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ABSTRACT

This paper aims to explain how a deep neural network (DNN) gradually extracts
new knowledge and forgets noisy features through layers in forward propaga-
tion. Up to now, although how to define knowledge encoded by the DNN has
not reached a consensus so far, previous studies (Li & Zhang, 2023a; Ren et al.,
2023b) have derived a series of mathematical evidence to take interactions as sym-
bolic primitive inference patterns encoded by a DNN. We extend the definition of
interactions and, for the first time, extract interactions encoded by intermediate
layers. We quantify and track the newly emerged interactions and the forgotten
interactions in each layer during the forward propagation, which shed new light on
the learning behavior of DNNs. The layer-wise change of interactions also reveals
the change of the generalization capacity and instability of feature representations
of a DNN. The code will be released when the paper is accepted.

1 INTRODUCTION

Recently, understanding the black-box representation of deep neural networks (DNNs) has received
increasing attention. This paper investigates how a DNN gradually extracts knowledge from the
input for inference during the layer-wise forward propagation, although the definition of knowledge
encoded by an AI model is still an open problem. To this end, the information bottleneck the-
ory (Shwartz-Ziv & Tishby, 2017; Saxe et al., 2018) uses mutual information between the input and
the intermediate-layer feature to measure knowledge encoded in each layer. It finds that the DNN fits
(learns) task-relevant information, and compresses task-irrelevant information. Liang et al. (2020)
have extracted common feature components shared by different features as the shared knowledge.

In this paper, we aim to define and quantify the knowledge encoded in each layer, and further clarify
the exact new knowledge learned in each layer and noisy knowledge forgotten in the layer-wise
forward propagation. Accurately decomposing and tracking explicit changes of knowledge through
different layers presents a significant challenge to the definition of knowledge, but it can help both
theoreticians and practitioners gain new insights into the learning behavior of a DNN.

However, there is no a widely accepted definition of knowledge, because we cannot mathematically
define/formulate knowledge in human cognition. If we ignore cognitive issues, the accurate tracking
and comparing knowledge between adjacent layers present the following three challenges.
(1) Knowledge alignment. Although features in adjacent layers of a DNN are believed to encode
similar knowledge, different feature dimensions in different layers do not have a clear correspon-
dence. The fair comparison between any arbitrary pair of layers requires knowledge extracted from
different layers to be aligned.
(2) Decomposability and countability of knowledge. Instead of quantifying the total amount of
knowledge, we hope to decompose knowledge into countable interaction primitives, so that we can
exactly quantify how many interaction primitives are newly emerged and forgotten in each layer.
(3) Connection to the generalization capacity. We hope to provide deep insights into how newly
merged knowledge and forgotten old knowledge are related to the generalization capacity of a DNN.

Fortunately, recent findings (Ren et al., 2023a; Li & Zhang, 2023b; Ren et al., 2023b) have provided
us a new direction to define the knowledge encoded by a DNN, so as to solve the above challenges.
Li & Zhang (2023a); Ren et al. (2023b) have derived a series of theorems as convincing evidence
to take interactions as symbolic primitive inference patterns encoded by a DNN. Specifically, when
we feed an input sample to the DNN, Ren et al. (2023b) have mathematically proven that under
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Figure 1: Tracking interactions through layers in the DNN. In most DNNs, low and middle layers
are usually trained to fit target interactions modeled by the entire network at the cost of encoding
lots of redundant interactions, and high layers remove such redundant interactions.

some common conditions1, the inference score can be faithfully disentangled into or explained as
numerical effects of a few interactions between input variables. Each interaction measures an AND
relationship between different variables of this sample, which has been encoded by the DNN. For
example, let us focus on a DNN trained for the classification of the dog in Fig. 1. The DNN en-
codes the co-appearance relationship between input variables (image patches) to form a dog face
interaction S = {eye, nose,mouth}. Only when all patches in S are present in the image, the face
interaction S is triggered and makes a numerical effect I(S|x) on the classification score. Masking
any patches will deactivate the face interaction S and remove the effect, i.e., making I(S|x) = 0.

Therefore, in this paper, we extend the definition of interactions to quantify the knowledge encoded
by different layers. Specifically, given features of a certain layer, we train a linear classifier to use
these features for classification, and extract a set of interactions from the classifier. We can consider
such interactions as faithful primitive inference patterns (i.e., knowledge) encoded by features. It is
because for the classification on most samples1, we can always use a small number of interactions
to predict various classification scores on an exponential number of masked samples, no matter how
we randomly mask this input sample.

In this way, interactions provide us a more straightforward way to analyze how knowledge changes
in the layer-wise forward propagation. Instead of directly aligning features in different layers, we
find that adjacent layers in a DNN usually encode similar sets of interactions. Thus, as illustrated
in Fig. 1, we can clarify the emergence of new interactions and the forgetting of old interactions
in each layer. More crucially, we can use interactions to explain the change of the representation
capacity of features in different layers from the following two perspectives.

• The tracking of interactions in different layers reveals the change of representation com-
plexity over different layers. The complexity of an interaction S is defined as the number of input
variables in S, which is also termed the order of this interaction, i.e., order(S) = |S|. In experiments,
we discover that in most DNNs, low and middle layers are usually trained to fit target interactions
modeled by the entire network at the cost of encoding lots of redundant interactions, and high layers
remove such redundant interactions. For example, low layers of DNNs trained on the SST-2 dataset
usually cannot encode target interactions. Then, middle layers gradually learn the target interactions
for inference, but also bring in lots of redundant interactions. High layers usually forget redundant
and unstable high-order interactions.

However, for DNNs trained on the CIFAR-10 dataset, we find that low layers are unable to learn
interactions that can be directly used for classification, middle layers gradually learn the discrimi-
native interactions used for inference without generating redundant interactions, and high layers do
not change already encoded interactions significantly.

• The tracking of interactions reveals the generalization capacity of the DNN. The generaliza-
tion capacity of each interaction can be directly measured. Given multiple DNNs trained for the
same task, if these DNNs all encode the same interaction, then we consider this interaction can be
generalized to different models. Then, we discover that low-order interactions usually have stronger
generalization capacity than high-order interactions. Besides, we also discover that low-order inter-
actions encoded by the DNN usually exhibit more consistent effects I(S|x′ = x + ε) when we add
different small noises ε to the input sample x. In comparison, high-order interactions often exhibit

1Please see Appendix C for the detailed introduction.
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diverse effects I(S|x′) on inference scores w.r.t. different noises ε. This indicates that low-order
interactions often have higher stability.

2 PREVIOUS STUDIES USING KNOWLEDGE TO EXPLAIN DNNS

Explaining and quantifying the exact knowledge encoded by a DNN presents a significant challenge
to explainable AI. So far, there has not existed a widely accepted definition of knowledge that enables
us to accurately disentangle and quantify knowledge encoded by intermediate layers of a DNN, be-
cause it covers multiple disciplinary issues, such as cognitive science, neuroscience, etc. To this end,
previous works have employed different methods to quantify knowledge encoded by a DNN (Bau
et al., 2017; Kim et al., 2018; Zhang et al., 2020; Shen et al., 2021; Chen et al., 2019; Shwartz-Ziv
& Tishby, 2017; Saxe et al., 2018; Kolchinsky et al., 2019; Wang et al., 2022; Liang et al., 2020).
However, these methods either associated units of DNN feature maps with manually annotated se-
mantics/concepts or automatically learned meaningful patterns from data, but they failed to provide
a mathematically guaranteed boundary for the scope of each concept/knowledge. Thus, previous
studies could not accurately quantify the exact amount of newly emerged/forgotten/unexplainable
knowledge in each layer. Appendix A provides further discussions of these methods.

