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Abstract

We consider the task of representation learning for unsupervised segmentation
of 3D voxel-grid biomedical images. We show that models that capture implicit
hierarchical relationships between subvolumes are better suited for this task. To that
end, we consider encoder-decoder architectures with a hyperbolic latent space, to
explicitly capture hierarchical relationships present in subvolumes of the data. We
propose utilizing a 3D hyperbolic variational autoencoder with a novel gyroplane
convolutional layer to map from the embedding space back to 3D images. To
capture these relationships, we introduce an essential self-supervised loss—in
addition to the standard VAE loss—which infers approximate hierarchies and
encourages implicitly related subvolumes to be mapped closer in the embedding
space. We present experiments on both synthetic data and biomedical data to
validate our hypothesis.

1 Introduction

Advances in biomedical imaging techniques such as cryogenic electron tomography (cryo-ET) and
magnetic resonance imaging (MRI) have resulted in an ever-increasing amount of 3D biomedical
image data. In these data domains, a growing body of work shows that, when provided with labels,
machine learning models achieve good performance on many tasks [Çiçek et al., 2016, Milletari et al.,
2017, Dou et al., 2017, Falk et al., 2019]. However, these labels, especially for segmentation, are very
costly as they often have to be provided by experts in the appropriate field. Consequently, supervised
learning and even semi-supervised learning remain limited in this setting as (1) tasks and domains
are very diverse, making it intractable for experts to provide labelled data for all problems; and (2)
experts can only label objects they already know, restricting the potential for scientific discovery
using machine learning methods. In this work, we tackle the task of unsupervised segmentation in
3D biomedical image data.

Our key insight is that 3D biomedical images have inherent hierarchical structure. For example,
in the cryo-ET domain, an image of a cell has a hierarchy that at the highest level comprises the
entire cell; at a finer level comprises organelles such as the mitochondria and nucleus; and at an even
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finer level comprises sub-structures such as the nucleolus of a nucleus or protein machineries within
organelles. Such types of hierarchies are present in many types of biomedical images (e.g., nested
anatomical structures within MRI images). We hypothesize that in the unsupervised setting, models
that are able to encode this internal hierarchical structure will provide better data representations for
downstream tasks. To that end, we propose learning representations based on embedding subvolumes
of 3D images in hyperbolic space.

In contrast to traditional Euclidean embeddings, hyperbolic embeddings better preserve hierarchical
relationships present in the data. Hyperbolic representations have been proposed as a continuous
way to represent hierarchical data, due to their ability to embed trees with arbitrarily low error
[Sarkar, 2011]. A recent line of work utilizes hyperbolic representations to model hierarchical data
across domains ranging from natural language word taxonomies [Nickel and Kiela, 2017, 2018]
and graphs [Nickel and Kiela, 2017, Mathieu et al., 2019, Ovinnikov, 2019, Chami et al., 2019],
to image classification [Mathieu et al., 2019]. In these settings, the objects, and in most cases
their relationships, are explicitly encoded in the data. However, 3D biomedical images consist of
subvolumes that represent parts of an implicit hierarchical structure. In our case, for any single
3D voxel-grid, we wish to embed and infer the implicit relationships between all of its subvolumes
without any supervision.

To embed our 3D images in hyperbolic space, we use a 3D hyperbolic variational autoencoder
(VAE). For the decoder, we propose a gyroplane convolutional layer which maps from the latent
space back to 3D images while respecting hyperbolic geometry. In addition to the VAE loss, we
propose an essential self-supervised loss to capture the hierarchical structure present in the data.
More specifically, we consider reconstruction of implicit hierarchies as a pretext task. Concretely, we
add a triplet loss which encourages a child subvolume to be mapped close to its parent subvolume in
hyperbolic space. To capture hierarchical relationships of varying granularity, we train on subvolumes
sampled at multiple scales. Finally, for a specified scale, we cluster the subvolumes in latent space
and produce a segmentation map.

