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Abstract

A common step in differentially private (DP) Riemannian optimization is sampling from
the (tangent) Gaussian distribution as noise needs to be generated in the tangent space to
perturb the gradient before taking the step. In this regard, existing works either use the
Markov chain Monte Carlo (MCMC) sampling or explicit basis construction based sampling
methods on the tangent space. This becomes a computational bottleneck in the practical use
of DP Riemannian optimization, especially when performing stochastic optimization. In this
paper, we discuss different sampling strategies and develop efficient sampling procedures by
exploiting linear isometry between tangent spaces and show them to be orders of magnitude
faster than standard sampling strategies like MCMC. We also improve utility bounds by
showing them to be metric-tensor independent. Furthermore, we develop the DP Rieman-
nian stochastic variance reduced gradient algorithm and compare it with DP Riemannian
gradient descent and stochastic gradient descent algorithms on various problems.

1 Introduction

Differential privacy (DP) provides a rigorous treatment for the notion of data privacy by precisely quantifying
the deviation in the model’s output distribution under modification of a small number of data points (Dwork
et al., 2006b). Provable guarantees of DP coupled with properties like immunity to arbitrary post-processing,
and graceful composability have made it a de-facto standard of privacy with steadfast adoption in the real
world (Erlingsson et al., 2014; Apple, 2017; Near, 2018; Abowd, 2018). Furthermore, it has been shown
empirically that DP models resist various kinds of leakage attacks that can cause privacy violations (Rahman
et al., 2018; Carlini et al., 2019; Sablayrolles et al., 2019; Zhu et al., 2019; Balle et al., 2022).

Various approaches have been explored in literature to ensure differential privacy in machine learning models.
These include output perturbation (Chaudhuri & Monteleoni, 2008; Chaudhuri et al., 2011; Zhang et al.,
2017) and objective perturbation (Chaudhuri & Monteleoni, 2008; Chaudhuri et al., 2011; Kifer et al.,
2012; Iyengar et al., 2019; Bassily et al., 2021), in which a perturbation term is added to the output of
a non-DP algorithm or the optimization objective, respectively. Another approach, gradient perturbation,
involves perturbing the gradient information at every iteration of gradient based approaches and has received
significant interest in context of deep learning and stochastic optimization (Song et al., 2013; Bassily et al.,
2014; Abadi et al., 2016; Wang et al., 2017; Bassily et al., 2019; Wang et al., 2019a; Bassily et al., 2021).

Recently, achieving differential privacy over Riemannian manifolds has also been explored in the context of
obtaining Fréchet mean (Reimherr et al., 2021) and, more generally, solving empirical risk minimization prob-
lems (Han et al., 2022). Riemannian geometry is a generalization of the Euclidean geometry (Lee, 2006; Absil
et al., 2009) and includes several non-linear spaces such as set of positive definite matrices (Bhatia, 2009), set
of orthogonal matrices (Edelman et al., 1998; Absil et al., 2009), and hyperbolic space (Ungar, 2008; Nickel &
Kiela, 2017), among others. Several machine learning problems such as principal component analysis (Absil
et al., 2007), matrix completion (Boumal & Absil, 2011), low-rank tensor learning (Nimishakavi et al., 2018),
metric learning (Bhutani et al., 2018), covariance estimation, natural language processing (Jawanpuria et al.,
2019), learning embeddings (Nickel & Kiela, 2017; 2018; Suzuki et al., 2019; Qi et al., 2021), etc., may be
viewed as an instance of problems on Riemannian manifolds.

In differentially private Riemannian optimization (Han et al., 2022), a key step is to use tangent Gaussian
sampling at every iteration to perturb the gradient direction in the tangent space. Han et al. (2022) proposed
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to use the Markov Chain Monte Carlo (MCMC) method (Robert & Casella, 1999), which is computationally
expensive especially on matrix manifolds with large dimensions. When the underlying Riemannian metric is
induced from the Euclidean metric, such as for hypersphere, Han et al. (2022) showed one can avoid MCMC
via basis construction for the tangent space. For general manifolds of interest, however, a discussion on basis
construction and computationally efficient sampling is missing. The sampling step is computationally pro-
hibitive, especially when performing differential private stochastic optimization over Riemannian manifolds,
where the number of sampling calls is relatively high compared to the case of deterministic optimization.
It should also be noted that generalizing more sophisticated differentially private Euclidean stochastic al-
gorithms like differentially private stochastic variance reduced gradient (Wang et al., 2017) to Riemannian
geometry is non-trivial and is an active area of research. The benefits of (non-private) Riemannian stochastic
variance reduction gradient (RSVRG) methods over Riemannian stochastic gradient (Bonnabel, 2013) has
been studied in existing works (Zhang et al., 2016; Zhou et al., 2019; Han & Gao, 2021; Sato et al., 2019).

In this work, we propose generic fast sampling methods on the tangent space for various matrix manifolds of
interest. This makes differentially private Riemannian optimization more practically appealing for real-world
applications. We also propose a differentially private Riemannian stochastic variance reduction gradient
(RSVRG) and illustrate its efficacy in different applications. Our main contributions are summarized below.

1. Sampling. We show that the computationally prohibitive MCMC sampling and explicit basis
construction can be avoided in differentially private Riemannian optimization. To this end, we
propose two novel sampling strategies: 1) implicit basis construction of the tangent space and
2) novel sampling procedure based on linear isometry between tangent spaces. We show that the
proposed sampling strategies are remarkably fast and improve sampling time by orders of magnitude.
As a side result, we improve upon the existing utility bounds (Han et al., 2022) of differentially
private Riemannian gradient descent methods by removing the dependence on the Riemannian
metric-tensor.

2. DP-SVRG. We propose a differentially private Riemannian stochastic variance reduced gradient
(DP-RSVRG), expanding suite of differentially private stochastic Riemannian optimization methods.
We empirically evaluate DP-RSVRG with existing differentially private Riemannian (stochastic)
gradient methods and study its benefits.

Organization. The rest of the paper is organized as follows. Section 2 gives background on Riemannian
geometry, Riemannian optimization, and differential privacy. We then derive various properties of tangent
Gaussian distributions in Section 3 and apply them to improve the existing utility bounds (claim 2). Section 4
presents different strategies for efficient sampling. In Section 5, we develop a differentially private Riemannian
stochastic variance reduction gradient algorithm (DP-RSVRG) and Section 6 discusses the empirical results.
Section 7 concludes the paper.

2 Preliminaries and related work

Riemannian Geometry. A Riemannian Manifold M of dimension d is smooth manifold with an inner
product structure ⟨., .⟩w (i.e., having a Riemannian metric) on every tangent space TwM. Given a basis B =
(β1, . . . , βd) for TwM at w ∈ M, the Riemannian metric can be represented as a symmetric positive definite
matrix Gw and the inner product can be written as ⟨ν1, ν2⟩w = −→ν1

T Gw
−→ν2, where −→ν1, −→ν2 are coordinates of the

tangent vectors ν1, ν2 ∈ TwM in the coordinate system. An induced norm is defined as ∥ν∥w =
√

⟨ν, ν⟩w.
A geodesic γ : [0, 1] → M is a locally distance minimizing curve on the manifold with zero tangential
acceleration. For any v ∈ TwM, the the exponential map is defined as Expw(v) = γ(1) where γ(0) = w
and γ′(0) = v. If, between any two points w, w′ ∈ M there exists a unique geodesic connecting them,
the exponential map is invertible. Transporting the vectors on the manifold requires the notion of parallel
transport. In particular, parallel transport from w1 ∈ M to w2 ∈ M denoted as PTw1→w2 : Tw1M → Tw2M
is a linear isometry (i.e., inner product preserving). The sectional curvature at a point w ∈ M is defined as
the Gauss curvature of a 2-dimensional subspace of TwM.
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The Riemannian gradient of real valued function f : M → R denoted as grad f(w) is a tangent vector s.t for
any ν ∈ TwM, ⟨grad f(w), ν⟩w = Df [w](ν) = ⟨∇f(w), ν⟩2 where Df [w](ν) denotes directional derivative of
f at w along ν and ∇f(w) is the Euclidean gradient. ⟨, ⟩2 denotes standard ℓ2 Euclidean inner product. We
refer the readers to (Do Carmo & Flaherty Francis, 1992; Lee, 2006) for a detailed exposition of Riemannian
geometry and (Absil et al., 2009; Boumal, 2022) for Riemannian optimization.

Function classes on Riemannian Manifolds. We call a neighbourhood W ⊆ M totally normal if for
any two points, the exponential map is invertible. Let W ⊆ M be a totally normal neighborhood and DW
denotes its diameter and κmin is the lower bound on the sectional curvature of W. A function f is called
geodesic L0-Lipschitz and geodesic L-smooth if for any w1, w2 ∈ W, |f(w1) − f(w2)| ≤ L0dist(w1, w2)
and ∥grad f(w1) − PTw2→w1 grad f(w2)∥w1

≤ Ldist(w1, w2) respectively. A function f is called geodesic
µ-strongly convex if w, w′ = Expw(ζ) ∈ W, if it satisfies f(w′) ≥ f(w) + ⟨grad f(w), ζ⟩w + µ

2 dist2(w, w′).
A function f is said to satisfy Riemannian Polyak–Łojasiewicz (PL)condition if there exists τ > 0 f(w) −
f(w∗) ≤ τ ∥grad f(w)∥2

w for any w ∈ M (Zhang et al., 2016; Han & Gao, 2021). The Riemannian PL
condition is strictly weaker notion than geodesic strong convexity, i.e., every geodesic µ-strongly convex
satisfies Riemannian PL condition (with τ = 1/(2µ)) and there exists a function that satisfies the Riemannian
PL condition but not geodesic strong convexity. We also make use of the curvature constant, defined as
ζ =

√
κminDW

tanh (√
κminDW ) if κmin < 0 and ζ = 1 if κmin ≥ 0.

Differential privacy. Let Z be an input data space and two datasets of size Z, Z ′ ∈ Zn of size n are called
adjacent if they differ by at most one element. We represent adjacent datasets Z, Z ′ by notation Z ∼ Z ′. A
manifold-valued randomized mechanism R : Z → M is said to be (ϵ, δ)-approximately differentially private
(ADP) (Dwork et al., 2006a) if for any two adjacent datasets Z ∼ Z ′ and for all measurable sets S ⊆ M
we have P [R(Z) ∈ S] ≤ exp (ϵ)P [R(Z ′) ∈ S] + δ. Rényi differenital privacy (RDP) (Mironov, 2017) is a
refinement of DP which gives tight privacy bounds under composition of mechanisms. λ-th moment of a
mechanism R is defined as KR(λ) = supZ∼Z′ logo∼R(Z)[(

p(R(Z)=o)
p(R(Z′)=o) )λ] and mechanism R is said to satisfy

(λ, ρ)-RDP if 1
λ−1 KR(λ − 1) ≤ ρ. If mechanism R : Z → M is the (adaptive) composition of k mechanism

{Ri}k
i=1 i.e., Ri :

∏i−1
j=1 Mj × Z → Mi then KR(λ) ≤

∑k
i=1 KRi

(λ). Using moments accountant technique
Abadi et al. (2016), (λ, ρ)-RDP mechanism can be given (ϵ, δ)-ADP certificate. We refer the interested
readers to (Dwork et al., 2014; Vadhan, 2017) for more details.

Differential privacy on Riemannian manifolds. Reimherr et al. (2021) is the first to consider differen-
tial privacy in the Riemannian setting and derived the Riemannian Laplace mechanism based on distribution
from (Hajri et al., 2016). Utpala et al. (2022) derive output perturbation for manifold of symmetric positive
definite matrices (SPD) with the Log-Euclidean metric based on distribution from (Schwartzman, 2016).
While (Reimherr et al., 2021; Utpala et al., 2022) focus on output perturbation, Han et al. (2022) proposes
unified differentially private Riemannian optimization through gradient perturbation.