Faithfulness of using interaction primitives to explain DNNs. If we ignore cognitive issues, we
can consider the interaction used by (Ren et al., 2023a) as a faithful metric to quantify and track the
change of interactions encoded by different layers in a DNN. It is because Ren et al. (2023a); Li &
Zhang (2023b); Ren et al. (2023b) have both theoretically and experimentally ensured the faithful-
ness of interactions, as follows. (1) Although there is no theory to guarantee that salient interactions
can exactly fit the so-called knowledge in human cognition, Theorem 1 has proven that the outputs
of DNNs can be effectively approximated by sparse interactions. (2) Li & Zhang (2023b) have ob-
served that interactions exhibited considerable generalization capacity across samples and across
models. That is, interactions extracted from different images in the same category were often simi-
lar, and different DNNs trained for the same task usually encoded similar sets of interactions. (3) Li
& Zhang (2023b) have also discovered that a salient interaction exhibited remarkable discrimina-
tion power in classification tasks, i.e., the same salient interaction extracted from different samples
usually pushed the DNN towards the classification of the same category.

3 QUANTIFYING AND TRACKING INTERACTIONS THROUGH LAYERS

3.1 PRELIMINARIES: USING INTERACTIONS TO REPRESENT KNOWLEDGE IN DNNS

Nowadays, there does not exist a widely accepted way to define knowledge encoded by a DNN,
because the definition of knowledge is an interdisciplinary problem over cognitive science, neuro-
science, and mathematics. However, if we ignore cognitive issues, Li & Zhang (2023a); Ren et al.
(2023b) have derived a series of theorems as convincing evidence to take interactions as symbolic
primitive inference patterns encoded by a DNN (please see Section 2 for details). Thus, in this paper,
we quantify and track the changes of interactions in the layer-wise forward propagation. Specifically,
there are two types of interactions, including AND interactions and OR interactions.

AND interactions. Let us consider a function v(x) ∈ R with an input sample x = [x1, x2, . . . , xn]
comprising n input variables, which are indexed by N = {1, 2, . . . , n}. Ren et al. (2023a) have
discovered that the following interaction metric can reflect the AND relationship among a subset
S ⊆ N of input variables, which is encoded by the target function v. Besides, Ren et al. (2023a)
have further proven seven properties to ensure the trustworthiness of this interaction. Please see
Appendix B for the introduction of the proven properties.

Iand(S|x) =
∑

T⊆S
(−1)|S|−|T | · v(xT ). (1)

where xT denotes the masked sample obtained by masking variables in N \T 2 and leaving variables
in T unaltered. v(xT ) represents the output on the masked sample xT .

2We mask the input variable i ∈ N \ T to the baseline value bi to represent its masked state, where bi is set
as the mean value of this variable across all samples (Dabkowski & Gal, 2017).
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Each AND interaction represents an AND relationship between variables in S ⊆ N with a con-
siderable impact Iand(S|x) on the output v(x). For example, let us consider a toy Boolean function
v(x) = 2 ·x1∧x2∧x3 +x1∨x4, xi ∈ {0, 1}, where ∧ and ∨ denote the logic AND and OR operations,
respectively. The function v may encode the co-appearance of x1, x2, and x3 as an inference pattern
S = {x1, x2, x3}, and makes a numerical effect Iand(S|x) = 2 on the output score. Conversely, mask-
ing any input variable in S will destroy the AND relationship among x1, x2, and x3, and eliminate
the interaction effect from the output, i.e., making Iand(S|x) = 0.

OR interactions. Li & Zhang (2023a) have further extended the Harsanyi AND interaction to the
Harsanyi OR interaction, which reflects the numerical effect of the OR relationship among a subset
S ⊆ N of input variables, which are encoded by the function v.

Ior(S|x) = −
∑

T⊆S
(−1)|S|−|T | · v(xN\T ). (2)

Each OR interaction Ior(S|x) represents the OR relationship of all input variables in S. For example,
in the above Boolean function v(x) = 2 · x1 ∧ x2 ∧ x3 + x1 ∨ x4, the function v may encode an OR
interaction between input variables in S = {x1, x4}. The presence of either x1 or x4 will make an
effect Ior(S|x) = 1 on the output score v.

Explaining DNNs using AND-OR interactions. Li & Zhang (2023a) have simultaneously used
AND interactions and OR interactions to explain the network output of a DNN. Specifically, given
a masked sample xT , v(x) ∈ R represents the scalar output of the DNN or a certain dimension of
the DNN3. Then, the network output v(xT ) is learned to be decomposed into two terms vand(xT ) =
0.5 · v(xT ) + γT and vor(xT ) = 0.5 · v(xT ) − γT with a set of learnable parameters {γT }, so that
the term vand is learned to represent effects of all AND interactions, and the term vand is learned to
represent effects of all OR interactions. The decomposition of vand(xT ) and vor(xT ) is determined by
parameters {γT }, which are learned towards the simplest explanation (Li & Zhang, 2023a).

min{γT }
∑

T⊆N
|Iand(T |x)|+ |Ior(T |x)|. (3)

Particularly, Iand(∅|x) = vand(x∅), and Ior(∅|x) = vor(x∅). Thus, Li & Zhang (2023a) have proven
that the output of a DNN can always be explained by Harsanyi AND/OR interactions. That is, for
each input sample x ∈ Rn, we can theoretically obtain 2n different masked samples xT by randomly
masking different subsets T ⊆ N of input variables. It is proven that the network output v(xT ) on
each masked sample xT can be decomposed into effects of AND interactions and OR interactions,
subject to Iand(∅|x) = vand(x∅) = v(x∅) and Ior(∅|x) = vor(x∅) = 0.

v(xT ) = vand(xT ) + vor(xT ) =
∑

S⊆T
Iand(S|xT ) +

∑
S∩T 6=∅

Ior(S|xT ). (4)

Sparsity & universal matching. Although there are 2n different AND interactions, Ren et al.
(2023b) have proven that under some common conditions1, most well-trained DNNs only encode a
small number of AND interactions S ∈ Ωand

salient with salient effects Iand(S|x) on the network output,
subject to |Ωand

salient| � 2n. All other AND interactions exhibit negligible effects Iand(S|x) ≈ 0 on
inference, which can be regarded as noisy patterns. Besides, the proven sparsity of AND interactions
also indicates the sparsity of OR interactions, because the OR interaction can be considered as a
specific AND interaction. Please see Appendix D for discussions.