We evaluate our model on datasets with different domains: synthetic datasets and a medical image
dataset. We construct synthetic datasets where we generate structures at various scales and show
that our model segments objects at multiple levels of hierarchy better than all prior unsupervised
segmentation methods. We demonstrate performance gains ranging from 7% for the smallest objects
to 32% for the largest objects. On the real-world medical image dataset (BraTS Brain Tumor
Segmentation Challenge) [Menze et al., 2014, Bakas et al., 2017, 2018], we show that our method
outperforms prior works by 19%, and even achieves comparable performance to semi-supervised
methods although we do not use any labels.

2 Related Work

Segmentation on 3D voxel data Many diverse biomedical images, ranging from MRI and CT
scans to fluorescence microscopy, come in the form of 3D voxel-grids. Since 3D voxel-grids are
dense, computer vision tasks such as supervised segmentation are commonly performed using deep
learning architectures with 3D convolutional layers [Chen et al., 2016, Dou et al., 2017, Hesamian
et al., 2019, Zheng et al., 2019]. However, due to the challenges of obtaining voxel-level annotations
in 3D, there has been significant effort in finding semi-supervised approaches, including using labels
only from several fully annotated 2D slices of an input volume [Çiçek et al., 2016], using a smaller
set of segmentations with joint segmentation and registration [Xu and Niethammer, 2019], and using
one segmented input in conjunction with other unlabelled data [Zhao et al., 2019].

Unsupervised approaches for 3D segmentation are useful not only for further reducing the manual
annotation effort required, which is especially expensive for segmentation, but also for scientific
discovery tasks where we would like to identify previously unknown structures for which annotations
are impossible to produce. Moriya et al. [2018] extends to 3D data an iterative approach of feature
learning followed by clustering [Yang et al., 2016]. Nalepa et al. [2020] uses a 3D convolutional
autoencoder architecture and performs clustering of the latent representations. Another approach,
[Dalca et al., 2018], uses a network pre-trained on manual segmentations from a separate dataset to
perform unsupervised segmentation of 3D biomedical images. However, this limits applicability to
areas where we already have a dataset with manual annotations and makes it unsuitable for unbiased
scientific discovery. Gur et al. [2019] and Kitrungrotsakul et al. [2019] develop unsupervised methods
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for 3D segmentation of vessel structures, but these are specialized and do not generalize to the
segmentation of other structures, [Uzunova et al., 2019] utilizes knowledge of background patches
with no patholoogy, and Baur et al. [2018] uses deep autoencoding models for unsupervised anomaly
detection.

Another line of work performs unsupervised 2D segmentation, such as Ji et al. [2019] which proposes
a mutual information objective for clustering, and Caron et al. [2018], which uses the clustered output
of an encoder as pseudo-labels. While these methods can be applied to 2D slices of a 3D volume to
perform 3D segmentation, they generally suffer limitations due to insufficient modeling of the 3D
spatial information. None of the aforementioned approaches explicitly learn hierarchical structure of
the data, which is the main focus of our work.

Hyperbolic representations A recent line of work employs hyperbolic space to represent hierar-
chical structures, with the intuition that tree structures can be naturally embedded into continuous
hyperbolic space [Nickel and Kiela, 2017]. These works utilize hyperbolic representations for a
variety of tasks, including MNIST classification [Mathieu et al., 2019, Nagano et al., 2019, Ovin-
nikov, 2019], natural language processsing tasks such as embedding word taxonomies and entailment
[Nickel and Kiela, 2017, Ganea et al., 2018], link prediction and node classification [Chami et al.,
2019], and game playing [Nagano et al., 2019]. In most of these works, hierarchical structure is
explicitly encoded in data. In contrast, we seek to capture implicit hierarchical structure arising from
composition within 3D images.

Several architectures have been proposed in order to learn hyperbolic representations, including
hyperbolic VAEs [Mathieu et al., 2019, Nagano et al., 2019, Ovinnikov, 2019], feed-forward and
recurrent hyperbolic neural networks architectures [Ganea et al., 2018], and hyperbolic graph con-
volutional networks [Chami et al., 2019]. We extend the hyperbolic VAE framework to the task of
learning hyperbolic representations from subvolumes of complex 3D images, and use this to perform
unsupervised segmentation.

