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Abstract

Prompt-based learning has emerged as a pow-
erful technique in natural language processing
(NLP) due to its ability to leverage pre-training
knowledge for downstream few-shot tasks. In
this paper, we propose 2INER, a novel text-
to-text framework for Few-Shot Named Entity
Recognition (NER) tasks. Our approach em-
ploys instruction finetuning based on Instruc-
tionNER (Wang et al., 2022) to enable the
model to effectively comprehend and process
task-specific instructions, including both main
and auxiliary tasks. We also introduce a new
auxiliary task, called Type Extraction, to en-
hance the model’s understanding of entity types
in the overall semantic context of a sentence.
To facilitate in-context learning, we concate-
nate examples to the input, enabling the model
to learn from additional contextual information.
Experimental results on four datasets demon-
strate that our approach outperforms existing
Few-Shot NER methods and remains compet-
itive with state-of-the-art standard NER algo-
rithms.

1 Introduction

Named Entity Recognition (NER) has been a funda-
mental task of Natural Language Processing (NLP)
and there are three types of sub-tasks in NER: flat
NER (Tjong Kim Sang and De Meulder, 2003),
nested NER (Kim et al., 2003) and discontinuous
NER (Karimi et al., 2015). All three sub-tasks
aim to locate named entities, extract the entity
spans, and classify each span into pre-defined la-
bel categories. In terms of the flat NER which
is the main focus of this paper, it can be formu-
lated as a sequence labeling paradigm by assign-
ing labels to each token in the sentence through
token-classification models. The dominant meth-
ods include combining Pre-trained Language Mod-
els(PLMs) (Devlin et al., 2019) with label-specific
classifier (LC) (Strubell et al., 2017; Cui and Zhang,
2019). However, the fixed shape of the output LC

layer necessitates a consistent label set for both the
training and testing data, which poses a challenge
for knowledge transfer. Therefore, these models
need to be trained from scratch to adapt to a new
domain with a different label set, highlighting the
requirement for a large amount of data for these
methods.

Due to the high cost of sequence labeling an-
notation in real-world scenarios, labeled data for
NER is often limited. As a result, few-shot NER
has gained significant attention due to its practical
applications. Meanwhile, applying prompt-base
learning (Han et al., 2021) on PLMs is an effec-
tive way to solve few-shot problems (Brown et al.,
2020). PLMs can learn a lot of knowledge re-
garding human languages by training on a large
amount of self-supervised corpus. In order to ex-
plore the potential of PLMs, prompt-based learn-
ing reformulate the downstream tasks to text-to-
text framework with additional prompt indicating
task descriptions (e.g. instruction fine-tuning (Wei
et al., 2021; Chung et al., 2022; Sanh et al., 2021)).
Through this approach, the model can effectively
leverage the knowledge present in PLMs to en-
hance downstream skills without the need for ad-
ditional large amounts of downstream data. This
enables the model to achieve remarkable perfor-
mance in few-shot settings.

Recently, many prompt-based NER methods
have emerged to address the limitations of tradi-
tional few-shot NER approaches. TemplateNER
(Cui et al., 2021) treats original sentence and pre-
dicted template filled by entity spans as source
and target sequence, respectively, but all candi-
date spans must be enumerated during inference,
leading to a high computational cost. BARTNER
(Yan et al., 2021) proposed a pointer mechanism
to unified all NER sub-tasks into one sequence-
to-sequence (seq2seq) framework. BARTNER uti-
lizes the raw sentence as input and outputs pointer
index and tag index which represent the location



of the span and the corresponding label index in
the category, respectively. To further adapt BART-
NER for few-shot settings, LightNER (Chen et al.,
2022b) proposed a lightweight tuning approach for
low-resource settings by adding a unified learnable
verbalizer and incorporating learnable parameters
into the self-attention layers. Nonetheless, due
to the fact that pointer mechanism only outputs
the indexes of entities and labels, the model en-
counters challenges in effectively leveraging the
capabilities of PLMs to directly comprehend the se-
mantic meaning between entities and labels. Thus
instead of using a pointer mechanism, Instruction-
NER (Wang et al., 2022) directly generates entity
spans and types in the target sequence and applies
instruction fine-tuning with two auxiliary tasks to
further mining the capabilities of PLMs, which
leads to significant few-shot improvements.

In terms of the auxiliary tasks in InstructionNER,
they propose two auxiliary tasks from two perspec-
tives: span recognition (Entity Extraction) and en-
tity labeling (Entity Typing). However, we argue
that NER can be further divided into three parts: 1)
understand the the relationship between the label
and semantic meaning of the sentence. 2) extract
the spans. 3) annotate the given spans. We believe
that both span recognition and entity labeling can
be benefit from having a deeper understanding of
the label semantics. Therefore, we proposed a new
auxiliary task, called Type Extraction, to help the
model to acquire this ability.

