
An Improved Clique-Picking Algorithm for Counting Markov Equivalent DAGs
via Super Cliques Transfer

Lifu Liu * 1 Shiyuan He * 2 Jianhua Guo 2

Abstract

Efficiently counting Markov equivalent directed
acyclic graphs (DAGs) is crucial in graphical
causal analysis. Wienöbst et al. (2023) intro-
duced a polynomial-time algorithm, known as the
Clique-Picking algorithm, to count the number of
Markov equivalent DAGs for a given completed
partially directed acyclic graph (CPDAG). This
algorithm iteratively selects a root clique, deter-
mines fixed orientations with outgoing edges from
the clique, and generates the unresolved undi-
rected connected components (UCCGs). In this
work, we propose a more efficient approach to
UCCG generation by utilizing previously com-
puted results for different root cliques. Our
method introduces the concept of super cliques
within rooted clique trees, enabling their efficient
transfer between trees with different root cliques.
The proposed algorithm effectively reduces the
computational complexity of the Clique-Picking
method, particularly when the number of cliques
is substantially smaller than the number of ver-
tices and edges.

1. Introduction
Directed acyclic graphs (DAGs) are widely used to represent
multivariate causal structures across diverse fields, includ-
ing epidemiology, biology, and economics (Pearl, 1988;
Pingault et al., 2018). In a DAG, nodes represent variables,
and directed edges denote causal relationships (Koller &
Friedman, 2009; Spirtes et al., 2001). Under the Markov
condition and faithfulness assumption, the causal structure
can be inferred from statistical data to identify a DAG. The

*Equal contribution 1School of Mathematics and Statistics,
Northeast Normal University, Changchun, China 2School of
Mathematics and Statistics, Beijing Technology and Business
University, Beijing, China. Correspondence to: Jianhua Guo
<jhguo@btbu.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

d-separation properties of the identified DAG correspond to
the conditional independencies observed in the data (Pearl,
2009; Verma & Pearl, 1992; Spirtes et al., 2001). However,
observational data alone is often insufficient to uniquely
determine the true DAG. Instead, it can identify a set of
DAGs that encode the same conditional independencies,
collectively known as a Markov equivalence class (MEC).
This limitation has driven extensive research into learning
MECs from both observational and interventional data (Perl-
man, 2001; Geiger & Heckerman, 2002; Chickering, 2002;
Castelo & Perlman, 2004; Maathuis et al., 2009).

A MEC can be uniquely represented by an essential graph
(Andersson et al., 1997), also known as the completed par-
tially directed acyclic graph (CPDAG). They use both di-
rected and undirected edges to represent causal relationships
that are consistent across all DAGs in the equivalence class,
with directed edges indicating fixed causal directions and
undirected edges reflecting ambiguous dependencies unre-
solved by conditional independence constraints. The size
of a MEC, defined as the number of DAGs within the class,
plays a critical role in the design of causal intervention ex-
periments (He & Geng, 2008) and average causal effect
estimation (Maathuis et al., 2009).

Exhaustive search for all Markov equivalent DAGs is only
computationally feasible for small graphs (Madigan et al.,
1996; Gillispie & Perlman, 2002). Generally, the size of
a MEC grows superexponentially in the number of its ver-
tices. He et al. (2015) addressed the counting challenge
by introducing five special MECs with explicit size formu-
las, and exploiting recursive partitioning into the respective
subclasses for efficient counting. A modified approach by
Ghassami et al. (2019) leverages the clique tree representa-
tion to decompose the essential graph into smaller compo-
nents. More recently, dynamic programming enhancements
(Ganian et al., 2022) and iterative methods over possible in-
terventional essential graphs (AhmadiTeshnizi et al., 2020)
have been proposed.

Notably, Wienöbst et al. (2023) introduces the Clique-
Picking (CP) algorithm, which is a polynomial-time al-
gorithm for determining the size of a MEC. This method
partitions the MEC into subclasses by fixing a clique as
a root and avoids overcounting using minimal separators

1

An Improved Clique-Picking Algorithm via Super Cliques Transfer

derived from the clique tree representation. However, for
a given chordal graph G = (V,E), the algorithm needs to
recursively select a clique as root, introduce outgoing edges
from the root, and determine smaller undirected connected
components (UCCG) from the resulting graph. Suppose
there are m maximal cliques in G, this intensive process
has a cost of O(m(|V |+ |E|)). Moreover, this process has
to be repeated during the recursive function calls, until the
reduced UCCG only contains a single maximal clique.

Fortunately, an improvement is feasible because there are
considerable structure overlaps when different cliques are
selected as the roots. We propose a novel approach for this
purpose. Our contributions are summarized as follows.

1. We introduce higher level structures called super clique
and super residual for a clique tree in Section 5. For a
chordal graph G with some clique selected as the root,
we show the UCCGs can be easily identified from the
super residuals.

2. When two different cliques (Ki,Kj) are selected the
root, we show structure changes can be easily identified
for the corresponding super cliques and super residuals.
Hence, when the UCCGs are known for Ki as the root,
we can efficiently identify UCCGs for the case when
the other Kj is the root. This leads to the super clique
transfer operation in Section 6.

3. The above techniques lead to the Super Cliques Trans-
fer Algorithm in Section 4. Overall, our procedure of
UCCG identification for all root cliques has a reduced
cost of O(m2).

4. To provide a solid theoretical foundation for our algo-
rithm, we characterize super cliques and super resid-
uals from two distinct perspectives: the clique-rooted
tree perspective in the main text and the clique se-
quence perspective in the Appendix. The former offers
an intuitive understanding, while the latter provides a
more fundamental framework that facilitates theoreti-
cal proofs.

The rest of the paper is as follows. Section 2 reviews the con-
cepts for Markov equivalent DAGs and clique rooted trees.
Section 3 reviews the Clique-Picking algorithm of Wienöbst
et al. (2023) at a high level. Our proposed algorithm and
its detailed operations will be presented in Sections 4–6.
Section 7 presents the experimental results.

2. Preliminaries
2.1. Markov equivalent DAGs

A graph G = (V,E) is a tuple consisting of a vertex set
V = {v1, · · · , vn} and an edge set E. An edge vi − vj is
undirected if (vi, vj), (vj , vi) ∈ E and directed vi → vj
if (vi, vj) ∈ E and (vj , vi) /∈ E. We denote the induced

subgraph of G on a set C ⊆ V by G[C], which only keeps
the vertices in C and the egdes connecting them. A directed
acyclic graph (DAG) is a directed graph without any di-
rected cycle. A topological ordering of a DAG is a linear
ordering of its vertices such that for every directed edge
vi → vj , vertex vi appears before vertex vj in the ordering.
The skeleton of a graph G is the undirected graph formed by
ignoring the edge directions in G, while retaining its vertices
and edges. An induced subgraph of the form v1 → v2 ← v3
is a v-structure.

A Markov equivalence class (MEC) is the set of all DAGs
that encode the same conditional independence relations
among the variables. Verma & Pearl (1990) state that two
DAGs are markov equivalent if and only if they share the
same skeleton and v-structures. Furthermore, Andersson
et al. (1997) show that a MEC can be uniquely represented
by a completed partially directed acyclic graph (CPDAG),
denoted as G∗, which is the union of all DAGs in the equiva-
lence class. An undirected graph is chordal if every cycle of
length greater than three has a chord, i.e., an edge connecting
two nonconsecutive vertices in the cycle. Each undirected
connected component of a CPDAG is a connected chordal
graph, referred to as a UCCG. In particular, each UCCG is
itself a CPDAG representing a MEC.

Let Size(G∗) denote the size of the Markov equivalence
class represented by a CPDAG G∗. The value of Size(G∗)
equals the product of the number of Markov equivalent
DAGs for each UCCG of G∗ (Andersson et al., 1997):

Size(G∗) =
∏

UCCG G in G∗

Size(G).

However, the above equation is not directly applicable in
general to compute Size(G∗). This is because the value
of Size(G) can grow superexponentially with respect to its
vertex number |V |. It is essential to develop an efficient
approach for the computation of Size(G).

2.2. Clique Rooted Trees

In a graph, a clique is a set of pairwise adjacent vertices.
For a UCCG G, we denote the set of all its maximal cliques
as KG = {K1, . . . ,Km}. For example, the chordal graph
G in Figure 1(a) contains seven cliques: K1 = {a, b, c},
K2 = {b, c, d}, K3 = {b, e}, K4 = {e, f}, K5 = {b, g, j},
K6 = {b, g, i} and K7 = {b, h, j}. The maximal cliques
in a chordal graph G can be ordered to satisfy the running
intersection property (RIP, Blair & Peyton, 1993).