Self-supervision Providing self-supervision by solving pretext tasks is one common approach for
learning unsupervised visual representations. Pretext tasks leverage properties of the input data
or prior knowledge as supervisory signals in order to learn better representations. Examples of
pretext tasks include finding the relative position of two patches sampled from an image [Doersch
et al., 2015], solving jigsaw puzzles [Noroozi and Favaro, 2016], and predicting pixel movements
of videos in subsequent frames [Pathak et al., 2017]. In contrast, we propose the pretext task of
reconstructing implicit hierarchy in 3D voxel-grid images, to learn effective hyperbolic representations
for downstream segmentation.

3 Methods

In this section, we describe our approach for learning hyperbolic representations of subvolumes
(3D patches) from 3D voxel-grid data. We propose a model that comprises a 3D convolutional
variational autoencoder (VAE) with hyperbolic representation space and a gyroplane convolutional
layer. We train our model with self-supervision through a novel hierarchical triplet loss and multi-
patch sampling scheme. Then, we cluster the learned representations using hyperbolic k-means
to produce 3D segmentations. In Section 3.1, we provide an overview of hyperbolic space. In
Section 3.2, we describe our VAE framework with the proposed gyroplane convolutional layer and
self-supervised hierarchical triplet loss. Finally, in Section 3.3, we discuss our approach of hyperbolic
clustering for segmentation.

3.1 Hyperbolic formulation

Hyperbolic space We embed subvolumes of 3D voxel-grid data in hyperbolic space, a non-
Euclidean space with constant negative curvature. In negative curvature spaces, the area of a disc
increases exponentially with the radius. We can think of this growth as analogous to the exponential
increase of leaves at each level of a tree. Hence hyperbolic space can encode trees with arbitrarily
low error [Sarkar, 2011] and can be considered as the continuous version of hierarchical structures.
Unlike trees, hyperbolic space is smooth, permitting our use of deep learning on representations. For
additional background on geometry and hyperbolic space, see the Appendix.
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Poincaré ball model of hyperbolic geometry In this work we use the Poincaré ball as our model
of hyperbolic geometry. The Poincaré ball (of curvature c = −1) is the open ball of radius 1 centered
at the origin equipped with the metric tensor gp = (λx)2ge, where the conformal factor λx = 2

1−||x||2
and ge is the Euclidean metric tensor (i.e., the Euclidean dot product). Formally, this makes the
Poincaré ball a Riemannian manifold. For an introduction to Riemannian manifolds, see the Appendix.
The distance dp between points on the Poincaré ball is given by:

dp(x, y) = cosh−1
(

1 + 2
||x− y||2

(1− ||x||2)(1− ||y||2)

)
(1)

We use the exponential and logarithm maps to map from Euclidean space to the Poincaré ball and
vice versa. On the Poincaré ball, we note that the exponential and logarithm maps have the closed
form expressions

expz(v) = z ⊕
(

tanh

(
λz||v||

2

)
v

||v||

)
(2)

logz(y) =
2

λz
tanh−1(|| − z ⊕ y||) −z ⊕ y

|| − z ⊕ y||
(3)

where ⊕ denotes Mobius addition, which was introduced by Ungar [2001] as a way to define vector
operations on hyperbolic space.

Wrapped Normal Distribution The importance of the normal distribution in Euclidean space has
led to many generalizations of the normal distribution to Riemannian manifolds. We use the wrapped
normal distribution [Mathieu et al., 2019, Nagano et al., 2019], which can be defined on an arbitrary
Riemannian manifold as the push-forward measure obtained by mapping the normal distribution in
Euclidean space along the manifold’s exponential map. On the Poincaré ball, the probability density
function of the wrapped normal with mean µ and covariance Σ is:

NP (z|µ,Σ) = NE(λµ(z)|0,Σ)

(
dp(µ, z)

sinh(dp(µ, z))

)
(4)

where the subscripts P,E indicate distributions over the Poincaré ball and Euclidean space, respec-
tively. We use the sampling and reparametrization scheme of Mathieu et al. [2019] in order to sample
and train our VAE using the wrapped normal distribution.

