
GenLoco: Generalized Locomotion Controllers for
Quadrupedal Robots

Gilbert Feng1⇤ , Hongbo Zhang2⇤, Zhongyu Li1, Xue Bin Peng1, Bhuvan Basireddy1,
Linzhu Yue2, Zhitao Song2, Lizhi Yang1, Yunhui Liu2, Koushil Sreenath1, Sergey Levine1

1 University of California, Berkeley 2 The Chinese University of Hong Kong

Abstract: Recent years have seen a surge in commercially-available and affordable
quadrupedal robots, with many of these platforms being actively used in research
and industry. As the availability of legged robots grows, so does the need for
controllers that enable these robots to perform useful skills. However, most learning-
based frameworks for controller development focus on training robot-specific
controllers, a process that needs to be repeated for every new robot. In this work, we
introduce a framework for training generalized locomotion (GenLoco) controllers
for quadrupedal robots. Our framework synthesizes general-purpose locomotion
controllers that can be deployed on a large variety of quadrupedal robots with
similar morphologies. We present a simple but effective morphology randomization
method that procedurally generates a diverse set of simulated robots for training.
We show that by training a controller on this large set of simulated robots, our
models acquire more general control strategies that can be directly transferred to
novel simulated and real-world robots with diverse morphologies, which were not
observed during training. (Code and pretrained policies: https://github.com/
HybridRobotics/GenLoco, Video: https://youtu.be/5QUs32MjNu4)

Keywords: Legged Locomotion, Reinforcement Learning, Transfer Learning

1 Introduction

Just as more general-purpose models have gained prominence in supervised learning domains,
with broadly applicable language models that can solve a variety of NLP tasks [1, 2] and language-
conditioned visual recognition or image generation models that can be applied to a variety of problems
and settings [3, 4], so too we might expect that more powerful robotic learning systems might enable
more broadly applicable robotic controllers. In particular, in settings where a variety of robotic
platforms share the same basic morphology (e.g., the set of commonly used quadrupedal bodies, the
set of 7 DoF robotic arms, the set of quadcopters, etc.), we might expect that it should be possible
to train control policies that can be applied broadly to all robots within a particular set. If this were
possible, then practitioners who want to make use of learned policies would not need to start by
training policies of their own for their own robot, but could instead simply download a pre-trained
policy for the general robot class from the web, and then deploy directly on their platform. In this
paper, we take a step toward this vision in the particular setting of quadrupedal locomotion.

Quadrupedal locomotion offers the potential for robotic agents to traverse and operate in complex
unstructured environments. However, designing effective locomotion controllers for quadrupedal
robots is challenging, as it typically requires detailed knowledge of the dynamics of a particular
system and careful controller design for each desired skill. Model-free reinforcement learning (RL)
provides a paradigm that can automate much of the controller engineering process, where an agent
learns locomotion skills automatically through trial-and-error. RL techniques have been effective
for developing locomotion controllers for a large variety of quadrupedal robots [5, 6, 7, 8, 9, 10,
11, 12, 13]. While RL provides a general framework that can in principle be applied to any robot,
the resulting controllers are most often specific to the particular robot that they were trained on.
Therefore, these controllers will generally be ineffective when deployed on another robot, and new

⇤ equal contribution

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.

https://github.com/HybridRobotics/GenLoco
https://github.com/HybridRobotics/GenLoco
https://youtu.be/5QUs32MjNu4


(a) Simulated A1

(d) Real A1 (e) Real Mini Cheetah

(b) Simulated Mini Cheetah (c) Simulated Sirius

(f) Real Sirius

Figure 1: Testing of different simulated and real quadrupedal robots (A1, Mini Cheetah and Sirius) performing
pacing gaits using a single locomotion controller. Our controllers can be directly deployed from simulation to
the real world and across robots with different morphologies (e.g., body size, leg lengths, masses, etc.) and
dynamics, without explicitly training on the specific robots used during testing.

controllers will need to be trained from scratch specifically for the new system. This requires either
extensive data collection or, if using simulation to real-world transfer, detailed simulated models.

Recent years have seen the emergence of a growing catalog of commercially available quadrupedal
robots, with many of these systems converging on similar body plans. This similarity in the morpholo-
gies of quadrupedal robots may lead one to wonder: is it possible to create a generalized locomotion
controller that can be broadly applied to different quadrupedal robots? If so, such generalized
controllers can greatly reduce the labor-intensive process of continually developing robot-specific
controllers for new systems. In this work, we present a framework for developing more general
locomotion controllers, which can be applied to a range of different quadrupedal robots. We focus
our investigation on the setting where the test-time morphology is unknown, and thus the goal is to
develop controllers that generalize to new robots not observed during training. To this end, we propose
a morphology randomization method that reduces the need for robot specific information during
training by procedurally generating a diverse set of morphologies. By randomizing the morphology
and dynamics of the simulated robots, our system is able to train generalized controllers that can be
deployed across a variety of different robots, as shown in Fig. 1.