Han et al. (2022) considers the following problem (1) where the parameter of interest lies on a Riemannian
manifold M and zi, i = 1, ..., n represent the set of data samples, i.e.,

min
w∈M

{
F (w) = 1

n

n∑
i=1

fi(w) = 1
n

n∑
i=1

f(w; zi)
}

. (1)

The aim of differentially private Riemannian optimization is to privatize the solution from a Rieman-
nian optimization solver by injecting noise to the Riemannian gradient, similar as in the Euclidean case.
The Riemannian gradient however grad F (w) belongs to (TwM, ⟨, ⟩w), and unlike in the Euclidean case,
both the underlying space and inner product varies with the base point w. Accordingly, to perturb the
Riemannian gradient, Han et al. (2022) define an intrinsic Gaussian distribution on TwM with density
p(ν) ∝ exp(− ∥ξ − µ∥2

w /2σ2), ν ∈ TwM, and call it tangent Gaussian. They propose differentially private
Riemannian gradient and Riemannian stochastic gradient descent algorithms.
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3 Properties of tangent Gaussian mechanism

In this section, we derive various properties of the tangent Gaussian distribution that are used for proposed
sampling and analysis later. Proofs of the results discussed in this section are provided in Appendix C.1.

We begin with the definitions of the Lebesgue measure on tangent space and the tangent Gaussian distribu-
tion. We then show that indeed the tangent Gaussian reduces to the multivariate Gaussian when appropriate
basis is constructed. Furthermore, we show how the basis construction at one point on the manifold relates to
other points via the notion of isometric parallel transport. These properties allow efficient sampling without
the use of MCMC. Particularly, the reduction to a multivariate Gaussian distribution allows sampling to be
completed in coordinates and then transformed via a basis. The isometric transport further simplifies the
basis construction process as discussed in Section 4.
Definition 1 (Lebesgue measure on tangent space). Consider a Riemannian manifold M with intrinsic
dimension d. For w ∈ M, let B = {β1, . . . , βd} be an orthonormal basis of TwM with respect to the
Riemannian metric. Define ϕB : Rd → TpM as ϕB(c1, . . . , cd) =

∑d
i=1 ciβi. Let λ denote the standard

Lebesgue measure on Rd. Then, we define the Lebesgue measure on TpM as the pushforward measure ϕB
∗

given by (ϕB
∗ λ)(S) ≜ λ

(
ϕ−1

B (S)
)

.

Remark 1. Let B1, B2 be two orthonormal basis of TpM then ϕB1
∗ λ = ϕB2

∗ λ because Lebesgue measure is
invariant under orthogonal transformation (with respect to the Riemannian metric). Hence, in the rest of
this draft, we drop the superscript B for clarity and denote the pushforward measure as ϕ∗λ.

We now define the tangent space Gaussian distribution (Han et al., 2022) under the measure in Definition 1.
Definition 2 (Tangent Gaussian). Let w ∈ M , a tangent vector ξ ∈ TwM follows a tangent space Gaussian
distribution at w, denoted as ξ ∼ Nw(µ, σ2) with mean µ ∈ TwM and standard deviation σ > 0 if its density
is given by pw(ξ) = Cw,σ exp

(
− ∥ξ−µ∥2

w

2σ2

)
under the pushforward measure given in Definition 1.

Remark 1 of (Han et al., 2022) adds without any proof that if ξ ∼ Nw(µ, σ2) and ξ⃗, µ⃗ denote the coordinates
of ξ, µ, respectively, then ξ⃗ ∼ N (µ⃗, G−1

w σ2) with Gw being metric tensor at w. With the measure properly
defined, we make use of the general change of variable theorem between measure spaces to first show that
normalizing constant is independent of basepoint and is given by Cw,σ = 1/(2πσ2)d/2 . Using this obser-
vation, we then show that infact ξ⃗ ∼ N (µ⃗, σ2I), which is much stronger than (Han et al., 2022, Remark
1).
Claim 1. Let w ∈ M and B be any orthonormal basis of TpM. A random tangent vector ξ ∈ TwM follows
the tangent Gaussian with mean µ ∈ TpM and standard deviation σ if and only if its coordinates in B

denoted as ξ⃗ follows the d-dimensional Euclidean Gaussian distribution with mean µ⃗ ∈ Rd and covariance
matrix σ2Id. i.e., ξ ∼ Nw(µ, σ2) ⇐⇒ ξ⃗ ∼ N (µ⃗, σ2Id). Hence, the density of the tangent Gaussian is given
by pξ(ν) = 1

(2πσ2)d/2 exp
(

− ∥ν−µ∥2
w

2σ2

)
.

A direct consequence of Claim 1 is the following claim where we improve the bounds on the variance of a
tangent Gaussian sample (ξ).
Claim 2 (Metric independent utility bound). Suppose ξ ∼ Nw(0, σ2). Then, E∥ξ∥2

w ≤ dσ2, where d is the
dimension of the manifold.

We notice in (Han et al., 2022) that the bound is E∥ξ∥2
w ≤ dσ2c−1

ℓ , where cℓ is the smallest eigenvalue of the
metric tensor Gw. Nevertheless, from Claim 1, we show under an orthonormal basis Gw = Id, which allows
to improve on the variance bound and the subsequent utility bounds by removing the dependence on the
metric tensor Gw.

Next, we show a result that relates the tangent Gaussian on different tangent spaces via linear isometry.
Claim 3. Let w1, w2 ∈ M and let Iw1→w2 : Tw1M → Tw2M be any linear isometry (i.e., inner product
preserving). If ξ1 ∼ Nw1(µ, σ2

1) for some µ ∈ TwM and σ > 0, then Iw1→w2(ξ1) ∼ Nw2(Iw1→w2(µ), σ2).

Linear isometry, as defined above, is present in the form of parallel transport and more generally vector
transport (Absil et al., 2009; Huang et al., 2017). We discuss relevant examples of such isometry in the
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Algorithm 1: Sampling using explicit basis construction
Input : Manifold M of dimension d, base point w ∈ M, Riemannian metric ⟨., .⟩w, mean µ ∈

standard deviation σ > 0.
Output: {ξ1, . . . , ξs}, s.t ξi ∼ Nwi

(0, σ2).
1 for t = 1, . . . , s do
2 construct orthonormal basis of Twi

M wrt inner product ⟨., .⟩wi
and call it Bwi

= {β1, . . . , βd}.
3 generate d dimensional coordinates a ∼ N (0, σ2Id).
4 ξt =

∑d
i=1 aiβi.

5 end

Algorithm 2: Sampling using isometric transportation
Input : Manifold M of dimension d, base point w ∈ M, Riemannian metric ⟨., .⟩p, mean µ ∈ standard

deviation σ > 0, reference point ŵ, orthonormal basis B = {β1, . . . , βd} at TŵM.
Output: {ξ1, . . . , ξs}, s.t ξi ∼ Nwi(0, σ2).

1 for t = 1, . . . , s do
2 samples d coordinates a ∼ N (0, σ2Id).
3 Generate tangent Gaussian sample at ŵ as ζ =

∑d
i=1 aiβi.

4 Isometrically transport ζ from TŵM to Twt
M : ξt = Iŵ→wt(ζ).

5 end

context of various manifolds in Section 4. It should be noted Claim 3 is crucial to the design of efficient
sampling procedures, introduced in Section 4.

4 Scaling up sampling from tangent Gaussian

As discussed earlier, efficient sampling techniques are especially useful in stochastic optimization setting. In
this section, we propose novel and efficient sampling strategies from the tangent Gaussian distribution for
different manifolds and different Riemannian metrics. We then show concrete implementation of the proposed
sampling strategies for various manifolds of interest. We specifically discuss the SPD, Stiefel, Grassmann,
and hypersphere manifolds. In addition, Appendix B.1 discusses sampling procedures for hyperbolic spaces
in the Poincaré Ball and the Lorentz Hyperboloid models.

Basis construction. We begin by noting that Claim 1 in Section 3 allows to avoid the computationally
expensive MCMC based sampling and and apply the (more efficient) basis construction approach for any
matrix manifold. Specifically, given an orthonormal basis B for TwM at w ∈ M, the sample is generated in
the basis B with the coordinates following the standard Gaussian distribution. However, since the underlying
Riemannian metric varies from point to point, finding an orthonormal basis directly for the tangent space at
a point can be difficult. In many cases, a basis that is not orthonormal can be easily obtained, which we can
then orthogonalize by the Gram-Schmidt method. We term this explicit basis construction strategy for
sampling and summarize it in Algorithm 1. Please note that (Han et al., 2022) has proposed explicit basis
construction strategy limited to manifolds endowed with the Euclidean metric. On the other hand, Claim 1
allows generalizing this strategy to manifolds endowed with general Riemannian metric.

Even though the basis construction strategy is faster than MCMC, it is still computationally expensive as
we need to construct basis at every iteration. For certain manifolds, however, it is possible to avoid explicit
basis construction: instead of constructing {β1, . . . , βd} (Step 2 of Algorithm 1) and then producing the
sample with coordinates a (Step 3 of Algorithm 1), we use the structure on the manifold and combine the
two steps into one step efficiently. We term this as implicit basis construction strategy for sampling. In
Sections 4.2-4.4, we detail this implicit approach for various manifolds. As discussed later in Section 6, we
empirically observe that the proposed implicit strategy is much faster than the explicit strategy.
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Table 1: Reference points ŵ for Algorithm 2. I ∈ Rm×m denotes the identity matrix. (e1, . . . , er) denotes
the standard basis vectors of Rm and ẽ1 the first standard basis vector of Rm−1. o ∈ Rm denotes zero vector.
⟨, ⟩F, ⟨, ⟩2 denote the standard Euclidean inner product on matrices and vectors respectively. We observe
that at specific reference points, both the Riemannian metrics and tangent spaces can be simplified.

Manifold Metric Reference point ŵ Tangent space TŵM Metric ⟨, ⟩ŵ Parallel transport

SPD
Affine-Invariant metric I ∈ Rm×m SYM(m) ⟨, ⟩F Closed form
Bures-Wasserstein metric I ∈ Rm×m SYM(m) ⟨, ⟩F/4 No closed form
Log-Euclidean metric I ∈ Rm×m SYM(m) ⟨, ⟩F Closed form

Grassmann Grassman canonical metric [e1, . . . , er] ∈ Rm×r {0}r×r × R(m−r)×r ⟨, ⟩F Closed form
Stiefel Stiefel canonical metric [e1, . . . , er] ∈ Rm×r SKEW(r) × R(m−r)×r ⟨, ⟩F/2 No closed form
Hypersphere Hypersphere canonical metric e1 ∈ Rm {0} × Rm−1 ⟨, ⟩2 Closed form

Hyperoblic Poincaré ball metric o ∈ Rm Rm ⟨, ⟩2 Closed form
Lorentz hyperboloid metric e1 ∈ Rm {0} × Rm−1 ⟨, ⟩2 Closed from

Isometric transportation. We now discuss another novel sampling strategy, which altogether avoids
basis construction at every iteration and is more amenable to stochastic optimization settings.

To mitigate the issue, we use Claim 3 in Section 3. In particular, Claim 3 suggests that to sample from the
tangent Gaussian on Twt

M for some wt ∈ M, one can simply sample from the tangent Gaussian from any
other base point ŵ and then transport the sample using any linear isometry from wt to ŵ. Hence, one can fix
a reference point ŵ apriori and always sample from the tangent Gaussian at TŵM, and then, isometrically
transport from ŵ to required point wt. We term this procedure as isometric transportation and summarize
it in Algorithm 2.

The proposed isometric transportation based sampling approach avoids repeated basis construction and
possibly orthogonalization process, when sampling from different base points. Furthermore, reference point
w′ can be chosen such that tangent space and/or metric has simple form that is amenable to sampling.
Algorithm 2 summarizes the proposed sampling procedure. Algorithm 2 achieves significant improvement
in efficiency and renders computational cost of privatizing the training process negligible, especially for high
dimensional matrix manifolds. Please refer to Tables 1 and 3 for a summary of reference points and other
details useful for implementing Algorithm 2 on various manifolds.