3.2 Unsupervised hyperbolic representation learning

3D hyperbolic variational autoencoder We propose a hyperbolic VAE that consists of a 3D
convolutional encoder and decoder to handle 3D input. Our 3D convolutional encoder maps sampled
subvolumes of the input into hyperbolic space and produces the parameters of the variational posterior.
Our 3D convolutional decoder then reconstructs the 3D subvolumes from sampled latent hyperbolic
representations. To ensure that both the encoder and decoder respect the geometry of the latent space,
we follow Mathieu et al. [2019] and apply an exponential map to the output of the encoder, and
use our novel gyroplane convolutional layer as the first layer of the decoder. We define the prior
and variational posterior to be the wrapped normal distribution, which encourages our hierarchical
representations to spread out on the Poincaré ball. Figure 1 illustrates an overview of our VAE
framework.

Our variational autoencoder takes as input a patch of fixed size m × m × m. The model learns
representations of subvolumes from the input (X in Figure 1) that can subsequently be used to
perform voxel-level segmentation of the whole volume. To learn hierarchical structure in 3D images,
we train the VAE on 3D patches generated using a multi-scale sampling scheme that samples patches
of size r × r × r, where size r is randomly sampled and resized to m. Our method learns to embed
each patch as part of a hierarchy in hyperbolic space.

Gyroplane convolutional layer For learning better hyperbolic representations of 3D images, we
introduce a gyroplane convolutional layer to effectively map from hyperbolic embedding space to
Euclidean space. This allows us to keep the advantages of convolutional layers, such as locality,
weight sharing, and translation equivariance. Our model’s encoder output (µ in Figure 1) has a
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Figure 1: Our method learns hyperbolic representations of subvolumes of 3D voxel-grid data through
a 3D hyperbolic VAE with a gyroplane convolutional layer. We enhance the VAE training objective
with a self-supervised hierarchical triplet loss that facilitates learning implicit hierarchical structure
within the VAE’s hyperbolic latent space.

product manifold structure, since it is a Cartesian product of vectors in hyperbolic space. To map this
to a 3D image in Euclidean space, we generalize the usual Euclidean convolutional layer by replacing
the Euclidean affine transformation with an affine transformation on the manifold.

One way to define an affine transformation on the Poincaré ball is the gyroplane layer [Ganea et al.,
2018]. The derivation of the gyroplane layer is motivated by the fact we can express a Euclidean affine
transformation as: 〈a, z − p〉 = sgn(〈a, z − p〉)||a||dE(z,Ha,p) where dE is Euclidean distance and
Ha,p = {z ∈ Rp|〈a, z− p〉 = 0}. Ha,p is called the decision hyperplane. Ganea et al. [2018] defines
the gyroplane layer fa,p from this formulation by replacing each component with its hyperbolic
equivalent:

fa,p(z) = sgn
(
〈a, logp(z)〉p

)
|a|pdp(z,Ha,p) (5)

where Ha,p is the hyperbolic decision boundary Ha,p = {z ∈ B|〈a, logp(z)〉 = 0}, and the distance
to the hyperbolic decision boundary dp(z,Ha,p) is

dp(z,Ha,p) = sinh−1
(

2|〈−p⊕ z, a〉|
(1− || − p⊕ z||2)||a|

)
(6)

We can now define our gyroplane convolutional layer by generalizing the Euclidean affine transfor-
mation using the gyroplane layer. For simplicity, suppose x is a 4D tensor containing elements of the
Poincaré ball and our kernel size is k × k × k, with an odd k value. Our gyroplane convolutional
layer is defined as:

yr,s,t =

r+bk/2c∑
α=r−bk/2c

s+bk/2c∑
β=s−bk/2c

t+bk/2c∑
γ=t−bk/2c

fa,p(xα,β,γ) (7)

The gyroplane convolutional layer can be extended in the same way as Euclidean convolutional layers
to incorporate even kernel size k, input and output channels, padding, stride, and dilation.