More crucially, Theorem 1 shows that although we can obtain 2n masked samples xT by masking
different subsets ∀T, T ⊆ N of input variables, we can use a small set of salient AND interactions
Ωand

salient and OR interactions Ωor
salient to universally match network outputs v(xT ) on all 2n masked

samples, which indicates that salient interactions can serve as primitive inference patterns.

Theorem 1 (Proving interactions as primitive inference patterns, c.f. Appendix E). Given an
input sample x ∈ Rn, Li & Zhang (2023a) have proven that the network output on all 2n masked
input samples {xT |T ⊆ N} can be universally matched by a small set of salient interactions.

v(xT ) ≈ v(x∅) +
∑

S∈Ωand
salient:∅6=S⊆T

Iand(S|xT ) +
∑

S∈Ωor
salient:S∩T 6=∅

Ior(S|xT ). (5)

3Here, v(x) serves as the confidence of classifying the sample x to the ground-truth category v(x) =

log p(y=ytruth|x)

1−p(y=ytruth|x)
∈ R by following (Deng et al., 2022).
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Figure 2: Sparsity of interactions. We visualized strength of all AND-OR interactions extracted
from difference samples x, |I(S|x)| w.r.t. different S and x, in a descending order. Only about 21.8
AND/OR interactions in each sample of the MNIST dataset and about 45.6 AND/OR interactions
in each sample of the CIFAR-10 dataset made salient effects on the network output.

3.2 TRACKING CHANGES OF INTERACTIONS IN LAYER-WISE FORWARD PROPAGATION

As discussed in Section 2, the universal-matching property in Theorem 1, the considerable transfer-
ability, and the remarkable discrimination power of interaction primitives all enable us to consider
interactions as primitive inference patterns (or knowledge) encoded by the DNN. Thus, we extend
the definition of interactions and, for the first time, extract salient AND-OR interactions encoded
by the intermediate layers. This enables us to further quantify and track the newly emerged interac-
tion primitives and the forgotten interaction primitives in each layer during the forward propagation,
which provide new insights into the learning behavior of DNNs.

3.2.1 VERIFYING THE SPARSITY OF INTERACTION PRIMITIVES ENCODED BY DNNS

Before we define interactions encoded by intermediate-layer features, we need to first examine the
sparsity of interactions encoded by the final layer of the DNN. Although Ren et al. (2023b) have
proven that a well-trained DNN usually just encodes a few AND interactions for inference under
some common conditions1, it is still a challenge to strictly examine whether the DNN fully satisfies
these conditions in real applications. Besides, the sparsity of interactions has not been proven when
we simultaneously use AND interactions and OR interactions to explain a DNN.

The interactions used by the final layer are directly extracted based on the network output v(x),
according to Eq. (1) and Eq. (2). Thus, we can consider interactions extracted from the final layer
as the target interactions used for the inference. If these interactions are sparse, we can consider that
there is a clear target for the forward propagation, which pushes features in intermediate layers to
encode a specific small set of sparse interactions through forward propagation.

Experiments. We conducted experiments to illustrate the sparsity of interactions. Given a well-
trained DNN and an input sample x ∈ Rn, we calculated AND interactions Iand(S|x) and OR inter-
actions Ior(S|x) of all 2n possible subsets S ⊆ N . To this end, we trained VGG-11 (Simonyan & Zis-
serman, 2014), ResNet-20 (He et al., 2016) on the MNIST dataset (LeCun et al., 1998) and CIFAR-
10 dataset (Krizhevsky et al., 2009), respectively. We also learned a seven-layer MLP (namely
MLP7) on the MNIST dataset and CIFAR-10 dataset, respectively, where each layer contained 1024
neurons. Please see Appendix H for experimental details.

Fig. 2 shows the strength of all AND-OR interactions extracted from difference samples x, |I(S|x)|
w.r.t. different S and x, in a descending order. We discovered that only about 21.8 AND/OR
interactions in each sample of the MNIST dataset and about 45.6 AND/OR interactions in each
sample of the CIFAR-10 dataset made salient effects on the network output, while most interactions
exhibited very small effects. Such a phenomenon verified the sparsity of interactions.

3.2.2 EXTRACTING INTERACTIONS ENCODED BY INTERMEDIATE LAYERS

In comparison with extracting interactions from the network output v(x)3, defining and extracting
interactions from intermediate layers present a new challenge. It is because the intermediate-layer
features are usually high-dimensional vectors/tensors/matrices, rather than a scalar output. Thus, we
need to define a new scalar metric v(l)(x), which takes the role of v(x) and represents the overall
numerical effect of all interactions encoded by the l-th layer.

To this end, given a well-trained DNN v and an input sample x, we propose to learn a linear classifier
with the weight w(l) and the bias b(l), which uses the feature f (l)(x) of the l-th layer to conduct the

5



Under review as a conference paper at ICLR 2024

same classification task as the DNN.
p(y|x) = softmax/sigmoid((w(l))T f (l)(x) + b(l)),

(w(l), b(l)) = arg minw(l),b(l) Lossclassification(p(y|x)),
(6)

where Lossclassification(·) is implemented as the crossentropy loss in experiments. It is worth noting
that network parameters in the DNN are all fixed without being tuned, when we learn classifiers.
Based on the learned classifier, we can define v(l)(x) to quantify AND-OR interactions encoded by
the l-th layer of the DNN, as follows.

v(l)(x) = log
p(y = ytruth|x)

1− p(y = ytruth|x)
− δN , v(l)(xT ) = log

p(y = ytruth|xT )

1− p(y = ytruth|xT )
− δT , (7)

where δT , s.t. ∀T ⊆ N, |δT | < κ is a learnable residual proposed to model and remove the tiny noise
in the output v(l)(xT ), so as to extract relatively clean interactions. δT is constrained to a small range
κ = 0.04·Ex[|v(l)(xN )−v(l)(x∅)|]. It is because Theorem 2 in Appendix F has shown that small noise
in output function v(l)(xT ) may significantly change the interaction effect. In this way, parameters
{γT , δT } are learned by minimizing

∑
T⊆N |Iand(T |x, v(l))|+ |Ior(T |x, v(l))|, s.t. ∀T ⊆ N, |δT | < κ.

Thus, the new function v(l)(x) enables a fair comparison between interactions extracted from dif-
ferent layers. The classification score v(l)(x) potentially reflects a set of interactions, which are
encoded by f (l)(x) and can be used for classification. For example, features in low layers usually
represent lots of local and simple non-linear patterns between a few input variables, but most of such
patterns cannot be directly used by the classifier for the classification task. Hence, as illustrated in
Fig. 3, linear classifiers trained on features of low layers do not encode many high-order interac-
tions. Here, the order of an interaction is defined as the number of input variables involving in this
interaction, i.e., order(S) = |S|, which measured the complexity of the interaction. In comparison,
features of upper layers usually encode complex non-linear patterns between more input variables,
which are more likely to contribute to the classification task directly. Therefore, compared to linear
classifiers trained on low-layer features, classifiers trained on features of high layers usually encode
a higher ratio of interactions, which are shared by the final layer of the DNN.