The rest of the section deals with how to implement Algorithms 1 and 2 for several important manifolds.

4.1 SPD manifold

Let SPD(m) denote the set of symmetric positive definite matrices of size m × m and for X ∈ SPD(m), the
tangent space at X is TXSPD(m) = SYM(m), where SYM(m) denotes the set of symmetric matrices of size
m × m. We start with the standard basis for SYM(m), given by B = {eieT

j : i = 1 . . . m, j = i + 1, . . . , m}.
It can be shown that under the Euclidean metric, i.e., ⟨U, V⟩E

X = Tr [UV], B forms an orthogonal basis
of (SYM(k), ⟨, ⟩E

X) and can be transformed into an orthonormal basis by scaling. U and V belong to the
tangent space TXSPD(m). However, the (fixed) Euclidean metric fails to capture the geometric properties
of the underlying space and alternative (varying) Riemannian metrics are usually preferred. To this end, we
consider three Riemannian metrics:

• Affine-Invariant (AI) metric (Pennec, 2006; Bhatia, 2009), defined as ⟨U, V⟩AI
X := Tr

[
X−1UX−1V

]
.

• Bures-Wasserstein (BW) metric (Bhatia et al., 2019), defined as ⟨U, V⟩BW
X := Tr[LX[U]V], where

LX[U] is the solution to the matrix equation LX[U]U + ULX[U] = U.

• Log-Euclidean (LE) metric (Arsigny et al., 2007), defined as ⟨U, V⟩LE
X :=

Tr [DLogm[X](U).DLogm[X](V)], where DLogm[X](U) is directional derivative of matrix
logarithm at X evaluated at U.
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For all the three metrics, B, the standard basis of SYM(m) is no longer an orthogonal basis for each point.
So, we use the Gram-Schmidt process on B to get an orthonormal basis for Algorithm 1.

For implementing Algorithm 2, I is used as the reference point for all the three metrics because ⟨, ⟩AI
I =

⟨, ⟩LE
I = ⟨, ⟩F and ⟨, ⟩BW

I = ⟨, ⟩F/4 and hence B can be turned into orthonormal basis without the Gram-
Schmidt process at I. For the AI and LE metrics, the parallel transport expression is available in closed-form,
but for BW it can be obtained by numerically solving a first-order ODE.

4.2 Stiefel manifold

The Stiefel manifold is the set of column orthonormal matrices, i.e., St(m, r) = {X ∈ Rm×r|XT X = I} and
its tangent space is TXSt(m, r) = {U ∈ Rm×r|UT X + XT U = O}. The canonical Riemannian metric is
defined as ⟨U, V⟩X = Tr[UT (I − 1

2 XXT )V] (Edelman et al., 1998; Absil et al., 2007; 2009).

For a point X ∈ St(m, r), an explicit orthonormal basis of TXSt(m, r) with respect to the canonical metric
is B = {X(eieT

j − ejeT
i ) : i = 1 . . . r, j = i + 1, . . . , r} ∪ {X⊥ẽieT

j }, where (e1, . . . , er), (ẽ1, . . . , ẽm−r) are
the standard basis of Rr and Rm−r respectively and X⊥ ∈ Rm×(m−r) whose columns form an orthonormal
basis of the orthogonal complement of column space of X (Huang et al., 2017, Proposition 41). Huang et al.
(2017) show how to avoid explicit basis construction by representing X, X⊥ in terms of Householder matrices
(see Appendix B.2 for more details). This can be beneficial especially when r ≪ m.

We remark that there is no closed-form expression for parallel transport under the canonical metric (for
r > 1). However, we can construct an isometric vector transport by using the orthonormal basis, a strategy
known as transportation by parallelization (Huang et al., 2015, Section 7.2).

For the Stiefel manifold with r > 1, Algorithm 1 with implicit basis construction and Algorithm 2 coincide.
We discuss the case r = 1 separately below in Section 4.4.

4.3 Grassmann manifold

The Grassmann manifold Gr(m, r) consists of r dimensional linear subspaces of Rm (r ≤ m) and is usually
represented as Gr(m, r) = {colspan(X)|X ∈ Rm×r, XT X = Ir}, where colspan denotes the column space.
The tangent space is TXGr(m, r) = {U ∈ Rm×r|U ∈ Rm×r, XT U = Or} (Edelman et al., 1998; Absil et al.,
2007; 2009). The Grassmann canonical metric coincides with the Euclidean metric, i.e., ⟨U, V⟩X = Tr [UT V],
for U, V ∈ TXGr(m, r) (Edelman et al., 1998).

An explicit orthonormal basis for TXGr(m, r) is the second part of the basis for Stiefel manifold, which is
B = {X⊥ẽieT

j : i = 1 . . . r, j = i+1, . . . , r}. Similar to the Stiefel manifold, one can also perform the implicit
basis construction (see Appendix B.2). For Algorithm 2 we use the reference point as X = [e1, . . . , er] ∈ Rm×r

where its tangent space reduces to TXGr(m, r) = {0}r×r × Rm−r. The parallel transport is also available in
closed-form.

4.4 Hypersphere

The hypersphere is Sm = {x ∈ Rm| ∥x∥2 = 1} and tangent space is given by TxSm = {u ∈ Rm|⟨x, v⟩2 = 0}.
The Riemannian metric is the induced Euclidean metric, i.e., ⟨u, v⟩x = ⟨u, v⟩2. This coincides with the Stiefel
manifold case for r = 1. We follow the strategies mentiond in Section 4.2 with the additional information
that the parallel transport expression is available in closed-form for the hypersphere.

Specifically, for implementing Algorithm 1, the orthonormal basis for TxSm−1 is B = {{0} × ẽ1, . . . , {0} ×
ẽm−1}, where (ẽ1, . . . , ẽm−1) is the standard orthonormal basis for Rm−1. For implementing Algorithm 2,
we select the reference point as x = (1, . . . , 0) because TxSm = {0} × Rm−1.

5 Private Riemannian variance reduced stochastic optimization

Variance reduced stochastic optimization methods (Roux et al., 2012; Johnson & Zhang, 2013; Defazio
et al., 2014; Reddi et al., 2016) employ a hybrid update rule that uses both full gradient and stochastic

7
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Algorithm 3: DP-RSVRG
Input : update frequency m, learning rate η, number of epochs S, clipping parameters C0, C1, and

initial iterate w0.
1 initialize w̃ = w0.
2 for s = 0, 1, . . . , S − 1 do
3 ws+1

0 = w̃s.

4 gs+1 = 1
n

∑n
i=1 clipC0 (grad f(w̃s; zi)).

5 for t = 0, 1, . . . , m − 1 do
6 Randomly pick it ∈ {1, . . . , n}
7 vs+1

t = clipC1 (grad f(ws+1
t ; zit

)) − PTw̃s→ws+1
t
(
clipC1 (grad f(w̃s; zit

)) − gs+1)+ ϵs+1
t , where

ϵs+1
t ∼ Nws+1

t
(0, σ2).

8 ws+1
t+1 = Expws+1

t
(−ηvs+1

t ).
9 end

10 Set w̃a = ws+1
m .

11 end
12 Output I : wpriv = w̃S .

13 Output II : wpriv is choosen uniformly randomly from {{ws+1
t }m−1

t=0 }S−1
s=0 .

gradient simultaneously. By doing so, variance reduced methods improve the gradient complexity compared
to stochastic and full gradient descent by requiring less gradient calls to achieve the same convergence rates
than full gradient descent. Many variance reduction strategies that work in the Euclidean space have also
been generalized to manifolds (Zhang et al., 2016; Sato et al., 2019; Zhou et al., 2019; Han & Gao, 2021).

In this section, we privatize the Riemannian stochastic variance reduced gradient (RSVRG) algorithm (Zhang
et al., 2016; Sato et al., 2019) for solving (1) and develop differentially private RSVRG, henceforth denoted
by DP-RSVRG. Our proposed DP-RSVRG is summarized in Algorithm 3. DP-RSVRG with restarts is
presented as Algorithm 4.

DP-RSVRG takes two loops where in each inner loop, an unbiased, variance reduced stochastic gradient is
constructed by correcting the Riemannian stochastic gradient with the full gradient calculated at the outer
loop. We add noise from the tangent Gaussian distribution to the variance reduced gradient. The clipping
operation clipτ : TwM → TwM is defined as clipτ (ν) = max{ τ

∥ν∥w
, 1}ν and it ensures norm of ν is at most

τ . The norm of gradients in full gradient are clipped with parameter C0 and in variance reduced gradient
with parameter C1, respectively. PT refers to the parallel transport operation.

5.1 Privacy guarantee

In this section, we analyze the privacy guarantees of DP-RSVRG. We begin by noting that variance reduced
stochastic gradient has a deterministic and a subsampled component. Hence, Step 7 of Algorithm 3 can be
equivalently re-written as

vs+1
t = clipC1 (grad f(ws+1

t ; zit
)) − PTw̃s→ws+1

t
(
clipC1 (grad f(w̃s; zit

)) − (gs+1 + ξs
t1)
)

+ ξs
t2, (2)

where ξs
t1 ∼ Nw̃s(0, σ2

1) and ξs
t2 ∼ Nws+1

t
(0, σ2

2). Specifically, the noise variance σ2 is split into into σ2
1

for the full gradient query and σ2
2 for the variance reduced stochastic gradient query such that σ2

1 + σ2
2 =

σ2. Claim 3 ensures that PTw̃s→ws+1
t ξs

t1 + ξs+1
t2 = ϵs+1

t ∼ Nws+1
t

(0, σ2). Hence, (2) can be viewed as a
composition of a full gradient tangent Gaussian mechanism Rs(Z) = rs+1 = 1

n

∑n
i=1 clipC0 (grad f(w̃s; zi))+

ξs
t1; ξs

t1 ∼ Nw̃s(0, σ2
1) and a variance reduced Gaussian mechanism Rs+1

t (Z) = clipC1 (grad f(ws+1
t ; zit

)) −
PTw̃s→ws+1

t
(
clipC1 (grad f(w̃s; zit

)) − rs+1)+ξs+1
t2 ; ξs+1

t2 ∼ Nws+1
t

(0, σ2
2). We now prove the moments bounds

on the full gradient mechanism KRs and variance reduced mechanism KRs+1
t

in the following claims and the
proofs are given in Section C.3.1.

8
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Algorithm 4: DP-RSVRG with restarts
Input : update frequency m, learning rate η, number of epochs S, and initial iterate w0.

1 for k = 0, 1, . . . , K − 1 do
2 wk+1 = DP-RSVRG(m, η, S, wk) with output option II.
3 end

Claim 4. The moments bounds satisfy KRs(λ) ≤ 2λ(λ+1)C2
0

n2σ2
1

and KRs+1
t

(λ) ≤ 8λ(λ+1)C2
1

σ2
2

.

Now we derive the moments bound on subsampled version of Rs+1
t using the results given in (Wang et al.,

2019b;c) and the proof is given in Section C.3.2.
Claim 5. Define subsample : Zn → Z as the process of sampling a single data point from n data points
uniformly randomly. Define the subsampled mechanism for Rs+1

t as subRs+1
t = Rs+1

t ◦ subsample. Suppose
σ2 ≥ 12C2

1 and λ ≤ 2/3σ2
2 log

(
n(λ + 1)(1 + (σ2

2/16C2
1))
)
, we have KsubRs+1

t
(λ) ≤ 28λ(λ+1)C2

1
n2σ2

2
.

The full mechanism R can be seen as an adaptive composition of {{KsubRs+1
t

}m−1
t=0 }S−1

s=0 and {{KRs}m−1
t=0 }S−1

s=0 .