Definition 2.1. (Running intersection property) A clique
sequence, K1,K2, . . . ,Km, has the running intersection
property (RIP) if for each clique Kp (with p = 2, . . . ,m),
there exists a clique Kt for some t ∈ {1, . . . , p− 1}, such
that

Kp ∩ (K1 ∪K2 ∪ · · · ∪Kp−1) ⊂ Kt. (1)

2

An Improved Clique-Picking Algorithm via Super Cliques Transfer

(a) (b) (c)

Figure 1. The UCCG G in Figure 1(a) has several maximal cliques: K1 = {a, b, c}, K2 = {b, c, d}, K3 = {b, e}, K4 = {e, f},
K5 = {b, g, j}, K6 = {b, g, i} and K7 = {b, h, j}. Figure 1(b) is the GK1 with K1 = {a, b, c}. The rooted clique tree TK1 is shown
in Figure 1(c).

From any sequence of cliques satisfying RIP, we construct
a rooted tree on KG by making each clique Kp adjacent to
a “parent” clique Kt in (1). This tree has the first clique K1

in the sequence as its root, and is denoted as TK1 . For the
example in Figure 1(a), K1,K2,K3,K4,K5,K6,K7 is an
RIP sequence. The corresponding rooted tree TK1 is shown
in Figure 1(c).

Given a UCCG G, a clique tree TK1 with some root clique
K1 can be generated via the MCS algorithm (Blair & Peyton,
1993). For each clique Kp, its separator Sp is as Sp =
Kp ∩ (K1 ∪ · · · ∪Kp−1) = Kp ∩Kt, and its residual Rp

is defined as Rp = Kp\Sp. For the root clique, we simply
set S1 = ∅ and R1 = K1. For the rooted clique tree TK1 ,
the collection of all separators is denoted as Sep(K1), and
all residuals as Res(K1).

3. The Clique-Picking Algorithm
We now review the Clique-Picking algorithm proposed by
Wienöbst et al. (2023) and highlight, at the end of this
section, the specific part where our super clique approach
can provide improvements. Wienöbst et al. (2023) exploited
the fact that each DAG within MEC can be represented by
topological vertex orderings, and a maximal clique can be
selected as the prefix of an ordering. In this way, the Markov
equivalent DAGs can be divided into small groups for more
efficient computation.

Wienöbst et al. (2023) introduced several concepts to for-
malize the idea. Suppose K be a clique in G and selected as
the root. Let π(K) be a permuted ordering of the vertices
in K, and consider all topological orderings of G that start
with π(K). The π(K)-orientation of G, denoted Gπ(K), is
the union of all DAGs within the MEC represented by G
that have topological orderings beginning with π(K). Then,

Algorithm 1 Function CP-Count(·)
Input: A UCCG G
Output: Size(G)

1: Generate a rooted clique tree of G;
2: Generate CG(Kp) for each Kp ∈ KG, which is selected

as the root for clique tree TKp ;
3: Evaluate Size(J) for all UCCG J inside CG(Kp) by

recursively calling CP-Count(J);
4: Compute Size(G) in (2).

denote by CG(π(K)) the undirected connected components
of Gπ(K)[V \K].

Furthermore, let GK denote the union of π(K)-orientations
of G over all permutation π. That is, GK =

⋃
π G

π(K). We
also denote CG(K) as the undirected connected components
of GK [V \K]. For the graph in Figure 1(a), suppose K1 =
{a, b, c} is picked as the prefix of the ordering, then the
corresponding graphs GK1 is shown in Figure 1(b). We can
see, by picking K1 as the root, we introduce outgoing edges
from K1 in GK1 , compared with the original undirected G
in Figure 1(a). For GK1 , we have the undirected connected
components CG(K1) = {G[e], G[d], G[f], G[g, h, i, j]}.

Wienöbst et al. (2023) show that the size of the Markov
equivalence class represented by GK can be calculated by:

Size(GK) = |K|! ·
∏

J∈CG(K)

Size(J).

It is tempting to select each K in KG, compute Size(GK)
and sum all these values to get Size(G) for a UCCG G.
However, this will count some DAGs multiple times, as a
DAG can be represented by multiple topological orderings
with different cliques as the root. To resolve this issue,

3

An Improved Clique-Picking Algorithm via Super Cliques Transfer

Algorithm 2 Super Cliques Transfer Algorithm
Input: A UCCG G and a rooted clique tree TK1 of KG

Output: CG(K1), CG(K2), . . . , CG(Km).
1: L(1), CG(K1), Sep(K1),Res(K1)← SC-Create-Op

(G,TK1) via Algorithm 3;
2: for i = 2 to m do
3: Kt ← The parent clique of Ki in TK1 ;
4: Initialize Sep(Ki) ← Sep(Kt) and Res(Ki) ←

Res(Kt);
5: Update Si ← ∅ and St ← Ki ∩Kt in Sep(Ki);
6: Update Ri ← Ki and Rt ← Kt \ (Ki ∩Kt) in Res(Ki);
7: Run Algorithm 4 to get CG(Ki), L

(i) ←
SC-Trans-Op(CG(Kt), L

(t), TKt , Sep(Ki),Res(Ki));
8: Get TKi by reversing the edge “Kt → Ki” in TKt to

“Ki → Kt”;
9: end for

Wienöbst et al. (2023) further introduced the correct iterative
formula

Size(G) =

m∑
p=1

ϕ(Kp,FP(Kp, T
K1)) ·

∏
J∈CG(Kp)

Size(J), (2)

where ϕ(·) is a corrected multiplicative factor to avoid over-
counting. The formal definition of the above ϕ(·) is provided
in Section 4.3 of Wienöbst et al. (2023), where the authors
discuss it in detail.

At a high level, the recursive strategy of Wienöbst et al.
(2023) is summarized in Algorithm 1. We present their pro-
cedure as a function, called CP-Count(·), that takes a UCCG
G as input and return the number of Markov equivalent
DAGs, i.e. Size(G). In particular, Step 2 of Algorithm 1
generates all CG(Kp), when different Kp’s are selected as
the root. Wienöbst et al. (2023) proposed an adapted Max-
imum Label Search algorithm for this task. The cost of
generating a single CG(Kp) isO(|V |+ |E|), and the overall
cost for Step 2 of Algorithm 1 isO(m · (|V |+ |E|)), where
m is number of maximal cliques in the chordal graph G.

It is important to note Step 2 of Algorithm 1 can be further
improved to achieve greater efficiency. This is because there
are considerable structure overlap for CG(K) with differ-
ent K ∈ KG selected as the root. For example, we can
easily see that, when K3 is selected as the root, we have
CG(K3) = {G[a, c, d], G[f], G[g, h, i, j]}. It is clear that
the undirected connected components G[f] and G[g, h, i, j]
appear in both CG(K1) and CG(K3). To address this redun-
dancy, we will introduce our super clique transfer algorithm
in the next section. With the proposed algorithm, once we
get CG(K1), we can more efficiently compute and derive all
the other CG(Kp) with p = 2, . . . ,m. The reduced cost is
O(m2) for Step 2 of Algorithm 1.

4. The Super Cliques Transfer Algorithm
Our main contribution is a novel algorithm that reduces

Algorithm 3 SC-Create-Op
Input: A UCCG G, a rooted clique tree TK1 of KG.
Output: L(1), CG(K1), Sep(K1), and Res(K1).

1: Initialize CG(K1)← {};
2: Sep(K1)← the set of separators S1, . . . , Sm;
3: Res(K1)← the set of residuals R1, . . . , Rm;
4: Based on Sep(K1), get the set of super cliques of TK1 and

denote it as L(1);
5: for SK

(1)

p+
in L(1) do

6: Obtain SR
(1)

p+
for SK(1)

p+
based on Res(K1);

7: CG(K1)← CG(K1) ∪ {G[SR
(1)

p+
]}.

8: end for

the computation cost of Step 2 of Algorithm 1. The main
idea is to group the cliques in a rooted clique tree into
higher level structure, called super cliques. We connect
the super cliques with the UCCG, and develop an efficient
super clique transfer algorithm to obtain the UCCGs when
different cliques are selected as the root.