The core contribution of this work is the development of a reinforcement learning framework that
produces generalized locomotion (GenLoco) controllers for quadrupedal locomotion skills, which
can be deployed on a large variety of different robot morphologies. By training controllers on a wide
range of randomly generated robot morphologies, our system is able to learn policies that generalize
to new robots not seen during training. We demonstrate the effectiveness of our model on many
notable quadrupedal robots in simulation and in real-world experiments. We show that the learned
controllers can be deployed directly on a number of commonly used quadrupedal robots, including the
Unitree’s A1, MIT’s Mini Cheetah [14] and CUHK’s Sirius. We also demonstrate that, by introducing
morphology randomization into the training process (varying robot parameters such as body size, leg
length, and mass during training), our framework is able to more effectively transfer policies from
simulation to the real world than policies trained on a specific robot. In this paper, we focus on the
randomized robot morphology while keeping the number of Degree of Freedoms (DoFs) and links
constant. The open-source GenLoco policies could be used as baselines to test controllers for newly
developed quadrupedal robots without the need to train a robot-specific policy from scratch.

2 Related Work

RL provides a general framework for learning robotic controllers for a large array of tasks. Instead
of requiring tedious manual controller engineering, RL techniques can automatically synthesize
controllers for a desired task by optimizing the controller against an objective function [15]. RL
has been applied to develop a wide range of motor skills for agents in simulation [16, 17, 18, 19],
and in the real world [20, 21, 22, 23, 24, 5, 12]. But due to challenges associated with applying
RL algorithms on real-world systems [25], sim-to-real techniques are commonly used to adapt and
transfer controllers trained in simulation to a physical system [26, 27, 8, 7, 5, 28, 29, 13]. Domain
randomization is one of the most commonly used sim-to-real transfer techniques, where the dynamics

2



Joint-Level 
PD Controllers

GenLoco

𝐪ௗ࢛

t- 16:t-1

𝐬௧ 𝐚௧

t- 15:t

LPF

Phase𝜙

Nominal Standing 
Joint Positions

Figure 2: The proposed generalized locomotion control framework for quadrupedal robots. GenLoco is designed
to work on a large collection of robots with different morphology and dynamics. The input observations of the
policy consist of a phase variable � representing progression along a motion, a history of the robot’s raw sensor
feedback, and a history of past actions. The actions output by the controllers are added to time-invariant nominal
joint positions and passed through a low-pass filter before being applied to joint-level PD controllers to generate
motor torques.

of a simulator are randomized during training in order to develop controllers that can adapt to
differences between simulated and real-world dynamics [30, 31, 26, 8, 32, 33, 29, 34]. Real-world
data can also be leveraged to further improve real-world performance by adapting the dynamics of
the simulator [35, 36, 5, 37, 38], or directly finetuning a controller’s behaviors [39, 7, 9, 13]. In this
work, we also take a domain randomization approach to transfer controllers trained in simulation to
robots operating in the real world. However, unlike many prior sim-to-real methods, which assume
a known morphology for the real-world robot, our work explores the development of more general
locomotion controllers deployable on a variety of different robots, including morphologies not known
during training.

Developing general-purpose controllers that can be deployed on robots with different embodiments
can greatly mitigate the overhead of creating individual robot-specific controllers. Devin et al.
[40] utilized a modular network architecture to transfer manipulation skills across a small set of
manually-crafted simulated robotic arms. Chen et al. [41] proposed conditioning policies on learned
encodings of a robot’s morphology, which allowed a controller to be deployed on a number of
different robotic arms. A similar morphology encoding approach has also been applied to train
full-body motion controllers, which can be deployed on a large variety of simulated humanoid agents
[42]. Graph convolutional networks have been used to implicitly encode the morphological structure
of simulated robots with varying numbers of degrees-of-freedom [43, 44]. Gupta et al. [45] learned
domain invariant feature spaces in order to transfer manipulation skills across simulated robots with
different morphologies. While these transfer learning techniques have shown promising results in
simulation, they have yet to be demonstrated on robots in the real world. In this work, we aim to
develop general locomotion controllers that can be deployed on a large variety of robots with different
morphologies. Although prior works suggest that recurrent or memory-based policies can improve
transfer by performing “implicit system identification” [26, 34], we found that our approach was able
to produce effective policies with fully feedforward neural networks. By taking in past observations
and actions as input, the model is able to to implicitly encode task-relevant information about the
robot’s morphology, and successfully transfer locomotion skills across a diverse set of quadrupedal
morphologies without requiring an explicit representation of a particular robot’s body structure.