Since σ2
1 +σ2

2 = σ2, we can rewrite σ2
1 = ασ2, σ2

2 = (1−α)σ2 for some α ∈ (0, 1). Using this claim, minimizing
over α, and setting C = max{C0, C1}, we have

KR(λ) ≤
m∑

t=0

S−1∑
s=0

KsubRs+1
t

(λ) +
m∑

t=0

S−1∑
s=0

KRs+1(λ) ≤ 2mSλ(λ + 1)C2
0

n2σ2
1

+ 28mSλ(λ + 1)C2
1

n2σ2
2

⇒ KR(λ) ≤ min
α∈(0,1)

mSλ(λ + 1)C2

n2σ2

[
2
α

+ 28
1 − α

]
. (3)

It should be noted that for a given λ, the minimization over α has a closed-form solution.

The moments bound KR given in (3) can be converted to (ϵ, δ) guarantee using conversion rules, e.g., based
on (Mironov, 2017, Proposition 3): Given 0 < δ < 1, ϵ = minλ≥1

KR(λ−1)+log 1/δ
λ−1 . Recently, however, the

optimal conversion rule has been given in (Asoodeh et al., 2020, Theorem 3) for which there exists no closed-
form expression but can be solved numerically to get ϵ. The solver is available in the autodp library (Wang
et al., 2019c). The above result connecting the moment bound KR with α in (3) implies that tighter (ϵ, δ)
guarantees can be obtained by optimizing over α, i.e., by exploiting the inter-play between the the noise
added to the full gradient and that to the variance reduced gradient.

It should be emphasized that in the Euclidean setting, Wang et al. (2017) have not considered optimization
of α as in (3). We empirically show such optimization of α obtains significant improvement in privacy in
Section 6.2. We end this section with the following privacy result for Algorithms 3 and 4.

Claim 6. Algorithms 3 and 4 are (ϵ, δ)-differentially private with σ2 ≥ c1
mS log(1/δ)C2

n2ϵ2 and σ2 ≥
c2

mSK log(1/δ)C2

n2ϵ2 , respectively, for some positive constants c1, c2 and C = max{C0, C1}.

5.2 Utility guarantee

In this section, we prove the utility guarantees of DP-RSVRG under various function classes on manifolds
including geodesic strong convex functions, general nonconvex functions, and functions that satisfy the
Riemannian Polyak–Łojasiewicz (PL) condition. In particular, geodesic strong convexity and Riemannian PL
condition generalize the notion of strong convexity and PL condition (Polyak, 1963) to manifolds, allowing
fast convergence (for problems satisfying these conditions) to the global optimality when optimizing on
manifolds. The proofs of the results discussed in this section are discussed in Sections C.4.1-C.4.3.

Let W ⊆ M be a totally normal neighborhood and DW denotes its diameter and κmin is the lower bound
on curvature of W. For more detailed introduction, please see Sections 2 and A. Following (Zhang & Sra,
2016; Han & Gao, 2021; Han et al., 2022), we make the below standard assumption.

9
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Assumption 1. Each fi in (1) is L-geodesically smooth and L0-geodesically Lipschitz over W.

The gradient complexity of an algorithm is measured in the number of incremental first-order oracle
(IFO) calls needed. An IFO (Agarwal & Bottou, 2015) takes an index i ∈ [n], w ∈ W and returns
(fi(w), grad fi(w)) ∈ R× TwM. Also, for readability we hide log factors in all variables through notation Õ
in utility bounds and gradient complexities. For exact expression, see (11), (12) for µ-strongly convex, 16,
17 for non convex, and 18, 19 for the Riemannian PL functions.
Theorem 7 (Utility under geodesic strong convexity). Suppose that Assumption 1 holds and each fi

is µ-strongly geodesic convex over W. If we run the Algorithm 3 with learning rate η = O( µ
ζL2 ), fre-

quency m = Õ( ζL2

µ2 ) for S = O(log( nϵµ
log (1/δ)ζL2

0d
)) outer loops with output I, then E[F (wpriv) − F (w∗)] =

Õ
(

dζLL2
0 log(1/δ)E[dist2(w0

S ,w∗)]
µ2n2ϵ2

)
. Furthermore, the gradient complexity is given by Õ(n + ζL2

µ2 ).

Theorem 8 (Utility under nonconvex functions). Suppose that Assumption 1 holds. If we run the
Algorithm 3 with output II, learning rate η = O( 1

Ln2/3ζ1/2 ), frequency m = Θ(n) and for S =√
Lζ

d log(1/δ)
n2/3ϵ

L0
outer loops, then E∥ grad F (wpriv)∥2 ≤ L0

√
dL log(1/δ)

nϵ . The gradient complexity is given by

O(
√

Lζ
d log(1/δ)

n5/3ϵ
L0

).

We now use Algorithm 4 obtaining utility guarantee under the Riemannian PL condition.
Theorem 9 (Utility under Riemannian PL condition). Suppose that Assumption 1 holds and F =
1
n

∑n
i=1 fi(w) satisfies the Riemannian PL condition with parameter τ . If we run Algorithm 4 with

learning rate η = O( 1
Ln2/3ζ1/2 ), frequency m = Θ(n), S = O(1), and K = log( n2ϵ2

dLτ2 log(1/δ)L2
0
), then

E[F (wpriv) − F (w∗)] ≤ Õ( dLτ2 log(1/δ)L2
0

n2ϵ2 ). Furthermore, the gradient complexity is given by Õ(Lτζ1/2n2/3).

5.3 Discussion: DP-RGD vs DP-RSGD vs DP-RSVRG

In this section we compare DP-RSVRG with DP-RGD Han et al. (2022) and DP-RSGD Han et al. (2022).

1. Strongly geodesic convex: For µ-strongly g-convex functions DP-RGD and DP-RSGD obtain
utility bound O

(
dζL2

0 log (1/δ)E[dist2(w0,w∗)]
µn2ϵ2

)
with gradient complexities n2 and n3, respectively (Han

et al., 2022, Theorem 3). Note that µ-stronlgy g-convex (Han et al., 2022, Theorem 3) doesn’t make
any assumption about L-g-smoothness for DP-RGD, DP-RSGD and while Theorem 7 make L-g-
smoothness for DP-RSVRG.
For µ-strongly g-convex functions, we see that one gets better gradient complexity by viewing it
as satisfying the Riemannian PL condition with parameter τ = 1/(2µ). For utility bounds for
Riemannian PL condition one needs L-g-smoothness assumption for all DP-RGD, DP-RSGD and
DP-RSVRG and hence provides ground for fair comparison.
Now, using above observation with (Han et al., 2022, Theorem 4) DP-RGD and DP-RSGD obtain
utility of Õ

(
dL2

0 log(1/δ)E[F (w)−F (w∗)]
n2ϵ2

)
= Õ

(
dLL2

0 log(1/δ)E[dist2(w0,w∗)]
µn2ϵ2

)
(because F (w0) − F (w∗) ≤

L
2 dist2(w0, w∗) by definition of L-g-smoothness) with gradient complexity O

(
n log

(
n2ϵ2

dL2
0 log(1/δ)

))
and O

(
log
(

n2ϵ2

dL2
0 log(1/δ)

))
respectively. From Theorem 9, DP-RSVRG obtains utility of

Õ
(

dL2L2
0 log(1/δ)E[dist2(w0,w∗)]

µ2n2ϵ2

)
with gradient complexity Õ( L

µ ζ1/2n2/3). Note that E[F (wpriv
DP-RGD) −

F (w∗)] = E[F (wpriv
DP-RSGD) − F (w∗)] ≤ L

µE[F (wpriv
DP-RSVRG) − F (w∗)]. As L

µ > 1 we can split into two
cases.
Case (i) L

µ = O(1): In this case, DP-RSVRG has same utility bounds compared to DP-RGD and
DP-RSGD.
Case (ii) L

µ = Ω(na) for some a > 0: In this case, DP-RSVRG has worse utility bounds compared
to DP-RGD and DP-RSGD.
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Figure 1: Benchmarking of explicit basis construction, implicit basis construction, and isometric transporta-
tion sampling strategies for the SPD, Stiefel, Grassmann, and hypersphere manifolds. It should be mentioned
that implicit basis construction strategy is unavailable for the SPD manifold, while implicit basis construc-
tion and isometric transportation sampling strategy coincide for the Stiefel manifold. We consistently see
the good performance of the proposed sampling strategies based on isometric transportation and implicit
basis construction over the explicit basis construction sampling strategy across different manifolds.

2. Riemannian PL condition: Every thing exactly follows for second part of above argument.

3. Non convex: In the nonconvex setting, only a bound on the gradient norm can be obtained instead
of a bound on the excess risk. Both DP-RGD and DP-RSGD obtain bound on gradient norm as
O( L0

√
dL log(1/δ)

nϵ ) in O(
√

Ln2ϵ

L0
√

d log(1/δ)
) and O(

√
Lnϵ

L0
√

d log(1/δ)
) iterations respectively (Han et al., 2022,

Theorem 5). From Theorem 8, DP-RSVRG obtains bound on gradient as O( L0
√

dL log(1/δ)
nϵ ) in

O(
√

Lζ
d log(1/δ)

n5/3ϵ
L0

) iterations. Hence in this case, DP-RGD, DP-RSGD, DP-RSVRG have same
utility bounds.

Remark 2. Although the theoretically bounds are not better than DP-RGD and DP-RSGD, in practice we
observe DP-RSVRG is indeed effective especially when noise added is relatively small.

.

6 Experiments

In this section, we illustrate the efficacy of the proposed sampling procedures and the proposed DP-RSVRG
algorithm. We also show the benefit of α optimization (Section 5.1) in terms of the gain in privacy guarantee.
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Table 2: Overhead of privatizations for DP-RSGD (with 3 × 105 epochs) for the SPD Fréchet mean and the
principal eigenvector problems. Our proposed isometric sampling based sampling strategy lead to orders of
magnitude improvements than those of Han et al. (2022).

Manifold Size Han et al. (2022) This work

SPD 11 × 11 660 hrs 41 seconds (∼ 104 improvement)
Hypersphere 786 668 seconds 24 seconds (∼ 10 improvement)

6.1 Benchmarking of different sampling procedures

We compare the three different sampling procedures discussed in Section 4: sampling based on explicit basis
construction, implicit basis construction, and isometric transportation. We pick s = 1000 samples under the
differentially private optimization setting (i.e., one can only see one base point at a time).

We benchmark the sampling time on various manifolds: SPD, Stiefel St(m, r), Grassmann Gr(m, r), and
hypersphere Sm. We consider m = {5, 10, 20, 30, 50} for SPD(m) and m ∈ {100, 300, 500, 1000, 3000, 5000}
for Sm. For Gr(m, r) and St(m, r), we consider m ∈ {100, 300, 500, 1000, 3000, 5000} and r ∈ {10, 100}.

We present the sampling time plots for different manifolds (of varying dimensions) in Figure 1. We observe
that the proposed isometric transportation based sampling approach significantly outperforms explicit basis
construction approach in every case, especially at higher dimensions. For the Stiefel manifold, as discussed in
Section 4.2, the isometric approach coincides with implicit basis construction approach and hence we show
only one of them. We also observe that the performance of the proposed isometric transportation based
approach is similar to that of the proposed implicit transportation based approach.

We study the benefits of the proposed sampling procedures in two problems: private estimation of SPD
Fréchet mean and the principal eigenvector (discussed in Section 6.3). We use DP-RSGD algorithm for both
problems and compare our sampling strategy with those developed in (Han et al., 2022). We observe that the
proposed sampling strategy offers significant improvement leading to minimal overhead due to privatization.

6.2 Optimizing α in moments bound for better (ϵ, δ) guarantees

0 20 40
Epochs(S)

0.1

0.2

0.3

0.4

0.5

0.6 opt( = 0.1)
half( = 0.1)
opt( = 0.05)
half( = 0.05)

Figure 2: Improving pri-
vacy with α.