The proposed approach, referred to as the Super Cliques
Transfer (SC-Trans) Algorithm, is outlined in Algorithm 2.
It takes as input a UCCG G and a corresponding rooted
clique tree TK1 , and outputs all sets CG(K1), . . . , CG(Km).
Step 1 identifies all separators Sep(K1), all residuals
Res(K1), all super cliques L(1) and CG(K1) for TK1 .
It utilizes the super clique create operation (SC-Create-
Op) in Algorithm 3, which will be introduced in details
in Section 5. Steps 2–9 sequentially generate the other
CG(K2), . . . , CG(Km). These steps depend on the techni-
cal details to be presented in Section 6. In each iteration
of i ∈ {2, . . . ,m}, the parent clique Kt of Ki in TK1 is
found. Steps 4–7 then efficiently identify structure changes
from TKt to TKi . In particular, Algorithm 4 in Step 7 is the
super clique transfer operation (SC-Trans-Op) in Section 6.
Step 8 then updates TKt to become a rooted tree for Ki.

We have the following results for Algorithm 2, the proof of
which can be found in Appendix E. Proof of Theorem 4.1
and Proof of Theorem 4.2.

Theorem 4.1. Let G be a UCCG, and TK1 be a rooted
clique tree with cliques ordered as K1, . . . ,Km according
to the MCS algorithm. Algorithm 2 will correctly return
CG(K1), CG(K2), . . . , CG(Km).

Theorem 4.2. Algorithm 2 runs in time O(m2), where m
is the number of cliques of UCCG G.

5. Super Cliques and Undirected Connected
Components

In this section, we discuss the details of Algorithm 3. It is a
novel approach to compute CG(K1) based on the concept of
super cliques for TK1 . The new concepts are built upon the
basic rooted clique tree structures introduced in Section 2.2.

4

An Improved Clique-Picking Algorithm via Super Cliques Transfer

Algorithm 4 SC-Trans-Op
Input: CG(Kt), L

(t), TKt , Sep(Ki), Res(Ki).
Output: CG(Ki) and L(i).

1: Initialize CG(Ki) ← {}, L(i) ← {}, SK
(i)

t+
← {Kt},

SR
(i)

t+
(Ki)← {Rt}

2: for SK
(t)

p+
in L(t) do

3: if p = i then
4: for all child clique Kq of Ki in TKt do
5: Induce SK

(i)
q+ and SR

(i)

q+
from SK

(t)

i+
and SR

(t)

i+
;

6: CG(Ki)← CG(Ki) ∪
{
G[SR

(i)
q+]

}
;

7: L(i) ← L(i) ∪
{
SK

(i)

q+

}
;

8: end for
9: else if Kp is a child clique of Kt in TKt , and St is a proper

subset of Sp then
10: SK

(i)

t+
← SK

(i)

t+
∪ SK

(t)
p+, SR(i)

t+
← SR

(i)

t+
∪ SR

(t)
p+;

11: else
12: SR

(i)
p+ ← SR

(t)
p+, SK(i)

p+
← SK

(t)

p+
;

13: CG(Ki)← CG(Ki) ∪
{
G[SR

(i)
p+]

}
;

14: L(i) ← L(i) ∪
{
SK

(i)

p+

}
;

15: end if
16: end for
17: L(i) ← L(i) ∪

{
SK

(i)

t+

}
;

18: CG(Ki)← CG(Ki) ∪
{
G[SR

(i)

t+
]
}

.

Definition 5.1. (Clique header, clique tail) Let TK1 be a
rooted clique tree with RIP clique order K1,K2, . . . ,Km.

i. For any p = 2, . . . ,m, Kp is a clique header within
TK1 if for any ancestral clique Kq of Kp with q ̸= 1,
the corresponding Sq is not a proper subset of Sp.

ii. For p = 2, . . . ,m, suppose Kp is a clique header
within TK1 , a descendant clique Kq of Kp is a clique
tail that follows Kp if Sp ⊊ Sq .

Note the root K1 is neither a clique header nor a clique
tail, as we require p > 1 in the above definitions. For the
example in Figure 1(c), K2, K3, K4 and K5 are clique
headers within TK1 , K6 and K7 are the clique tails that
follows K5. Using the concepts of clique header and clique
tail, we can define the super clique and super residual within
TK1 .
Definition 5.2. (Super clique, super residual) Within
a clique tree TK1 , suppose Kp is a clique header and
Kp1 , . . . ,Kpr are all its clique tails.

i. The clique set SK
(1)
p+ = SK

(1)
p|p1,...,pr

:=

{Kp,Kp1
, . . . ,Kpr

} is called a super clique.

ii. The set of the residuals corresponding to the cliques
within SK

(1)
p+ is called a super residual, and denoted as

SR
(1)
p+ = SR

(1)
p|p1,...,pr

:= {Rp, Rp1 , . . . , Rpr}.

A clique header Kp will form a super clique itself if it
does not have any clique tail. For the clique tree in the left

panel of Figure 2, there are four super cliques: SK
(1)
2| =

{K2}, SK(1)
3| = {K3}, SK(1)

4| = {K4} and SK
(1)
5|6,7 =

{K5,K6,K7} within TK1 . Note the superscript “(1)” in
these notations emphasizes that they are super cliques (or
super residuals) within the clique tree TK1 rooted at K1.

Regarding the super cliques in TK1 , we can observe a
few properties. Firstly, for each SK

(1)
p+ , the subgraph

TK1 [SK
(1)
p+] is connected and constitutes a subtree of TK1 .

This is because the clique tree TK1 generated from a UCCG
G satisfies the so called induced-subtree property (Blair &
Peyton, 1993). The property states that, for every vertex
v ∈ V of G, the set of all cliques containing v induces
a connected subtree of T . Consequently, the subgraph
TK1 [SK

(1)
p+] is connected because all the cliques within

SKp+ share the common node set Sp.

Secondly, we observe that CG(K1) can be easily obtained
from the set of super residuals. Consider again the clique
tree in the left panel of Figure 2 in Figure 1(c), we can
see G[SR

(1)
2|] = G[d], G[SR

(1)
3|] = G[e], G[SR

(1)
4|] = G[f],

and G[SR
(1)
5|6,7] = G[g, h, i, j] are the undirected connected

components in CG(K1). In fact, this observation holds in
general. For any super residual SR(1)

p+ , the induced subgraph

G
[
SR

(1)
p+

]
is exactly an element of the set CG(K1). More-

over, CG(K1) is just the collection of all such subgraphs
induced by every super residual.

Theorem 5.3. Let TK1 be a rooted clique tree of a chordal
graph G with MCS clique order K1,K2, . . . ,Km. Then

CG(K1) =
{
G[SR

(1)

p+
] : SR

(1)

p+
is a super residual within TK1

}
.

For a given TK1 , Algorithm 3 is designed to return the
set L(1) of all super cliques, all separators and residuals,
and CG(K1). Algorithm 3 is valid due to Theorem 5.3. It
seems natural that, for i = 2, . . . ,m, we can apply the
same procedure to each TKi for getting the corresponding
CG(Ki). However, such procedure is unnecessary. Recall
we have discussed that, for any pair of cliques Kt and Ki

with k ̸= i, there are many shared undirected connected
components between CG(Ki) and CG(Kt). We can reuse
the computation results for one rooted clique tree to speed
up the computation for the other. In the next section, we
will present an efficient strategy serving this purpose.

6. The Super Cliques Transfer Operation
We now present our efficient super clique transfer operation
to generate all the other CG(K2), CG(K3), . . . , CG(Km),
given CG(K1). The overall iterative strategy is described
in Algorithm 2, which generates CG(Ki) based on CG(Kt),
where Kt is a parent clique of Ki in TK1 .

5

An Improved Clique-Picking Algorithm via Super Cliques Transfer

To efficiently obtain CG(Ki) from CG(Kt), we need to con-
struct an appropriate clique tree TKi with minimal structure
changes from TKt . We exploit the computed results from
TKt and our super clique transfer operation to reduce the
computation cost. Now, without loss of generality, we dis-
cuss in details the particular situation where we transit from
TK1 to TKi , where Ki is a child clique of K1 in TK1 . The
procedure for the other cases is similar.

Recall TK1 corresponds to a clique sequence K1, . . . ,Km

that satisfies the RIP. As stated in Lemma 6.1 below, there al-
ways exists a permuted sequence Kσ(1), . . . ,Kσ(m), which
starts with Ki and also satisfies the RIP.

Lemma 6.1. (Proposition 2.4 of Leimer (1993)) Let
K1, . . . ,Km be an RIP sequence of the clique set. For any
i = 2, . . . ,m, there exists a permutation σ satisfying that
σ(1) = i and σ(2) = 1, and meanwhile Kσ(1), . . . ,Kσ(m)

is still an RIP sequence.