Self-supervised hierarchical triplet loss As our model is trained on subvolumes of the 3D input,
we cannot easily obtain the implicit hierarchical structure of the whole volume. To encode this
structure in our model, we introduce self-supervision through the reconstruction of inferred hierarchy
as a pretext task. This task encourages our learned representations on the Poincaré ball to reflect
parent-child relationships of the input’s implicit hierarchy.

Our self-supervision takes the form of a triplet loss that encourages hierarchically-related patches
to have more similar representations. Since any two arbitrary patches may have some hierarchical
relationship, we sample patches for our triplet loss to capture hierarchy in a tractable way. To sample
3D patches for our triplet loss, we first sample an anchor patch that acts as our parent patch (red
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volume X in Figure 1). We then sample the positive patch as a smaller subpatch that resides within
the anchor patch (pink volume pos in Figure 1). The anchor and positive patches form a parent-child
relationship that we encourage to have closer representations in hyperbolic space, which has the
interpretation as belonging to the same branch of the hierarchy (µp and µpos in Figure 1). The
exponentially growing surface area near the edge of hyperbolic space allow this natural parent-child
structure to form. We then sample a negative patch as a spatially distant patch (blue volume neg)
that does not overlap with the anchor patch. The triplet loss encourages the the negative patch’s
representation to belong to a different branch of the hierarchy (µp and µneg).

Our choice of positive and negative patches is motivated by the compositional hierarchy of 3D
volumes. The hierarchical triplet loss encourages the anchor patch and a sub-patch (parent and positive
child) to have similar representations, while encouraging the anchor patch and a distant patch (parent
and negative child) to have dissimilar representations. We use this implicit hierarchy reconstruction
as a pretext task to encourage learning relationships between nested objects in 3D biomedical images.
Our multi-patch sampling scheme and triplet loss formulation allows representations to encode
implicit structure in hyperbolic space.

Our hierarchical triplet loss can be formulated with any dissimilarity measure d between the encoder
outputs µ (see Figure 1) of the anchor µp, positive child µpos, and negative child µneg. For our model,
we take d to be the Poincaré ball distance dp and define our triplet loss with margin α as:

Ltriplet(µp, µpos, µneg) := max(0,dp(µp, µpos)− dp(µp, µneg) + α) (8)

This formulation can be extended to any metric space by taking the dissimilarity measure d to be
the space’s metric. In particular, for our ablations using an Euclidean latent space, we take the
dissimilarity measure d to be the Euclidean distance.

Optimization We optimize a loss function that can be decomposed as the standard evidence lower
bound (ELBO) loss for variational autoencoders and our hierarchical triplet loss that encourages
the learning of structure in hyperbolic space. Mathieu et al. [2019] generalized the ELBO loss to
Riemannian manifold latent spaces as

LELBO :=

∫
M

log

(
pθ(x|z)p(z)
qφ(z|x)

)
qφ(z|x)dM(z) ≤ log p(x) (9)

where dM(z) =
√
|G(z)|dz is the measure induced on the manifold by the Riemannian metric G(z)

(see Appendix). Our total loss is then formulated as

Ltotal = LELBO + βLtriplet (10)

where β is a hyperparameter that controls the strength of the hierarchical triplet loss.