We now show better privacy guarantees can be empirically achieved by optimizing
α in moments bound (Section 5.1). We use the autodp library (Wang et al., 2019c)
and set σ1 =

√
ασ, σ2 =

√
(1 − α)σ instead of the standard setting σ1 = σ2 =

σ/
√

2. We fix C1 = 0.1, C2 = 0.01 and frequency to m = 10000 and n = 100000.
The results are shown in Figure 2 for epochs S = {1, 5, 10, 25, 50, 100} and noise
σ = {0.1, 0.05}. We observe that the proposed optimization over α significantly
improves the privacy guarantees than the standard setting. For noise level σ =
0.05, we obtain ϵ = 0.47 while the standard setting achieves ϵ = 0.64, a 1.6×
improvement in privacy guarantee.

6.3 Benchmarking DP-RSVRG

In this section, we compare our proposed DP-SVRG with DP-RGD and DP-RSGD (Han et al., 2022) for the
task of computing the Fréchet mean and leading eigenvector with privacy configuration ϵ = {0.1, 0.3, 0.5}
and δ = 10−6. The parameter details for all the algorithms are in Section D.

Private Fréchet mean on SPD manifold. We consider the problem of privately estimating the Fréchet
mean of SPD matrices under the Affine-Invariant metric. We select images from PATHMNIST medical
imaging dataset (Yang et al., 2021) and pass them through the covariance descriptor pipeline to generate
images, each represented as a SPD matrix of size 11 × 11. Please refer to Section D.1 for more details
on the problem formulation and covariance descriptors. We consider the two sets consisting of 10704 and
10356 images from two different classes. For each set, we compute the optimal Fréchet mean by running

12
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(a) Private Fréchet mean on medical imaging data.
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(b) Private principal eigenvector on MNIST dataset.

Figure 3: Comparison between DP-RGD, DP-RSGD and DP-RSVRG. Each row in (a), (b) corresponds to
a set consisting of images from a particular class. We see the proposed DP-SVRG achieves a comparable
excess risk compared to the baselines with lower number of IFO calls.

the (non-private) RGD for 1000 epochs with learning rate set to 0.5. For both the sets, we plot excess risk
against the IFO calls in Figure 3a averaged over five randomized runs.

Private principal eigenvector computation on hypersphere. We also consider the problem of com-
puting the leading eigenvector a symmetric matrix, details in Section D.2. We take images from two classes
of MNIST and generate 784 vectors to form two sets of 6903 and 7877 images. For each set, we compute the
covariance matrix and compute its leading eigenvector by using eigen-decomposition of matrix 1/n

∑n
i=1 zizT

i

to find the optimal solution. We plot the excess risk against the IFO calls in Figure 3b averaged over five
randomized runs.

Experiment results. For both the applications, we observe that the proposed DP-RSVRG obtains better
or comparable excess risk against DP-GD and DP-SGD with generally fewer IFO calls. This is particularly
for larger ϵ, where the level of noise injected is small.

7 Conclusion

In this work, we have improved the framework of differentially private Riemannian optimization via effi-
cient sampling and variance reduction. We have proposed various efficient sampling procedures for tangent
Gaussian distribution in order to avoid MCMC. This largely reduces the cost of privatizing Riemannian op-
timization. In addition, we have shown how variance reduction improves the utility and gradient complexity
in practice. We believe this work allows Riemannian optimization to be privatized efficiently for large-scale
applications.
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A Function classes on manifolds

Definition 3 (Geodesic Lipschitz). A function f : M → R is called L0- geodesically Lipschitz continuous if
for any w1, w2 ∈ M |f(w1) − f(w2)| ≤ L0dist(w1, w2). Under assumption of continuous gradient, function
f is L0 geodesically Lipschitz continuous if and only if ∥grad f(w)∥ ≤ L0 for all w ∈ M.

Definition 4 (Geodesic smoothness). A differentiable function f : M → R geodesically L-smooth it’s
gradient is L-lipschitz i.e., ∥grad f(w1) − PTw2→w1 grad f(w2)∥w1

≤ Ldist(w1, w2). Additionally, it can be
shown that if f is geodesically L-smooth following holds , f(w1) ≤ f(w2) + ⟨grad F (w2), Exp−1

w2
(w1)⟩w2 +

L/2∥Exp−1
w2

(w1)∥w2 for all w1, w2 ∈ M.
Definition 5 (Geodesic convexity). A set W ⊆ M is called geodesically convex if for any w1, w2 ∈ X , there
is geodesic γ with γ(0) = 1, γ(1) = y and γ(t) ∈ X for t ∈ [0, 1]
Definition 6 (Strong Geodesic Convexity). A function f is called geodesic µ-strongly convex if w, w′ =
Expw(ζ) ∈ W, if it satisfies f(w′) ≥ f(w) + ⟨grad f(w), ζ⟩w + µ

2 dist2(w, w′).
Definition 7 (Riemannian Polyak–Łojasiewicz (PL)condition). A function f is said to satisfy the Rie-
mannian Polyak–Łojasiewicz (PL)condition if there exists τ > 0 f(w) − f(w∗) ≤ τ ∥grad f(w)∥2

w for any
w ∈ M.

B Missing details about sampling

Table 3: Isometric transportation expressions useful for implementing Algorithm 2.

Manifold Metric Isometric transportation for Algorithm 2

SPD
Affine-Invariant metirc PTX→Y(U) = (YX−1) 1

2 U(X−1Y) 1
2

Bures-Wasserstein metric We use the implementation in Geomstats (Miolane et al., 2020) that solves using the method given in (Thanwerdas & Pennec, 2021).
Log-Euclidean metric PTX→Y(U) = (DLogm[Y])−1(DLogm[X](U))

Grasssmann Canonical metric PTX→Y(U) = [−XQ sin ΣPT + P cos ΣPT + (I − QQT )]U
PΣQ = V is the compact SVD of V = Exp−1

X Y = W arctan ΘZT where WΘZT = [XT Y]−1[XT − XT YYT ]
Stiefel Canonical metric Isometric transportation through parallelization given in (Huang et al., 2015). This approach coincides with the basis construction approach.

Hypersphere Canonical metric
PTx→y(u) =

(
I + (cos ∥v∥2 − 1) vvT

∥v∥2
− sin ∥v∥2

xvT

∥v∥2

)
u

v = Exp−1
x y = arccos ⟨x, y⟩2

(I − xxT )(y − x)
∥(I − xxT )(y − x)∥2

Hyperbolic Poincaré ball metric
PTx→y(u) = 1 − ∥y2

2∥
1 − ∥x2

2∥
gyr[y, −x](u), gyr[x, y](u) = (o ⊖ (x ⊕ y)) ⊕ (x ⊕ (y ⊕ u)),

and x ⊕ y = [(1 + 2⟨x, y⟩2 + ∥y∥2
2)x + (1 − ∥x∥2

2)y]
[1 + 2⟨x, y⟩2 + ∥x∥2

2 ∥y∥2
2]

, x ⊖ y = x ⊕ −y.

Lorentz hyperboloid metric PTx→y(u) = u − ⟨y, u⟩L

1 − ⟨x, y⟩
(x + y).

B.1 Sampling on hyperbolic spaces

Poincaré ball model. The Poincaré ball model consists of B(k) = {x ∈ Rk : ∥x∥2 < 1} with metric
given by ⟨u, v⟩PB

x = 4⟨u, v⟩2/(1 − ∥x∥2
2). tangent space for x ∈ PB(k), TxPB(n) = Rk. Since Poincaré ball

metric is scaled standard Euclidean inner product, standard basis B = {e1, . . . , en} is orthogonal basis of(
TxPB(n), ⟨u, v⟩PB

x
)

. An Orthonormal basis at point x can simply be obtained by scaling (1 − ∥x∥2
2)/4 and

B̂ = {e1[(1 − ∥x∥2
2)]/4, . . . , e1[(1 − ∥x∥2

2)]/4}.

Hence, for Algorithm 1 one can avoid the Gram-Schmidt orthogonalization process for the Poincaré ball
metric . For Algorithm 2, we choose reference point as o = (0, . . . , 0) because ⟨u, v⟩PB

o = ⟨u, v⟩2. The
parallel transport from o has expression PTo→x(v) = (1 − ∥x∥2

2)v. Hence for the Poincaré ball metric,
Algorithms 1 and 2 coincide.

Lorentz hyperboloid model. The Lorentizian inner product for u, v ∈ Rn is given by ⟨u, v⟩L = −u1v1 +∑k
i=2 uivi. The Loretnz hyperboloid model is defined as H(k) = {x ∈ Rk|⟨x, x⟩L = −1} with the Lorentizian

inner product as Riemannian metric. Its tangent space at point x ∈ LH(k) is given by TxLH(k) = {u ∈
Rk|⟨x, u⟩L = 0}. Now given a point x ∈ LH(k), we find basis of solution space of ⟨x, u⟩L = 0 and use
the Gram-Schmidit orthogonalization process to construct orthonormal basis. Now for Algorithm 2 we pick
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Figure 4: Hyperbolic space. For the Poincaré ball metric, the sampling strategies based on explicit and
isometric transportation coincide. For the Lorentz model, we see a clear benefit of the proposed isometric
transportation approach over the basis construction approach.

reference point as o because ToLH(k) = {0} × Rk−1 and u ∈ ToLH(k) =⇒ ∥u∥L = ∥u∥2. This implies
that orthonormal basis at o is B = {{0} × e1, . . . , {0} × ek−1} where e1, ek−1 are standard orthnormal basis
vectors of Rk−1, and parallel transport from o is given by PTo→x(u) = u + ⟨u, x⟩Lx.

B.2 Implicit basis construction for tangent space of Stiefel, Grassmann, and hypersphere

Stiefel. Let SKEW(r) denotes set of r × r skew-symmetric matrices and X⊥ ∈ Rm×(m−p) whose columns
form an orthonormal basis of the orthogonal complement of column space of X. For any tangent vector
U ∈ TXSt(m, r), there exists a unique A ∈ SKEW(r), B ∈ R(m−r)×r s.t

U = XA + X⊥B.

Note that explicitly constructing X⊥B would take O(m(m − r)2), when r ≪ m this would be too expensive.
Huang et al. (2017) suggested a procedure that would take O(mr2) using Householder transformations.

First given a base point X ∈ St(m, r), vectors corresponding to the Householder matrices (v1, . . . , vr) and
sign scalars (s1, . . . , sr) are constructed as in (Huang et al., 2017, Algorithm 3).

Now using (v1, . . . , vr) and (s1, . . . , sr) and matrices A, B, tangent vector U can be constructed given in
(Huang et al., 2017, Algorithm 5) as follows,

U = Im − 2v1vT
1 . . .

[
Ir−2 0

0 Im−r+2 − 2vr−1vT
r−1

] [
Ir−1 0

0 Im−r+1 − 2vrvT
r

]
diag(s1, s2, . . . , sr, In−r)

[
A
B

]
.

This procedure can be shown to take O(mr2).

Grassmann. It can be seen as special case of Stiefel, as any tangent U ∈ TXGr(m, r), there exists a
B ∈ R(m−r)×r s.t

U = X⊥B.

Hence, the rest of the procedure is similar.

Hypersphere. It can be seen as a special case of Stiefel with r = 1.
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C Proofs

C.1 Proofs of Section 3

C.1.1 Proof of Claim 1

Theorem 10 (Change of variable formula). Let X, Y be measurable space and ϕ : X → Y and f : Y → R
is measurable mapping and let λ be measure on X and ϕ∗λ denote the pushforward measure of λ through ϕ
on Y then

∫
Y

fd(ϕ∗λ) =
∫

X
f ◦ ϕ dλ.

Proof. Let µ⃗ ∈ Rd denote coordinates of µ and consider normalizing constant,

Cw,σ =
∫

TpM
exp

(
−

∥ν − µ∥2
w

2σ2

)
d(ϕ∗λ)(ν) (∗)=

∫
Rd

exp

−

∥∥∥∑d
i=1 ciβi −

∑d
i=1 µ⃗iβi

∥∥∥2

w

2σ2

 dλ(c)

=
∫
Rd

exp
(

−
∑d

i=1
∑d

j=1⟨(ci − µ⃗i)βi, (cj − µ⃗j)βj⟩w

2σ2

)
dλ(c) (∗∗)=

∫
Rd

exp
(

−
∑d

i=1(ci − µ⃗i)2

2σ2

)
dλ(c)

(†)= (2πσ2)d/2, (4)

where we used change of variable rule (Theorem 10) under transformation ϕ in (∗) and that (β1, . . . , βd) is or-

thonormal tangent vectors in (∗∗) and that
∫
Rd exp(−

∑d

i=1
(ci−µ⃗i)2

2σ2 )dλ is normalizing constant of N (µ⃗i, σ2.I)
in (†).