In fact, the permuted sequence has a simple structure change.
The proof of Leimer (1993) actually states the permuted
indices as: 1) σ(1) = i and σ(2) = 1; 2) for p = 2, . . . , i−
1, we have σ(p+ 1) = p; and 3) for p = i+ 1, . . . ,m, we
have σ(p) = p . The permuted RIP sequence has minimal
change of the clique order. Based on the permuted sequence,
the new clique tree TKi rooted at Ki can be obtained. We
continue to examine the structure changes from TKt to TKi

in more details.

6.1. Basic Structure Changes in the Clique Trees

To understand the structure changes for TKi , we first state
a property regarding the permuted sequence.

Proposition 6.2. Assume Ki is a clique such that Ki∩(K1∪
· · · ∪Ki−1) ⊂ K1. Let Kσ(1), . . . ,Kσ(m) be the permuted
clique obtained by applying Lemma 6.1 with σ(1) = i. For
any p ∈ [m] \ {1, i} and any q ∈ [m], if Kp ∩ (K1 ∪
· · · ∪Kp−1) ⊂ Kq, then for p′ and q′ with p = σ(p′) and
q = σ(q′), it holds that

Kσ(p′) ∩ (Kσ(1) ∪ · · · ∪Kσ(p′−1)) ⊂ Kσ(q′).

Note in the above p /∈ {1, i}. Proposition 6.2 has the fol-
lowing implication for any Kq and its child clique Kp in
TK1 . Suppose the p-th clique Kp in TK1 corresponds to
p′-th clique Kσ(p′) in TKi , and suppose Kq corresponds to
Kσ(q′). We have Kσ(p′) is a child clique of Kσ(q′) in TKi .

The above discussion implies that, from TK1 to this TKi ,
only one edge changes. That is, K1 → Ki in TK1 becomes
Ki → K1 in TKi . The other edges in TKi remain un-
changed. Due to this edge direction change, we can see that
their separators and residuals also change. The changes are
summarized in Table 1.

Additionally, the separators and residuals for the other

Table 1. The separators and residuals for the cliques K1 and Ki

within the two rooted clique trees TK1 and TKi .
K1 Ki

separator residual separator residual
TK1 ∅ K1 K1 ∩Ki Ki\(K1 ∩Ki)
TKi K1 ∩Ki K1\(K1 ∩Ki) ∅ Ki

cliques remain unchanged, which is stated in the follow-
ing proposition.

Proposition 6.3. Assume Ki is a clique such that Ki ∩
(K1 ∪ · · · ∪ Ki−1) ⊂ K1. Let Kσ(1), . . . ,Kσ(m) be the
permutation obtained by applying Lemma 6.1 with σ(1) = i.
Then for any p in [m] \ {1, i} and p′ satisfying p = σ(p′),
we have Sp = Sσ(p′) and Rp = Rσ(p′).

The proof of above two propositions are claimed in Ap-
pendix E. Proof of Propositions 6.2 & 6.3. The edge
K1 → Ki in TK1 will be redirected as Ki → K1 in TKi .
This implies K1 becomes a child clique of Ki in TKi . As
the root Ki is the only ancestral clique of K1 in TKi , K1

must be a clique header within TKi by Definition 5.1. The
child cliques of Ki in TK1 will all become clique headers in
TKi . Additionally, some cliques that were headers in TK1

will become clique tails of K1 in TKi . Specifically, if Kp

(p ̸= i) is a child clique of K1 in TK1 , then Kp is a clique
header within TK1 , but it can possibly become a clique tail
within TKi . We need to check whether K1 ∩Ki is a proper
subset of Sp. If this is true, Kp will become a clique tail of
K1 in TKi ; otherwise, Kp remain a clique header in TKi .

For Figure 2, let us consider the structure changes from
TK1 in the left panel to TK5 in the right panel. We can
see that K6 and K7 both become clique headers within
TK5 . Furthermore, K1 also becomes a clique header in TK5 .
Since K1 ∩ K5 is not a proper subset of S3, K3 remains
a clique header in TK5 . On the other hand, K1 ∩K5 is a
proper subset of S2, so K2 becomes a clique tail that follows
K1 within TK5 . The clique K4, which is not adjacent to
K1, remains as a clique header within TK5 .

6.2. High-level Structure Changes in the Clique Trees

We can further characterize higher level structure changes
from TK1 to TKi , in terms of super cliques and super resid-
uals. In fact, all super cliques in TKi can be identified from
those of TK1 . There are three cases to consider:

1. Consider the super clique SK
(1)
i+ with clique header

Ki in TK1 . Suppose Ki has h child clique(s)
in TK1 : Kp1

, . . . ,Kph
. Then, the super clique

SK
(1)
i+ of TK1 get split into h super clique(s) in

TKi : SK
(i)

p+
1

, . . . ,SK
(i)

p+
h

. These super cliques have
Kp1 , . . . ,Kph

as their clique headers, respectively. In
the special case that Ki has no child clique in TK1 ,

6

An Improved Clique-Picking Algorithm via Super Cliques Transfer

Figure 2. The structure changes from TK1 to TK5 . The blue cycle means that the cliques within it will form a super clique. We omit the
blue cycle when a clique itself is a super clique(root excluded).

we can simply ignore SK
(1)
i+ when generating super

cliques for TKi .

2. Consider all child cliques of K1 in TK1 but with Ki

excluded. Among these child cliques, select those
that become clique tails of K1 in TKi , and denote
these selected cliques as Kp1 , . . . ,Kph

. Then, their
corresponding super cliques SK(1)

p+
1

, . . . ,SK
(1)

p+
h

in TK1 ,

together with K1, will form a new super clique in TKi :

SK
(i)
1+ = {K1} ∪ SK

(1)

p+
1

∪ · · · ∪ SK
(1)

p+
h

. (3)

Note, if there does not exits any clique tail of K1 in
TKi , then (3) simply becomes SK

(i)
1+ = {K1}. For

the child cliques of of K1 in TK1 that are not selected
for (3), their corresponding super cliques remain un-
changed and continue to constitute super cliques in
TKi .

3. Aside from the Case 1 and Case 2 discussed above,
all other super cliques in TK1 remain unchanged and
continue to form super cliques in TKi .

All super residuals in TKi can be identified from those in
TK1 in the same spirit as the three cases above. Recall
by Proposition 6.3 the only difference between Res(Ki)
and Res(K1) lies in the pair (R1, Ri), and the changes are
summarized in Table 1.

Corresponding to Case 1 above, the super residual
SR

(1)
i+ of TK1 get split into h super residual(s) in TKi :

SR
(i)

p+
1

, . . . ,SR
(i)

p+
h

. As for Case 2 in the above, the super

residual SR(i)
1+ corresponding to K1 in TKi will be

SR
(i)
1+ = {K1 \ (K1 ∩Ki)} ∪ SR

(1)

p+
1

∪ · · · ∪ SR
(1)

p+
h

. (4)

Except for SR(1)
i+ and the super residual in (4), all the other

super residuals of TK1 remain exactly the same in TKi .

Once the super residuals in TKi are identified, the undi-
rected components in CG(Ki) can be immediately deter-
mined based on Theorem 5.3.

We now illustrate the structure changes from TK1 to TK5

for the example in Figure 2. Corresponding to Cases 1–3,
we have the following:

1. K5 has two child cliques in TK1 : K6 and K7. Then
the super clique SK

(1)
5|6,7 in TK1 get split in two super

cliques in TK5 : SK(5)
6| , and SK

(5)
7| . Correspondingly,

we can generate the undirected connected components
G[i] and G[h] in CG(K5).

2. Additionally, consider the child cliques of K1 in TK1 .
In TK5 , K2 becomes a child tail of K1. Then SK

(1)
2|

in TK1 , together with K1, will form the new super
cliques SK

(5)
1|2 of TK5 . Due to the change of resid-

ual of K1, we can see G[SR
(5)
1|2] = G[a, c, d] is an

undirected connected component in CG(K5), where
SR

(5)
1|2 = {K1 \ (K1 ∩K5)} ∪ SR

(1)
2| .

3. Except for SK
(1)
5|6,7 and SK

(1)
2| , all the other super

cliques: SK(1)
3| and SK

(1)
4| remain exactly the same in

TK5 , and the same apply to SR
(1)
3| and SR

(1)
4| . Hence

we have G[e] and G[f] in CG(K1) still belong to
CG(K5).