3 Generalized Quadrupedal Locomotion Controllers

In this section, we present a framework for training a Generalized Locomotion Controller (GenLoco),
where a single controller can be deployed on a large variety of quadrupedal robots with different
morphologies. An overview of our system is shown in Fig. 2. The controllers are trained through
model-free reinforcement learning. But unlike most prior RL frameworks for robotic locomotion,
which assume a fixed morphology for the robot during both training and testing, our work explores the
setting where the embodiment of the robot can vary, and the particular embodiment at test time is not
known a priori. Our models are trained by randomizing the morphology and other dynamics properties
during training in simulation, thereby encouraging the controller to learn adaptable strategies, which
can be effectively applied on different robots. At every timestep, the controller receives a history of
sensory observations as input, which can be used to infer task-relevant information about the robot
it is currently deployed on. The controller then outputs actions, which are added to time-invariant

3



Calf Joint

Thigh Joint
Hip Joint

Calf Link Foot

Thigh Link

Robot Base
Hip Link

Go1

Mini Cheetah

Sirius 
Laikago

Spot

A1

Aliengo

...

Figure 3: Many common quadrupedal robots follow a common morphological template, consisting of a robot
base (6 DoFs) and four 3-DoF legs. This design is followed in robots such as Unitree’s A1, Go1, Aliengo,
Laikago, MIT’s Mini Cheetah, CUHK’s Sirius, and Boston Dynamics’ Spot. The robots highlighted with solid
circles are the ones used to validate our system in the real world.

Table 1: Morphology generation parameters. The nominal values are based on the A1 robot parameters
(Appendix A).

Parameter Min and Max Values Parameter Min and Max Values
Size factor ↵ [0.8, 1.2] Calf length lc ↵⇥ [0.11, 0.33] m
Base length bl ↵⇥ [0.134, 0.400] m Calf radius rc ↵⇥ [0.01, 0.03] m
Base width bw ↵⇥ [0.097, 0.291] m Thigh length lt [0.75, 1.25]⇥ Calf length lc
Base height bh ↵⇥ [0.057, 0.171] m Thigh radius rt [0.75, 1.25]⇥ Calf radius rc
Base density bd [400, 1200] kg/m3 Foot radius rf 1.5⇥ Calf radius rc

Link masses [0.5, 1.5]⇥ nominal value Joint PD gains nominal value ⇥ robot mass
nominal mass ⇥ [0.7, 1.3]

nominal joint positions to specify target motor positions for each joint. The desired motor positions
are passed through a low-pass filter to mitigate undesirable high-frequency movements [7], before
being applied to joint-level PD controllers to generate motor torques.

3.1 Morphology Generation

The key to developing generalized locomotion controllers lies in training the controller on a diverse
collection of robots, which encourages the controller to learn strategies that can generalize to new
robots not observed during training. At the start of each training episode, we procedurally generate a
random robot morphology based on a predefined morphology template. As illustrated in Fig. 3, many
commonly used quadrupedal robots follow a similar body structure, consisting of a robot base and
four legs, each of which has 3 DoFs: hip, thigh, and knee joints. The robot’s feet can be modeled as
spheres, and the contacts between the feet and the ground can be approximated as point contacts. This
design template has been followed in widely used quadrupedal robots, including Unitree’s A1, Go1,
Laikago and Aliengo, Boston Dynamics’ Spot, MIT’s Mini Cheetah, and CUHK’s Sirius. Therefore,
our system generates random morphological variations based on this template by randomizing the
proportions of the various body parts and their respective dynamics properties. A sample of robots
produced by our morphology generation procedure are shown in Fig. 2. The randomized morphology
parameters and their respective ranges are recorded in Table 1. Below, we provide a more detailed
account of the major parameters of variations in our morphology generation procedure.

Size factor. We introduce a size factor ↵, which uniformly scales the size of each body part (e.g.
robot base and legs). Because ↵ multiplicatively scales along every dimension, it is a sensitive
parameter, and we found randomly sampling values of ↵ from the range [0.8, 1.2] to be sufficient in
capturing the variation among most robots. This factor facilitates positive correlation between robot
component sizes, reducing the likelihood of generating morphologies with distorted proportions (e.g.,
a robot with an extremely large base but extremely small legs).

Robot base parameters. The parameters of the robot base include its size and density. We model
the base geometrically as a rectangular box. The dimensions, such as length bl, width bw, and height
bh, of the base are randomized to cover a wide range of robot base sizes. The density of the base is
also randomized between [400, 1200]kg/m3. The ranges of values, detailed in Table 1, are selected
to encapsulate the sizes and masses of popular industrial robots as listed in Appendix E.

4



Leg parameters. The robot’s upper leg (thigh) and the lower leg (calf) are modeled as cylindrical
solids, and the robot’s feet are represented by spheres, as shown in Fig. 3. Specifically, the sizes of
the robot’s thigh and foot are chosen based on the robot’s calf link dimensions, as detailed in Table 1.
The range of values for the thigh length lt is specified to be ±25% of the calf length lc. Similarly,
the range of values for the thigh radius is defined as ±25% of the calf radius rc. By correlating the
properties of different segments of the legs, we can prevent the morphology generator from producing
implausible designs, such as a robot with large calves but very small thighs and feet, which would
hinder the robot’s locomotion capabilities.