Now, let ξ ∼ Nw(µ, σ2) , we will show that ξ⃗ ∼ N (µ⃗, σ2Id). Let A ⊆ Rd be measurable set, then consider

Pr[ξ⃗ ∈ A] = Pr[ξ ∈ ϕB(A)] =
∫

ϕB(A)

1
(2πσ2)d/2 exp

(
−

∥ν − µ∥2
w

2σ2

)
d(ϕ∗λ)(ν)

=
∫

A

1
(2πσ2)d/2 exp

(
−
∑d

i=1(ci − µ⃗i)2

2σ2

)
dλ(c).

The last equality is obtained similarly as in (4). Since the last expression is exactly probability that a random
vector distributed as N (µ⃗, σ2Id) belongs to set A, we are done. The converse is shown in similar way.

C.2 Proof of Claim 2

Proof. This simply follows from Claim 1 and the variance bound from the standard Gaussian distribution.

We notice that (Han et al., 2022, Remark 1) claims that ξ⃗ ∼ N (µ⃗, σ2G−1
w ), while not considering the fact

that under an orthonormal basis, Gw = Id. This implies that the normalizing constant is independent of the
base point, which is (2πσ2)d/2 unlike the case in (Han et al., 2022).

C.2.1 Proof of Claim 3

Proof. Given that Iw1→w2 is linear isometric mapping, one can show that it is invertible and its inverse is
again isometry, which we will denote by Iw2→w1 . If ϕ∗λ is Lebesuge measure on Tw1M then Iw1→w2

∗ (ϕ∗λ)
is Lebesgue measure on Tw2M. This can be seen by observation that, if B = {β1, . . . , βd} is orthonormal
basis for Tw1M then {Iw1→w2β1, . . . , Iw1→w2βd} is orthonormal basis for Tw2M. Let ξ ∼ Nw1(µ, σ2), we will
show that Iw1→w2ξ ∼ Nw2(Iw1→w2µ, σ2). consider measurable set S ⊆ Tw2M
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Pr [Iw1→w2(ξ1) ∈ S] = Pr [ξ1 ∈ Iw2→w1(S)] =
∫

Iw2→w1 (S)

1
(2πσ2)d/2 exp

(
−

∥ν − µ∥2
w1

2σ2

)
d(ϕ∗λ)(ν)

(∗)=
∫

S

1
(2πσ2)d/2 exp

(
−

∥Iw2→w1(ν) − µ)∥2
w1

2σ2

)
d (Iw1→w2

∗ (ϕ∗λ)) (ν)

(∗∗)=
∫

S

1
(2πσ2)d/2 exp

(
−

∥ν − Iw1→w2(µ)∥2
w2

2σ2

)
d (Iw1→w2

∗ (ϕ∗λ)) (ν),

where we used change of variables formula Theorem 10 (with X = Iw2→w1(S), Y = S and ϕ = Iw1→w2)
and that I is isometry in (∗∗) . Since Iw1→w2

∗ (ϕ∗λ) is the Lebesuge measure on Tw2M, we have that
Iw1→w2ξ ∼ Nw2(Iw1→w2µ, σ2).

C.3 Proofs of Section 5

C.3.1 Proof of Claim 4

Proof. Let Qs+1 denote full gradient query given by Qs+1(Z) = 1
n

∑n
i=1 grad f(w̃s; zi). Let Z, Z ′ ∈ Zn

denote adjacent datasets, consider it’s sensitivity denoted at ∆s,

∆s+1 = sup
Z∼Z′

∥Qs+1(Z) − Qs+1(Z ′)∥ ≤ 1
n

[∥ grad f(w̃s; zn)∥w̃s + ∥ grad f(w̃s; z′
n)∥w̃s ] ≤ 2C0

n
. (5)

Following (Han et al., 2022, Lemma 2), the moments bound of the full gradient mechanism Rs is given by,

KRs(λ) ≤ λ(λ + 1)
2σ2

1
(∆s)2 Eq 5

≤ 2λ(λ + 1)C2
0

n2σ2
1

.

Let Qs+1
t denote variance reduced stochastic gradient query given by Qs+1

t (Z) = grad f(ws+1
t ; z) −

PTw̃s→ws+1
t (grad f(w̃s; z) − gs+1). Let Z, Z ′ ∈ Z denote adjacent datasets, consider it’s sensitivity denoted

at ∆s
t+1,

∆s+1
t

= sup
Z∼Z′

∥∥Qs+1
t2 (Z) − Qs+1

t2 (Z ′)
∥∥

ws+1
t

(∗)
≤ sup

Z∼Z′

[∥∥grad f(ws+1
t ; z) − grad f(ws+1

t ; z′)
∥∥

ws+1
t

+
∥∥∥PTw̃s→ws+1

t (grad f(w̃s; z) − grad f(w̃s; z′))
∥∥∥

ws+1
t

]
(†)= sup

Z∼Z′

[∥∥grad f(ws+1
t ; z) − grad f(ws+1

t ; z′)
∥∥

ws+1
t

+ ∥grad f(w̃s; z) − grad f(w̃s; z′)∥w̃s

]
≤ sup

Z∼Z′

[∥∥grad f(ws+1
t ; z)

∥∥
ws+1

t

+
∥∥grad f(ws+1

t ; z′)
∥∥

ws+1
t

+ ∥grad f(w̃s; z)∥w̃s + ∥grad f(w̃s; z′)∥w̃s

]
(‡)
≤ 4C1. (6)

where we used linearity of parallel transport and triangle’s inequality in (∗) and that parallel transport is
isometric in (†) and triangle inequality and assumption of lipschitz in (‡). Now moments bound of Rs+1

t is
given by,

KRs+1
t

(λ) ≤ λ(λ + 1)
2σ2

2
(∆s+1

t )2 Eq 6
≤ 8λ(λ + 1)C2

1
σ2

2
. (7)
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C.3.2 Proof of Claim 5

Proof. By using (Wang et al., 2019b, Lemma 3.7) and by choice of parameters σ2, λ we have

KsubRs+1
t (λ) ≤ 3.5

n2 KRs+1
t

(λ)
Eq 7
≤ 28λ(λ + 1)C2

1
σ2n2 .

C.3.3 Proof of Claim 6

Proof. For R can be show (ϵ, δ)-differentially private by solving for ϵ and δ as follows,

min
α∈(0,1)

mSλ(λ + 1)C2

n2σ2

[
2
α

+ 28
1 − α

]
= mSλ(λ + 1)C2

n2σ2

[
2

α∗ + 28
1 − α∗

]
≤ λϵ

2 , exp
(

−λϵ

2

)
≤ δ, (8)

where where α∗ = (
√

14 − 1)/13 and there exists constant c1 > 0 s.t σ2 ≥ c1
mS log(1/δ)C2

n2ϵ2 satisfies (8).
Hence, Algorithm 3 satisfies (ϵ, δ)-DP. For Algorithm 4 using similar arguments there exists constant c2 > 0
s.t σ2 ≥ c2

mSK log(1/δ)C2

n2ϵ2 guarantees (ϵ, δ)-DP .

C.4 Proofs of Section 5.2

Lemma 11 (Trigonometric distance bound (Zhang & Sra, 2016)). Let w0, w1, w2 ∈ W ⊆ M lie in
totally normal neighborhood of Riemannian manifold with curvature lower bounded by κmin and ℓ0 =
dist(w0, w1) and ℓ1 = dist(w1, w2) and ℓ2 = dist(w0, w2). Denote θ as the angle on Tw0M s.t cos(θ) =

1
ℓ0ℓ1

⟨Exp−1
w0

(w1), Exp−1
w0

(w2)⟩w0 . Let DW be the diameter of W i.e., DW := maxw,w′ dist(w, w′). Define cur-
vature constant ζ =

√
κmin

tanh √
κmin

if κmin < 0 and ζ = 1 if κmin ≥ 0. Then, we have that ℓ2
1 ≤ ζℓ2

0+ℓ2
2−2ℓ0ℓ2 cos θ.

Lemma 12.

Eit,ϵt
∥vs+1

t ∥2
ws+1

t
≤ Eit

∥ grad f(ws+1
t ; zit

) − PTw̃s→ws+1
t (grad f(w̃s; zit

) − gs+1)∥2
ws+1

t
+ dσ2. (9)

Proof.

Eit,ϵt
∥vs+1

t ∥2
ws+1

t
= Eit,ϵt

∥ grad f(ws+1
t ; zit

) − PTw̃s→ws+1
t (grad f(w̃s; zit

) − gs+1) + ϵt∥2
ws+1

t

= Eit,ϵt
∥ grad f(ws+1

t ; zit
) − PTw̃s→ws+1

t (grad f(w̃s; zit
) − gs+1)∥2

ws+1
t

+ Eϵt
∥ϵt∥2

ws+1
t

+ ⟨Eit
grad f(ws+1

t ; zit
) − PTw̃s→ws+1

t (grad f(w̃s; zit
) − gs+1),Eϵt

[ϵt]⟩ws+1
t

≤ Eit
∥ grad f(ws+1

t ; zit
) − PTw̃s→ws+1

t (grad f(w̃s; zit
) − gs+1)∥2

ws+1
t

+ dσ2,

where we used that Eϵt
[ϵt] = 0 and Eϵt

∥ϵt∥2
ws+1

t

≤ dσ2 in last inequality.

C.4.1 Proof of Theorem 7

Proof. We bound first term Eit
∥ grad f(ws+1

t ; zit
) − PTw̃s→ws+1

t (grad f(w̃s; zit
) − gs+1)∥2

ws+1
t

as in (Zhang
et al., 2016)
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Eit

∥∥∥grad f(ws+1
t ; zit) − PTw̃s→ws+1

t (grad f(w̃s; zit) − gs+1)
∥∥∥2

ws+1
t

≤ Eit

∥∥∥grad f(ws+1
t ; zit) − PTw̃s→ws+1

t grad f(w̃s; zit) + PTw̃s→ws+1
t

(
grad F (w̃s) − PTw̃∗→w̃s

grad F (w∗)
)∥∥∥2

ws+1
t

≤ 2Eit

∥∥∥grad f(ws+1
t ; zit) − PTw̃s→ws+1

t grad f(w̃s; zit)
∥∥∥2

ws+1
t

+ 2Eit

∥∥∥PTw̃s→ws+1
t

(
grad F (w̃s) − PTw̃∗→w̃s

grad F (w∗)
)∥∥∥2

ws+1
t

= 2Eit

∥∥∥grad f(ws+1
t ; zit

) − PTw̃s→ws+1
t grad f(w̃s; zit

)
∥∥∥2

ws+1
t

+ 2Eit

∥∥∥grad F (w̃s) − PTw̃∗→w̃s

grad F (w∗)
∥∥∥2

w̃s

≤ 4L2∥Exp−1
ws+1

t

(w∗)∥2
ws+1

t
+ 6L2 ∥∥Exp−1

w̃s w∗∥∥2
w̃s

= 4L2dist2(ws+1
t , w∗) + 6L2dist2(w̃s, w∗). (10)

Using the trignometric distance bound Lemma 11 with w0 = xs+1
t , w1 = ws+1

t+1 , w2 = w∗,

dist2(ws+1
t+1 , w∗) ≤ ζdist2(ws+1

t+1 , ws+1
t ) + dist2(ws+1

t , w∗) − 2⟨Exp−1
xs+1

t

(ws+1
t+1 ), Exp−1

ws+1
t

(w∗)⟩ws+1
t

= ζ
∥∥∥Exp−1

ws+1
t

ws+1
t+1

∥∥∥2

ws+1
t

+ dist2(ws+1
t , w∗) − 2⟨−ηvs+1

t , Exp−1
ws+1

t

(w∗)⟩ws+1
t

= ζη2 ∥∥vs+1
t

∥∥2
ws+1

t

+ dist2(ws+1
t , w∗) + 2η⟨vs+1

t , Exp−1
ws+1

t

(w∗)⟩ws+1
t

.