6.3. The Iterative Algorithm

In the above, we focus on the case where Ki is one child
clique of K1 in TK1 , and we identify all super cliques and
super residuals of TKi from those of TK1 . The results
can be easily generalized. For any clique Ki in KG with
1 < i ≤ m, suppose its parent clique of Ki in TK1 as Kt,
we can efficiently obtain super cliques and super residuals
of TKi from those of TKt . This leads to the super clique
transfer operation (SC-Trans-Op) in Algorithm 4, which
derives the set of super cliques of TKi from that of TKt ,

7

An Improved Clique-Picking Algorithm via Super Cliques Transfer

(a) (b)

(c) (d)

Figure 3. Figures (a) and (b) present the average running times of the original “CP” method and our improved “ICP” method across
different numbers of graph vertices. The runtime differences, TCP − TICP and TCP,2 − TICP,2 are illustrated in Figures (c) and (d),
respectively, for varying graph densities. All axes use a logarithmic scale.

and generates CG(Ki) from CG(Kt). In Algorithm 4, Lines
3-8, Lines 9-10 & 17, and Lines 11-15 correspond to Cases
1–3 in Section 6.2, respectively.

Now, let us return to Algorithm 2. In Algorithm 2, its
Lines 4–6 and Line 8 are due to the basic structure changes
in Section 6.1. When transitioning from TKt to TKi , the set
of separators (Sep(Ki)) and the set of residuals (Res(Ki))
can be readily determined, as we discussed for Table 1 and
Proposition 6.3. Line 8 is due to Proposition 6.2 and the
subsequent discussion there. Line 7 employs Algorithm 4.

In the following theorem, we prove the correctness of Algo-
rithm 4.

Theorem 6.4. For any i = 2, . . . ,m, let Kt denote the par-
ent clique of Ki in TK1 , L(t) be the set of super cliques
of TKt . Then given CG(Kt), L

(t), TKt , Sep(Ki), and
Res(Ki), Algorithm 4 will return CG(Ki) and the set L(i)

of super cliques of TKi .

Table 2. Average running time (in seconds)
r 0.34 0.08
|V | TICP TCP TICP TCP

512 1.022 2.081 0.842 1.494
1024 8.048 15.579 5.586 9.974
2048 68.048 125.181 40.545 74.940
4096 707.484 1169.811 387.491 660.435

7. Experiment
We now evaluate our proposed SC-Trans algorithm. It is
integrated into the Clique-Picking (CP) algorithm by re-
placing its Step 2 in Algorithm 1. The improved version
is denoted as ICP. We compare the practical performance
of our improved ICP and the state-of-the-art CP algorithm
in a series of experiments. Both methods are implemented
using Julia. All experiments are run on a laptop with AMD

8

An Improved Clique-Picking Algorithm via Super Cliques Transfer

Table 3. Comparison between ICP and CP (the runtime difference TCP − TICP and TCP,2 − TICP,2 are measured in seconds)
|V | 1024 2048
r θ TCP − TICP TCP,2 − TICP,2 TCP,2/TICP,2 θ TCP − TICP TCP,2 − TICP,2 TCP,2/TICP,2

0.04 0.0381 2.17 2.33 5.34 0.0189 20.45 17.99 12.27
0.06 0.0243 2.84 3.30 7.56 0.0126 27.87 24.19 17.16
0.12 0.0108 5.01 4.73 18.43 0.0054 45.58 37.41 39.70
0.24 0.0044 7.02 7.35 47.59 0.0022 60.40 76.63 95.35
0.46 0.0015 8.42 9.20 153.55 0.0007 80.97 81.45 264.54

Ryzen9 2.7GHz and 16G RAM. All the implementations
use only one thread of execution and the running time is
measured for exact counting.

We use the minimal triangulation method to generate
chordal graphs (Dethlefsen & Højsgaard, 2005). The repli-
cates are generated by first generating a undirected graph of
|V | vertices and ρ ·

(|V |
2

)
edges, and then, the triangulation

is made until the resulting graph is chordal. Graph density r
is measured by |E|/|Emax| with |Emax| = |V |(|V | − 1)/2.
For each |V |, the parameter ρ is adjusted to make the aver-
age number of edges of resulting chordal graphs equals to
r ·

(|V |
2

)
.

Varying numbers of graph vertices. We first tested
the performance of ICP and CP in various vertices of
chordal graphs. We performed experiments with |V | =
512, 1024, 2048, 4096. In each experiment we chose r as ei-
ther r = 0.34 or r = 0.08 and generated ten chordal graphs
for each number of graph vertices. Let TCP denote the aver-
age running time of CP algorithm, and let TICP denote the
average running time of our ICP algorithm. The experimen-
tal results are shown in Table 2, Figure 3(a) and (b). Our
ICP clearly consistently performs better and solve within
less amount of time.

Varying graph densities. We then tested ICP and CP over
various specification of graph density r. We performed ex-
periments with r = 0.04, 0.06, 0.12, 0.24, 0.46. In each ex-
periment we chose |V | as either |V | = 1024 or |V | = 2048
and generated ten chordal graphs for each graph density. As
shown in Table 3 and Figure 3(c), the difference in running
time between the two algorithms becomes more pronounced
with the increase of r. This trend is attributed to the fact
that denser graphs generally correspond to a lower value
of θ = m/(|V | + |E|), which enhances the performance
advantage of our proposed method.

Recall that our proposed algorithm enhances Step 2 of Al-
gorithm 1. When focusing solely on the computational cost
of this step, the advantage of our method becomes even
more evident. Let TCP,2 denote the average running time of
Step 2 of CP algorithm, and let TICP,2 denote the average
running time of ICP for the same step. Table 3 presents both
the difference and the ratio between these average running
times. Figure 3(d) shows the average runtime difference of

Step 2 of CP and ICP. The results highlight substantial im-
provements achieved by our method in terms of efficiency.

8. Conclusion
In this work, we propose an enhancement to the Clique-
Picking algorithm (Wienöbst et al., 2023) by avoiding the
intensive and repeated generation of CG(Kj) for each clique
Kj of a chordal graph G. Our improvement introduces a
higher-level structure, termed a super clique, within the
clique tree. We demonstrate that an efficient transfer of
super cliques is possible between two clique trees with dif-
ferent choices of Kj as the root. The proposed algorithm
significantly reduces the computational cost of Step 2 in
Algorithm 1.

Acknowledgements
This work was supported in part by the National Natural
Science Foundation of China under Grant No. 12431009;
the National Key R&D Program of China under Grant No.
2020YFA0714102.

Impact Statement
This paper presents work whose goal is to advance the field
of machine learning and causal analysis. Our work facili-
tates more efficient causal discovery and decision-making
processes, particularly in scenarios where high-dimensional
data are involved. This advancement contributes to im-
proving the feasibility of real-world applications such as
automated causal inference in healthcare, policy-making,
and artificial intelligence systems.

References
AhmadiTeshnizi, A., Salehkaleybar, S., and Kiyavash, N.

Lazyiter: a fast algorithm for counting markov equiva-
lent dags and designing experiments. In International
Conference on Machine Learning, pp. 125–133. PMLR,
2020.

Andersson, S. A., Madigan, D., and Perlman, M. D. A
characterization of markov equivalence classes for acyclic

9

An Improved Clique-Picking Algorithm via Super Cliques Transfer

digraphs. The Annals of Statistics, 25(2):505–541, 1997.

Blair, J. R. and Peyton, B. An introduction to chordal
graphs and clique trees. In Graph theory and sparse
matrix computation, pp. 1–29. Springer, 1993.

Castelo, R. and Perlman, M. D. Learning essential graph
markov models from data. In Advances in Bayesian
Networks, pp. 255–269. Springer, 2004.

Chickering, D. M. Learning equivalence classes of bayesian-
network structures. The Journal of Machine Learning
Research, 2:445–498, 2002.

Dethlefsen, C. and Højsgaard, S. A common platform for
graphical models in R: The gRbase package. Journal of
Statistical Software, 14(17):1–12, 2005.

Ganian, R., Hamm, T., and Talvitie, T. An efficient algo-
rithm for counting markov equivalent dags. Artificial
Intelligence, 304:103648, 2022.

Geiger, D. and Heckerman, D. Parameter priors for directed
acyclic graphical models and the characterization of sev-
eral probability distributions. The Annals of Statistics, 30
(5):1412–1440, 2002.

Ghassami, A., Salehkaleybar, S., Kiyavash, N., and Zhang,
K. Counting and sampling from markov equivalent dags
using clique trees. In Proceedings of the AAAI confer-
ence on artificial intelligence, volume 33, pp. 3664–3671,
2019.

Gillispie, S. B. and Perlman, M. D. The size distribution for
markov equivalence classes of acyclic digraph models.
Artificial Intelligence, 141(1-2):137–155, 2002.