Meanwhile, none of the above methods take the
additional external knowledge into account. Cur-
rent literature related to utilize external knowl-
edge in NER involve (Chen et al., 2022a) and
(Lee et al., 2022a). SDNet (Chen et al., 2022a)
proposes a self-describing mechanism to leverage
external resources by self-describing both entity
types and mentions, while (Lee et al., 2022a) uses
a demonstration-based method by incorporating
examples to the input but without a text-to-text
framework. Therefore, to the best of our knowl-
edge, there is currently no existing literature that
combines in-context external knowledge with in-
struction fine-tuning for few-shot NER.

In this paper, we propose 2INER(Instructive and
In-Context Learning on Few-Shot NER). We build
upon the work of InstructionNER by incorporat-
ing in-context examples and a novel auxiliary task.
Specifically, we first reformulate the NER tasks
into a text-to-text framework and then employ T5

(Raffel et al., 2020) for natural language gener-
ation. In terms of the source sentence, we use
instructions to distinguish between tasks by giv-
ing a comprehensive task description and include
an alternative field to identify the entity type that
requires detection. Moreover, we suggest incorpo-
rating in-context demonstration examples into the
source sentence to enable the model to learn from
external knowledge. For the target sentence, we
use natural language to represent entity spans and
types instead of pointer mechanism. In addition to
the two auxiliary tasks used in InstructionNER, we
propose a new task called type extraction to further
explore the potential of PLMs to understand label
semantics. Type Extraction task requires the model
to identify all the entity types presented in the orig-
inal sentence and learn to understand the meaning
of entity types at the overall semantic level of the
sentence. Our contributions can be summarized as
follows:
• To utilize external knowledge, we apply
demonstration-based in-context learning examples
to the instruction template. The in-context exam-
ples enable the model to directly learn which spans
correspond to which types from these additional
information, leading to better few-shot abilities.
• We expand the NER capabilities by dividing
them into three components instead of two. And
we propose a novel auxiliary task for instructions
fine-tuning, called type extraction, to address the
existing gap. It can enable the model to understand
the meaning of the entity types through the overall
semantic level of the sentence, which will improve
span recognition and entity labeling abilities.
• We conduct extensive experiments on four
datasets, demonstrating that 2INER outperforms
existing few-shot NER methods and remains com-
petitive with SOTA standard NER algorithms.

2 Related Work

2.1 Named Entity Recognition

Currently, NER tasks can be divided into flat NER
(Tjong Kim Sang and De Meulder, 2003), nested
NER (Kim et al., 2003) and discontinuous NER
(Karimi et al., 2015), while in this paper, we mainly
focus on the flat NER task. The current dominant
method to solve flat NER is using token-level clas-
sification by turning it into a sequence labeling
problem (Chiu and Nichols, 2016; Liu et al., 2019;
Zhang et al., 2020; Liu et al., 2021), which apply
a text encoder and CRF (Ma and Hovy, 2016) in



sequence. Recently, BARTNER (Yan et al., 2021)
formulate all three NER tasks into a text-to-text
framework to solve them concurrently. BARTNER
generate entity span sequences by a pointer-based
model based on BART (Lewis et al., 2020) so that
special design of tagging schema or spans post-
processing are no longer needed.

2.2 Prompt-based Learning

With the emergence of GPT-3 (Brown et al., 2020),
prompt-based learning has gained increasing atten-
tion. It can better stimulate the knowledge model
learned in pre-training stages and integrate differ-
ent tasks together compared to the paradigm of
fine-tuning separate model for each task, especially
in few-shot settings (Han et al., 2021). To push
prompt-based learning further, instruction-based
learning (Wei et al., 2021) is proposed to fine-tune
the PLMs on a collection of task descriptions which
enables the model to better follow human instruc-
tions and generalize to unseen tasks with better
zero-shot and few-shot abilities (Chung et al., 2022;
Sanh et al., 2021).

2.3 Few-Shot NER Methods

One line of work in few-shot NER is to apply con-
trastive learning to assign the labels by searching
for the closest token (Das et al., 2022; Chen et al.,
2022c), prototype (Snell et al., 2017; Fritzler et al.,
2019; Ma et al., 2022b) or label semantic (Ma et al.,
2022a; Huang et al., 2022) in the support set. An-
other line of researches is prompt-based learning
using a unified text-to-text framework to make full
use of the PLMs abilities. (Cui et al., 2021) applies
span classification using BART and (Chen et al.,
2022b; Yan et al., 2021) use a pointer mechanism
to generate indexes of spans and types. (Wang
et al., 2022) utilizes instruction fine-tuning and two
auxiliary tasks to train T5. Meanwhile, to apply ex-
ternal knowledge to the model, (Chen et al., 2022a)
introduces a self-describing mechanism and (Lee
et al., 2022a) uses a demonstration-based method.
Therefore, our methods introduce in-context learn-
ing via instruction fine-tuning together to achieve
better few-shot NER abilities, which haven’t been
fully discussed yet in seq2seq NER settings.