Applying expectation we have

dist2(ws+1
t+1 , w∗)

≤ ζη2Eit,ϵt

∥∥vs+1
t

∥∥2
ws+1

t

+ dist2(ws+1
t , w∗) + 2η⟨Eit,ϵtv

s+1
t , Exp−1

ws+1
t

(w∗)⟩ws+1
t

= ζη2L2 [4dist2(ws+1
t , w∗) + 6dist2(w̃s, w∗)

]
+ 2η⟨grad F (ws+1

t ), Exp−1
ws+1

t

(w∗)⟩ws+1
t

+ dζη2σ2

≤ ζη2L2 [4dist2(ws+1
t , w∗) + 6dist2(w̃s, w∗)

]
+ 2η[F (w∗) − F (ws+1

t ) − µ

2 dist2(ws+1
t , w∗)] + dζη2σ2

≤ (1 + 4ζη2L2 − ηµ)dist2(ws+1
t , w∗) + 6ζη2L2dist2(w̃s, w∗) + dζη2σ2.

Defining ut = dist2(ws+1
t+1 , w∗), q = (1 + 4ζη2L2 − ηµ), p = 6ζη2L2, c = dζη2σ2 we have following recurrence

ut+1 − pu0 ≤ q(ut − pu0) + c from which we have that um ≤ (p + qm(1 − p))u0 +
∑m−1

i=1 qic. Now choosing
η = µ

17ζL2 and m ≥ 10ζL2

µ2 . we get q = 1 − µ2

10ζL2 and p = 1/5. Note that 0 < µ2

10ζL2 < 1 ( L > µ, ζ ≥ 1) and
hence 0 < q < 1 and from which we have that (p + qm(1 − p)) = 1/2.

E[d2(ws+1
m , w∗)] ≤ E[dist2(ws

m, w∗)] + dζ
µ2σ2

289ζ2L4

m−1∑
i=1

(
1 − µ2

10ζL2

)i

≤ E[dist2(ws
m, w∗)] + dζ

µ2σ2

289ζ2L4

∞∑
i=1

(
1 − µ2

10ζL2

)i

= E[dist2(ws
m, w∗)] + dζ

µ2σ2

289ζ2L4
10ζL2

µ2 = E[dist2(ws
m, w∗)] + d

10σ2

289L2 ,

from which we have

E[dist2(wS
m, w∗)] = 2−SE[dist2(w0

m, w∗)] + d
10σ2

289L2

S∑
i=0

1
2i

≤ 2−SE[dist2(w0
m, w∗)] + 2dc−1 10

289L2
mS log(1/δ)L2

0
n2ϵ2

≤ 2−SE[dist2(w0
m, w∗)] + d

200ζ

289µ2
S log(1/δ)L2

0
n2ϵ2 .
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E [f(xa) − f(w∗)] ≤ 1
2E
[
Ld2(xa, w∗)

]
≤ 2−SLE[d2(w0

m, w∗)] + Ld
ζ

µ2
S log(1/δ)L2

0
n2ϵ2 .

Now, setting 2−S = d ζ
µ2

log(1/δ)L2
0

n2ϵ2E[dist2(w0
m,w∗)] =⇒ 2S = n2ϵ2289µ2E[dist2(w0

m,w∗)]
d100ζ log(1/δ)L2

0
=⇒ S =

O
(

log
(

nϵµE[dist2(w0
m,w∗)]

log (1/δ)ζL0d

))
, substituting this we have that, and now for S = O

(
log
(

nϵµE[dist2(w0
m,w∗)

log (1/δ)ζL2
0d

))

E [f(xa) − f(w∗)] ≤ O
(

dζLL2
0 log(1/δ)E[dist2(w0

m, w∗)]
µ2n2ϵ2 log

(
nϵµ

ζL2
0d log(1/δ)

))
. (11)

Gradient complexity: S ×n plus m × 2 IFO calls = 2nS + 2mS,

O
((

n + ζL2

µ2

)
log
(

nϵµE[dist2(w0
m, w∗)]

log (1/δ)ζL0d

))
. (12)

This completes the proof.

C.4.2 Proof of Theorem 8

Before proving Theorem 8, we state and prove following lemma that we will be using later.

Lemma 13. Assume that each fi is L-g-smooth, the sectional curvature in X is lower bounded by κmin and
we run Algorithm with Option II. For ct, ct+1, β, η > 0 and suppose we have ct = ct+1(1+βη+2ζL2η2)+L3η2

and δ(t) = η − ct+1η
β − Lη2 − 2ct+1ζη2 > 0 then the iterate ws+1

t satisfies the bound

E∥ grad f(ws+1
t )∥2 ≤

Rs+1
t − Rs+1

t+1
δt

+
( 1

2 dLη2 + ct+1ζdη2)
δt

σ2,

where Rs+1
t := E[F (ws+1

t ) + ct

∥∥Expw̃sws+1
t

∥∥] for 0 ≤ s ≤ S − 1.

Proof. The proof is adapted from (Zhang et al., 2016, Lemma 2). Denoting ∆s+1
t = grad f(ws+1

t ; zit) −
PTw̃s→ws+1

t grad f(w̃s; zit) it can be seen that Eit|x̃s,ws+1
t

[∆s+1
t ] = grad F (ws+1

t ) − PTw̃s→ws+1
t grad F (w̃s)

Eit,ϵt

∥∥vs+1
t

∥∥2
ws+1

t

9
≤ Eit

∥∥∥grad f(ws+1
t ; zit) − PTw̃s→ws+1

t (grad f(w̃s; zit) − gs+1)
∥∥∥2

ws+1
t

+ dσ2

= Eit

∥∥∆s+1
t − Eit

∆s+1
t + grad F (ws+1

t )
∥∥2

ws+1
t

+ dσ2

(∗)
≤ 2Eit

∥∥∆s+1
t − Eit

∆s+1
t

∥∥2 + 2
∥∥grad F (ws+1

t )
∥∥2

ws+1
t

+ dσ2

(∗∗)
≤ 2Eit

∥∥∆s+1
t

∥∥2
ws+1

t

+ 2
∥∥grad F (ws+1

t )
∥∥2

ws+1
t

+ dσ2

(†)
≤ 2L2 ∥∥Exp−1

w̃s (ws+1
t )

∥∥2
w̃s + 2

∥∥grad F (ws+1
t )

∥∥2
ws+1

t

+ dσ2,

where ∥a + b∥2 ≤ 2 ∥a∥2 + 2 ∥b∥2 in (∗) and Eit

∥∥∆s+1
t − Eit∆s+1

t

∥∥2 = Eit

∥∥∆s+1
t

∥∥2 −
∥∥E∆s+1

t

∥∥2 ≤
Eit

∥∥∆s+1
t

∥∥2 in (∗∗) and assumption that fi is L-g-smooth in (†). Taking full expectation we have

E
∥∥vs+1

t

∥∥2
ws+1

t

≤ 2L2 ∥∥Exp−1
w̃s (ws+1

t )
∥∥2

w̃s + 2
∥∥grad F (ws+1

t )
∥∥2

ws+1
t

+ dσ2. (13)
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For bounding the Lyapunov function Rs+1
t+1 := E

[
F (ws+1

t+1 ) + ct+1
∥∥Expw̃s(ws+1

t+1 )
∥∥2] we need to bound on

E[F (ws+1
t+1 )], E[

∥∥Expw̃s(ws+1
t+1 )

∥∥2], First consider

E
[
F (ws+1

t+1 )
]

(∗)
≤ E

[
F (ws+1

t ) +
〈

grad F (ws+1
t ), Exp−1

ws+1
t

(ws+1
t+1 )

〉
ws+1

t

+ L

2

∥∥∥Exp−1
ws+1

t

(ws+1
t+1 )

∥∥∥2

ws+1
t

]
(∗∗)
≤ E

[
F (ws+1

t ) − η
∥∥grad F (ws+1

t )
∥∥2

ws+1
t

+ Lη2

2
∥∥vs+1

t

∥∥2
ws+1

t

]
13
≤ E

[
F (ws+1

t ) − η
∥∥grad F (ws+1

t )
∥∥2

ws+1
t

+ Lη2

2
(
2L2∥Exp−1

w̃s (ws+1
t )∥2 + 2∥ grad F (ws+1

t )∥2 + σ2d
)]

= (Lη2 − η)∥ grad F (ws+1
t )∥2 + F (ws+1

t ) + L3η2∥Exp−1
w̃s (ws+1

t )∥2 + 1
2dLη2σ2, (14)

where we used assumption fi is L-g-smooth implies that F is L-g-smooth in (∗) and Exp−1
ws+1

t

= vs+1
t and

E
[
vs+1

t

]
= grad F (ws+1

t ) in (∗∗). Using trignometric distance bound on ws+1
t , ws+1

t+1 , w̃s we have,∥∥Exp−1
w̃s (ws+1

t+1 )
∥∥2

w̃s ≤
∥∥Exp−1

w̃s (ws+1
t )

∥∥2
w̃s + ζ

∥∥∥Exp−1
ws+1

t

(ws+1
t+1 )

∥∥∥2

ws+1
t

−
〈

Exp−1
ws+1

t

(ws+1
t+1 ), Exp−1

ws+1
t

(w̃s)
〉

ws+1
t

=
∥∥Exp−1

w̃s (ws+1
t )

∥∥2 + ζη2 ∥∥vs+1
t

∥∥2 + 2η⟨grad F (ws+1
t ), Exp−1

ws+1
t

(w̃s)⟩.

Taking expectation we have

E
∥∥Exp−1

w̃s (ws+1
t+1 )

∥∥2
w̃s

≤ E
[∥∥Exp−1

w̃s (ws+1
t )

∥∥2 + ζη2∥vs+1
t ∥2 + 2η⟨grad F (ws+1

t ), Exp−1
ws+1

t

(w̃s)⟩
]

≤ E
[∥∥Exp−1

w̃s (ws+1
t )

∥∥2 + ζη2 ∥∥vs+1
t

∥∥2 + 2η

[
1

2β

∥∥grad f(ws+1
t )

∥∥2 + β

2

∥∥∥Exp−1
ws+1

t

(w̃s)
∥∥∥2
]]

≤ E
[
(1 + βη)

∥∥Exp−1
w̃s (ws+1

t )
∥∥2 + ζη2

[
2L2 ∥∥Exp−1

w̃s (ws+1
t )

∥∥2 + 2
∥∥grad F (ws+1

t )
∥∥2 + σ2d

]]
+ E

[
η

β

∥∥grad f(ws+1
t )

∥∥2
]

=
(
1 + 2ζη2L2 + ηβ

) ∥∥Exp−1
w̃s (ws+1

t )
∥∥2 +

(
2ζη2 + η

β

)∥∥grad F (ws+1
t )

∥∥2 + ζdη2σ2. (15)

Putting (14) and (15) into Rs+1
t+1 we have

Rs+1
t+1 := E[f(ws+1

t+1 ) + ct+1
∥∥Exp−1

w̃s (ws+1
t+1 )

∥∥2]

= ct+1
(
1 + 2ζη2L2 + ηβ

) ∥∥Exp−1
w̃s (ws+1

t )
∥∥2 + ct+1

(
2ζη2 + η

β

)∥∥grad F (ws+1
t )

∥∥2 + ct+1ζdη2σ2

+ (Lη2 − η)
∥∥grad F (ws+1

t )
∥∥2 + F (ws+1

t ) + L3η2 ∥∥Exp−1
w̃s (ws+1

t )
∥∥2 + 1

2dLη2σ2

= F (ws+1
t ) + (ct+1

(
1 + 2ζη2L2 + ηβ

)
+ L3η2)

∥∥Exp−1
w̃s (ws+1

t )
∥∥2

+
(

Lη2 − η + ct+1

(
2ζη2 + η

β

))∥∥grad F (ws+1
t )

∥∥2 +
(

1
2dLη2 + ct+1ζdη2

)
σ2

= Rs+1
t −

(
−Lη2 + η − ct+1

(
2ζη2 + η

β

))
∥ grad F (ws+1

t )∥2 +
(

1
2dLη2 + ct+1ζdη2

)
σ2.