PD gains. Larger and heavier robots typically require stiffer joint-level PD gains in order to
generate larger motor torques. Therefore, the gains used in the PD controllers are also scaled with
respect to the mass of the robot. The nominal mass is set to the mass of the A1 (12.458 kg). This
randomization scheme helps to ensure that the PD controllers are sufficiently strong for larger and
heavier morphologies.

4 Training

Our controllers are trained to perform various locomotion skills using a reinforcement learning-based
motion imitation framework based on Peng et al. [7]. The goal of these controllers is to imitate a
given reference motion qr = {qr

0,q
r
1, . . . ,q

r
T }, which specifies target poses qr

t at each timestep t,
The reward rt at timestep t is computed according to:

rt = wprp
t + wvrv

t + wbprbp
t + wbvrbv

t ,

with wp = 0.6, wv = 0.1, wbp = 0.15, wbv = 0.15.

The pose reward rp
t = exp

h
�5

P12
j=1kq̂

j
t � qjt k2

i
encourages the robot to match its local joint

rotations qt with those specified by the reference motion, where qjt denotes the rotation of the
j-th joint. The velocity reward rv

t follows a similar form, and encourages the robot to match the
joint velocities of the reference motion. The base position reward rbp

t and base velocity reward rbv
t

encourage the robot to track the motion of the base from the reference motion. A more detailed
description of the reward function is available in Appendix B, and additional implementation details
are described in Appendix C.

State and action spaces. As shown in Fig. 2, actions from the controller at specify target joint
positions qd 2 R12, which are used by the joint-level PD controllers to determine desired motor
torques. The controller operates at 30 Hz. To encourage smoother motions, actions are processed
with a low-pass filter before being applied to the robot. The observation st of the controller includes
three components: 1) a 15-timestep history of robot raw sensor feedback qbase

t�15:t and qt�15:t, 2) a
15-timestep history of past actions at�16:t�1, and 3) a phase variable � 2 [0, 1] is the normalized
time that indicates the robot’s progress along the reference motion, where 0 denotes the start of the
motion and 1 denotes the end [16]. The robot’s sensor feedback at each timestep consists of the base
orientation qbase 2 R4 from IMU sensors, recorded as a quotation, and the measured joint positions
q 2 R12. Note that the observations do not include quantities that require an explicit state estimator,
such as the linear velocity of the base [6, 7, 33, 11] or contact sensors [8]. The history of sensor
readings and actions provides the GenLoco policy some information that can be used to perform state
estimation and to infer the robot’s dynamics and morphology.

Dynamics randomization. In addition to randomizing the morphological structure of the robots,
we also randomize the dynamics parameters of the simulation during training [31] to improve the
robustness of our policy and facilitate sim-to-real transfer. The randomized dynamics parameters
include three categories: 1) link mass, link inertia, and ground friction to deal with modeling errors,
2) motor strength (torque limits), joint-level PD gains and motor damping ratio to mitigate the
uncertainties of motor dynamics, and 3) the latency between the policy and the joint-level controllers.
The randomization ranges of each parameter are detailed in Table 3 in Appendix D.

Episode design. Each episode has 100 timesteps, lasting about 3 seconds. Early termination is
applied if the robot deviates too far from the reference base position and orientation [7]. At the start

5



SpotMicro Pacing

Aliengo Pacing

ANYmal-B Pacing

A1 Pacing

Laikago Pacing

ANYmal-C Pacing

Mini Cheetah Pacing

Sirius Pacing

Spot Pacing

SpotMicro Spinning

Aliengo Spinning

ANYmal-B Spinning

A1 Spinning

Laikago Spinning

ANYmal-C Spinning

Mini Cheetah Spinning

Sirius Spinning

Spot Spinning

Figure 4: GenLoco policies deployed on a collection of quadrupedal robots that exist in real life. Two separate
models are trained to perform a pacing gait and a spinning gait respectively. The GenLoco policies are trained
in simulation using only procedurally generated robots, and robots used for testing are not used in the training
process. The learned controllers can be directly deployed on all of these robots, including the ANYmal-series
robots which have a distinct knee joint design, to perform agile maneuvers without additional training.

of each episode, a new morphology is generated according to the procedure described in Sec. 3.1,
and the dynamics parameters are also randomized according to Sec. 4.

GenLoco policies ⇡✓ are trained using Proximal Policy Optimization (PPO) [46], and all simula-
tions are performed in Pybullet [47]. Each policy was trained with 800 million samples, taking
approximately 2 weeks on 16 CPU workers.

5 Simulation Validation

In this section, we validate the effectiveness of our models on controlling quadrupedal robots with
different morphologies by direct transfer in simulation. We compare our GenLoco policies with the
policies trained on specific robots, which use the same training settings introduced in Sec. 4. We
train controllers for imitating two reference motions: a forward moving pacing gait and an in-place
spinning motion. The reference motions (using motion capture data from a real dog [7]) are retargeted
to the A1’s morphological features, and rescaled for each new morphology to account for differences
in sizes and proportions. Thus, new reference motions are not required during test-time.