Experiments. We conducted experiments to extract interactions from different layers of different
DNNs. We used the MLP7, VGG-11, and ResNet-20 trained on the MNIST dataset and CIFAR-10
dataset, which were introduced in Section 3.2.1. We also fine-tuned pre-trained DistilBERT (Sanh
et al., 2019) and BERTBASE (Devlin et al., 2019) models on the SST-2 dataset (Socher et al., 2013)
for binary sentiment classification.

In this experiment, we quantified how the DNN gradually learned new interactions and discarded
useless interactions in the forward propagation and obtained the target interactions in the last layer.
To this end, given all AND-OR interactions encoded by the l-th layer, let Ω

(l),m
and = {S ⊆ N : |S| =

m, |Iand(S|x, v(l))| > τ}4 denote the set of salient AND interactions of the m-th order extracted from
the l-th layer. Accordingly, Ω

(l),m
or = {S ⊆ N : |S| = m, |Ior(S|x, v(l))| > τ 4} represented the set of

salient OR interactions of the m-th order extracted from the l-th layer. To this end, we used all(l),mand

and all(L),m
and to quantify the overall strength of all m-order salient AND interactions encoded by the

l-th layer and those encoded by the final layer (the L-th layer), respectively.

all(l),mand =
∑

S∈Ω
(l),m
and

|Iand(S|x, v(l))|, all(L),m
and =

∑
S∈Ω

(L),m
and

|Iand(S|x, v(L))|. (8)

As shown in Fig. 3, we designed the following three metrics to further disentangle the overall
strength all(l),mand and all(L),m

and into three terms, (1) the overall strength of interactions shared by both
the l-th layer and the final layer, overlap(l),m

and , (2) the overall strength of interactions that were en-
coded by the l-th layer but were later forgotten in the final layer, forget(l),mand , (3) the overall strength
of interactions that were encoded in the final layer, but were not encoded by the l-th layer, new(l),m

and .

overlap(l),m
and =

∑
S∈Ω

(l),m
and

⋂
Ω

(L),m
and

∣∣∣shared(Iand(S|x, v(l)), Iand(S|x, v(L)))
∣∣∣ ,

forget(l),mand =
∑

S∈Ω
(l),m
and

∣∣∣Iand(S|x, v(l))− shared(Iand(S|x, v(l)), Iand(S|x, v(L)))
∣∣∣ ,

new(l),m
and =

∑
S∈Ω

(L),m
and

∣∣∣Iand(S|x, v(L))− shared(Iand(S|x, v(l)), Iand(S|x, v(L)))
∣∣∣ ,

(9)

4We set τ = 0.05 · maxS(max{|Iand(S|x, v(l))|, |Ior(S|x, v(l))|}) to select a set of salient interactions
from all interactions extracted from the l-th layer of the target DNN.
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Figure 3: Tracking the change of the average strength of the overlapped interactions overlap(l),m
and , for-

gotten interactions forget(l),mand , and newly emerged interactions new(l),m
and of different orders m through

different layers l. For each subfigure, the total length of the orange bar and the grey bar equals to
the overall strength of interactions encoded by the l-th layer all(l),mand , and the total length of the blue
bar and the grey bar equals to the overall strength of interactions encoded by the final layer all(L),m

and .
Please see Appendix G for results of OR interactions.

where shared(Iand(S|x, v(l)), Iand(S|x, v(L))) measured the shared AND interactions between
Iand(S|x, v(l)) extracted from the l-th layer and Iand(S|x, v(L)) encoded by the final L-th layer. If
Iand(S|x, v(l)) and Iand(S|x, v(L)) had opposite interaction effects, i.e., Iand(S|x, v(l)) ·Iand(S|x, v(L)) ≤
0, then shared(Iand(S|x, v(l)), Iand(S|x, v(L))) = 0; Otherwise, the shared AND interaction
shared(Iand(S|x, v(l)), Iand(S|x, v(L))) = sign(Iand(S|x, v(l))) ·min(|Iand(S|x, v(l))|, |Iand(S|x, v(L))|).

Thus, overlap(l),m
and , forget(l),mand , and new(l),m

and formed a decomposition of overall interaction strength.

all(l),mand = overlap(l),m
and + forget(l),mand , all(L),m

and = overlap(l),m
and + new(l),m

and . (10)

Metrics for OR interactions overlap(l),m
or , forget(l),mor , and new(l),m

or were defined in the similar way.

Fig. 3 reports the average strength5 of the overlapped AND interactions overlap(l),m
and , the forgotten

AND interactions forget(l),mand , and newly emerged AND interactions new(l),m
and over different samples,

respectively. We discovered that in most DNNs, low layers and middle layers usually learned to
fit target interactions that were finally used by DNNs at the cost of encoding lots of redundant
interactions. Such redundant interactions would be removed in high layers.

Distinctive information-processing behaviors of different DNNs. Specifically, for DNNs trained
on the MNIST dataset, they usually learned the target interactions for inference quickly, because
the MNIST dataset was easy to learn. Particularly, for the ResNet-20 trained on both the MNIST
dataset and the CIFAR-10 dataset, its low layers and middle layers mainly learned target interactions
for inference, while high layers mainly forgot high-order interactions. These high-order interactions
were unstable and exhibited poor generalization capacity, as verified in Section 3.3.

5We normalized each AND interaction Iand(S|x, v(l)) extracted from the l-th layer of the target DNN as
Iand(S|x, v(l)) ← Iand(S|x, v(l))/Ex[|v(l)(xN ) − v(l)(x∅)|] for fair comparison. Each OR interaction was
normalized in the similar way.
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Figure 4: Average IoU values of AND interactions extracted from two DNNs trained for the same
task over different input samples. Low-order interactions usually exhibited higher IoU values,
thereby being better generalized across DNNs. Please see Appendix G for results of OR interac-
tions. Appendix H.2 introduces the selected intermediate layer for each DNN.

For MLP7 and VGG-11 trained on the CIFAR-10 dataset, low layers were unable to learn interac-
tions that could be directly used for classification, due to the challenge of classification on the CIFAR
dataset. Then, middle layers and high layers gradually learned the target interactions for inference
without generating redundant interactions. High layers did not change the interactions significantly.

For the DistilBERT and BERTBASE trained on the SST-2 dataset, low layers usually could not encode
target interactions. Then, middle layers gradually learned the target interactions for inference, but
also brought in lots of redundant interactions. High layers usually forgot redundant interactions,
which were mainly high-order and unstable.

3.3 ANALYZING THE REPRESENTATION CAPACITY OF A DNN

Tracking salient interactions through layers also provides us a new perspective to understand how the
representation capacity gradually changes during the forward propagation. It is because we find that
the order (complexity) of interactions can well explain the generalization capacity and the instability
of feature representations of a DNN.

• Low-order interactions are more generalizable across models. According to Theorem 1,
we can disentangle the overall inference score based on the feature f (l)(x) into the sum
of effects of a few salient interactions, v(l)(xT ) ≈ v(x∅) +

∑
S∈Ω

(l)
and :∅6=S⊆T Iand(S|xT , v(l)) +∑

S∈Ω
(l)
or :S∩T 6=∅ Ior(S|xT , v(l)). Thus, the generalization capacity of the feature f (l)(x) can be ex-

plained by the generalization capacity of salient interactions.