Then rearranging that,(
η − Lη2 − ct+1

(
2ζη2 + η

β

))
E∥ grad F (ws+1

t )∥2 ≤ Rs+1
t − Rs+1

t+1 +
(

1
2dLη2 + ct+1ζdη2

)
σ2

25



Under review as submission to TMLR

from which we have

E∥ grad F (ws+1
t )∥2 ≤

Rs+1
t − Rs+1

t+1(
η − Lη2 − ct+1

(
2ζη2 + η

β

)) +
( 1

2 L + ct+1ζ
)

dη2(
Lη2 − η − ct+1

(
2ζη2 + η

β

))σ2.

Now we give proof of Theorem 8.

Proof. Proof is adapted from (Zhang et al., 2016, Theorem 2, 6 and Corollary 6) Let δn = mint δt and
T = mS

m−1∑
t=0

E
∥∥grad f(ws+1

t )
∥∥2

≤
m−1∑
t=0

Rs+1
t − Rs+1

t+1
δt

+
( 1

2 L + ct+1ζ
)

dη2

δt
σ2

(∗)
≤ Rs+1

0 − Rs+1
m

δn
+
( 1

2 L + ct+1ζ
)

mdη2

δn
σ2

=
E
[
F (ws+1

0 ) − F (ws+1
m ) + c0

∥∥Expws̃
(ws+1

0 )
∥∥2 − cm

∥∥Expws̃
(ws+1

m )
∥∥2
]

δn
+
( 1

2 L + c0ζ
)

mdη2

δn
σ2

(∗∗)
≤

E
[
F (w̃s) − F (w̃s+1)

]
δn

+
( 1

2 L + c0ζ
)

mdη2

δn
σ2,

where δt ≥ δn, ct ≤ c0 is used in (∗) and that ws+1
0 = w̃s, ws+1

m = w̃s+1 and that cm = 0, c0 ≥ 0 in (∗∗).

Now, summing the gradient norm square over all the epochs and using F (w∗) ≤ F (w̃m), we get

1
T

S−1∑
s=0

m−1∑
t=0

E
∥∥grad f(ws+1

t )
∥∥2 ≤

E
[
F (w̃0) − F (w∗)

]
Tδn

+
( 1

2 L + c0ζ
)

dη2

δn
σ2.

Choosing β = Lζ1−α2/nα1/2 and solving recurrence relation ct using η, m given by theorem as (Zhang et al.,
2016, Theorem 2) one can get c0 = µ0L

nα1/2ζ
(e − 1) . Substituting that in δn ≥ ν

Lnα1 ζα2 and finally using this
we have

1
T

S−1∑
s=0

m−1∑
t=0

E
∥∥grad f(ws+1

t )
∥∥2

≤ c
µ0Lnα1ζα2

νnS
E
[
F (w̃0) − F (w∗)

]
+

Lnα1ζα2
(

1
2 L + µ0L

nα1/2ζ
(e − 1)ζ

)
µ2

0
L2n2α1 ζ2α2

ν
dσ2.

Finally, putting the values of α1 = 2/3, α2 = 1/2µ0 = 1/10, ν = 1/2 and σ2 = c2
mS log(1/δ)L2

0
n2ϵ2 = c3

S log(1/δ)L2
0

nϵ2

one can get that

E ∥grad f(wa)∥2 ≤ c4

(
Lζ1/2

n1/3S
E
[
F (w̃0) − F (w∗)

]
+
[

1
n2/3ζ1/2 + 1

nζ1/2

]
dS log(1/δ)L2

0
nϵ2

)
≤ c4

(
Lζ1/2

n1/3S
E
[
F (w̃0) − F (w∗)

]
+ dS log(1/δ)L2

0
n5/3ζ1/2ϵ2

)
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Setting S =
√

LζE[F (w̃0)−F (w∗)]
d log(1/δ)

n2/3ϵ
L0

we have that,

E ∥grad f(wa)∥2 ≤ c4
L0
√

dL log(1/δ)E [F (w̃0) − F (w∗)]
nϵ

. (16)

Gradient Complexity is given by,

S(n + 2m) =

√
LζE [F (w̃0) − F (w∗)]

d log(1/δ)
n2/3ϵ

L0

(
n + n

30

)
=

√
LζE [F (w̃0) − F (w∗)]

d log(1/δ)
n5/3ϵ

L0
. (17)

This completes the proof.

C.4.3 Proof of Theorem 9

Proof. With the values given in the theorem statement, σ2 = mSK log(1/δ)L2
0

n2ϵ2 =
Kn⌈6+ 18

n−3 ⌉Lτζ1/2 µ0
νn1/3 log(1/δ)L2

0

3µ0n2ϵ2 =
K⌈6+ 18

n−3 ⌉Lτζ1/2 log(1/δ)L2
0

νn1/3
3nϵ2 . This implies

E[
∥∥grad f(wk+1)

∥∥2] ≤ 1
2τ

E
[
F (w̃0) − F (w∗)

]
+
[

1
n2/3ζ1/2 + 1

nζ1/2

]
dK⌈6 + 18

n−3 ⌉Lτζ1/2 log(1/δ)L2
0

νn1/3

3nϵ2

≤ 1
2τ

E
[
F (w̃0) − F (w∗)

]
+ 24dKLτ log(1/δ)L2

0
3n2ϵ2 .

Using the Riemannian PL condition we have

E
[
f(wk+1) − f(w∗)

]
≤ τE[

∥∥grad f(wk+1)
∥∥2] ≤ 1

2E
[
F (wk) − F (w∗)

]
+ 24dKLτ2 log(1/δ)L2

0
3n2ϵ2 .

Recursively applying the above for k = 0 to K − 1, we have

E
[
f(wK) − f(w∗)

]
≤ 1

2K
E
[
F (w0) − F (w∗)

]
+ 8dKLτ2 log(1/δ)L2

0
n2ϵ2

K−1∑
i=0

1
2i

≤ 1
2K

E
[
F (w0) − F (w∗)

]
+ 8dKLτ2 log(1/δ)L2

0
n2ϵ2

∞∑
i=0

1
2i

= 1
2K

E
[
F (w0) − F (w∗)

]
+ 16dKLτ2 log(1/δ)L2

0
n2ϵ2 .

Putting K = log
(

n2ϵ2E[F (w0)−F (w∗)]
dLτ2 log(1/δ)L2

0

)
there is a constant c s.t

E
[
f(wK) − f(w∗)

]
≤ c

dLτ2 log(1/δ)L2
0

n2ϵ2 log
(

n2ϵ2E
[
F (w0) − F (w∗)

]
dLτ2 log(1/δ)L2

0

)
.

Ignoring the log factors,

E
[
f(wK) − f(w∗)

]
= O

(
dLτ2 log(1/δ)L2

0
n2ϵ2

)
. (18)

Finally, the gradient complexity is given by,

KS(n + 2m) = log
(

n2ϵ2E
[
F (w0) − F (w∗)

]
dLτ2 log(1/δ)L2

0

)(
⌈6 + 18

n − 3⌉Lτζ1/2 µ0

νn1/3

)(
n + ⌊ n

3µ
⌋
)

≤ Lτζ1/2n2/3 log
(

n2ϵ2E
[
F (w0) − F (w∗)

]
dLτ2 log(1/δ)L2

0

)
. (19)
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D More experimental details for Section 6

Details on the parameter configurations of DP-RSVRG, DP-RSGD, and DP-RGD. For DP-
RGD, we tune the clipping parameters from the set C = {1, 0.1, 0.01} and the number of epochs from
{10, 20, 30}. For DP-RSGD, clipping parameter is chosen from C = {1, 0.1, 0.01} and number of epochs from
{100000, 200000, 300000}. For DP-RSVRG number of epochs is chosen from {5, 10} and set the frequency
as m = 1000 and full gradient clipping parameter C is tuned from {1, 0.1} and variance reduced gradient
clipping parameter C2 from {1, 0.1, 0.01}. For all three algorithms we tune the learning rate from η =
{5e−5, 1e−55e−4, 1e−4, . . . , 5e−1, 1e−1, 1, 2, . . . , 5}.

D.1 Details on the the Fréchet mean of SPD matrices computation and the covariance descriptors

The Riemannian distance induced by the metric is given by dist(Z1, Z2) = ∥Logm(Z−1/2
2 Z1Z−1/2

2 )∥F,
where Logm denotes matrix logarithm. Given points {Z1, . . . , Zn} ∈ SPD(m),
the Fréchet mean is defined as the solution to following optimization problem:
minW∈SPD(m)

{
F (W) = 1

n

∑n
i=1 f(W; Zi) = 1

n

∑n
i=1 ∥logm(W−1/2ZiW−1/2)∥2

F

}
. Riemannian gra-

dient of f is given in terms inverse Exponential map grad f(W, Xi) = −2Exp−1
W (Xi) =

−2W1/2Logm(W−1/2XiW−1/2)W1/2. We take first two classes from PATHMNIST (Kather et al.,
2019) (ADI, adipose tissue; BACK, background).

Covariance descriptors. Let I ∈ Rh×w×3 denote a RGB image with height h and width w. Let ϕ :
Rh×w×3 → Rhw×k be a feature extractor of dimension k, i.e. ϕ(I)(x) is a k-dimensional vector at each
spatial coordinate x in the image’s domain S. Given a small η > 0, the covariance descriptor Rη : Rh×w×3 →
SPD(k) associated with ϕ is defined as

Rη(I) =
[

1
|S|
∑
x∈S

(ϕ(I)(x) − µ)(ϕ(I)(x) − µ)T

]
+ η.I,

where µ = |S|−1∑
x∈S ϕ(I)(x), and η.I ensures Rη(I) ∈ SPD(k). Our experiments on the private Fréchet

mean computation problem (Section 6.3) use the covariance descriptors with following feature vector:

ϕ(I)(x) =
[
x, y, I, |Ix|, |Iy|, |Ixx|, |Iyy|,

√
|Ix|2 + |Iy|2, arctan

(
|I|x
|I|y

)]
,

where x = (x, y), intensities derivatives are denoted by Ix, Iy, Ixx, Iyy and η = 10−6. Let ⋆ denote convolution
operation, then first and second order intensity derivatives are computed as below,

Ix = I ⋆
1
4

+1 0 −1
+2 0 −2
+6 0 −12

 , Ix = I ⋆
1
4

+1 0 −1
+2 0 −2
+6 0 −12

 ,

Ixx = I ⋆
1
32


+1 0 −2 0 1
+4 0 −8 0 4
+6 0 −12 0 6
+4 0 −8 0 4
+1 0 −2 0 1

 , Iyy = I ⋆
1
32


+1 +4 +6 +4 +1
0 0 0 0 0

−2 −8 −12 −8 −2
0 0 0 0 0

+1 +4 +6 +4 +1

 .

For RGB images ϕ(I)(x) is a 11-dimensional vector that makes Rη(I) a 11 × 11 SPD matrix.

D.2 Details on the private leading eigenvector computation problem

The problem of computing the leading eigenvector of sample covariance matrix is
minw∈Sm

{
F (w) = 1

n

∑n
i=1 f(w; zi) = − 1

n

∑n
i=1 wT (zizT

i )w
}

. It has been shown that above problem
satisfies Riemannian PL condition (Zhang et al., 2016) while the problem is nonconvex in the Euclidean
setting. Riemannian gradient of f is given by grad f(w; zi) = −2(Id+1 − wwT )zizT

i w.
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