After being trained on procedurally generated morphologies, our controllers were tested on simulated
models of commercially available robots using nominal standing poses and PD gains found in [48].
Robots used for testing include the A1, Aliengo, Go1, Mini Cheetah, Sirius, Laikago, Spot, SpotMicro,
ANYmal-B, and ANYmal-C. The SpotMicro [49] is relatively tiny, with a mass of 4.8 kg and a
fully-standing height of 0.26 m. The A1 and Mini Cheetah are small robots weighing about 10 kg and
standing about 0.4 m in height. The Sirius, Aliengo, Laikago, and Spot are heavier and larger, each
having height � 0.5 m. The morphological parameters of these robots generally lie within the training
distributions. However, the ANYmal-B and ANYmal-C have a different knee joint design from the
design template used for training. Detailed specifications of these robots are listed in Appendix E.

5.1 Zero-Shot Transfer to Novel Robots

As shown in Fig. 4 and the supplementary video, our controllers can be directly deployed on a large
variety of quadrupedal robots. None of the robots we tested on were used during training. Notably,
GenLoco policies successfully transfer to the ANYmal-series robots, which possess an inverted knee
joint design different from the template used during training (Fig. 3), without additional tuning. This
highlights the generalizability of our proposed GenLoco framework.

Our GenLoco policies are some of the first locomotion controllers that can be deployed directly on
different quadrupedal robots without further fine-tuning. By providing a history of past observations
and actions to the controller, we enable it to leverage the history to infer the morphology of the robot

6



(a) Varying Morphology Parameters, Pacing (b) Varying Morphology Parameters, Spinning

(c) Varying Dynamics Parameters, Pacing (d) Varying Dynamics Parameters, Spinning

Figure 5: Benchmark of performance of GenLoco policies and policies trained specifically for A1 robot to
perform pacing and spinning skills on a range of different robot morphologies and dynamics parameters in
simulation. Green lines are the normalized return of the GenLoco policy (ours) while orange ones are those
of the A1-specific policy. Returns are calculated by normalizing the cumulative reward (Appendix B) over the
episode length. The red dashed lines indicate the training range while the black dashed lines denote the A1’s
morphological parameters. Note that for the varying morphology test the A1-specific policy is not trained with
randomized morphology, and the dynamics randomization range is the same for all of these policies. Overall,
the GenLoco policies outperform the A1-specific policies over different morphology and dynamics parameters.
Furthermore, GenLoco is able to generalize over a larger range of morphologies and dynamics. Each testing
episode lasts 100 timesteps and returns are averaged across 10 trials.

it is currently deployed on, and by randomizing the morphology during training the model develops
more general control strategies that can effectively execute a desired skill on different morphologies.

5.2 Out-of-Distribution Generalization

To further evaluate the ability of GenLoco to generalize learned locomotion skills to different
morphologies, we test the controllers extensively on a large range of simulated robot morphologies.
We evaluate the controller’s performance when varying four morphology parameters: 1) body size,
which is scaled by size factor ↵, 2) calf length lc, 3) thigh length lt, and 4) body mass bm. The
testing range is set to be much larger than the range used during training detailed in Table 1. We
compare GenLoco to policies trained specifically for the A1, since the nominal values used in the
morphology generation process (Table 1) are based on the original A1 robot. The comparisons with
the pacing gait controllers and spinning gait controllers are shown in Fig. 5a and Fig. 5b, respectively.
The GenLoco policies are overall able to better generalize to out-of-distribution robots, exhibiting
more robust behaviors and maintaining higher returns across larger variations in the morphological
parameters than the A1-specific policies. In the case of the pacing skill, GenLoco’s performance does
not degrade until the robot size is more than two times larger than the maximum training size. While
the A1-specific policy shows some robustness to small variations in the morphology parameters, the
policy fails when deployed on other robots, such as the Sirius.

In order to understand the advantages of the morphology randomization during training, we test the
robustness of the GenLoco policies and A1-specific policies by varying the dynamics parameters. In
addition to generalization to different morphologies, our model is also robust to large variations in the
dynamics of a system. Fig. 5c compares the performance of GenLoco policies to A1-specific policies
that were also trained using the same range of dynamics randomization detailed in Table 3. As
demonstrated in Fig. 5c, 5d, for the same range of dynamics randomization during training, GenLoco
policies consistently outperform the A1-specific policies. In particular, GenLoco policies demonstrate
notable robustness to changes in the dynamics parameters related to actuated joints, such as motor
friction and strength. This improved performance on out-of-distribution settings is likely in part due
to random morphologies introducing a more diverse range of dynamics for the policy to train on.