Guo, J. and Wang, X. Graph Decomposition: Theory, Algo-
rithms and Applications (Unpublished Manuscript in Chi-
nese). Changchun: Northeast Normal University, 2010.

He, Y. and Geng, Z. Active learning of causal networks with
intervention experiments and optimal designs. Journal of
Machine Learning Research, 9(84):2523–2547, 2008.

He, Y., Jia, J., and Yu, B. Counting and exploring sizes of
markov equivalence classes of directed acyclic graphs.
Journal of Machine Learning Research, 16(79):2589–
2609, 2015.

Koller, D. and Friedman, N. Probabilistic Graphical Mod-
els: Principles and Techniques - Adaptive Computation
and Machine Learning. The MIT Press, 2009. ISBN
0262013193.

Leimer, H.-G. Optimal decomposition by clique separators.
Discrete Mathematics, 113(1-3):99–123, 1993.

Maathuis, M. H., Kalisch, M., and Bühlmann, P. Estimating
high-dimensional intervention effects from observational
data. The Annals of Statistics, 37(6A):3133 – 3164, 2009.

Madigan, D., Andersson, S. A., Perlman, M. D., and Volin-
sky, C. T. Bayesian model averaging and model selection
for markov equivalence classes of acyclic digraphs. Com-
munications in Statistics–Theory and Methods, 25(11):
2493–2519, 1996.

Pearl, J. Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1988. ISBN
1558604790.

Pearl, J. Causality: Models, Reasoning and Inference. Cam-
bridge University Press, USA, 2nd edition, 2009. ISBN
052189560X.

Perlman, M. D. Graphical model search via essential graphs.
Contemporary Mathematics, 287:255–266, 2001.

Pingault, J.-B., O’reilly, P. F., Schoeler, T., Ploubidis, G. B.,
Rijsdijk, F., and Dudbridge, F. Using genetic data to
strengthen causal inference in observational research. Na-
ture Reviews Genetics, 19(9):566–580, 2018.

Spirtes, P., Glymour, C., and Scheines, R. Causation, Pre-
diction, and Search. The MIT Press, 01 2001. ISBN
9780262284158.

Verma, T. and Pearl, J. Equivalence and synthesis of causal
models. In Proceedings of the Sixth Conference on Un-
certainty in Artificial Intelligence, pp. 220–227, 1990.

Verma, T. and Pearl, J. An algorithm for deciding if a
set of observed independencies has a causal explanation.
In Uncertainty in Artificial Intelligence, pp. 323–330.
Elsevier, 1992.

Wienöbst, M., Bannach, M., and Liśkiewicz, M.
Polynomial-time algorithms for counting and sampling
markov equivalent dags with applications. Journal of
Machine Learning Research, 24(213):1–45, 2023.

10

An Improved Clique-Picking Algorithm via Super Cliques Transfer

In this appendix, Section A contains a list of the main symbols and their meaning in the paper. There are several definitions
and theorems necessary for the main theoretical derivations. These preliminary results are presented in Sections B–D. In
Section E, we present the detailed proofs for the theorems and propositions in the main paper. Finally,Section F includes a
detailed example illustrating how the proposed algorithm proceed step by step.

A. Notation List

Table 4. Table of Frequently Used Notations
Notation Meaning
TK Rooted clique tree Clique tree with rooted K
π(K) A permuted ordering of the vertices in K

Gπ(K) The union of all DAGs within the MEC represented by G that have topological order-
ings beginning with π(K)

GK ∪πGπ(K)

G[C] Induced subgraph The induced subgraph of G on a vertex set C
CG(K) The set of undirected connected components of GK [V \K]
Sep(K) The set of separators for TK

Res(K) The set of residuals for TK

SK(i)
p+

Super clique The clique set contains clique header Kp and the clique tails of Kp within TKi

L(i) The set of super cliques within TKi

SR(i)
p+

Super residual The set of the residuals for TKi corresponding to the cliques within SK(i)
p+

B. D-Numbering
We now discuss D-numbering (Leimer, 1993; Guo & Wang, 2010), which offers an effective approach for analyzing clique
sequence.

Definition B.1. (D-numbering) For a UCCG G, an order α of its vertices is called a D-numbering if there exists an RIP
clique sequence K1, . . . ,Km with corresponding residuals R1, . . . , Rm such that

α(R1) = {n, n− 1, . . . , n− |R1|+ 1} , . . . , α(Rm) = {|Rm|, . . . , 2, 1},

where n = |V | is the number of vertices in G = (V,E).

Note the above definition only specifies a set-to-set relation. Each Rj is mapped to a set of numbers; however, the specific
ordering of vertices within each Rj is not defined. Therefore, generating a D-numbering from an RIP sequence does not
yield a unique result, as multiple D-numberings can correspond to the same RIP sequence. For example, consider an
RIP sequence for the graph in Figure 1(a): K1 = {a, b, c}, K2 = {b, c, d}, K3 = {b, e}, K4 = {e, f}, K5 = {b, g, j},
K6 = {b, g, i} and K7 = {b, h, j}. From this RIP sequence, we can determine the mapping α for the residuals:

α(a, b, c) = {10, 9, 8}, α(d) = {7}, α(e) = {6}, α(f) = {5}, α(g, j) = {4, 3}, α(i) = {2}, α(h) = {1}.

Correspondingly, one of the D-numberings for the vertices can be defined as:

α(b) = 10, α(a) = 9, α(c) = 8, α(d) = 7, α(e) = 6, α(f) = 5, α(j) = 4, α(g) = 3, α(i) = 2, α(h) = 1.

Another D-numbering is

α(a) = 10, α(c) = 9, α(b) = 8, α(d) = 7, α(e) = 6, α(f) = 5, α(j) = 4, α(g) = 3, α(i) = 2, α(h) = 1,

which only changes the vertex order in residual R1.

We can see that a D-numbering is also a perfect elimination ordering, meaning it represents a DAG of G.

Theorem B.2. (Leimer, 1993). Any D-numbering must be a perfect elimination ordering.

11

An Improved Clique-Picking Algorithm via Super Cliques Transfer

It is well known that any perfect elimination ordering can represent a DAG in a Markov equivalent class (Wienöbst
et al., 2023). Therefore, for any D-numbering (which is a perfect elimination ordering by Theorem B.2), there exists a
corresponding DAG in the MEC. On the other hand, a DAG in the MEC can be represented by one or more D-numbering(s).
This statement correspond to Lemma B.3 below, respectively.
Lemma B.3. Every DAG in the Markov equivalence class represented by G can be represented by at least one D-numbering.

Proof. Every DAG in a Markov equivalence class represented by G can be represented by the ordering generated by MCS
algorithm. The ordering of a UCCG obtained from the MCS algorithm is also a D-numbering (Blair & Peyton, 1993).

C. D-numbering, Clique Sequence and Root-Selected Essential Graph
Recall from Section 3 that, for a chordal graph G with some selected maximal clique K1, the root-selected essential graph
GK1 is critical to the construction of the Clique-Picking algorithm of Wienöbst et al. (2023). We now discuss in more details
how to relate D-numbering and clique sequence to this GK1 .

In fact, with the concept of D-numbering, we can construct GK1 in the following way. First, for a chordal graph G, we
find all RIP clique sequences beginning with K1. Then, for each clique sequence, we enumerate all its D-numberings and
construct the corresponding DAGs. The union of these DAGs is exactly GK1 . This approach of constructing GK1 help us to
identify the edges’ direction and undirected connected component (UCCG) of GK1 from a different perspective. In this
section, we address the edge direction determination. The UCCG identification for GK1 is left for the next section.

We start by considering a specific RIP sequence S = (K1, . . . ,Km). Suppose x and y are two adjacent vertices in G. We
consider two cases below:

1. If x and y are in two different residuals Rp and Rq, respectively with p < q. In this case, for any D-numbering α of
S, we have α(x) > α(y). Recall a D-numbering is a perfect elimination ordering. This implies that we always have
x→ y in the DAGs represented by all D-numberings of S.

2. If x and y are in an identical residuals Rp, then relative order between α(x) and α(y) can be arbitrary. The means the
edge direction between x and y can be arbitrary among the DAGs represented by the D-numberings of S.

Consider all the D-numberings of the RIP clique sequence S, and denote GS as the union of DAGs represented by these
D-numberings. Then, we can conclude: (1) the endpoints of any directed edge in GS are in different residuals and (2) the
endpoints of any undirected edge in GS are in the same residual.

