token (Li et al., 2021). It may be worthwhile to explore the integration of SoT into serving
systems to maximize the hardware utilization.

Decoding optimization. One bottleneck for the end-to-end latency lies in the autoregressive de-
coding phase, where tokens must be generated one by one. Due to the dependency between tokens,
the computation of different tokens cannot be parallelized, causing severe under-utilization of GPU.
In order to improve the end-to-end decoding latency of a given LLM, speculative decoding meth-
ods (Stern et al., 2018; Leviathan et al., 2022; Chen et al., 2023a; Gante, 2023; Sun et al., 2023;
Miao et al., 2023) propose to use cheaper approaches to generate short candidate token sequences,
for example, by sequentially decoding with an assisting model much smaller than the given LLM.
Then, they use the LLM to parallelly verify the candidates and keep the prefix sequence that matches
the LLM’s verification results.

Another line of work that shares the motivation of addressing the autoregressive efficiency issue is
non-autoregressive generation (NAG) methods (Gu et al., 2018; Xiao et al., 2023). NAG methods
sample consecutive tokens parallelly, often with the aid of a modified and tuned model. To maintain
the answer quality, instead of sampling for one iteration, many NAG methods refine the output
parallelly for multiple iterations (Xiao et al., 2023; Santilli et al., 2023).

To summarize, the speculative decoding methods use assisting models for letting the LLM conduct
parallel verification of consecutive tokens, and the NAG methods rely on specially designed models,
training schemes, or sampling schemes for the parallel sampling and refinement of consecutive to-
kens. In contrast, SoT prompts the LLM itself to plan the contents in a way that permits the parallel
generation of multiple tokens in different segments. SoT exploits the emerging instruction-following
and planning ability of SoTA LLMs rather than relying on specially designed modeling, sampling,
and training schemes. This is different from all existing work that targets the autoregressive effi-
ciency issue.

D.2 PROMPTING METHODS FOR LLMS

In recent years, the “pre-train, prompt, and predict” paradigm has emerged (Liu et al., 2023), which
designs prompts comprising task descriptions and (optionally) a few demonstrations to guide pre-
trained LLMs in generating answers for a wide range of downstream tasks. Researchers found that
instruction-tuned LLMs (Brown et al., 2020; Wei et al., 2021; Ouyang et al., 2022; Chung et al.,
2022; Taori et al., 2023) possess a strong ability to (1) generalize to new tasks thanks to the diverse
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natural language descriptions encountered during instruction tuning, and (2) learn in-context using
a few demonstrations without weight tuning.

In virtue of these abilities, the field has been manually engineering (Brown et al., 2020; Kojima
et al., 2022; Shen et al., 2023; Li et al., 2023a), automatic searching (Shin et al., 2020), or continu-
ously tuning (Li & Liang, 2021; Lester et al., 2021) the prompts for uncovering the capabilities of
LLMs on downstream tasks. There are a bunch of prompting methods that improves the reasoning
performance of LLMs by designing thinking flows mimicking human reasoning: (1) mimicking the
step-by-step or compositional thinking structure (Wei et al., 2022; Kojima et al., 2022; Press et al.,
2022; Yao et al., 2023; Besta et al., 2023; Zhang et al., 2023), (2) designing multiple reasoning paths
and their aggregation (Wang et al., 2022; Yao et al., 2023; Li et al., 2023c), and (3) using tools for
calculation and information retrieval (Chen et al., 2022; Yao et al., 2022; Schick et al., 2023). As
a representative example, the Chain-of-Thought prompts largely improve the performance on tasks
that require logical reasoning by simply providing a “Let’s think step by step” (Kojima et al., 2022)
instruction or a few demonstrations (Wei et al., 2022). Another topic that arises quite a surge of in-
terests is to prompt LLMs to help finish complex multi-modality task (Shen et al., 2023; Zhu et al.,
2023). For example, HuggingGPT (Shen et al., 2023) design prompts to guide the LLM to generate
structural JSON for the orchestration of multi-model execution to finish complex tasks.

To summarize, the large literature on prompting methods has been aiming at uncovering different
capabilities of LLM and improving the answer quality on different downstream tasks. In contrast,
SoT is a first attempt at exploiting the power of prompting to improve efficiency.

D.3 HIERARCHICAL TEXT GENERATION

SoT can be regarded as being “hierarchical” since it has high-level answer structure planning. Prior
studies in hierarchical text generation (Li et al., 2015; Shao et al., 2019; Puduppully et al., 2019;
Fan et al., 2018) all focus on enhancing the answer quality, including improving the long-range
coherence, relevance to the topic, or reducing redundancy. These methods craft hierarchical neural
architectures that contain different modules to model high-level (sentence-level or document-level)
and low-level (word-level) dependencies (Li et al., 2015; Shao et al., 2019; Fan et al., 2018). They
still employ sequential word-by-word generation without parallelization between sentences.

Note that the sentence-level representations in previous work (Li et al., 2015; Shao et al., 2019) are
“implicit” latent variables instead of “explicit” language descriptions. Some previous studies (Shao
et al., 2019; Puduppully et al., 2019) train a dedicated planning module to execute explicit content
planning in advance. Nevertheless, these methods all conduct “closed-form” planning that only
reorders and groups the input keywords, rather than producing “free-form” plans on “what to say”
and “how to say”. All the hierarchical architectures and planning modules require training or even
special data processing (Puduppully et al., 2019).

To summarize, in terms of the objective, the primary focus of SoT – efficient generation – is dif-
ferent from previous hierarchical text generation literature. In terms of the methodology, instead of
designing new hierarchical architectures or planning modules, SoT exploits the emerging planning
and instruction-following abilities of LLMs to do explicit (which means the plan is described by in-
terpretable language) and free-form planning. This allows SoT to be applied to off-the-shelf LLMs
for producing structured answers.

As the hierarchical text generation literature focuses on enhancing answer quality, they could pro-
vide inspiration for future expansions of SoT to generate high-quality answers for broader types of
questions.

E EFFICIENCY ANALYSIS

This section gives a detailed explanation on why SoT can reduce the overall decoding latency with
the same computational resource for local models.

The vanilla approach processes only one question and decodes the answers sequentially, whereas
SoT processes multiple point-expanding requests and the answers in a batch. We focus on the
following question: “Compared to processing only one sequence, how much peak memory overhead
and latency increase will be brought by processing a batch of sequences?”
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Table 5: The latency and average GPU performance of the prefilling and decoding phases when
inferencing LLMs. The prefilling token length is 128, the decoding token length is 64, and the batch
size is 1. The test is run on one NVIDIA A100 GPU.

Model Prefill/Decode Latency (ms) Prefill/Decode GPU Perf. (TFLOPS)

LLaMA-7B 40 / 2735 43 / 0.31
LLaMA-13B 54 / 3725 62 / 0.44
LLaMA-33B 100 / 5506 85 / 0.75
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Figure 10: The trends of latency, average GPU performance of decoding one token, and peak mem-
ory with respect to the batch size B of sequences. The prefilling token length is 128, and the
decoding token length is 64. The test is run on one NVIDIA A100 GPU.

A typical LLM generative process consists of two phases: (1) the prefilling phase in which the
prompt is parsed to generate the key-value cache for further use, and (2) the decoding phase in
which tokens are generated one by one in a sequential manner. The decoding phase accounts for
the majority of the end-to-end latency, especially when generating a long response. As shown in
Table 5, when running Vicuna-7B on NVIDIA A100-80G, the actual computing performance is
only 0.31 TFLOPS (0.1% utilization) in the decoding phase, compared to 43 TFLOPS (13.8% uti-
lization) during prefilling. The utilization is calculated with respect to the FP165 tensor core peak
performance – 312 TFLOPS for NVIDIA-A100. As a result, the latency of decoding only one token
is comparable to that of prefilling 128 tokens (40ms). This huge gap in actual computing perfor-
mance and thereby the latency arises from the fact that all LLM weights need to be loaded onto the
GPU chip at least once only for decoding one token, so the decoding is heavily bottlenecked by the
I/O of weights and the GPU computation units cannot be well utilized.

When conducting batched decoding, as the sequence batch sizeB increases, the latency of decoding
one token for each sequence stays roughly the same (Fig. 10a), as the amount of LLM weights that
needs to be loaded onto the chip does not change. As a result, the GPU computation utilization
( Actual GPU Performance

Peak GPU Performance ) increases almost linearly as B increases (Fig. 10b). In other words, for gener-
ating a final answer of length N , if we cut the answer into B segments of length N/B and decode
them as a batch, we can get a B× decoding speed-up compared to sequential decoding. Never-
theless, in practice, as prefilling longer requests brings some overhead, and the lengths of the B
segments could be imbalanced, the actual speed-up of the batched point-expanding stage compared
with the original prefilling and sequential decoding process is smaller than B.

As for the peak memory overhead, the amount of LLM weights can be one to two orders of mag-
nitude larger than that of all the intermediate activations as long as the prefilling token length is not
too large, not to mention that most activations do not need to be saved for back-propagation during
inference. Therefore, the LLM weights account for the majority of the memory footprint in our test
cases. Consequently, as shown in Fig. 10c, the peak memory overhead due to the increasing size
of the KV cache and activation grows at a slow pace as the batch size B increases. Thanks to the
small peak memory overhead, in all of our experiments, we managed to use one GPU to run SoT
without seeking help from other peak memory optimization techniques (e.g., quantization (Frantar
et al., 2022; Lin et al., 2023), offloading (Sheng et al., 2023)).