6 Real-World Deployment

Finally, we evaluate the effectiveness of the learned controllers on robots in the real world. We test
the controllers on three robots, Unitree’s A1, MIT’s Mini Cheetah and CUHK’s Sirius. As shown in
Fig. 6 and the supplementary video, our GenLoco policies can be deployed on the real robots in a

7



A1

Mini Cheetah

Sirius 

(a) Pacing gait using a single GenLoco (b) Spinning gait using a single GenLoco

Figure 6: A single GenLoco policy can be deployed directly on different robots, which it was not trained on, in
the real world, enabling them to perform agile maneuvers such as pacing and spinning.

Table 2: Normalized return (mean ± standard deviation) of policies deployed on real robots over 6 test repetitions
Pacing GenLoco on A1 A1-Specific GenLoco on Cheetah Cheetah-Specific
Return 0.773± 0.054 0.696± 0.032 0.743± 0.092 0 (Failed in 6/6 trials)

Spinning GenLoco on A1 A1-Specific GenLoco on Cheetah Cheetah-Specific
Return 0.670± 0.070 0.572± 0.049 0.721± 0.090 0.258± 0.013

zero-shot manner, enabling the robots to perform agile maneuvers such as pacing and spinning. We
further compare the real-world performance of GenLoco to policies trained specifically for the A1
and Mini Cheetah. We performed 6 trials for each policy using the same experimental setup, and the
performance of these policies are available in Table 2. We note that the performance of GenLoco
policies, which work on both robots and were trained on neither, is overall better than the policies
trained for specific robots, as shown in the supplementary video. Furthermore, the Mini Cheetah-
specific pacing policy failed in all 6 real robot deployment trials, despite working well in simulation
as shown in Fig. 4. Notably, such performance degradations during sim-to-real transfer do not
occur for the GenLoco policies under identical environment circumstances. This suggests that solely
randomizing the dynamics for a single robot may be insufficient due to differences in morphological
characteristics between simulation and the real world. By training with randomized morphologies,
the GenLoco policy better adapts to kinematics variations and therefore maintains robustness during
sim-to-real transfer. An additional note of interest is that the timeline from completion of the Sirius
hardware to our deployment of GenLoco control on Sirius was mere days. The successful zero-shot
transfer observed in this experiment further highlights the utility of our model.

7 Limitations

As shown in Fig. 5a and 5b, the performance of GenLoco policies drops dramatically for larger
robots. This may suggest that using more aggressive randomization and more expressive model
architectures with recurrence, such as in [50], could improve the model. Moreover, our models cannot
be deployed on robots with a different number of DoFs. More flexible architectures, such as graph
neural networks [43, 44], may allow for adaptable models that can handle variable numbers of DoFs.

8 Conclusion

In this paper, we presented an RL-based framework for training generalized locomotion controllers
that can be deployed on a diverse set of quadrupedal robots. We show that a simple history-based
model, trained on procedurally generated robots in simulation, can be successfully transferred to a
large variety of new robots, which were not observed during training. The trained models can also be
deployed directly on real robots, without requiring any additional training on the physical systems.
While our experiments have been focused on quadrupedal robots, our method is general and can also
be applied to robots in other domains, such as robotic arms and quadrotors. However, the effectiveness
of our models remains limited to robots that have the same number of DoFs and follow a predefined
morphological template. Despite these limitations, we hope our work will provide a stepping stone
towards more general-purpose controllers that can be widely and conveniently deployed on a diverse
catalog of robots.

8



Acknowledgments

This work was supported in part by Hong Kong Centre for Logistics Robotics and in part by ARL
DCIST CRA W911NF-17-2-0181. We thank Prof. Sangbae Kim, the MIT Biomimetic Robotics Lab,
and NAVER LABS for lending the Mini Cheetah for experiments.

References
[1] J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT: pre-training of deep bidirectional

transformers for language understanding. In J. Burstein, C. Doran, and T. Solorio, editors,
Proceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis,
MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pages 4171–4186. Association
for Computational Linguistics, 2019.

[2] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child,
A. Ramesh, D. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei. Lan-
guage models are few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan,
and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages
1877–1901. Curran Associates, Inc., 2020.

[3] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervision.
In International Conference on Machine Learning, pages 8748–8763. PMLR, 2021.

[4] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen, and I. Sutskever.
Zero-shot text-to-image generation. In M. Meila and T. Zhang, editors, Proceedings of the
38th International Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pages 8821–8831. PMLR, 18–24 Jul 2021.

[5] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun, and M. Hutter. Learning
agile and dynamic motor skills for legged robots. Science Robotics, 4(26), 2019.

[6] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter. Learning quadrupedal locomotion
over challenging terrain. Science robotics, 5(47):eabc5986, 2020.

[7] X. B. Peng, E. Coumans, T. Zhang, T.-W. E. Lee, J. Tan, and S. Levine. Learning agile robotic
locomotion skills by imitating animals. In Robotics: Science and Systems, 07 2020.

[8] A. Kumar, Z. Fu, D. Pathak, and J. Malik. Rma: Rapid motor adaptation for legged robots.
Robotics: Science and Systems (RSS), 2021.