Instead of a single RIP sequence, let us now consider all RIP sequences that start with K1. For two adjacent vertices x, y in
G, it is possible that
(1) there exists an RIP sequence S1 = (K1,K2, . . . ,Km), such that x and y are in two different residuals Rp and Rq,

respectively with p < q. Then, we have x→ y as an edge in GS1 ;

(2) there exists a permuted RIP sequence S2 = (Kσ(1),Kσ(2), . . . ,Kσ(m)), such that x and y are in two different residuals
Rσ(p′) and Rσ(q′), respectively but with p′ > q′. Then, we have x← y as an edge in GS2 .

When both (1) and (2) in the above happen, the edge direction between x and y is undirected in GK1 = ∪SGS , which is a
union with respect to all RIP sequence S that starts with K1.

In summary, the above discussion indicates we can construct GK1 by enumerating all clique sequences starting with K1,
enumerating all their D-numberings and construct the corresponding DAGs. Then, GK1 is simply the union of these DAGs.
More importantly, if the relative order of two maximal cliques (Kp and Kq) can vary across different RIP sequences, the
direction of the edge between two vertices in their residuals may potentially be undirected in GK1 .

D. Super Cliques and Super Residuals from the Perspective of RIP Sequences
Now, we examine super clique, super residual and undirected connected component (UCCG) from the perspective of RIP
clique sequence alone, without relying on the clique rooted trees. This provides more theoretical tools for establishing
Theorem 5.3.

Recall from Section C, to construct some root-selected essential graph GK1 , we have to consider all RIP sequence starting
with K1. Fortunately, this exhaustive process is not necessary. Instead, the key question is: how can we characterize GK1

using a single RIP sequence that starts with K1?

12

An Improved Clique-Picking Algorithm via Super Cliques Transfer

As discussed in Section C, if the relative order of two maximal cliques (Kp and Kq) can vary across different RIP sequences,
the direction of the edge between their residuals may potentially remain undetermined. The following lemma implies that
this uncertainty can be identified using a single clique sequence. Specifically, if their separators satisfy Sp ⊊ Sq, then the
relative order of Kp and Kq is interchangeable, and the edge between their residuals may remain undetermined.

Lemma D.1. Let K1,K2, . . . ,Km be an RIP sequence of the clique set KG in a UCCG G. If Sp is a proper subset of Sq

for any p, q = 2, . . . ,m with p < q, then there exists a permutation σ such that σ(1) = 1 and s > t(p = σ(s), q = σ(t)) in
the RIP sequence Kσ(1),Kσ(2), . . . ,Kσ(m).

Proof. We can assume without loss of generality q = m. The proof is by induction on m. The case m = 2 is trivial. Let
K1, . . . ,Km be an RIP sequence for some m ≥ 3. There is a p such that Sp ⊊ Sm.

Case 1: p = m− 1.

Then we define σ(m − 1) = m, σ(m) = m − 1, and σ(k) = k, ∀k < m − 1. Sm \ Sm−1 is not in K1, . . . ,Km−2, so
there is a clique Kr such that Km ∩ (K1 ∪ · · · ∪Km−2) ⊂ Kr. Meanwhile, Km−1 ∩ (K1 ∪ · · · ∪Km−2 ∪Km) must be a
subset of Km. Hence Kσ(1),Kσ(2), . . . ,Kσ(m) is an RIP sequence in this case.

Case 2: p < m− 1.

Without loss of generality, assume that Sp is a proper subset of Sm−1. Using the induction hypothesis there is a permutation
σ such that Kσ(1),Kσ(2), . . . ,Kσ(m−1) is an RIP sequence. Then we get

Kσ(1), . . . ,Kσ(r−1),Km,Kσ(r), . . . ,Kσ(m−1)

where σ(r) = m−1. For ∀w > t, Sm\Sp is not in the Km∩Kσ(w). Meanwhile we have Sp = Km∩(Kσ(1)∪· · ·∪Kσ(t−1))
and Sm = Kσ(t) ∩ (Kσ(1) ∪ · · · ∪Kσ(t−1) ∪Km). Hence the separators of the full sequences are also identical in this
case.

For any two cliques Kp and Kq in the sequences K1, . . . ,Km, suppose their relative order can be reversed to get
Kσ(1),Kσ(2), . . . ,Kσ(m), where p < q but σ−1(p) > σ−1(q). This reflects the ambiguity in the direction of edges
between Rp and Rq . In fact, this uncertainty further indicates the residuals Rp and Rq can be potentially merged to form an
undirected connected components in CG(K1).

For example, consider again the graph in Figure 1(a). The graph has the RIP sequence K1,K2,K3,K4,K5,K6,K7.
Because S5 ⊊ S6, the graph also has the RIP sequence K1,K2,K3,K4,K6,K5,K7, which is obtained by permuting K5

and K6. This indicates the uncertainty in the direction of the edge g − i in GK1 , which serves as a clue that R5 and R6 may
form a UCCG in GK1 .

However, checking interchangeability between two cliques is not sufficient to determine if we can merge their residuals. An
additional requirement for merging their residuals is that Sp does not separate Rp and Rq in G. Still consider our example
in Figure 1. S3 is a proper subset of S2. But there is no need to merge R2 and R3 as S2 separates R2 and R3. This leads to
the following definitions. They correspond to the clique header and clique tail in the main text, but the definition here is
described in terms of clique sequence.

Definition D.2. K1,K2, . . . ,Km is an RIP sequence of KG in UCCG G. For any p = 2, . . . ,m, we say Kp is a sequence
clique header within this sequence if for any q = 2, ..., p (1) Sq is not proper subset of Sp or (2) Sp separates Rp and Rqin
G.

Definition D.3. Let Kp, 1 < p ≤ m, be a sequence clique header within given K1,K2, . . . ,Km. For any q = p, ...,m, we
say that Kq is a sequence clique tail following Kp if (1) Sp is a proper subset of Sq and (2) Sp does not separate Rp and Rq

in G.

In fact, when a clique tree is given, the above definitions are equivalent to those presented in the main text from the
perspective of the clique tree structure. Similarly, super cliques and super residuals can be defined from the viewpoint of a
clique sequence.

Definition D.4. (Sequence super clique, sequence super residual) Within an RIP sequence, suppose Kp is a sequence clique
header and Kp1 , . . . ,Kpr are all its sequence clique tails.

i. The clique set {Kp,Kp1 , . . . ,Kpr} is called a sequence super clique.

13

An Improved Clique-Picking Algorithm via Super Cliques Transfer

ii. The set of the residuals {Rp, Rp1
, . . . , Rpr

} is called a sequence super residual.

Theorem D.5. For a given RIP sequence K1, · · · ,Km, CG(K1) consists of the subgraphs of G induced by the sequence
super residuals within K1, · · · ,Km.

Proof. For a sequence clique header Kp, assume there are u separators, of which Sp is a proper subset. We denote them as
Sp1 , . . . , Spu , where 1 < p1 < · · · < pu ≤ m. For convenience, assume that for any q = p1, . . . , pr, where r < u, Sp does
not separate Rp and Rq in G. This is the opposite for any q = pr+1, . . . , pu. For any q = p1, . . . , pu, from Lemma D.1, we
know that there exists an RIP sequence Kσ(1),Kσ(2), . . . ,Kσ(m) such that σ(1) = 1 and s > t(p = σ(s), q = σ(t)). When
q = p1, for a node x in Rp∩Sq and any y in Rq , assume x ∼ y in G. The edge x−y must be directed as x→ y in the DAG
represented by the D-numbering generated from K1,K2, . . . ,Km. At this point x and y are in Rσ(t). Therefore, the edge
x− y can be either x→ y or y → x in the DAG represented by the D-numbering generated from Kσ(1),Kσ(2), . . . ,Kσ(m).
As a result, the edge x− y will remain undirected in GK1 .

Now we know that GK1 [Rp, Rp1] is an undirected graph. Similarly, if exists an v = 2, . . . , u and y ∈ Rp1 ∩ Spv such that
y ∼ z in G for any z ∈ Rpv , the edge y − z will remain undirected in GK1 . For any q = pr+1, . . . , pu we know that Sp

separates Rp and Rq in G, so such v should lie in 2, . . . , r. Recursively, GK1 [Rp, Rp1
, . . . , Rpr

] is an undirected graph. In
Definition D.2, we confirm that Kp cannot be a sequence clique tail following another clique. There are only Kp1

, . . . ,Kpu

such that Kp and Kpv
can be sequentially replaced for any v = 1, . . . , u. Furthermore, Kp1

, . . . ,Kpr
are sequence clique

tails following Kp as defined in D.3. According to the above description, only Rp1
, . . . , Rpr

and Rp together induce an
undirected graph.