5All of our experiments are run with FP16 inference.
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F EFFICIENCY PROFILING

We run the profiling on the target GPU (NVIDIA A100-80G and NVIDIA RTX 3090) with CUDA
11.7, using the Hugging Face transformer library 4.28.1 and PyTorch 2.0.1. The host of A100-80G
has an Intel Xeon Platinum 8358P CPU and 1T memory. The host of RTX 3090 has an Intel Xeon
Gold 6246R CPU and 512G memory.

Latency profiling and estimation. For the decoding phase, we denote tDB (k) as the latency
of batched decoding the k + 1-th token with batch size B, where the superscript D stands for
“decode”. For each batch size B = 1, · · · , 16 and each context length k = 1, · · · , 1024, we
use torch.cuda.Event to record the latency of decoding one token. We run each decod-
ing three times continuously and take their geometric mean as {tDB (k)}k=1,··· ,1024;B=1,··· ,16. For
the prefilling phase, we profile the latency of batched prefilling the inputs with token length k in
range(1, 700, 10) and batch size B = 1, · · · , 16, and denote it as tPB(k), where the superscript P
stands for “prefill”. We run each test seven times continuously, regard the first two times as the
warmup tests, and take the geometric mean of the last five times as {tPB(k)}k=1,11,··· ,691;B=1,··· ,16.
Once we get the latency profiling table, given a request with li tokens and the decoding batch size
B, the latency of generating lo tokens can be estimated as:

T (li, lo, B) = t̃PB(li) +

li+lo−1∑
k=li

tDB (k), (1)

where the subscripts i and o stand for “input” and “output”. Note that we only test the prefill-
ing latency every ten token lengths (i.e., 1, 11, 21, · · · ) for fast profiling and estimate t̃PB(li) by
tPB(b

li
10c × 10 + 1).

The SoT decoding process consists of two stages: the skeleton stage and the point-expanding stage.
Denoting the token length of the skeleton request and skeleton response as lsi and lso, the token length
of the longest point-expanding request and the longest point-expanding response as lpei and lpeo , the
number of the points as B, we can compute the latency of the skeleton and point-expanding stages
as:

Ls(lsi , l
s
o) = T (lsi , l

s
o, 1), (2)

Lpe(lpei , l
pe
o , B) = T (lpei , l

pe
o , B). (3)

Using the latency profiling table, we can further estimate the average GPU computing performance
in FLOPS (i.e., FLOPs per second) of decoding lo tokens with prefilling length li as

PD(li, lo, B) =

∑li+lo−1
k=li

fDB (k)∑li+lo−1
k=li

tDB (k)
, (4)

where fDB (k) denotes the FLOPs of decoding one token with context length k, which is calculated
by DeepSpeed’s FLOPs profiler 6. Fig. 10b reports the average GPU computing performance during
the process of decoding 64 tokens (prefilling length=128), i.e., PD(128, 64, B).

Memory profiling and evaluation. To evaluate the peak memory, we use
torch.cuda.max_memory_allocated to record the memory consumption of prefill-
ing sequences of different lengths and decoding with different context lengths and a batch size
ranging from 1 to 16. Then, we calculate the peak memory of each stage as the maximum value of
the prefilling and decoding phases, and calculate the overall peak memory of SoT as the maximum
value of the skeleton and point-expanding stages.

6https://deepspeed.readthedocs.io/en/latest/flops-profiler.html
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G EFFICIENCY EVALUATION

G.1 SKELETON-OF-THOUGHT

G.1.1 DETAILED STATISTICS OF TOKEN LENGTHS AND POINT NUMBERS
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(f) The ratio of the final SoT answer length to the nor-
mal answer length.

Figure 11: The statistics of the token lengths and point numbers on the Vicuna-80 dataset. Each row
corresponds to one question category, and each column corresponds to one model.

G.1.2 LATENCY BREAKDOWN: SOT STAGES AND PHASES

Fig. 12 presents the absolute latencies of normal and SoT generations on Vicuna-80. Again, the
speed-ups of SoT compared with normal generation is evident. We can see that the decoding phases
predominantly account for the end-to-end latency. Consequently, although SoT has higher prefilling
latency in the skeleton stage than the normal generation and introduces additional point-expanding
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prefilling latency – which is expected – this has negligible impact on the overall latency and thereby
the overall speed-up.
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(a) Average latency across all question categories except
math and code on different models.
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(b) Average latency across all models on different
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Figure 12: The latency breakdown of SoT and normal generations on the Vicuna-80 dataset. For
open-source models, the latency breakdown of the prefilling and decoding phases is shown in dif-
ferent colors. For API-based models, we do not record such latency breakdown information; the bar
labeled as “(decode)” indicates the overall latency of prefilling and decoding phases.

G.1.3 EFFICIENCY EVALUATION ON NVIDIA RTX 3090

We present the SoT speed-ups and latency breakdown on RTX 3090 in Fig. 13. We test the three
7B models, as their FP16-precision version can be run on an RTX 3090 GPU without further peak
memory optimization techniques such as weight quantization (Frantar et al., 2022; Lin et al., 2023)
or offloading (Sheng et al., 2023). On these three models, SoT can obtain 1.94× to 2.40× speed-up
on average on Vicuna-80.

For the five question categories that SoT can provide high-quality answers (i.e., knowledge, common-
sense, generic, roleplay, counterfactual), SoT can speed-up the overall answer generation process
by 1.96× to 2.52× in the meantime. Note that for the math category, despite the average speed-up
being 1.20× by calculating the speed-up across the three math questions, SoT does not reduce the
absolute latency of processing the three questions.
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Figure 13: The latency breakdown of SoT and normal decoding on the Vicuna-80 dataset. The
average speed-up across questions are also marked on the figure.

G.1.4 ACTUAL LATENCY TESTING

This section reports the actual SoT speed-up on the Vicuna-80 with batch testing (instead of analyz-
ing with pre-made profiling tables), using a single NVIDIA A100 GPU. We test the actual end-to-end
latency of the SoT and normal decoding with the 9 open-source models. For each model, we run the
speed-up test for five times and plot the box in Fig. 14.
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As shown in Fig. 14a, the current SoT solution obtains a > 2× speed-up on 6 out of the 9 open-
source models (i.e., Vicuna-7B V1.1, Vicuna-7B V1.3, UltraLM-13B, LLaMA2-Chat-7B, Vicuna-
13B V1.3, and LLaMA2-Chat-13B), and a> 1.7 speed-up on OpenChat-13B and Vicuna-33B V1.3.
SoT achieves no speed-up on StableVicuna-13B. As shown in Fig. 14b, for the five question cate-
gories that SoT can provide high-quality answers (i.e., knowledge, common-sense, generic, roleplay,
counterfactual), SoT can speed-up the overall answer generation process by 2.15× to 2.50× in the
meantime.
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Figure 14: Speed-ups on 9 open-source models on the Vicuna-80 dataset with actual batch testing.

G.2 SKELETON-OF-THOUGHT WITH ROUTER

The overhead brought by the router inference is relatively small: On the Vicuna-80 dataset,
the prompting and trained router have an average latency of 0.65s (0.39s∼1.37s) and 0.04s
(0.008s∼1.55s), respectively. On the WizardLM dataset, the average latency of the prompting and
trained router is 0.80s (0.36s∼2.22s) and 0.03s (0.009s∼2.52s), respectively.

G.2.1 SPEED-UP BREAKDOWN: MODELS

Fig. 15 shows the speed-ups of SoT-R on different models on the Vicuna-80 dataset. Fig. 16 and
Fig. 17 show the speed-ups of SoT-R on different models on the WizardLM dataset. We can ob-
serve that on Vicuna-80, the two methods yield similar speed-ups, whereas on WizardLM, GPT-4
prompting router usually obtains higher speed-ups than the trained router, especially on GPT-4 itself.
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Figure 15: Speed-ups of SoT-R on different models on Vicuna-80 dataset.
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Figure 16: Speed-ups of SoT-R on different models on WizardLM dataset.
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Figure 17: Speed-ups of SoT and SoT-R on different models on the WizardLM dataset.

G.2.2 SPEED-UP BREAKDOWN: CATEGORIES

Fig. 18 and Fig. 19 show the speed-ups of SoT-R on different question categories of Vicuna-80
dataset. The trained router achieves slightly higher speed-up on most of the categories (except for
knowledge, writing, and fermi). Fig. 20 and Fig. 21 show the speed-ups of SoT-R on different
question categories of WizardLM dataset. We can observe that on 19 out of 29 categories, using the
prompting router achieves higher speed-ups than using the trained router.
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Figure 18: Speed-ups of SoT-R on different question categories of Vicuna-80 dataset
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Figure 19: Speed-ups of SoT and SoT-R on different question categories of the Vicuna-80 dataset.
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Figure 20: Speed-ups of SoT-R on different question categories of WizardLM dataset
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Figure 21: Speed-ups of SoT and SoT-R on different question categories of the WizardLM dataset.