To this end, we consider that if multiple DNNs trained for the same task encode the same inter-
action, then this interaction is considered to be well generalized. Specifically, given two DNNs,
vA and vB , trained for the same classification task and an input sample x, we follow the set-
tings in Section 3.2.2 to extract two sets of m-order salient AND interactions from the la-th
layer of the DNN vA and the lb-th layer of the DNN vB , respectively, which are denoted by
A

(la),m
and = {S ⊆ N : |S| = m, |Iand(S|x, v(la)

A )| > τ 4} and B
(lb),m
and . Accordingly, let A(la),m

or and
B

(lb),m
or represent sets of salient OR interactions of m-th order, respectively. Then, we use the IoU

metric to measure the generalization capacity of m-order interactions across different models.

IoU(A
(la),m
and , B

(lb),m
and ) =

|A(la),m
and ∩B(lb),m

and |
|A(la),m

and ∪B(lb),m
and |

, IoU(A(la),m
or , B(lb),m

or ) =
|A(la),m

or ∩B(lb),m
or |

|A(la),m
or ∪B(lb),m

or |
. (11)

Large values of IoU(A
(la),m
and , B

(lb),m
and ) and IoU(A

(la),m
or , B

(lb),m
or ) mean that most m-order interactions

encoded by a DNN can be well generalized to another DNN.

Experiments. Here, we examined the generalization capacity of interactions of different orders. We
used DNNs introduced in Section 3.2.1, i.e., MLP7, VGG-11, ResNet-20, and ResNet-32 (He et al.,
2016) trained on the CIFAR-10 dataset for image classification, and DistilBERT, BERTBASE, and
XLNet (Yang et al., 2019) fine-tuned on the SST-2 dataset for binary sentiment classification.

Fig. 4 reports the average IoU value of AND interactions extracted from two DNNs over different
input samples, Ex[IoU(A

(la),m
and , B

(lb),m
and )], given each pair of DNNs trained for the same task. We

discovered low-order interactions extracted from different DNNs usually exhibited higher IoU val-
ues, i.e., different DNNs trained for the same task usually encoded similar sets of salient low-order
interactions. This demonstrated low-order interactions could be better generalized across DNNs.

8
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Figure 5: The relative stability stability(l),mand of AND interactions decreased along with the order m.
Low-order interactions were more stable to inevitable noises in data. Please see Appendix G for
results of OR interactions. Appendix H.2 introduces the selected intermediate layer for each DNN.

• Low-order interactions are more stable to small noises We discover that the order of inter-
actions can also be used to explain the instability of feature representations of a DNN. According
to Theorem 1, the overall inference score based on the feature f (l)(x) can be disentangled into the
sum of effects of a few salient AND-OR interactions. Thus, instability of the feature f (l)(x) can be
explained by the instability of salient interactions.

To this end, let us add a small Gaussian perturbation ε ∼ N (0, σ2I) to the input sample x, in order
to mimic inevitable noises/variations in data. Although there may exist other noises in data, we just
use Gaussian perturbation to represent noises/variations in data, which may still provide insights
into real-world applications. Thus, we use the following metrics to measure the relative stability of
AND-OR interactions of each order m.

stability(l),m
and = Ex E

S∈Ω
(l),m
and

 |E(l),m
and (S,x)|√

Var(l),m
and (S,x)

 , stability(l),m
or = Ex E

S∈Ω
(l),m
or

 |E(l),m
or (S,x)|√

Var(l),m
or (S,x)

 , (12)

where E(l),m
and (S,x) = Eε[Iand(S|x + ε, v(l))] and Var(l),m

and (S,x) = Varε[Iand(S|x + ε, v(l))] denote the
mean and variance of the AND interaction Iand(S|x + ε, v(l)) w.r.t. Gaussian perturbations ε, which
are encoded by the l-th layer of the DNN. Similarly, E(l),m

or (S,x) and V ar(l),m
or (S,x) represent the

mean and variance of the OR interaction Ior(S|x+ε, v(l)) w.r.t. noises ε. Large values of stability(l),m
and

and stability(l),m
or indicates that m-order interactions are stable to inevitable noises.

Experiments. We conducted experiments to check the instability of AND-OR interactions of each
order. To this end, we added Gaussian perturbation ε ∼ N (0, 0.022I) to each training sample. Then,
for each order m, we computed metrics stability(l),mand based on DNNs introduced in Section 3.2.1.
Fig. 5 shows that the relative stability stability(l),mand decreased along with the order m, which indi-
cated that low-order interactions were more stable to inevitable noises in data than high-order inter-
actions. In other words, low-order interactions usually exhibited consistent effects Iand(S|x+ ε, v(l))
on the network output/intermediate-layer feature w.r.t. different noises ε than high-order interactions.
This indicated that low-order interactions were more likely to be generalized to similar samples (e.g.,
samples with small intra-class variations).

Thus, according to Figs. 3, 4, 5, we discovered that for ResNet-20 trained on both the MNIST dataset
and the CIFAR-10 dataset, their high layers usually exclusively forgot redundant high-order inter-
actions without encoding new interactions, where were non-generalizable and unstable. Besides,
high layers of DistilBERT and BERTBASE trained on the SST-2 dataset usually forgot redundant and
non-generalizable high-order interactions.

4 CONCLUSION AND DISCUSSION

In this paper, we use interaction primitives to represent knowledge encoded by the DNN. The spar-
sity and the universal-matching property of interactions proven in a series of previous studies ensure
the trustworthiness of taking interactions as symbolic primitive inference patterns encoded by a
DNN. Thus, we further quantify and track the newly emerged interaction primitives and the forgot-
ten interaction primitives in each layer during the forward propagation, which provides new insights
into the learning behavior of DNNs. The layer-wise change of interactions potentially reveals the
change of the generalization capacity and instability of feature representations of a DNN.

9
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REPRODUCIBILITY STATEMENT

We have provided proofs for the theoretical results of this study in Appendix B, Appendix D, Ap-
pendix E, and Appendix F. We have also provided experimental details in Section 3.2, Section 3.3,
Appendix G, and Appendix H. Furthermore, we will release the code when the paper is accepted.

REFERENCES

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. Network dissection:
Quantifying interpretability of deep visual representations. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 6541–6549, 2017.

Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett, Cynthia Rudin, and Jonathan K Su. This looks
like that: deep learning for interpretable image recognition. Advances in neural information
processing systems, 32, 2019.

Piotr Dabkowski and Yarin Gal. Real time image saliency for black box classifiers. Advances in
neural information processing systems, 30, 2017.

Huiqi Deng, Qihan Ren, Hao Zhang, and Quanshi Zhang. DISCOVERING AND EXPLAINING
THE REPRESENTATION BOTTLENECK OF DNNS. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=iRCUlgmdfHJ.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational
Linguistics, 2019.

John C Harsanyi. A simplified bargaining model for the n-person cooperative game. International
Economic Review, 4(2):194–220, 1963.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viegas, et al.
Interpretability beyond feature attribution: Quantitative testing with concept activation vectors
(tcav). In International conference on machine learning, pp. 2668–2677. PMLR, 2018.