3.3 Segmentation by clustering representations

Hyperbolic clustering In 3D segmentation, we seek to assign each voxel v a segmentation label
sv ∈ {1, . . . , n}, where n is the number of segmentation classes. We perform segmentation by
clustering the representations of patches centered at each voxel. We first use our trained VAE encoder
to generate latent representations µv for each voxel v. We do this by taking a patch of fixed size
p × p × p centered at v, upsampling or downsampling it to the encoder input size m × m × m,
and then encoding the patch to retrieve µv. We then cluster the µv into n clusters, and produce a
segmentation by assigning each v the cluster label of µv . We perform clustering through a k-means
algorithm that respects hyperbolic geometry, which we derive by replacing the Euclidean centroid
and distance computations of classical k-means with their counterparts in Riemannian geometry, the
Fréchet mean and manifold distance. We calculate the Fréchet mean using the algorithm of Lou et al.
[2020].

4 Experiments

We evaluate our method quantitatively on both synthetic 3D datasets simulating biological image
data as well as the real-world Brain Tumor Segmentation (BraTS) tumor segmentation dataset. Our
biologically-inspired synthetic datasets allows quantitative evaluation of segmentation at multiple
levels of hierarchy, while the BraTS dataset is a well-known benchmark for 3D MRI segmentation.
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Implementation details For all models, the encoder of our variational autoencoder is comprised
of four 3D convolutional layers with kernel size 5 of increasing filter depth {16, 32, 64, 128}. The
decoder has the same structure, except with decreasing filter depth and a gyroplane convolutional
layer as the initial layer. We use β = 1e3 as the weighting factor between LELBO and Ltriplet and
α = 0.2 as the triplet margin. In all experiments, we fix the representation dimension to be d = 2,
and show latent dimension ablations in the Appendix. We train our model using the Adam optimizer
[Kingma and Ba, 2014]. For inference, we obtain the latent representations of 5 × 5 × 5 patches
densely across the full volume, and then perform hyperbolic k-means clustering, where the number
of clusters k is a hyperparameter that controls the granularity of the segmentation. For quantitative
evaluation, we then use the Hungarian algorithm [Kuhn, 1955] to match each predicted segmentation
class with a corresponding ground truth label.

We utilize two anchor patch sampling schemes, one for input of smaller sizes and one for larger
sizes. In both schemes, for a given 3D volume, we sample i patch centers vi uniformly with patch
size r, and upsampling or downsampling to size m×m×m. In the sampling scheme for smaller
inputs, the patch size r is sampled uniformly, whereas in the sampling scheme for larger inputs, r is
sampled log-uniformly. This scheme is motivated by the following observations: for larger patches, a
small change in r is less likely to correspond to significant semantic difference, and inherent structure
causes the different levels of hierarchy to naturally follow a log scale. For training on the synthetic
dataset, we sample 3D volume sizes uniformly, and for BraTS we sample using the log scale.

For every sample of an anchor patch of size r× r× r, we generate a positive child patch as a smaller
patch of the anchor patch as follows: the positive child patch is a subvolume within the anchor patch
with size rchild × rchild × rchild, where rchild ∼ U(`min, r − rgap), and rgap is a hyperparameter
representing the gap in size between the anchor size and the child size. The negative child is a patch
of size rchild × rchild × rchild that does not overlap with the anchor patch.

4.1 Biologically-inspired synthetic dataset

Since we want to evaluate segmentation performance at multiple levels of hierarchy and most 3D
datasets do not have the necessary annotation, we first generate a synthetic dataset. This dataset en-
ables a more thorough evaluation of the effectiveness of our model for unsupervised 3D segmentation.
Our synthetic dataset is inspired by cryo-ET images of cells. Each volume in our synthetic dataset
contains multiple levels of hierarchy with the objects at each level differentiated by texture, size, and
shape. Figure 2 shows an example input volume with sampled slices shown. Our dataset consists
of 120 total volumes, which we split into 80 training, 20 validation, and 20 test examples. Each
synthetic volume has size 50× 50× 50. Additional information on the synthetic dataset generation
process as well as a more difficult version of the dataset, where the boundaries of each shape are
perturbed, is described and benchmarked in Appendix A.5.

Figure 2: Sampled 2D slices from a 3D volume in our biologically-inspired synthetic dataset. The
top row showcases the raw input data, and the bottom row showcases the ground truth segmentation.