H OVERHEAD OF SOT IN DIFFERENT SCENARIOS

Despite the optimizations made to the decoding phase, SoT brings overhead to the prefilling phase as
the model needs to handle additional SoT prompts. Table 6 reports SoT’s prefilling overhead for the
API-based models. These statistics are averaged across the Vicuna-80 questions that are suitable for
SoT (according to our manual annotation). We can see that SoT significantly increases the number
of prefilling tokens. This is because that SoT issues an independent point-expanding request for
each point, with the average number of points being 6.8 on Vicuna-80 dataset across all evaluated
models. Consequently, the APIs need to prefill the point-expanding request multiple times.
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Table 6: SoT’s prefilling token overhead for API-based models.

Model Prefill Phase

Normal SoT Stage 1 SoT Stage 2 Ratio (SoT / Normal)

Claude 10.33 155.33 730.91 85.79
ChatGPT-3.5 10.21 136.33 480.95 60.46

GPT-4 10.21 72.44 838.26 89.20

When using SoT to serve the open-source models, a simple and small trick is to prefill the common
prefix of point-expanding requests with a batch size of 1 during Stage 2 (i.e., the point-expanding
stage). Table 7 shows the prefilling overhead after applying the trick. Although the ratio is consid-
erably smaller compared to that of the API-based models, this computational overhead remains a
concern, especially during periods of high system workload.

There are some possibilities to further reduce the token and computational overhead that are worth
exploring in future work. To name a few: (1) When using SoT in serving systems, we can simply
reuse the key-value cache containing the question and skeleton from Stage 1 during Stage 2, rather
than re-prefilling them as in a multi-round conversation. (2) Generally, as LLM capabilities continue
to evolve and prompt tuning techniques advance (Shin et al., 2020; Li & Liang, 2021; Lester et al.,
2021; Jiang et al., 2023), the possibility of using much shorter prompts to activate the SoT mode in
the future holds promise, which would significantly mitigate the token or computational overhead.

Table 7: SoT’s computational overhead (in terms of the number of prefilling tokens) for open-source
models.

Model Prefill Phase

Naive SoT Stage 1 SoT Stage 2 Ratio (SoT / Normal)

LLaMA2-Chat-7B 12.52 171.41 216.49 30.98
LLaMA2-Chat-13B 12.52 171.41 216.41 30.98

OpenChat-13B 12.52 171.41 234.38 32.41
Vicuna-7B V1.3 12.52 171.41 211.61 30.59

Vicuna-13B V1.3 12.52 171.41 273.39 35.53
Vicuna-33B V1.3 12.52 171.41 258.88 34.37
StableVicuna-13B 12.52 171.41 312.03 38.61

UltraLM-13B 12.52 171.41 290.88 36.92
Vicuna-7B V1.1 12.52 171.41 196.64 29.40

I ANSWER QUALITY EVALUATION

I.1 SKELETON-OF-THOUGHT

I.1.1 ANSWER ANALYSIS: DIFFERENT MODELS

Models on which SoT has low net win rates. We observe two types of reasons for the low net win
rates.

(1) OpenChat-13B, Vicuna-7B V1.1, and LLaMA2-Chat-13B. For the weak models such as
OpenChat-13B and Vicuna-7B V1.1, they are not able to follow the SoT prompts precisely. For
OpenChat-13B and LLaMA2-Chat-13B, sometimes the skeleton contains undesired contents (e.g.,
completing the skeleton points as shown below).
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Question: How many lightning strikes occur on Earth each day? Try to explain your answer. Your
explanation should take the reader through your reasoning step-by-step.

SoT’s answer (OpenChat-13B) (Orange texts are the skeleton.)
(Only showing the skeleton)
1.Introduction.
2. The Earth’s atmosphere.
3. Lightning formation.
4. Electrical discharge.
5. Lightning strikes per second.
6. Calculating the total.
Skeleton:
1. Introduction.
Lightning is a beautiful and awe-inspiring natural phenomenon, but it can also be dangerous. It occurs when positively
charged particles in a thundercloud discharge to the negatively charged Earth. The process is still not fully understood,
but scientists have been able to estimate how many lightning strikes occur on Earth each day.
Skeleton:
1. The Earth’s atmosphere.
The Earth’s atmosphere plays a crucial role in the formation of lightning. It consists of different layers, with the tropo-
sphere being the lowest and most active. The troposphere is where most of the weather occurs, and it is where lightning
primarily forms. The atmosphere’s temperature, humidity, and wind patterns all contribute to the likelihood of a lightning
strike.
Skeleton:
2. Lightning formation.

When warm, moist air rises, it cools and forms water <more texts are omitted...>

For both OpenChat-13B and Vicuna-7B V1.1, sometimes they do not write anything in the point-
expanding stage when details are needed.

Question: As a superhero, how would you explain your origin story to a curious child?

SoT’s answer (Vicuna-7B V1.1) (Orange texts are the skeleton.)
1. Born with extraordinary abilities.
2. Trained to use powers for the greater good.
3. Protecting the innocent and fighting villains.I use my powers to defend the defenseless and bring justice to those who
have been wronged.

4. Inspired by courage, justice, and selflessness.

These two issues result in bad net win rates.

(2) Claude. For strong models such as Claude, we do not see major issues with SoT’s answers except
the common issues across all models discussed in § 3.2.3. We hypothesize that the low net win rates
are majorly due to the fact that their normal sequential generation is already very good.

Models on which SoT has high net win rates. The models with high net win rates (Vicuna-13B
V1.3, StableVicuna-13B, and UltraLM-13B) are between the above two extremes. On one hand,
they are good enough to understand SoT prompts. While we observe that they sometimes have the
same issues as OpenChat-13B and Vicuna-7B V1.1 discussed before, these issues happen much less
frequently. On the other hand, their normal sequential generation performance has a larger room for
improvement than Claude and ChatGPT-3.5 so that the benefits from SoT are more visible on these
models.

I.1.2 ANSWER ANALYSIS: DIFFERENT QUESTION CATEGORIES

Categories on which SoT has low net win rates.

(1) Math. Math questions require step-by-step thinking. Without knowing the previous steps, it is
hard to derive the following steps. Chain-of-Thoughts (Kojima et al., 2022; Wei et al., 2022) empha-
size the importance of expanding the sequential thinking steps to solve these problems successfully.
In contrast, SoT requires the models to (a) come up with the skeleton of the solution first and (b)
deduce each individual step independently without referring to previous results. Both of these are
challenging tasks. Strong models are able to get (a) correct but fail at (b). In the following example,
ChatGPT-3.5 gets the skeleton steps correct. However, without knowing the results from the first
step, the model starts making mistakes in the second step.7

7One additional (minor) issue of the API-based ChatGPT-3.5 is that the skeleton point “1.” is repeated in
the answer.
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Question: (Math) Solve for x in the equation 3x + 10 = 5(x - 2).

7 SoT’s answer (ChatGPT-3.5) (Orange texts are the skeleton.)
1. Move all x terms to one side. 1. Move all x terms to one side by subtracting 5x from both sides, giving -2x + 10 = -10.
2. Move all constant terms to the other side. This can be done by subtracting 5x - 10 from both sides, leaving 3x - 5x =
-10 - 10.
3. Simplify the equation. Combine like terms on both sides of the equation to get 3x + 10 = 5x - 10.
4. Divide both sides by the coefficient of x. Divide both sides by 2 to get x = -5.

5. Check the solution by plugging it back into the original equation.Substitute the value of x obtained in step 4 back into

the original equation and verify that both sides are equal.

3 Normal answer (ChatGPT-3.5)
3x + 10 = 5(x - 2) can be simplified as follows:
3x + 10 = 5x - 10 (distribute the 5 on the right side)
10 + 10 = 5x - 3x (subtract 3x from both sides)
20 = 2x (combine like terms on the right side)
x = 10 (divide both sides by 2)

Therefore, the solution for x in the equation 3x + 10 = 5(x - 2) is x = 10.

For weaker models, it is hard to even get step (a) correct. For example, as shown below, the third
step “Apply FOIL” in Vicuna-13B V1.3’s SoT solution comes out of nowhere. This makes SoT’s
solution incorrect (though the solution from the normal generation is also incorrect).

Question: (Math) Solve for x in the equation 3x + 10 = 5(x - 2).

7 SoT’s answer (Vicuna-13B V1.3) (Orange texts are the skeleton.)
1. Simplify equation.
We can simplify the equation by combining like terms:
3x + 10 = 5(x - 2)
=¿ 3x + 10 = 5x - 10
=¿ x + 5 = 2
=¿ x = 2 - 5
=¿ x = -3
2. Factor 5(x - 2).
5(x - 2) = 5x - 10.
3. Apply FOIL.
* Multiply the binomials in the equation, using the first term of each binomial for the first term of the product, the outside
term for the second term of the product, the second term of each binomial for the third term of the product, and the
remaining terms for the fourth term of the product.
* 3(x - 2) + 10 = 5x + 5(-2)
* 3x - 6 = 5x - 10
* 3x = 5x - 10
* x = 5x - 10 / 3
* x = 5/3x - 10/3
* x = 2/3x - 5/3
4. Solve for x.

After applying the FOIL method and simplifying the equation, we get 3x = 17. Therefore, x = 17/3.