Artemy Kolchinsky, Brendan D. Tracey, and Steven Van Kuyk. Caveats for information bottleneck
in deterministic scenarios. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=rke4HiAcY7.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.
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A DETAILED ANALYSIS FOR PREVIOUS STUDIES USING KNOWLEDGE TO
EXPLAIN DNNS

Explaining and quantifying the exact knowledge encoded by a DNN presents a significant challenge
to explainable AI. So far, there has not existed a widely accepted definition of knowledge that enables
us to accurately disentangle and quantify knowledge encoded by intermediate layers of a DNN,
because it covers various aspects of cognitive science, neuroscience, and mathematics. To this end,
previous works have employed different methods to quantify knowledge encoded by a DNN. Then,
let us revisit previous studies from the perspective of three challenges mentioned in Section 1.

First, Bau et al. (2017); Kim et al. (2018) associated neurons with manually annotated seman-
tics/concepts (knowledge). However, these works could not quantify the exact amount of knowl-
edge in the DNN, or discover new concepts emerged in intermediate layers. Second, learning
interpretable neural networks with meaningful features in intermediate layers was another classic
direction in explainable AI (Zhang et al., 2020; Shen et al., 2021; Chen et al., 2019). Although these
studies automatically learned meaningful concepts without human annotations, they did not provide
a mathematically guaranteed boundary for each concept/knowledge. Thus, these works could not
quantify the exact amount of newly emerged/forgotten/unexplainable knowledge in each layer.

Third, the information-bottleneck theory (Shwartz-Ziv & Tishby, 2017; Saxe et al., 2018) used the
mutual information between inputs and intermediate-layer features to quantify knowledge encoded
by the DNN. However, the mutual information could only measure the overall information contained
in each feature, but could not accurately quantify exact knowledge represented by the newly emerged
information and the forgotten information. Besides, Kolchinsky et al. (2019) showed the mutual
information was difficult to measure accurately, and Wang et al. (2022); Saxe et al. (2018) discovered
the mutual information had mathematical flaws in explaining the generalization power of a DNN.

Fourth, Liang et al. (2020) disentangled feature components from each layer, which could be re-
constructed by features in other layers, so as to evaluate the changes of features in different layers.
However, the changes of features in different layers could not be aligned to the same feature space
for fair comparison, and could not be employed to explain the generalization capacity of the DNN.

Faithfulness of using interaction primitives to explain DNNs. If we ignore cognitive issues, we
can consider interactions used by (Ren et al., 2023a) as a faithful metric to quantify and track the
change of interactions encoded by different layers in a DNN. It is because Ren et al. (2023a); Li &
Zhang (2023b); Ren et al. (2023b) have both theoretically and experimentally ensured the faithful-
ness of interactions, as follows. (1) Although there is no theory to guarantee that salient interactions
can exactly fit the so-called knowledge in human cognition, Theorem 1 has proven that the outputs
of DNNs can be effectively approximated by sparse interactions. (2) Li & Zhang (2023b) have ob-
served that interactions exhibited considerable generalization capacity across samples and across
models. That is, interactions extracted from different images in the same category were often simi-
lar, and different DNNs trained for the same task usually encoded similar sets of interactions. (3) Li
& Zhang (2023b) have also discovered that a salient interaction exhibited remarkable discrimina-
tion power in classification tasks, i.e., the same salient interaction extracted from different samples
usually pushed the DNN towards the classification of the same category.

B PROPERTIES FOR THE HARSANYI AND INTERACTION

Ren et al. (2023a) have proven that the Harsanyi AND interaction satisfied the following properties,
including the efficiency, linearity, dummy, symmetry, anonymity, recursive, interaction distribution
properties, which ensures the faithfulness of using the Harsanyi AND interaction to measure the
AND relationship between input variables encoded by the DNN.

(1) Efficiency property. The inference score of a well-trained model v(x) can be disentangled into
the numerical effects of different AND interactions v(x) =

∑
S⊆N Iand(S|x).

(2) Linearity property. If the inference score of the model w is computed as the sum of the inference
score of the model u and the inference score of the model v, i.e., ∀S ⊆ N,w(xS) = u(xS) + v(xS),
then the interaction effect of S on the model w can be computed as the sum of the interaction effect
of S on the model u and that on the model v, ∀S ⊆ N, Iand(S|x) = Iand(S|x) + Iand(S|x).
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(3) Dummy property. If the input variable i is a dummy variable, i.e., ∀S ⊆ N \ {i}, v(xS∪{i}) =
v(xS) + v(x{i}), then the input variable i has no AND interaction with other input variables, ∀S ⊆
N \ {i}, Iand(S ∪ {i}|x) = 0.

(4) Symmetry property. If input variables i, j ∈ N cooperate with other input variables in S ⊆
N \ {i, j} in the same way, ∀S ⊆ N \ {i, j}, v(xS∪{i}) = v(xS∪{j}), then input variables i and j have
the same effect of AND interactions, ∀S ⊆ N \ {i, j}, Iand(S ∪ {i}|x) = Iand(S ∪ {j}|x).

(5) Anonymity property. For any permutations π on N , then ∀S ⊆ N, Iand(S|x, v) = Iand(πS|x, πv)
is always guaranteed, where the new set of input variables πS is defined as πS = {π(i), i ∈ S}, the
new model πv is defined as (πv)(xπS) = v(xS). This suggests that permutation does not change the
effects of AND interactions.

(6) Recursive property. The effects of AND interactions can be calculated in a recursive manner. For
∀i ∈ N,S ⊆ N\{i}, the interaction effect of S∪{i} can be computed as the difference between the in-
teraction effect of S with the presence of the variable i and the interaction effect of S with the absence
of the variable i. That is, ∀i ∈ N,S ⊆ N\{i}, Iand(S ∪ {i}|x) = Iand(S|i is consistently present,x) −
Iand(S|x), where Iand(S|i is consistently present,x) =

∑
L⊆S(−1)|S|−|L|v(xL∪{i}).

(7) Interaction distribution property. This property describes how AND interactions are distributed
for “interaction functions” (Sundararajan et al., 2020). An interaction function vT parameterized by
a context T is defined as follows. ∀S ⊆ N , if T ⊆ S, then vT (xS) = c; Otherwise, vT (xS) = 0. Thus,
the effect of the AND interaction for an interaction function vT can be measured as, Iand(T |x) = c,
and ∀S 6= T, Iand(S|x) = 0.

C COMMON CONDITIONS FOR PROVING SPARSITY OF AND INTERACTIONS
ENCODED BY THE DNN

Ren et al. (2023b) have proven that most well-trained DNNs only encode a small number of AND
interactions S ∈ Ωand

salient, |Ωand
salient| � 2n with salient effects Iand(S|x) on the network output, under the

following three common conditions.
(1) The high-order derivatives of the DNN output w.r.t. the input variables are assumed to be zero.
In other words, the DNN is assumed to not encode extremely high-order AND interactions.
(2) When the input samples are partially occluded or masked, the classification confidence of the
DNN is assumed to monotonically increase with the size of the unmasked set S of input variables.
(3) The inference score of the masked input sample is assumed to neither be extremely low nor
extremely high.