To demonstrate segmentation performance on objects at different scales, we evaluate on the three
levels of hierarchy defined above and use the average class DICE score to compare segmentation
performance. Since our model is unsupervised, we assign segmentation classes to ground truth labels
using the Hungarian algorithm. See results in Table 1 and Table 2. We also show results on a more
challenging irregular synthetic dataset in Appendix A.5.

Comparison with prior approaches Table 1 shows quantitative comparison of our method with
prior state-of-the-art 3D unsupervised and 2D unsupervised (which we extend to 3D) models. In
addition, we also compare our method to prior semi-supervised work, as unsupervised 3D segmenta-
tion is a relatively unexplored field, and we provide baselines with different levels of supervision for
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Table 1: Comparison with prior approaches on synthetic dataset

DICE Level 1 DICE Level 2 DICE Level 3 SUPERVISION TYPE

ÇIÇEK ET AL. [2016] 0.968 0.829 0.668 3D SEMI-SUPERVISED
ZHAO ET AL. [2019] 0.989 0.655 0.357 3D SEMI-SUPERVISED

NALEPA ET AL. [2020] 0.530 0.276 0.112 3D UNSUPERVISED
JI ET AL. [2019] 0.589 0.291 0.150 2D TO 3D UNSUPERVISED
MORIYA ET AL. [2018] 0.628 0.311 0.141 3D UNSUPERVISED
OURS 0.952 0.541 0.216 3D UNSUPERVISED

Table 2: Ablation studies on synthetic dataset

LATENT SPACE CONFIGURATION DICE Level 1 DICE Level 2 DICE Level 3

EUCLIDEAN BASE 0.784 0.322 0.109
TRIPLET 0.761 0.342 0.153

HYPERBOLIC BASE 0.832 0.352 0.135
GYROCONV 0.905 0.473 0.204
TRIPLET 0.945 0.534 0.222
GYROCONV & TRIPLET 0.952 0.540 0.216

additional reference. Çiçek et al. [2016] was trained with 2% of the ground truth slices in each of
the xy, yz, and xz planes, and Zhao et al. [2019] was trained with one fully annotated atlas, which
can both still be expensive given the large size of many 3D biomedical images. Ji et al. [2019] was
implemented using the authors’ original code and extrapolated to 3D by applying the method to each
slice. For Nalepa et al. [2020] and Moriya et al. [2018], we re-implemented their methods as the
original code was unavailable. Our model performs significantly better than all unsupervised prior
work at all levels of hierarchy. We also perform comparably to the semi-supervised approach of Zhao
et al. [2019], despite not using any labels.

Ablation Table 2 presents ablation studies on the hierarchical synthetic dataset comparing our
contributions: Euclidean vs. hyperbolic representations, the addition of our gyroplane convolutional
layer, and the addition of our hierarchical triplet loss. The base Euclidean configuration is the 3D
convolutional VAE with Euclidean latent space, no gyroplane convolutional layer, and trained with
just the ELBO loss. The triplet Euclidean configuration adds the hierarchical triplet loss to the
base Euclidean configuration. The base hyperbolic configuration is the same as the base Euclidean
configuration except with hyperbolic latent space. The triplet configuration is the hyperbolic analogue
of the Euclidean triplet configuration, and gyroconv configurations have the addition of the gyroplane
convolutional layer.

Hyperbolic representations outperform their Euclidean counterparts in all experiments. We attribute
this to the more efficient and better organization of hyperbolic representations. When we introduce
our self-supervised triplet loss, performance improves significantly for our hyperbolic models. Per-
formance for our Euclidean model does not improve as much, likely due to information loss in
representing hierarchical input. Introducing the gyroplane convolutional layer shows clear improve-
ment over the base hyperbolic model, which demonstrates the benefit of having a convolutional layer
that respects the geometry of the latent space. The combination of the triplet loss and gyroplane
convolutional layer exhibits the most gain over the base hyperbolic model, with smaller gains over the
model with just the added triplet loss. We show the importance of our hierarchical self-supervision
for learning effective representations that capture implicit hierarchical structure.