E. Technical Proofs for the Main Paper
Proof of Theorem 5.3. First, assume that there exists a clique Kq, where q < p, such that Kq is not an ancestral clique of
the sequence clique header Kp. For such a Kq, we have Sq ⊊ Sp, and Sp does not separate Rp and Rq in G. Without loss
of generality, assume that there exist nodes x ∈ Rp and y ∈ Rq such that x ∼ y in G. Then, the union of Sq and {x, y}
will form a clique in KG. This must be a child clique of Kp according to the MCS algorithm. From the clique-intersection
property, we know that y must appear in every clique along the unique path from Kp to Kq. However, y is not in Kp,
leading to a contradiction.

The same argument applies for the second case. There cannot exist a non-descendant clique Kq of Kp such that Sp ⊊ Sq,
and Sp does not separate Rp and Rq in G.

Proof of Propositions 6.2 & 6.3. Denote K1 ∩ · · · ∩Kp−1 as Hp. For p = i+ 1, . . . ,m, the proposition holds naturally, as
the Hp−1 remains unchanged after the permutation. For p = 2, . . . , i− 1, we have Kp = Kσ(p+1). In K1, . . . ,Km, denote
the parent clique of Kp as Kq. Thus, Kp ∩Hp−1 lies within Kq. Lemma 6.1 implies that Hσ(p) = Hp−1 ∪Ki, which
means Sσ(p+1) =

Kσ(p+1) ∩Hσ(p) = (Kσ(p+1) ∩Hp−1) ∪ (Kσ(p+1) ∩Ki).

The first item is equal to Kp ∩Hp−1, which is contained within Kq. The second item is a subset of Ki ∪Hi−1, which in
turn is contained within K1. It follows naturally that Sσ(p+1) remains contained within Kq when Kp ∩Ki = ∅. When
Kp ∩Ki ̸= ∅, we also have Kp ∩K1 ̸= ∅, indicating that K1 must be the parent of Kp, i.e., t = 1. In this case, Sσ(p+1) is
still contained within Kq .

Proof of Theorem 6.4. First, Ki cannot be a clique header within TKi . Thus, for SK(t)
i+ of TKt , it will break down into

several super cliques with respect to TKi . Any child clique of Ki must be a clique header within TKi . From Propositions
6.1 & 6.3, the separator Sp remains the same in Sep(Ki) and Sep(Kt) for any p ∈ [m] \ {i, t}. For any child clique of Ki,
denote it temporarily as Kq . All descendant cliques of Kq in SK

(t)
i+ will be clique tails that follows clique header Kq within

TKi .

Second, Kt must be a clique header within TKi . The child clique of Kt must be a clique header within TKt . However, the
child clique of Kt may also be a clique tail that follows clique header Kt within TKi . For any child clique of Kt, denote it
temporarily as Kp. From Definition 5.1, if St in Sep(Ki) is a proper subset of Sp in Sep(Ki), then Kp will be a clique tail
that follows clique header Kt within TKi . Otherwise, Kp remains a clique header within TKi .

14

An Improved Clique-Picking Algorithm via Super Cliques Transfer

Thus, aside from the two points mentioned above, the clique header within TKt remains the same within TKi . The separator
Sp is identical in both Sep(Ki) and Sep(Kt) for any p ∈ [m] \ {i, t}. Therefore, the set of clique tails that follows a clique
header within TKt is the same as that within TKi .

Proposition 6.3 tells us that for any p ∈ [m] \ {i, t}, Rp is the same in both Res(Ki) and Res(Kt). Additionally, it is
clear that Rt = Kt \ (Ki ∩Kt) in Res(Ki). The super cliques described in SC-Trans-Op(·)(lines 3-8) do not involve Kt.
Similarly, any super clique described in Trans(·)(lines 11-14) also does not involve Kt. However, for the super cliques
described in Trans(·)(line 9-10), Kt is involved. Thus, SR(i)

t+ of TKi is the union of Rt = Kt \ (Ki ∩Kt) in Res(Ki), and
the super residuals of the super cliques with respect to TKt proposed in SC-Trans-Op(·)(line 10).

Proof of Theorem 4.1. We begin by showing that any clique header within TK1 and the following clique tails are obtained
from Sep(K1). The conditions for a clique header and a clique tail are opposites. For the sequence p = 2, . . . ,m, we
proceed with the following procedure: If there is an ancestral clique Kq of Kp such that Sq ⊊ Sp (with Sp and Sq being in
Sep(K1)), then Kp will be a clique tail following Kq. Otherwise, Kp will be a clique header within TK1 . For any super
clique SK

(1)
p+ , 2 ≤ p ≤ m, of TK1 , the clique Kp will be identified in the p-th step, and all other cliques in SK

(1)
p+ , i.e., the

clique tails following Kp, denoted as Kp1 , . . . ,Kpr , will be identified in the p1, . . . , pr-th steps.

For any i = 2, . . . ,m, in TKt , Kt → Ki, and by reversing Kt → Ki to Ki → Kt, the resulting tree is TKi , where Kt is
the parent of Ki in TK1 . There are m separators S1, . . . , Sm in Sep(Kt). Let St = Kt ∩Ki and Si = ∅. Now S1, . . . , Sm

will form Sep(Ki). Similarly, there are m residuals R1, . . . , Rm in Res(Kt). Let Rt = Kt\(Kt ∩Ki) and Ri = Ki. Now
R1, . . . , Rm will form Res(Ki). Next proof is by induction on i. Using the induction hypothesis we have computed the
set of super cliques and super residuals with respect to TKt(t < i). Thus we will derive the set of super cliques and super
residuals with respect to TKi from these with respect to TKt by Theorems 6.4.

Proof of Theorem 4.2. To compute CG(K1), we need to implement the procedure in order p = 2, . . . ,m, as proposed in the
proof of Theorem 4.1. For each clique Kp, there are most p− 1 ancestral cliques. So we obtain the following bound:

m∑
i=2

(i− 1) =
1

2
(m2 −m).

For i = 2, . . . ,m, we can easily get Sep(Ki) and Res(Ki) from Sep(Kt) and Res(Kt), where Kt is the parent clique of
Ki in TK1 . Function SC-Trans-Op(·) describes the difference between the set of super cliques with respect to TKi and TKt .
SC-Trans-Op(·)(lines 3-8) requires identifying all child cliques of Ki in TKt , while SC-Trans-Op(·)(lines 9-10) requires
identifying all child cliques of Kt in TKt . The sum of the number of child cliques of Kt and Ki is bounded in m− 2. In
the worst case, for any Ki, i = 2, . . . ,m, the computation of CG(Ki) is bounded by m. Therefore, the total computation for
CG(K2), ..., CG(Km) is bounded by m(m− 1). In conclusion, SC-Trans algorithm has a time complexity of O(m2).

15

An Improved Clique-Picking Algorithm via Super Cliques Transfer

F. Working Example

Start

i = 2 K K in TK

End

Input: G and TK SC-Create-Op

Read L , G(K), TK

SC-Trans-Op L , G(K)

Get Sep(K), Res(K), TK

i = 3 K K in TK

Read L , G(K), TK

SC-Trans-Op L , G(K)

Get Sep(K), Res(K), TK Sep(K), Res(K)

i = 4 K K in TK

SC-Trans-Op L , G(K)

Get Sep(K), Res(K), TK Sep(K), Res(K)

i = 5 K K in TK

SC-Trans-Op L , G(K)

Get Sep(K), Res(K), TK

i = 6 K K in TK

SC-Trans-Op L , G(K)

Get Sep(K), Res(K), TK

i = 7 K K in TK

SC-Trans-Op L , G(K)

Get Sep(K), Res(K), TK

Sep(K), Res(K)

Get The Parent Clique

TK

By Copying These of Its Parent Clique

TK

Read L , G(K), TK

Update OP

Update OP

Update OP

TK

Sep(K), Res(K)
Update OP

TK

Read L , G(K), TK

Sep(K), Res(K)
Update OP

TK

Read L , G(K), TK

Sep(K), Res(K)

TK

Update OP

SC-Trans-OP Algorithm

L , G(K)Sep(K), Res(K)

Output

Read L , G(K), TK

+

Figure 4. A working example of our SC-Trans algorithm (Input: UCCG G in Figure 1(a) and rooted clique tree TK1 in Figure 1(b),
Output: CG(K1), . . . , CG(K7)). The detail of Update OP is presented in Algorithm 2 Lines 5-6 & 8.

16