7 Normal answer (Vicuna-13B V1.3)
To solve for x in the equation 3x + 10 = 5(x - 2), we need to first distribute the 5 to multiply both sides by 5.
3x + 10 = 5(x - 2)
5(3x + 10) = 5(x - 2)
15x + 50 = 5x - 10
Add 5x to both sides:
20x + 50 = 5x
Subtract 5x from both sides:
15x = 0
Divide both sides by 15:
x = 0

Therefore, the solution to the equation is x = 0.

(2) Fermi. Similar to math questions, questions in the fermi category require solvers to make as-
sumptions and calculate the answer step-by-step. For example, to answer the question in the figure
below, the solver is required to make an assumption about when life began on Earth. In step 4,
ChatGPT-3.5 does not know that it has already assumed 3.5 billion years in step 3 and uses the
wrong number 4.54 billion in the calculation. In step 5, ChatGPT-3.5 does not know that it has
already made the above assumptions and refuses to answer “due to the uncertainties in estimating
the age of the Earth”. In contrast, normal generation is able to create a consistent solution.
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Question: (Fermi) How many times has the Earth orbited the Sun since the beginning of life? Try
to explain your answer. Your explanation should take the reader through your reasoning step-by-step.

7 SoT’s answer (ChatGPT-3.5) (Orange texts are the skeleton.)
1. Estimate the age of the Earth. The age of the Earth is estimated to be around 4.54 billion years, based on radiometric
dating of rocks and meteorites.
2. Determine when life began on Earth. Life on Earth is estimated to have begun around 3.5 billion years ago, based on
the discovery of ancient microfossils.
3. Calculate the number of years since life began. The oldest known fossils suggest that life on Earth began around 3.5
billion years ago. Therefore, the number of years since life began on Earth is approximately 3.5 billion years.
4. Divide the number of years by the length of one orbit. Assuming an orbital period of 365.25 days, the Earth has
orbited the Sun approximately 4.54 billion / 365.25 = 12,425,000 times since the beginning of life.

5. The Earth has orbited the Sun approximately X times since the beginning of life. Unfortunately, it is impossible to give

a specific number for the amount of times the Earth has orbited the Sun since the beginning of life due to the uncertainties

in estimating the age of the Earth and when life first emerged.

Normal answer (ChatGPT-3.5)
The beginning of life on Earth is estimated to have occurred around 3.5 to 4 billion years ago. Since that time, the Earth
has been orbiting the Sun continuously.
The length of one orbit, or one year, is approximately 365.25 days. This means that the Earth completes one full orbit
around the Sun every 365.25 days.
To calculate the number of times the Earth has orbited the Sun since the beginning of life, we can divide the total number
of days by the length of one orbit:
Total number of days since the beginning of life = (3.5 billion years) x (365 days per year) = 1.2775 trillion days
Number of orbits = (1.2775 trillion days) / (365.25 days per orbit) = 3.5 billion orbits

Therefore, the Earth has orbited the Sun approximately 3.5 billion times since the beginning of life.

As the following example shows, there are also cases when SoT solves the question (with minor
computation errors) by embedding the computation steps in the skeleton directly in the skeleton
stage. The point-expanding stage will then add little content (except some undesired repetition of
the following skeletons occasionally). This happens both on small/weak models and large/powerful
models. Although this behavior is not what we originally expect, it sheds light on a promising direc-
tion for making SoT a general framework: in the problem where step-by-step thinking is needed, the
SoT model automatically falls back to the sequential generation mode by outputting the complete
answer in the skeleton stage and skipping the point-expanding stage. Future work needs to be done
to control and encourage this behavior better.

Question: (Fermi) How many times does the average human blink in a lifetime? Try to explain your
answer. Your explanation should take the reader through your reasoning step-by-step.

SoT’s answer (Vicuna-7B V1.1) (Orange texts are the skeleton.)
1. The average human blinks 12-15 times per minute.
2. There are 60 minutes in an hour.
3. Therefore, the average human blinks 60 x 12-15 = 720-900 times per hour.
4. There are 24 hours in a day.Therefore, the average human blinks 720-900 x 24 = 17,520-22,400 times per day.
5. Therefore, the average human blinks 720-900 x 24 = 17,520-22,400 times per day.This translates to blinking approxi-
mately 50-65 times per hour, which is a significant portion of the day.
6. There are 365 days in a year.Therefore, the average human blinks 17,520-22,400 x 365 = 5,857,600-8,124,000 times
per year.
7. Therefore, the average human blinks 17,520-22,400 x 365 = 5,857,600-8,124,000 times per year.
8. The human lifespan is typically 70-80 years.Therefore, the average human blinks 80,000-112,000 times in their
lifetime.

9. Therefore, the average human blinks 5,857,600-8,124,000 / 70-80 = 80,000-112,000 times in their lifetime.

Normal answer (Vicuna-7B V1.1)
The average human blinks about 12-15 times per minute, which translates to about 18,200 to 20,400 blinks per day. Over
the course of a lifetime, the number of blinks is estimated to be around 7,500,000 to 8,000,000.
Blinking is a reflexive action that helps to keep the eyes moist and comfortable, as well as to protect the eyes from dust
and other foreign particles. The frequency of blinking can vary depending on a variety of factors, including age, health,
and environmental conditions. For example, people who work in dusty or dry environments may blink more frequently
than those who work in a clean, moist environment.
Over the course of a lifetime, the average person will spend approximately 27,375 days or 700,000 hours awake. This
means that the majority of the time spent blinking will occur in the first few decades of life, with the frequency of blinking
gradually decreasing as people age.

It is important to note that there is a significant amount of individual variation in the frequency of blinking. Some people

may blink more or less than the average, depending on a variety of factors such as age, health, and environmental condi-

tions. Additionally, blinking patterns can be affected by factors such as stress, fatigue, and certain medical conditions.
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(3) Coding. While in most cases, the models are able to decompose the coding problem into smaller
tasks in the skeleton stage, the generation quality during the point-expanding stage is bad, potentially
due to the fact that we did not carefully craft a special point-expanding prompt for coding. The
failure cases can be grouped into two cases. (a) In some cases, the model only generates a description
of how implementation can be done without giving the code.

Question: (Coding) Develop a C++ program that reads a text file line by line and counts the number
of occurrences of a specific word in the file.

SoT’s answer (Claude) (Orange texts are the skeleton.)
1. Open file stream by declaring an ifstream object and using the open() method to open the file in read mode.
2. Read line by line from the file stream into a string using getline().
3. Find word by searching each line for the target word using string::find and keeping track of matches.
4. Increment counter by one each time the specified word is encountered in the current line.
5. Close file

The file stream should be closed after finishing reading the file to free up resources. This can be done by calling the

close() method on the file stream object.

This might be due to the fact that the powerful models (e.g., Claude) follow the point-expanding
prompt “Write it **very shortly** in 1∼2 sentence” precisely. Better prompts tailed to coding
could help. (b) In some other cases, the model tends to generate the complete code repeatedly in
several points.

Question: (Coding) Develop a C++ program that reads a text file line by line and counts the number
of occurrences of a specific word in the file.

SoT’s answer (OpenChat-13B) (Orange texts are the skeleton.)
1. Read file line by line.
2. Store lines in a container.
3. Count occurrences of specific word.
“‘cpp
<more texts are omitted...>
“‘
This code uses the C++ standard library to read a text file line by line, store each line in a container, and count the
occurrences of a specific word. The results are printed.
4. Print results.
Here’s the C++ program that reads a text file line by line and counts the number of occurrences of a specific word in the
file:
“‘cpp
<more texts are omitted...>
“‘

Please note that this is a very basic implementation. You may need to adjust it depending on your specific requirements.

This problem might also be alleviated by prompts that explicitly tell the model to only generate a
“code snippet” in each skeleton point.

Although better prompt engineering could lead to better results, we expect that SoT is not suitable
for the coding questions in Vicuna-80. The reason is that the solutions to the problems in Vicuna-
80 are usually in a few lines with strong dependencies between each other. Without knowing the
previously defined variable names or imported libraries, it is hard (or even impossible) to implement
the subsequent code correctly. As a consequence, generating different parts of the answers in parallel
is not suitable here. Similar to the math questions, automatically falling back to outputting all the
code in the skeleton stage and not triggering the point-expanding stage might be more suitable for
answering this question type.

However, we expect that SoT could be helpful for larger coding tasks that involve multiple modules
(e.g., functions, classes). The skeleton stage could be in charge of defining the interfaces between
different modules (e.g., functionalities, names, parameters, return types). The point-expanding stage
could be in charge of implementing these modules or using these modules to complete the final task,
which can be done in parallel. This mimics the common practice in software engineering.

(4) Writing. The writing questions usually ask for an email, a blog post, or a review in a given
scenario. In the detailed evaluation output from FastChat and LLMZoo metrics, the major and
common complaint is that SoT’s answers are (slightly) less detailed. This could potentially be
improved by point-expanding prompts that request more details.
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While inspecting SoT’s answers manually, we observe one additional issue. Writing problems usu-
ally require a coherent passage without embedded skeleton points, whereas our current SoT pipeline
(§ 2) concatenates skeleton points as part of the answer. One example is shown below.

Question: (Writing) Can you help me write a formal email to a potential business partner proposing
a joint venture?