[9] L. Smith, J. C. Kew, X. B. Peng, S. Ha, J. Tan, and S. Levine. Legged robots that keep on
learning: Fine-tuning locomotion policies in the real world. In 2022 International Conference
on Robotics and Automation (ICRA), pages 1593–1599. IEEE, 2022.

[10] G. B. Margolis, G. Yang, K. Paigwar, T. Chen, and P. Agrawal. Rapid locomotion via reinforce-
ment learning. Robotics: Science and Systems, 2022.

[11] G. Ji, J. Mun, H. Kim, and J. Hwangbo. Concurrent training of a control policy and a state
estimator for dynamic and robust legged locomotion. IEEE Robotics and Automation Letters, 7
(2):4630–4637, 2022.

[12] C. Yang, K. Yuan, Q. Zhu, W. Yu, and Z. Li. Multi-expert learning of adaptive legged locomotion.
Science Robotics, 5(49):eabb2174, 2020.

[13] Y. Ji, Z. Li, Y. Sun, X. B. Peng, S. Levine, G. Berseth, and K. Sreenath. Hierarchical rein-
forcement learning for precise soccer shooting skills using a quadrupedal robot. arXiv preprint
arXiv:2208.01160, 2022.

[14] B. Katz, J. Di Carlo, and S. Kim. Mini cheetah: A platform for pushing the limits of dynamic
quadruped control. In Int. Conf. on Robotics and Automation (ICRA), pages 6295–6301, 2019.

9



[15] J. Kober, J. A. Bagnell, and J. Peters. Reinforcement learning in robotics: A survey. The
International Journal of Robotics Research, 32(11):1238–1274, 2013.

[16] X. B. Peng, P. Abbeel, S. Levine, and M. van de Panne. Deepmimic: Example-guided deep
reinforcement learning of physics-based character skills. ACM Trans. Graph., 37(4):143:1–
143:14, July 2018. ISSN 0730-0301.

[17] L. Liu and J. Hodgins. Learning basketball dribbling skills using trajectory optimization and
deep reinforcement learning. ACM Trans. Graph., 37(4), July 2018. ISSN 0730-0301.

[18] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman, E. Todorov, and S. Levine. Learn-
ing Complex Dexterous Manipulation with Deep Reinforcement Learning and Demonstrations.
In Proceedings of Robotics: Science and Systems (RSS), 2018.

[19] S. Lee, M. Park, K. Lee, and J. Lee. Scalable muscle-actuated human simulation and control.
ACM Transactions On Graphics (TOG), 38(4):1–13, 2019.

[20] N. Kohl and P. Stone. Policy gradient reinforcement learning for fast quadrupedal locomotion.
In IEEE International Conference on Robotics and Automation, 2004. Proceedings. 2004,
volume 3, pages 2619–2624, 2004.

[21] R. Tedrake, T. W. Zhang, and H. S. Seung. Stochastic policy gradient reinforcement learning on
a simple 3d biped. In Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS 2004), volume 3, pages 2849–2854, Piscataway, NJ, USA, 2004.

[22] G. Endo, J. Morimoto, T. Matsubara, J. Nakanishi, and G. Cheng. Learning cpg sensory
feedback with policy gradient for biped locomotion for a full-body humanoid. In Proceedings of
the 20th National Conference on Artificial Intelligence - Volume 3, AAAI’05, page 1267–1273.
AAAI Press, 2005.

[23] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bohez, and V. Vanhoucke. Sim-
to-real: Learning agile locomotion for quadruped robots. In Proceedings of Robotics: Science
and Systems, Pittsburgh, Pennsylvania, June 2018.

[24] T. Haarnoja, A. Zhou, S. Ha, J. Tan, G. Tucker, and S. Levine. Learning to walk via deep
reinforcement learning. Robotics: Science and Systems, 2019.

[25] H. Zhu, J. Yu, A. Gupta, D. Shah, K. Hartikainen, A. Singh, V. Kumar, and S. Levine. The
ingredients of real world robotic reinforcement learning. In International Conference on
Learning Representations, 2020.

[26] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel. Sim-to-real transfer of robotic
control with dynamics randomization. In 2018 IEEE international conference on robotics and
automation (ICRA), pages 3803–3810, 2018.

[27] Z. Xie, P. Clary, J. Dao, P. Morais, J. Hurst, and M. van de Panne. Learning locomotion skills
for cassie: Iterative design and sim-to-real. In Proc. Conference on Robot Learning (CORL
2019), 2019.

[28] S. Gangapurwala, M. Geisert, R. Orsolino, M. Fallon, and I. Havoutis. Rloc: Terrain-aware
legged locomotion using reinforcement learning and optimal control. IEEE Transactions on
Robotics, 2022.

[29] D. Rodriguez and S. Behnke. Deepwalk: Omnidirectional bipedal gait by deep reinforcement
learning. In 2021 IEEE International Conference on Robotics and Automation (ICRA), pages
3033–3039, 2021.