3 Methodology

3.1 NER Definition

NER aims to predict all spans in the input sentence
as well as the entity types associated with the spans.

The standard flatten-NER can be formulated as fol-
lows, given the input sentence containing n tokens
X = [x1, x2, ..., xn], the model have to predict the
target sentence Y = [l1, l2, ..., ln]. We use VBIO to
denote the BIO label set, so ∀li, li ∈ VBIO. While
in the sequence-to-sequence modeling scenario, the
input sentence is still X but instead of predicting
Y , the model predict each entity yi = (ei, si) di-
rectly, where si represents the entity span in X .
And ei ∈ V represents the entity type of si, where
V is the set of entity types.

More specifically, we use l and r to indicate the
left and right boundary of an entity span in X , so
si can be simplified as si = xl:r, where xl:r =
[xl, xl+1, ..., xr]. Therefore, the NER model have
to predict each yi in X , indicating that the span si
belongs to the ei entity type.

3.2 Convert NER to Text-to-text Task
Using language models like T5 (Raffel et al., 2020)
to solve most NLP tasks in a unified text-to-text
framework can not only fully utilize the knowledge
model learned in the pre-training stage but also
simplify the training by using same data format,
same loss and same model architecture. Moreover,
Compared to using simple prompts, using instruc-
tion finetuning can further explore the capabilities
of the model (Chung et al., 2022; Sanh et al., 2021).
Besides, utilizing in-context learning can further
enhance the model’s few-shot capabilities in gen-
eral (Brown et al., 2020) and specifically NER abil-
ities (Lee et al., 2022b). Therefore, we transform
the NER task into a text-to-text format and employ
instruction finetuning and in-context learning to un-
leash the model’s few-shot capabilities, as shown
in Figure 1. The backbone we used is T5.

The basic text-to-text format of the main NER
tasks consists of the following three parts, which is
inspired by InstructionNER (Wang et al., 2022) 1:

Instruction The instruction is a prompt that in-
forms the model about the current task it needs
to perform. The model is expected to follow the
instructions provided within the prompt and com-
plete the task accordingly. The instruction for the
main NER task is: Please extract entities and their
types from the Sentence, choose entity types from
Alternatives.

Sentence The sentence is the input X from which
entities need to be extracted.

1The templates of auxiliary tasks and in-context Example
will be discussed in 3.4 and 3.3 respectively.



Figure 1: The model architecture of our proposed 2INER. The left and right sides are the source and target sentence
of the model, respectively.

Alternatives Alternatives is a list of entity types
(V ) split by comma, from which the model needs
to select the corresponding type to annotate the
corresponding span. Alternatives serves as a
constraint and a guiding factor, informing the
model that it can only select entity types from
within this list.

In order to formulate the NER output to natural
language, for each NER output yi = (ei, si), we
use the following template to convert it to text:
si is a/an ei, and we use dot to concatenate all
detected entity occurrences yi to form the output
text. In terms of the entity types ei, we use natural
language to represent the entity instead of adding
special tokens to the model 2.

3.3 Auxiliary Tasks
To enhance the NER performance, in addition to
the main task, we need to introduce several auxil-
iary tasks. In InstructionNER (Wang et al., 2022),
they employed two auxiliary tasks: entity extrac-
tion and entity typing. Moreover, in this paper,
a new auxiliary task called type extraction will
be introduced. During training, the auxiliary task
will also be in the form of text-to-text data, trained
alongside the main task data.

The auxiliary task primarily aims to improve
NER capabilities from three perspectives: under-
stand label semantic, span recognition and entity
labeling, since NER can be decomposed into three
steps: understand the relationship between the label
and semantic meaning of the sentence, then extract

2e.g. "Character _Name" will be represented as "Character
Name" instead of adding a special token named "Character
_Name"

the spans and finally annotate the given spans. We
will discuss the configuration of the auxiliary task
in detail from these three perspectives.

3.3.1 Understand label semantic
Type Extraction The goal of the Type Extraction
task is to identify all the entity types present in the
original sentence. The Instruction is changed to:
Please extract all entity types appeared in the Sen-
tence. We will remove the Alternatives in this case,
which means that there will be no constraints or
hints regarding entity types in the input text, aiming
to increase the difficulty of the task. And the out-
put template is: ei type exists in the sentence. The
Type Extraction task involves detecting whether a
specific entity type appears in the sentence, with-
out focusing on specific spans or associating spans
with entity types. This task will assist the model
in understanding the meaning of entity types at the
overall semantic level of the sentence. We believe
that once the model gains a deeper understanding of
entity types, it will be able to comprehend the rela-
tionship between spans and types more accurately.
As a result, it will enhance both span recognition
and entity labeling capabilities simultaneously.