SoT’s answer (ChatGPT-3.5) (Orange texts are the skeleton.)
1. Introduce yourself and your company. Dear [Recipient],
I hope this email finds you well. My name is [Your Name] and I am the [Your Position] at [Your Company Name].
2. State the purpose of the email. The purpose of this email is to propose a joint venture between our companies.
3. Explain the potential benefits of the joint venture. By combining our resources and expertise, we can increase market
share and profitability for both companies.
4. Provide details on the proposed collaboration. Our proposed collaboration would involve combining our expertise in
marketing with your strong manufacturing capabilities to create a new line of products.
5. Suggest a follow-up meeting or call. Please let me know your availability for a follow-up call next week to discuss
this opportunity further.

6. Thank the recipient for their time and consideration.Thank you for considering this proposal and we look forward to

hearing back from you soon.

Normal answer (ChatGPT-3.5)
Of course, I can help you with that. Here’s a sample email you can use as a guide:
Subject: Proposal for Joint Venture
Dear [Business Partner’s Name],
I hope this email finds you well. I am writing to propose a joint venture between our companies, [Your Company Name]
and [Potential Partner Company Name]. We believe that our respective expertise can create a successful partnership that
will benefit both of our businesses.
We have conducted thorough research on your company and admire your innovative approach to [insert industry or niche].
We think our [insert expertise or specialty] could complement your [insert potential partner’s specialty or expertise].
By collaborating on this joint venture, we believe we can create a new and innovative product that will appeal to our
respective markets.
We are confident that our companies would work well together and that our joint venture would be successful. We would
like to set up a meeting to discuss the specifics of our proposal and explore how we can move forward with the joint
venture.
Thank you for considering this proposal. We look forward to hearing from you soon.
Best regards,

[Your Name]

In such cases, simply removing the skeleton points would greatly improve the answer quality. To
make SoT more general, one future direction is to let the LLM itself decide whether the point index
and point skeleton should be included to make the final answer more natural and fluent.

Categories on which SoT has high net win rates.

(1) Counterfactual, knowledge, common sense, generic. All these four categories have the same
characteristic: the ideal answer should cover several relatively independent points. Having the LLM
generate a skeleton before expanding the details can result in more comprehensive discussions for
the question. Besides, organizing the answers as a list of points makes the answers easier to read,
whereas the answers from normal generation are sometimes less structured and less readable. Below,
we give one example for each question category to illustrate these points.
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Question: (Counterfactual) What if the Internet had been invented during the Renaissance period?

SoT’s answer (ChatGPT-3.5) (Orange texts are the skeleton.)
1. Advancements in communication.The invention of the Internet during the Renaissance period would have revolution-
ized communication, allowing for faster and more efficient exchange of ideas and information across vast distances.
2. Increased access to knowledge.The invention of the printing press during the Renaissance period already allowed
for greater access to knowledge, but the internet would have revolutionized this even further by providing instantaneous
access to information from all over the world.
3. Improved dissemination of ideas.If the internet had been invented during the Renaissance period, the spread of ideas
and knowledge would have been much faster and widespread than it was at the time. This could have led to a faster
progression of scientific and artistic innovations.
4. Impact on art and literature.The invention of the internet during the Renaissance period would have revolutionized the
way art and literature are created, shared, and consumed, leading to a more diverse and globally-influenced artistic and
literary scene.
5. Potential for global trade.The invention of the internet during the Renaissance period would have greatly expanded
global trade opportunities, allowing for easier communication and collaboration between merchants and traders across
continents.

6. Influence on political and social structures.The invention of the internet during the Renaissance period could have led

to significant changes in political and social structures, allowing for greater democratization and communication among

people from different regions and classes.

Normal answer (ChatGPT-3.5)
If the Internet had been invented during the Renaissance period, it would have had a significant impact on the way people
communicated, shared ideas, and gained knowledge. The Renaissance was a time of great intellectual and artistic growth,
and the Internet would have facilitated the spread of these ideas and innovations.
Scholars and artists would have been able to share their work more easily, and people from different parts of the world
would have been able to connect and collaborate more easily. The Internet would have also made it easier to access
information, which could have accelerated the pace of scientific and technological advancements.

However, it’s important to note that the infrastructure required for the Internet to exist did not exist during the Renaissance

period. There were no telecommunications networks or electricity grids, so the idea of the Internet would have been

impossible to realize. Nonetheless, it’s interesting to think about how the Renaissance might have been different if the

Internet had existed at that time.
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Question: (Knowledge) What are some potential implications of using a single-use plastic bottle
versus a reusable bottle on both the environment and human health?

SoT’s answer (ChatGPT-3.5) (Orange texts are the skeleton.)
1. Single-use plastic waste.Single-use plastic bottles contribute to the massive amount of plastic waste that ends up in
landfills and oceans, harming wildlife and ecosystems.
2. Pollution of waterways.Single-use plastic bottles contribute to the pollution of waterways, as they often end up in
rivers, lakes, and oceans, causing harm to aquatic life and the overall ecosystem.
3. Harmful chemicals leaching.Single-use plastic bottles may release harmful chemicals such as bisphenol A (BPA) and
phthalates into the water or liquid they contain, posing a risk to human health.
4. Greenhouse gas emissions.The production and disposal of single-use plastic bottles contribute to greenhouse gas
emissions, which contribute to climate change. Using a reusable bottle reduces the need for constant production and
disposal, therefore reducing greenhouse gas emissions.
5. Microplastic ingestion.Single-use plastic bottles contribute to the accumulation of microplastics in the environment,
which can be ingested by humans through food and water, leading to potential health risks.

6. Increased risk of disease.Single-use plastic bottles can harbor harmful bacteria, leading to an increased risk of disease

if not disposed of properly. Reusable bottles, when cleaned regularly, pose a lower risk.

Normal answer (ChatGPT-3.5)
Using a single-use plastic bottle has significant implications on the environment and human health.
Environmental implications:
1. Plastic pollution: Single-use plastic bottles are one of the major contributors to plastic pollution in oceans and landfills.
They take hundreds of years to decompose, and during that time, they release toxic chemicals and microplastics into the
environment.
2. Carbon emissions: Manufacturing and transporting single-use plastic bottles require a significant amount of energy
and resources, which contribute to greenhouse gas emissions and climate change.
3. Natural resource depletion: The production of single-use plastic bottles requires large amounts of water and oil, which
are finite resources.
Health implications:
1. Chemical exposure: Single-use plastic bottles contain chemicals such as Bisphenol A (BPA) and phthalates, which
can leach into the water and pose a risk to human health.
2. Microplastics ingestion: When plastic bottles break down, they release microplastics, which can enter the food chain
and be ingested by humans.
Using a reusable bottle, on the other hand, has a positive impact on the environment and human health.
Environmental benefits:
1. Reduced plastic waste: Reusable bottles significantly reduce the amount of plastic waste generated.
2. Lower carbon emissions: Reusable bottles have a lower carbon footprint as they can be used multiple times.
3. Reduced resource depletion: The production of reusable bottles requires fewer resources than single-use plastic bottles.
Health benefits:
1. Chemical-free: Reusable bottles are typically made from materials that are free from harmful chemicals, reducing the
risk of chemical exposure.
2. Reduced microplastics: Reusable bottles do not break down easily, reducing the release of microplastics into the
environment.

Overall, using a reusable bottle is a more sustainable and healthier option than using a single-use plastic bottle.

Question: (Common sense) How can you determine if a person is genuinely interested in a conver-
sation or simply being polite?

SoT’s answer (ChatGPT-3.5) (Orange texts are the skeleton.)
1. Pay attention to body language.Notice if their posture is open or closed, if they are facing towards you or away, and if
they are fidgeting or relaxed. These can all indicate their level of interest in the conversation.
2. Listen for engaged responses.If the person is genuinely interested in the conversation, they will respond with thoughtful
and relevant comments or questions rather than short, generic responses.
3. Observe eye contact.If the person maintains steady eye contact and their gaze is focused on you, they are likely
genuinely interested in the conversation. On the other hand, if they frequently look away or seem distracted, they may
just be being polite.
4. Look for follow-up questions.If the person asks follow-up questions and seems genuinely interested in what you’re
saying, then they are likely interested in the conversation and not just being polite.

5. Notice tone of voice.A person who is genuinely interested in a conversation will often have a more enthusiastic and

animated tone of voice, compared to someone who is simply being polite and giving short, monotone responses.

Normal answer (ChatGPT-3.5)
As an AI assistant, I cannot determine a person’s true intentions or feelings. However, there are some social cues that

can indicate whether a person is genuinely interested in a conversation or not. For example, if they maintain eye contact,

lean in, nod their head and ask follow-up questions, it can be a sign that they are engaged in the conversation. On the

other hand, if they avoid eye contact, give short or vague responses, or seem distracted, it may indicate that they are

not as interested. Ultimately, it’s important to remember that everyone has different communication styles, and it can be

difficult to accurately interpret someone’s intentions without directly asking them.
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Question: (Generic) How can I improve my time management skills?