[30] W. Yu, J. Tan, C. K. Liu, and G. Turk. Preparing for the unknown: Learning a universal policy
with online system identification. In N. M. Amato, S. S. Srinivasa, N. Ayanian, and S. Kuin-
dersma, editors, Robotics: Science and Systems XIII, Massachusetts Institute of Technology,
Cambridge, Massachusetts, USA, July 12-16, 2017, 2017.

[31] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel. Domain randomization
for transferring deep neural networks from simulation to the real world. In 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 23–30, 2017.

10



[32] N. Rudin, D. Hoeller, P. Reist, and M. Hutter. Learning to walk in minutes using massively
parallel deep reinforcement learning. In 5th Annual Conference on Robot Learning, 2021.

[33] Z. Li, X. Cheng, X. B. Peng, P. Abbeel, S. Levine, G. Berseth, and K. Sreenath. Reinforce-
ment learning for robust parameterized locomotion control of bipedal robots. In 2021 IEEE
International Conference on Robotics and Automation (ICRA), pages 2811–2817, 2021.

[34] Y. Shao, Y. Jin, X. Liu, W. He, H. Wang, and W. Yang. Learning free gait transition for
quadruped robots via phase-guided controller. IEEE Robotics and Automation Letters, 7(2):
1230–1237, 2021.

[35] J. Tan, Z. Xie, B. Boots, and C. K. Liu. Simulation-based design of dynamic controllers for
humanoid balancing. In 2016 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 2729–2736, Oct 2016.

[36] J. Hanna and P. Stone. Grounded action transformation for robot learning in simulation. In
Proceedings of the 31st AAAI Conference on Artificial Intelligence (AAAI), February 2017.

[37] K. Lowrey, S. Kolev, J. Dao, A. Rajeswaran, and E. Todorov. Reinforcement learning for
non-prehensile manipulation: Transfer from simulation to physical system. In 2018 IEEE
International Conference on Simulation, Modeling, and Programming for Autonomous Robots
(SIMPAR), pages 35–42. IEEE, 2018.

[38] Y. Chebotar, A. Handa, V. Makoviychuk, M. Macklin, J. Issac, N. Ratliff, and D. Fox. Closing
the sim-to-real loop: Adapting simulation randomization with real world experience. In 2019
International Conference on Robotics and Automation (ICRA), pages 8973–8979. IEEE, 2019.

[39] W. Yu, V. C. Kumar, G. Turk, and C. K. Liu. Sim-to-real transfer for biped locomotion. In
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
3503–3510. IEEE, 2019.

[40] C. Devin, A. Gupta, T. Darrell, P. Abbeel, and S. Levine. Learning modular neural network
policies for multi-task and multi-robot transfer. In 2017 IEEE international conference on
robotics and automation (ICRA), pages 2169–2176, 2017.

[41] T. Chen, A. Murali, and A. Gupta. Hardware conditioned policies for multi-robot transfer
learning. Advances in Neural Information Processing Systems, 31, 2018.

[42] J. Won and J. Lee. Learning body shape variation in physics-based characters. ACM Trans.
Graph., 38(6), nov 2019.

[43] T. Wang, R. Liao, J. Ba, and S. Fidler. Nervenet: Learning structured policy with graph neural
networks. In International Conference on Learning Representations, 2018.

[44] W. Huang, I. Mordatch, and D. Pathak. One policy to control them all: Shared modular policies
for agent-agnostic control. In ICML, 2020.

[45] A. Gupta, C. Devin, Y. Liu, P. Abbeel, and S. Levine. Learning invariant feature spaces to transfer
skills with reinforcement learning. In International Conference on Learning Representations,
2017.

[46] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[47] E. Coumans and Y. Bai. Pybullet, a python module for physics simulation for games, robotics
and machine learning. http://pybullet.org, 2016–2019.

[48] chvmp, “champ”. https://github.com/chvmp/champ. Accessed: 2022-06-15.

[49] Spotmicroai. https://spotmicroai.readthedocs.io/en/latest/.

[50] S. Reed, K. Zolna, E. Parisotto, S. G. Colmenarejo, A. Novikov, G. Barth-Maron, M. Gimenez,
Y. Sulsky, J. Kay, J. T. Springenberg, et al. A generalist agent. arXiv preprint arXiv:2205.06175,
2022.

11

http://pybullet.org
https://github.com/chvmp/champ
https://spotmicroai.readthedocs.io/en/latest/

	Introduction
	Related Work
	Generalized Quadrupedal Locomotion Controllers
	Morphology Generation

	Training
	Simulation Validation
	Zero-Shot Transfer to Novel Robots
	Out-of-Distribution Generalization

	Real-World Deployment
	Limitations
	Conclusion
	Nominal Morphology Generation Parameter Values
	Reward Function
	Policy Network Structure and State Initialization
	Dynamics Randomization Ranges
	Existing Robot Specifications