D PROVING THAT THE OR INTERACTION CAN BE CONSIDERED A SPECIFIC
AND INTERACTION

The OR interaction Ior(S|x) can be considered as a specific AND interaction interaction Iand(S|x),
when we we inverse the definition of masked states and unmasked states of the input variable.

Specifically, given an input sample x ∈ Rn, let xN\T denote the masked sample obtained by masking
input variables in T , while leaving variables in N \ T unaltered. Here, we mask the input variable
i ∈ T to the baseline value bi to represent its masked state, as follows.

(xN\T )i =

{
xi, i ∈ N \ T
bi, i ∈ T (13)

Then, let us consider the masked sample x′T , where we inverse the definition of the masked state
and the unmasked state of each input variable to obtain this masked sample. That is, we mask input
variables in the set N \ T to baseline values, and keep variables in T unchanged, as follows.

(x′T )i =

{
xi, i ∈ T
bi, i ∈ N \ T (14)
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Thus, the OR interaction Iand(S|x) in Eq. (2) can be represented by the specific AND interaction
Iand(S|x′), as follows.

Ior(S|x) = −
∑

T⊆S
(−1)|S|−|T |v(xN\T ),

= −
∑

T⊆S
(−1)|S|−|T |v(x′T ),

= −Iand(S|x′).

(15)

In this way, based on Eq. (15), the proven sparsity of AND interactions in (Ren et al., 2023b) also
proves the sparsity of OR interactions, i.e., most well-trained DNNs usually encode a small number
of OR interactions.

E PROOF OF THEOREM 1

Theorem 1 (Proving interactions as primitive inference patterns) Given an input sample x ∈ Rn,
Li & Zhang (2023a) have proven that the network output on all 2n masked input samples {xS |S ⊆
N} can be universally matched by a small set of salient interactions.

v(xT ) = vand(xT ) + vor(xT ) =
∑
S⊆T

Iand(S|xT ) +
∑

S∩T 6=∅

Ior(S|xT )

≈ v(x∅) +
∑

S∈Ωand
salient:∅6=S⊆T

Iand(S|xT ) +
∑

S∈Ωor
salient:S∩T 6=∅

Ior(S|xT ).

(16)

Proof. Let us first focus on the sum of AND interactions, as follows.∑
S⊆T

Iand(S|xT ) =
∑

S⊆T

∑
L⊆S

(−1)|S|−|L|vand(xL)

=
∑

L⊆T

∑
S:L⊆S⊆T

(−1)|S|−|L|vand(xL)

= vand(xT )︸ ︷︷ ︸
L=T

+
∑

L⊆T,L 6=T
vand(xL) ·

∑|T |−|L|

m=0
(−1)m︸ ︷︷ ︸

=0

= vand(xT ).

(17)

Then, let us concentrate on the the sum of OR interactions, as follows.∑
S∩T 6=∅

Ior(S|xT ) = −
∑

S∩T 6=∅,S 6=∅

∑
L⊆S

(−1)|S|−|L|vor(xN\L)

= −
∑

L⊆N

∑
S:S∩T 6=∅,S⊇L

(−1)|S|−|L|vor(xN\L)

= − vor(x∅)︸ ︷︷ ︸
L=N

− vor(xT )︸ ︷︷ ︸
L=N\T

·
|T |∑
|S2|=1

C
|S2|
|T | (−1)|S2|

︸ ︷︷ ︸
=−1

−
∑

L∩T 6=∅,L 6=N

vor(xN\L) ·
∑

S1⊆N\T\L

|T |∑
|S2|=|T∩L|

C
|S2|−|T∩L|
|T |−|T∩L| (−1)|S1|+|S2|

︸ ︷︷ ︸
=0

−
∑

L∩T=∅,L 6=N\T

vor(xN\L) ·
∑
S2$T

∑
S1⊆N\T\L

(−1)|S1|+|S2|

︸ ︷︷ ︸
=0

= vor(xT )− vor(x∅)

(18)

.

Thus, we obtain vor(xT ) =
∑
S∩T 6=∅ Ior(S) + vor(x∅), according to Eq. (18). Thus, the output score

v(xT ) of the DNN on the masked sample xT can be represented as the sum of effects of AND-OR
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interactions.
v(xT ) = vand(xT ) + vor(xT )

=
∑

S⊆T
Iand(S|xT ) +

∑
S∩T 6=∅,S 6=∅

Ior(S|xT ) + vor(x∅)

=
∑

S⊆T,S 6=∅
Iand(S|xT ) + vand(x∅) +

∑
S∩T 6=∅

Ior(S|xT ) + vor(x∅)

= v(x∅) +
∑

S⊆T,S 6=∅
Iand(S|xT ) +

∑
S∩T 6=∅

Ior(S|xT ).

(19)

Moreover, Ren et al. (2023a) have proven that under some common conditions1, the output vand(xT )
of a well-trained DNN on all 2n masked samples {xT |T ⊆ N} can be universally approximated by
a small number of AND interactions T ∈ Ωand

salient with salient effects Iand(T |x) on the network output,
subject to |Ωand

salient| � 2n.

Besides, as proven in Appendix D, the OR interaction can be considered as a specific AND interac-
tion. Thus, the output vor(xT ) of a well-trained DNN on all 2n masked samples {xT |T ⊆ N} can
be universally approximated by a small number of OR interactions T ∈ Ωor

salient with salient effects
Ior(T |x) on the network output, subject to |Ωor

salient| � 2n.

In this way, Eq. (18) can be further approximated as

v(xT ) = vand(xT ) + vor(xT )

= v(x∅) +
∑

S⊆T
Iand(S|xT ) +

∑
S∩T 6=∅

Ior(S|xT )

≈ v(x∅) +
∑

S∈Ωand
salient:∅6=S⊆T

Iand(S|xT ) +
∑

S∈Ωor
salient:S∩T 6=∅

Ior(S|xT ).

(20)

Thus, Theorem 1 is proven.

F SMALL NOISES IN THE OUTPUT SIGNIFICANTLY CHANGE THE
INTERACTION EFFECT

Let us assume that the output of the linear classifier v(l)(xT ) has a small noise. We represent such
noises by adding a small Gaussian noise with small variance δT ∼ N (0, σ2) to the output of the
linear classifier v′(l)(xT ) = v(l)(xT ) + δT . Then, Theorem 2 proves that small noises in the output
can significantly change the interaction effect.
Theorem 2. Let us assume the function v′(l)(xT ) = v(l)(xT ) + δT , subject to δT ∼ N (0, σ2),
where the variance σ2 of the noise is very small. Then, the AND interaction I ′and(T |x, v′(l)) =

Iand(T |x, v(l)) +
∑
T ′⊆T (−1)|T |−|T

′|δT ′ is proven to be I ′(l)and (T |x, v′(l)) ∼ N (I
(l)
and(T |x, v

(l)), 2|T |σ2).
Similarly, the OR interaction I ′or(T |x, v′(l)) = Ior(T |x, v(l)) +

∑
T ′⊆T (−1)|T |−|T

′|δT ′ is proven to be
I
′(l)
or (T |x, v′(l)) ∼ N (I

(l)
or (T |x, v(l)), 2|T |σ2).