SoT’s answer (ChatGPT-3.5) (Orange texts are the skeleton.)
1. Set clear goals. Setting clear goals is important in improving time management skills as it helps you to focus on what
needs to be done and what can be accomplished within a certain timeframe.
2. Prioritize tasks. Make a list of tasks and prioritize them based on their importance and deadline. This will help you
focus on the most critical tasks and avoid wasting time on less important ones.
3. Create a schedule. Creating a schedule helps you allocate time for each task and ensures that you complete them
within the allotted time.
4. Minimize distractions. Distractions such as social media, emails, and phone notifications can waste a lot of time. Try
to limit them by turning off notifications or setting specific times to check them.
5. Take breaks. Taking breaks can actually improve productivity and help prevent burnout. It’s important to schedule
short breaks throughout the day to recharge and refocus.
6. Learn to say no. It’s important to prioritize your own tasks and not take on too much at once. Saying no to requests
that don’t align with your goals or schedule can help you manage your time more effectively.
7. Delegate tasks. If you have too many tasks to handle, consider delegating some of them to others who can help you.
This will allow you to focus on more important tasks and manage your time more effectively.

8. Use time management tools.There are a variety of time management tools available, such as calendars, to-do lists, and

productivity apps, that can help you stay organized and on track with your tasks.

Normal answer (ChatGPT-3.5)
Improving time management skills can be a challenge, but there are several strategies that can help. Here are a few:
1. Set clear goals and priorities: Identify your most important tasks and make sure to complete them first.
2. Make a schedule: Create a schedule that includes your most important tasks and set aside time for them.
3. Use a timer: Set a timer for a specific amount of time to help you stay focused and avoid distractions.
4. Take breaks: Take short breaks throughout the day to help you recharge and avoid burnout.
5. Eliminate distractions: Try to limit distractions as much as possible, such as by turning off your phone or closing your
email.
6. Delegate tasks: If possible, delegate tasks to others to free up time for more important activities.

Remember, improving time management skills takes practice and perseverance. Be patient with yourself and keep trying

until you find strategies that work well for you.

(2) Roleplay. Roleplay questions require LLMs to assume a character and present an introduction
or speech to other people. LLMZoo and FastChat metrics usually favor the level of details of SoT
when assigning it a better score. Similar to the writing category discussed before, SoT’s answers
could be even better if the skeleton points are removed from the answer.

Question: (Roleplay) How would you introduce yourself as a medieval knight at a royal banquet?

SoT’s answer (Claude) (Orange texts are the skeleton.)
1. Name and house. My name is Sir Percival of Camelot, knight of the Round Table and protector of King Arthur’s
realm.
2. Lands and titles. I hold fiefdom over the lands of Westmarch and Ravenshire, and bear the titles of Baron of the
Western Marches and Knight of the Raven.
3. Military feats. I have led my men to great victories against the kingdom’s enemies, winning many battles through
strength of arms and tactical cunning.
4. Allegiance to king. I pledge my sword, my loyalty, and my life to serve and protect my noble king and this great
kingdom.

5. Request to join table. Your Highness, it would be the greatest honor to join your exalted table and share in this

magnificent feast with my fellow knights and loyal subjects.

Normal answer (Claude)
Greetings, your majesty and honored guests. I am Sir Claude, a knight in service of the king. I hail from the province

of Assistantia, where I was trained in the knightly virtues of chivalry, courage and courtesy. Though I am but a humble

knight, I shall endeavor to serve you and this kingdom with all the strength and valor I possess. I thank you for allowing

me to join you at this royal feast, and hope only that my conduct brings further honor to my liege and this noble court.

Please let me know if I can be of any service during the celebrations, as it would be my honor to assist you in any way.

I.1.3 ANSWER ANALYSIS: DIFFERENT METRICS

Metrics on which SoT has low net win rates.

(1) Coherence. In the prompt of LLMZoo evaluation, coherence is defined as “The response should
be coherent and flow logically from one point to the next that is easy to read and understand without
major gaps or inconsistencies. The more coherent they are, the better.” SoT’s answer is structured in
a list of points. It is suitable for some questions but not all. For example, in the questions that require
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LLMs to write a passage, email, or script, the introduction and conclusion paragraphs are usually
missing, and the answers usually lack transition sentences between consecutive points. These make
the answers less coherent. Below is one example from Claude.

Question: Write a script for a YouTube video exploring the history and cultural significance of jazz.

SoT’s answer (Claude) (Orange texts are the skeleton.)
1. Origins. Jazz originated in the late 19th and early 20th centuries among African Americans in New Orleans, emerging
from a combination of African rhythmic traditions, blues, ragtime, and other influences.
2. Early jazz styles. The early styles of jazz that emerged in the late 19th and early 20th centuries included ragtime,
Dixieland, and the blues.
3. Jazz age. The Jazz Age was the period during the 1920s when jazz music and dance styles like the Charleston became
popular cultural phenomena in American and European society.
4. Bebop era. Bebop emerged in the early 1940s with artists like Dizzy Gillespie and Charlie Parker experimenting with
faster tempos, complex chord changes, and unpredictable melodic phrasing.
5. Cool jazz. Emerging in the late 1940s and early 1950s, cool jazz was a more subdued, mellow style that broke from
the high-energy virtuosic improvisation of bebop.
6. Free jazz emerged in the late 1950s and 1960s as musicians explored free improvisation and atonality, moving away
from traditional jazz structures.
7. Fusion jazz. Major jazz artists such as Miles Davis and Herbie Hancock began experimenting with combining elements
of rock, funk, and electronic music in the 1970s, resulting in the emergence of the subgenre known as fusion jazz.
8. Jazz festivals. Jazz festivals emerged in the 1950s and 1960s as a way to celebrate jazz music, with famous early
festivals like the Newport Jazz Festival bringing thousands of fans together to hear top performers.
9. Jazz instruments. The trumpet, saxophone, piano, double bass, and drum set are some of the key instruments com-
monly used in jazz.
10. Influential musicians include Louis Armstrong, Duke Ellington, Charlie Parker, Miles Davis, John Coltrane, and
many others who pioneered new styles and techniques.

11. Legacy and impact. Jazz has left an indelible mark on music and culture over the past century, influencing countless

artists and genres while spreading the spirit of improvisation and freedom across the globe.

Normal answer (Claude)
Here is a draft script for a YouTube video exploring the history and cultural significance of jazz:
Introduction
Hey everyone! Welcome to my channel. In today’s video, we’re going to be exploring the history and cultural impact of
one of America’s original art forms - jazz music.
Jazz Origins
Jazz grew out of the African American communities in the southern United States in the late 19th and early 20th centuries.
It was influenced by a combination of African and European musical traditions. Some key elements that fed into early
jazz included blues, ragtime, spirituals, work songs, field hollers, and brass band music.
New Orleans is considered the birthplace of jazz, emerging around the turn of the 20th century. The city was a melting
pot of cultures and musical styles. Musicians mixed improvisation, syncopated rhythms, bent notes and a loose ensemble
playing style to create a new genre that became known as jazz.
Early jazz greats like Buddy Bolden, Jelly Roll Morton and Sidney Bechet began fusing these various influences into the
distinct jazz sound. As the music spread via travel and recordings in the 1910s, jazz captivated listeners and began to
evolve into different styles.
Jazz Styles Emerge
In the 1920s, jazz expanded out from New Orleans and Chicago emerged as a hotspot. Louis Armstrong’s innovative
solos and expressive phrasing became influential. The swing style also developed during the 1930s and 40s, propelled
by star big bands and dancers.
Bebop arose in the 1940s with soloists like Charlie Parker and Dizzy Gillespie exploring new levels of harmonic and
rhythmic complexity. In the 50s and 60s, jazz expanded into new fusions like cool jazz, hard bop, free jazz, modal jazz
and soul jazz. Artists used jazz to express their unique regional, social and political identities.
Cultural Significance
Over the decades, jazz has become woven into the fabric of American society. It is equated with many values and ideals
like individualism, freedom, spontaneity, innovation and social harmony.
Jazz was associated with breaking down barriers between races, classes and genres. It represented modernism and urban
culture. Musicians like Louis Armstrong and Duke Ellington became some of the first widely popular African American
artists.
Jazz also spread American culture and values abroad through performances, radio and film. It influenced music around
the world and became a truly global art form.
Today jazz continues to thrive and evolve both in the U.S. and internationally. Its history and sounds reflect the diversity
of both American and global cultures. From its folk roots, jazz has become a sophisticated art music that retains its spirit
of freedom and improvisation.
Conclusion

That covers some of the key points in the history and cultural impact of jazz music. Let me know in the comments about

your favorite jazz styles and musicians! Be sure to like and subscribe. See you next time.

While the content of SoT’s answer is good, it reads less fluent for the purpose of a YouTube script.

(2) Immersion. In the prompt of LLMZoo evaluation, immersion is defined as “the response should
act like the assigned role using the tone, manner, and vocabulary the role would use. The more
assistant-like tones, the worse. The more in-character, the better.” The way that SoT breaks the
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answers into a list makes its answer less in-character. Therefore, SoT receives a lower immersion
score. Here is one example.

Question: Pretend to be a world-famous chef. How would you describe your signature dish to a
panel of judges?

SoT’s answer (Claude) (Orange texts are the skeleton.)
1. Main ingredient: The incredibly fresh and tender salmon caught just this morning from the crystal clear waters of the
Pacific Northwest.
2. Cooking method
I slowly braise the main ingredient in a rich broth to bring out its natural flavors before searing it to a perfect golden crust.
3. Special seasoning
The dish is seasoned with a blend of fresh herbs like thyme, rosemary, and oregano which provides an aromatic backbone
that pairs nicely with the natural flavors of the main ingredients. I add just a touch of smoked paprika to provide a subtle
smokiness without overpowering the other flavors.
4. Texture: The dish has a perfect balance of crispy on the outside and tender on the inside, with each bite yielding a
delightful mix of crunchy and smooth textures that dance across your tongue.
5. Plating presentation
I purposefully create height and dimension on the plate with the carefully arranged components of the dish, so that the
dish appears vibrant and alive. The interplay of colors, textures and shapes is intended to delight the eye before the first
bite.