4.2 Brain Tumor Segmentation challenge dataset

The BraTS 2019 dataset is a public, well-established benchmark dataset containing 3D MRI scans
of brain tumors and voxel-level ground truth annotations of tumor segmentation masks [Menze
et al., 2014, Bakas et al., 2017, 2018]. The scans are of dimension 200× 200× 155 and have four
modalities; we use the FLAIR modality, which is the most commonly used one-modality input. We
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Table 3: Table shows comparison on BraTS 2019 dataset. Figure shows a qualitative example where
top left image is a slice from a 3D test volume, and the three other images show segmentations with
2, 3, 4 numbers of clustering centroids respectively, illustrating multiple levels of hierarchy learned.

BRATS DATASET DICE WT ALGORITHM TYPE

SOTA [JIANG ET AL., 2019] 0.888 3D FULLY-SUP.

ZHAO ET AL. [2019] 0.648 3D SEMI-SUP.
ÇIÇEK ET AL. [2016] 0.760 3D SEMI-SUP.

JI ET AL. [2019] 0.211 2D-TO-3D UNSUP.
MORIYA ET AL. [2018] 0.425 3D UNSUP.
NALEPA ET AL. [2020] 0.495 3D UNSUP.
OURS 0.684 3D UNSUP.

use the same evaluation metric as in the BraTS challenge, and compare DICE score on whole tumor
(WT) segmentation, which is detectable solely from FLAIR, as well as average and 95 percentile
Hausdorff distance for the competing unsupervised methods (see Table 4). There are 259 high grade
glioma (HGG) labelled training examples, which we split into 180 train, 39 validation, and 40 test
examples. We do not use the official validation or test sets because the ground truth annotations for
these sets are not publicly available.

Table 4: Comparison of our method against prior
unsupervised work in Hausdorff distance. (Lower
is better.)

AVERAGE 95%

MORIYA ET AL. [2018] 118.144 170.434
JI ET AL. [2019] 96.865 114.400
NALEPA ET AL. [2020] 87.704 110.803
OURS 77.940 97.641

Table 3 shows the DICE score comparison of our
results against prior work. For fair comparison,
all baselines are trained with only the FLAIR
modality. The only exception is the current state-
of-the-art fully-supervised result [Jiang et al.,
2019] in Table 3, which uses all 4 modalities.
We show this for reference as an upper bound;
the reported number is trained on the full train
set and evaluated on the BraTS test set.

Our best model performs significantly better
than all prior unsupervised methods, and in
addition outperforms one 3D semi-supervised
model. This demonstrates the ability of our self-
supervised hyperbolic representations to effectively capture the hierarchical structure in individual
brain scans. We use a granular segmentation with three clusters for quantitative evaluation in order to
capture the tumor, brain, and background, then use the Hungarian algorithm for assignment. In Table
4, we demonstrate that our model also outperforms all prior methods on average and 95 percentile
Hausdorff metrics. In addition, we also show qualitative results for our model (see Figure 3), which
include byproduct segmentations from the same model with different numbers of clusters specified,
showcasing additionally discovered features in the scan that could be clinically useful.

5 Conclusion

We propose a method for learning hyperbolic representations of 3D voxel-grid images that captures
the implicit hierarchical structure in biomedical data, and show that these representations are well
suited for the task of unsupervised 3D segmentation. We conduct our representation learning through a
hyperbolic 3D convolutional VAE with a novel gyroplane convolutional layer that respects hyperbolic
geometry. We then enhance the VAE training objective with a self-supervised hierarchical triplet
loss that learns implicit hierarchical structure within the VAE’s hyperbolic latent space as a pretext
task. We demonstrate that hyperbolic clustering of learned voxel-level representations can be used
to achieve state-of-the-art unsupervised 3D segmentation on synthetic hierarchical datasets and the
real-world BraTS dataset.
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