Proof. Let us first focus on the AND interaction I ′and(T |x, v′(l)), whose variance can be written as

Var(I ′and(T |x, v′(l))) = Var
(
Iand(T |x, v(l)) +

∑
T ′⊆T

(−1)|T |−|T
′|δT ′

)
. (21)

Considering the AND interaction I ′and(T |x, v′(l)) and the Gaussian noise δT are independent, Eq. (21)
can be further written as

Var(I ′and(T |x, v′(l))) = Var
(
Iand(T |x, v(l))

)
+ Var

(∑
T ′⊆T

(−1)|T |−|T
′|δT ′

)
. (22)

Because each Gaussian noise ∀T ′ ⊆ T, δT ′ ∼ N (0, σ2) is i.i.d., then the variance
Var
(∑

T ′⊆T (−1)|T |−|T
′|δT ′

)
in Eq. (22) can be written as

Var
(∑

T ′⊆T
(−1)|T |−|T

′|δT ′

)
= Var(δT ′

1
) + Var(δT ′

2
) + · · ·+ Var(δT ′

2|T |
)

= 2|T | · σ2. // there are 2|T | subsets T ′ ⊆ T in total.
(23)
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Moreover, for a fixed subset T , the variance of the AND interaction Var(Iand(T |x, v(l))) = 0. Thus,
Eq. (22) can be written as

Var(I ′and(T |x, v′(l))) = Var
(
Iand(T |x, v(l))

)
+ Var

(∑
T ′⊆T

(−1)|T |−|T
′|δT ′

)
= 0 + 2|T | · σ2 // based on Eq. (23)

= 2|T | · σ2.

(24)

Similarly, the variance of the OR interaction can be written as follows.

Var(I ′or(T |x, v′(l))) = Var
(
Ior(T |x, v(l)) +

∑
T ′⊆T

(−1)|T |−|T
′|δT ′

)
= Var

(
Ior(T |x, v(l))

)
+ Var

(∑
T ′⊆T

(−1)|T |−|T
′|δT ′

)
= Var

(
Ior(T |x, v(l))

)
+ Var(δT ′

1
) + Var(δT ′

2
) + · · ·+ Var(δT ′

2|T |
)

= 0 + 2|T | · σ2

= 2|T | · σ2.

(25)

Thus, Theorem 2 is proven.

In this way, a small Gaussian noise δT in the output function v(l)(xT ) will significantly change the
interaction effect, i.e., the variance of the interaction effect increases to 2|T | · σ2.

16
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G EXPERIMENTAL RESULTS OF OR INTERACTIONS

Figure 6: Tracking the change of the average strength of the overlapped interactions overlap(l),m
or ,

forgotten interactions forget(l),mor , and newly emerged interactions new(l),m
or through different layers.

For each subfigure, the total length of the orange bar and the grey bar equals to the overall strength
of interactions encoded by the l-th layer all(l),mor , and the total length of the blue bar and the grey bar
equals to the overall strength of interactions encoded by the final layer all(L),m

or .

Figure 7: Average IoU values of OR interactions extracted from two DNNs trained for the same task
over different input samples. Low-order interactions usually exhibited higher IoU values, which
indicated that low-order interactions could be better generalized across DNNs than high-order inter-
actions. Appendix H.2 introduces the selected intermediate layer for each DNN.
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Figure 8: The relative stability stability(l),mor of OR interactions decreased along with the order m.
It indicated that low-order interactions were more stable to inevitable noises in data. Appendix H.2
introduces the selected intermediate layer for each DNN.

H EXPERIMENTAL DETAILS

H.1 ANNOTATING SEMANTICS PARTS

We followed (Li & Zhang, 2023b) to annotate semantic parts in MNIST dataset and CIFAR-10
dataset. Given an input sample xRn, the DNN may encode at most 2n interactions. The computa-
tional cost for extracting salient interactions is high, when the number of input variables n is large.
In order to overcome this issue, we simply annotate 10 –12 semantic parts in each input sample, such
that the annotated semantic parts are aligned over different samples in the same dataset. Then, each
semantic part in an input sample is taken as a “single” input variable to the DNN.

• For images in the MNIST dataset, we followed settings in (Li & Zhang, 2023b) to annotate
semantic parts for 100 samples. Specifically, given an image, we divided the whole image into
small patches of size 3 × 3. Considering the DNN mainly used the digit in the foreground to make
inference, we selected n = 10 patches in the foreground as input variables to calculate interactions,
in order to reduce the computational cost.

• For images in the CIFAR-10 dataset, we followed settings in (Ren et al., 2023a) to annotate se-
mantic parts for 30 samples. Specifically, given an image, we divided the whole image into small
patches of size 4 × 4, thereby obtaining 8 × 8 image patches in total. Considering the DNN mainly
used information contained in the foreground to make inference, we randomly selected n = 12
patches from 6 × 6 image patches located in the center of the image, in order to reduce the compu-
tational cost.

• For the SST-2 dataset, we followed settings in (Ren et al., 2023a) to select sentences with a
length of 10 words without unclear semantics, such as stop words. For each selected sentence, we
considered each word as an input variable, thereby obtaining n = 10 input variables in sum. We
used 50 sentences to calculate interactions in Section 3.

H.2 INTERMEDIATE LAYERS SELECTED TO CALCULATE INTERACTIONS IN SECTION 3.3

• For DNNs trained on both the MNIST dataset and the CIFAR-10 dataset, we used intermediate
layers close to the output to compute interactions. Specifically, the MLP7 model contained 7 linear
layers, and we used features of the 4-th linear layer. For the VGG-11 model, we employed features
of conv4 2. The ResNet-20 mdoel contained 9 residual blocks, and we used features after the 6-th
residual block. The ResNet-32 model contained 15 residual blocks, and we used used features after
the 10-th residual block.

• For DNNs trained on the SST2 dataset, we also used intermediate layers close to the output to
compute interactions. Specifically, the DistilBERT model contained 6 transformers, and we em-
ployed features after the 4-th transformer. The BERTBASE model contained 12 transformers, and we
employed features after the 8-th transformer. The XLNet model contained 12 transformer-XLs, we
employed features after the 8-th transformer-XL.
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H.3 EXPERIMENTAL DETAILS FOR VERIFYING THE SPARSITY OF INTERACTIONS IN
SECTION 3.2.1.

For each sample in the MNIST dataset, as introduced in Appendix H.1, we set n = 10. For each
sample in the CIFAR-10 dataset, as introduced in Appendix H.1, we set n = 12. We randomly se-
lected 100 images in the MNIST dataset and 30 images in the CIFAR-10 dataset to verify the sparsity
of interactions. We set τ = 0.05 · maxxmaxS(max{|Iand(S|x, v(l))|, |Ior(S|x, v(l))|}) for each target
layer of the target DNN to determine its salient interactions. Note that in experiments, we concluded
first-order OR interactions to the first-order AND interactions for convenience. In other words, the
first-order AND interactions were the sum of first-order OR interactions and the first-order AND in-
teractions, because one single input variable could be considered as either OR relationship or AND
relationship with itself.
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