6. Inspiration: This dish was inspired by my dear grandmother, who taught me the secret family recipe when I was just

a child.

Normal answer (Claude)
*clears throat and speaks in a fancy French accent*
Bonjour honored judges. Today I present to you my signature dish - la crème de la crème of French haute cuisine.
Behold, le poulet à la Claude!
This succulent chicken is firstly marinated overnight in a bath of fine herbes - thyme, rosemary, and sage cultivated from
my private garden. The young spring chicken is then roasted to perfection, its skin crisping to a beautiful caramel brown.
Nestled beside the chicken is a tower of pommes dauphine - light and airy potato puffs - alongside a decadent mound of
crème fraı̂che infused with truffle essence.
But the pièce de résistance is the sauce. A luxurious pool of velouté enriched with cream and butter, brightened with a
dash of lemon, and studded with morsels of morel mushrooms foraged at dawn.
One bite of this ensemble will transport you to food heaven. The tender chicken, the creaminess of the potato puffs, and
the rich decadence of the sauce meld together in blissful harmony.

So tell me honored judges, will my poulet à la Claude earn your coveted approval? I await your discerning verdict as I

swirl more vintage Bordeaux into your glasses. Santé!

Again, while the answer from SoT covers sufficient aspects and details, it reads rather stiffly. The
normal answer, in contrast, has the opening sentence ”Bonjour honored judges. Today I present to
you my signature dish...” and the conclusion statement ”So tell me honored judges, will my poulet à
la Claude earn your coveted approval? ...” which reads more like a casual talk from a chef.

Metrics on which SoT has high net win rates.

(1) Diversity. In the prompt of LLMZoo evaluation, diversity is defined as “The response should
be comprehensive and provide a range of information that is not limited to a single perspective.
More perspectives are better.” The skeleton stage in SoT encourages LLMs to think from multiple
perspectives. Therefore, SoT’s answers tend to have better diversity. Below is one example showing
that SoT’s answer has better diversity.
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Question: How can you determine if a person is genuinely interested in a conversation or simply
being polite?

SoT’s answer (ChatGPT-3.5) (Orange texts are the skeleton.)
1. Pay attention to body language.Notice if their posture is open or closed, if they are facing towards you or away, and if
they are fidgeting or relaxed. These can all indicate their level of interest in the conversation.
2. Listen for engaged responses.If the person is genuinely interested in the conversation, they will respond with thoughtful
and relevant comments or questions rather than short, generic responses.
3. Observe eye contact.If the person maintains steady eye contact and their gaze is focused on you, they are likely
genuinely interested in the conversation. On the other hand, if they frequently look away or seem distracted, they may
just be being polite.
4. Look for follow-up questions.If the person asks follow-up questions and seems genuinely interested in what you’re
saying, then they are likely interested in the conversation and not just being polite.

5. Notice tone of voice.A person who is genuinely interested in a conversation will often have a more enthusiastic and

animated tone of voice, compared to someone who is simply being polite and giving short, monotone responses.

Normal answer (ChatGPT-3.5)
As an AI assistant, I cannot determine a person’s true intentions or feelings. However, there are some social cues that

can indicate whether a person is genuinely interested in a conversation or not. For example, if they maintain eye contact,

lean in, nod their head and ask follow-up questions, it can be a sign that they are engaged in the conversation. On the

other hand, if they avoid eye contact, give short or vague responses, or seem distracted, it may indicate that they are

not as interested. Ultimately, it’s important to remember that everyone has different communication styles, and it can be

difficult to accurately interpret someone’s intentions without directly asking them.

SoT answers the question from five aspects, whereas the normal answer only mentions one aspect.

(2) Relevance. In the prompt of LLMZoo evaluation, relevance is defined as “The response should
be closely related to the question and answer the question accurately with sufficient details without
repetition or redundancy. The more relevant they are, the better.” In the skeleton stage, LLMs are
forced to propose several points around the question; and in the point-expanding stage, LLMs are
required to only discuss these points. Therefore, answers from SoT tend to have better relevance.
One typical example is shown below.

Question: Why do some people enjoy the sensation of being scared, such as by watching horror
movies or going on roller coasters, while others avoid these experiences?

SoT’s answer (ChatGPT-3.5) (Orange texts are the skeleton.)
1. Neurological differences.Some people enjoy the sensation of being scared due to the release of adrenaline and
dopamine in the brain, while others may have a lower threshold for fear due to differences in their amygdala and pre-
frontal cortex.
2. Psychological factors.Some people may enjoy the sensation of being scared because it can provide a sense of excite-
ment, thrill, and a temporary escape from the mundane aspects of everyday life. On the other hand, others may avoid
these experiences due to past trauma or anxiety.
3. Developmental experiences.Individuals who had negative experiences with fear during childhood, such as trauma
or abuse, may avoid scary situations as adults, while those who had positive experiences with fear may seek out these
experiences.
4. Cultural influences.Some cultures place a greater emphasis on seeking excitement and thrill, while others may priori-
tize safety and security, which can impact whether individuals enjoy scary experiences or avoid them.

5. Genetics.Research has suggested that some individuals may have a genetic predisposition towards seeking out thrilling

or risky experiences, which may include enjoying the sensation of being scared.

Normal answer (ChatGPT-3.5)
The enjoyment of being scared is a complex psychological phenomenon. Some people may enjoy the adrenaline rush

that comes with being scared, while others may enjoy the feeling of being able to conquer their fears. Additionally,

some people may be more naturally inclined to seek out new experiences and sensations, including those that are scary

or thrilling. On the other hand, some people may be more risk-averse or may have had negative experiences with fear or

anxiety in the past, which could make them more likely to avoid scary experiences. Ultimately, the reasons why some

people enjoy being scared while others do not are likely to be influenced by a range of factors, including personality, past

experiences, and individual preferences.

In the answer from the normal generation, the first two sentences provide little information in an-
swering the question, and the last sentence only gives keywords such as “personality, past expe-
riences, and individual preferences” without providing concrete explanations to each. In contrast,
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SoT’s answer is well-structured into five reasons with sufficient explanations and it does not waste
space in irrelevant contents.

I.1.4 QUALITY BREAKDOWN: QUESTION CATEGORIES AND MODELS

In the main text, we analyze how question categories and models affect SoT’s answer quality. Here,
Fig. 22 show the per-model and per-category results.
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Figure 22: Net win rates of different models and question categories. Each row corresponds to one
question category, and one column corresponds to one model. (Evaluated using metric defined by
the FastChat prompt, and GPT-4 as the judge.)

I.2 SKELETON-OF-THOUGHT WITH ROUTER

Fig. 23 shows net win rates of SoT on Vicuna-80 dataset with LLMZoo metrics, and Fig. 24 shows
net win rates of SoT on WizardLM dataset with FastChat metrics. The key takeaways are: (1) In
both cases, SoT-R achieves similar or better quality than SoT, and the net win rates of SoT-R are
usually non-negative. This indicates that SoT-R falls back to normal decoding on the right question
categories. (2) On the WizardLM dataset, we see that the trained router has better performance than
the prompting router in most cases. This is reasonable, as the prompting router is limited by the
capability of GPT-4, whereas the trained router is dedicated to this task. (3) Sometimes, our routers
can even achieve better performance than humans.

Fig. 1(b) in the main text has showed SoT’s quality and speed-up plot evaluated with the FastChat
quality metric, here, Fig. 25 shows the results evaluated with the LLMZoo quality metric.
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Figure 23: Net win rates of SoT and SoT-R on different question categories of Vicuna-80 dataset
using the general quality metric from LLMZoo. Blue dots are from Fig. 5b. SoT-R correctly falls
back to normal decoding on questions where SoT is not suitable.
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Figure 24: Net win rates of SoT and SoT-R on different question categories of WizardLM dataset
using the general quality metric from FastChat. SoT-R correctly falls back to normal decoding on
questions where SoT is not suitable.
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Figure 25: The net win rates and speed-ups of SoT with router (SoT-R) compared to normal gener-
ation on Vicuna-80. The net win rate is the difference between the fraction of questions that SoT-R
has better and worse answers than normal generation. The speed-up is the ratio between the latency
of normal and SoT-R generation. (1.0, 0.0) represents normal generation. Higher is better on both
axes. For most models, SoT-R not only accelerates the generation but also improves the quality of
the answers (evaluated with LLMZoo metric (Chen et al., 2023c)).
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(a) ChatGPT-3.5.
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Figure 26: Win/tie/lose rates of SoT v.s. longer normal generation. Evaluated only on the questions
that we manually label as being suitable for SoT. Evaluated using “general” metrics from FastChat
and LLMZoo.
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Figure 27: Length ratios of SoT generated answer to normal generated answer. “Normal” refers to
the normal generation using solely the request as the prompt; “Normal Long” refers to the normal
generation using the additional “... give a long answer...” instruction in the prompt.

I.3 QUALITY COMPARISON WITH LONGER NORMAL ANSWER

When assessing the answer quality, the GPT-4 judge might exhibit bias towards longer responses.
To take this factor into consideration, we add a comparison between a longer sequentially generated
answer and the SoT generated answer. Specifically, we add a instruction prefix to the prompt for
normal generation. The prefix is “Please give a slightly long answer for the following question.”
and “Please give a long answer for the following question.” for ChatGPT-3.5 and LLaMA2-Chat-
7B, respectively. Fig. 27 shows the ratios of the length of SoT answers to normal answers, and
Fig. 26 shows the quality comparison. We can see that for both models, when the overall answer
lengths are similar, the quality of the SoT answer is comparable to that of the long normal answer.

I.4 CHATGPT-3.5 AS THE JUDGE

In this section, we provide quality evaluation results with ChatGPT-3.5 as the judge in FastChat and
LLMZoo metrics. Note that as prior work (e.g., (Li et al., 2023b)) shows, GPT-4-based evaluation
usually aligns with human better than ChatGPT-3.5. Therefore, readers should refer to the results
in the main paper (with GPT-4 as the judge) for a more accurate view of the performance of SoT.
However, the takeaway messages from ChatGPT-3.5 are similar to the ones from GPT-4.
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I.4.1 OVERALL QUALITY

In Fig. 28, we show the win/tie/lose rates (the percentage of the cases when SoT wins/ties/loses
compared to normal generation) across all models and questions using the two metrics from FastChat
and LLMZoo that capture the general quality of the answers. We notice a discrepancy between the
two metrics on when SoT is strictly better than the baseline (50.2% v.s. 12.4%). Despite that, the two
metrics agree that SoT is not worse than the baseline in more than 76% of the cases. For FastChat
metric, we also show the rates excluding math and coding questions that SoT is not suitable for (see
§ 3.2.3); SoT is not worse than the baseline in more than 89% of the cases. This result suggests that
the answers of SoT maintain good quality.

0% 20% 40% 60% 80% 100%

General quality (LLMZoo)

General quality (FastChat)
(excluding math & coding)

General quality (FastChat)

50.2%

12.5%

12.4%

27.3%

76.7%

69.2%

22.5%

10.8%

18.4%

Win Tie Lose

Figure 28: Win/tie/lose rates of SoT v.s. normal generation using “general” metrics from FastChat
and LLMZoo. SoT performs better than or equal to normal generation in around 80% of cases.
(Evaluated using ChatGPT-3.5 as the judge.)

I.4.2 QUALITY BREAKDOWN: QUESTION CATEGORIES

Next, we investigate how SoT performs on different question categories. We compute net win rates
(win rates minus lose rates) across all question categories in Fig. 29. Similar to Fig. 28, we see
that LLMZoo tends to be more optimistic about the quality of SoT than FastChat. Nevertheless,
the conclusions are consistent: SoT performs relatively well on generic, common-sense, knowledge,
roleplay, and counterfactual. SoT performs relatively badly on writing, fermi, math, and coding.
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Figure 29: Net win rates of SoT on different question categories. (Evaluated using ChatGPT-3.5 as
the judge.)

I.4.3 QUALITY BREAKDOWN: MODELS

Next, we investigate how SoT performs on different models. We compute net win rates across all
models in Fig. 30. Again, we see that the two general metrics from FastChat and LLMZoo have
different absolute values but similar rankings. In particular, both metrics agree that OpenChat-
13B, Vicuna-7B V1.1, Claude, ChatGPT-3.5 have low net win rates, whereas Vicuna-13B V1.3,
StableVicuna-13B, and UltraLM-13B have high net win rates.

I.4.4 QUALITY BREAKDOWN: QUESTION CATEGORIES AND MODELS

In the main text, we analyze how question categories and models affect SoT’s answer quality. Here,
we show the per-model and per-category results. For each model and question category, we compute
the net win rates. The results are in Fig. 31.
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Figure 30: Net win rates of SoT on different models. (Evaluated using ChatGPT-3.5 as the judge.)
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Figure 31: Net win rates of different models and question categories. Each row corresponds to one
question category, and one column corresponds to one model. (Evaluated using ChatGPT-3.5 as the
judge.)

I.4.5 QUALITY BREAKDOWN: METRICS

All previous evaluations use metrics about the general quality of the answer. In Fig. 32, we show
more detailed metrics from LLMZoo to reveal in which aspects SoT can improve or hurt the answer
quality. On average, we can see that SoT improves the diversity and relevance while hurting the
immersion and coherence.
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Figure 32: Win/tie/lose rates of SoT v.s. normal generations using metrics from LLMZoo. SoT per-
forms well on diversity and relevance, and relatively worse on coherence and immersion. (Evaluated
using ChatGPT-3.5 as the judge.)

J COMBINING SOT-R WITH MODEL QUANTIZATION

Model quantization is a widely-used model-level optimization to accelerate LLM inference, which
is orthogonal to SoT. In this section, we evaluate the speed-ups of open-source models with both

48



Published as a conference paper at ICLR 2024

quantization and SoT on the Vicuna-80 dataset. Specifically, we adopt GPTQ (Frantar et al., 2022)8

to apply 4-bit weight-only quantization and use SoT-R instead of plain SoT.

J.1 SPEED-UPS OF SOT + QUANTIZATION ON QUANTIZED MODELS

We first compare the latency of the quantized models in the normal and SoT modes to evaluate
how much SoT can speed up quantized models. Fig. 33 shows the speed-ups of SoT-R on different
quantized models. SoT-R obtain 1.08× to 1.99× speed-ups on all the models. Fig. 34 shows the
speed-ups of SoT-R on different categories. We can see that on the five question categories for
which SoT can provide high-quality answers (i.e., knowledge, generic, common-sense, roleplay,
counterfactual), SoT-R can speed up the overall answer generation process by 1.07× to 2.38×.
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(a) SoT-R with the prompting router.
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Figure 33: Speed-ups of the quantized model with SoT-R generation w.r.t. the quantized model with
normal generation on different models, on the Vicuna-80 dataset.
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Figure 34: Speed-ups of the quantized model with SoT-R generation w.r.t. the quantized model with
normal generation, on different question categories of the Vicuna-80 dataset.

J.2 SPEED-UPS OF SOT + QUANTIZATION ON UNQUANTIZED MODELS

Here, we report the overall speed-ups of the quantization model with SoT-R generation w.r.t. the
unquantized model with normal generation. Fig. 35 shows the speed-ups of SoT-R on different
models. SoT-R can obtain 1.54× to 2.07× speed-ups. Fig. 36 shows the speed-ups of SoT-R
on different categories. On the five question categories for which SoT can provide high-quality
answers (i.e., knowledge, generic, common-sense, roleplay, counterfactual), SoT-R can speed up
the generation by 1.33× to 3.41× with the prompting and trained routers.

8https://github.com/qwopqwop200/GPTQ-for-LLaMa
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Figure 35: Speed-ups of the quantized model with SoT-R generation w.r.t. the unquantized model
with normal generation, on different models, on the Vicuna-80 dataset.
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Figure 36: Speed-ups of the quantized model with SoT-R generation w.r.t. the unquantized model
with normal generation, on different question categories of the Vicuna-80 dataset.

K ADDITIONAL SOT-R STATISTICS

K.1 NUMBER OF SUITABLE QUESTIONS

Overall, there are 37/80, 58/218, 371/1030 questions that are suitable for SoT in the Vicuna-80,
WizardLM, and LIMA datasets (according to human assessment), respectively.

Fig. 37 shows the number of questions that are suitable for SoT on Vicuna-80. On counterfactual,
commen-sense, knowledge, generic categories, most questions are suitable for SoT based on the
human assessment. The trained router and prompting router give out similar judgments.
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Figure 37: Number of questions suitable for SoT on the Vicuna-80 dataset.

K.2 PEAK MEMORY OVERHEAD

Fig. 38 and Fig. 39 show the peak memory overhead of SoT-R (with prompting router) on different
models and different categories, respectively, on the Vicuna-80 dataset. We can see that, on all
models and categories, the overhead of peak memory is quite small (<1.11×).
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Figure 38: Peak memory overhead of SoT-R on different models on the Vicuna-80 dataset.
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Figure 39: Peak memory overhead of SoT-R on different question categories of Vicuna-80.

K.3 SPEED-UPS WITH DIFFERENT NUMBER OF POINTS

Fig. 40 shows the speed-ups with different numbers of points on Vicuna-80. To maintain clarity in
the figure, we’ve chosen to display statistics for only three models. Note that as SoT cannot control
the overall length to be the same as that of normal generation, it is not the case that a higher number
of points leads to higher speed-ups.
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Figure 40: The speed-ups with different number of points on the Vicuna-80 dataset.

L NOTES ON APPLICATION SCENARIOS

In a chatbot application, one might wonder why a reduced end-to-end latency can enhance the user
experience. While human reading speeds are limited, there are many situations where we do not read
responses sequentially. Rather than reading the entire answer, one might prefer to (1) swiftly check
the response’s structure to confirm if the chatbot comprehended the question or (2) extract specific
information rapidly without waiting for the generation of prologue or preceding points. Besides,
from the quality aspect, even if we would like to check the entire answer, a well-defined structure in
responses assists us in quickly parsing all the information.

Moreover, beyond enhancing user experience, reduced end-to-end latency can significantly benefit
emerging application scenarios like agent-agent interaction.
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