3.3.2 Span recognition
Entity Extraction The goal of the entity extrac-
tion task is to extract useful entity spans from the
original sentence without the need for annotating
the extracted spans. The instruction has been mod-
ified to: Please extract entities from the Sentence.
Because the model doesn’t need to type spans, the
Alternatives field is deleted. And the output tem-
plate has been changed to: si is an entity word,
since ei is no longer needed. Because the entity ex-



traction task only require the model to predict use-
ful spans regardless of the associated entity types,
this task will guide the model to extract correct
spans, enhancing the span-F1 accuracy, moreover,
overall main task F1 as well (Wang et al., 2022).

The original InstructionNER (Wang et al., 2022)
paper only employed span concatenation as the
output(e.g. s1, s2, s3.). However, we believe that
since the output of the main task consists of com-
plete sentences with subject-verb-object structures,
it would be more cohesive to follow the same pat-
tern for the auxiliary tasks. And more structured
output can fully utilize the PLMs’s understanding
of the task as well.

3.3.3 Entity Labeling
Entity Typing The entity typing task aims to
type the given span with the correct label. The in-
struction has been modified to: Please type these
entities according to the Sentence: <the given
spans>. The Alternatives prompt and output tem-
plate is the same as those in main task. During
training, the given spans in the Instruction is the ex-
act entity spans that have labels on. In entity typing
task, since the spans are given, the model doesn’t
need to worry about the correctness of the span
extracted, so the model can focus more on learning
how to label the entity accurately, enhancing the
main task NER ability.

3.4 In-Context Learning

In-context learning will be applied to further en-
hance few-shot NER capabilities. The main ap-
proach of in-context learning is to append Exam-
ples at the end of the input sentence, hoping that
the model can directly learn which spans corre-
spond to which types from these Examples, without
the need for additional gradient updates. Besides,
the in-context examples are also presented in natu-
ral language format, which closely resembles the
output text format, serving as a reminder for the
model about the desired format it should generate
and making it easier for PLMs to understand. This
similarity helps bridge the gap and facilitates the
model’s comprehension.

The in-context example format in NER is in-
spired by (Lee et al., 2022b). All examples in this
context follow the template: span is a/an entity-
type. And we will concatenate an additional prompt
(based on the knowledge in Examples) after the In-
struction to hint the model to learn from the Exam-
ples. During training stage, in-context Examples

will only be added to the main NER tasks and there
will be no Examples added in auxiliary tasks, which
will be discussed in detail in Analysis 5.2.

In terms of the choices of the samples in Exam-
ples, we randomly choose some spans appeared in
the train set as well as their corresponding entity
types to create Examples. Since we are uncertain
about the entity types present in the sentence, we
will provide at least one example for each entity
type in the Alternatives list within the Examples.
The number of samples of each entity types in Ex-
amples will also be the same 3(e.g. in terms of
MIT Movie dataset, there are 12 entity types. If
we set the number of examples to 5, there will be 5
examples for each entity types, resulting in a total
of 5*12 examples in the field).

3.5 Inference

During inference time, we first use the template
of the main NER task to wrap the input sentence
X , and then feed the sentence to 2INER to get the
predicted output text. In terms of the Example field,
the example spans are sampled from the training
support set, so the model won’t see the ground-
truth in the Examples during evaluation, avoiding
information leakage. After the output text is gener-
ated, a decoding strategy will be applied to get the
predicted entity (ei, si): (1) We use dot to split the
whole output text to obtain individual sub-texts. (2)
We use "is a" or "is an" to split each sub-text if they
can be found. (3) The span is the part before "is
a/an" and the entity type is the part after it. Once
we get the (ei, si), we will check whether si is in
the input sentence X and ei is in the set of entity
types V . If it doesn’t pass the check, then it isn’t
a valid entity and will be deleted. And if any of
the three steps result in a match failure, then the
sub-text will be skipped.

4 Experiment

4.1 Dataset

We conduct NER experiments in standard and
low-resources settings. For the rich-resources do-
main, we use CoNLL-2003 (Tjong Kim Sang and
De Meulder, 2003) and for the low-resource do-
main, we use three datasets: MIT Movie Review,
MIT Restaurant Review (Liu et al., 2013) and Air-
line Travel Information Systems (ATIS) (Hakkani-

3We refer to "the number of samples per entity types" as
"the number of examples" in the rest of the paper for conve-
nience.



Tür et al., 2016), following (Wang et al., 2022;
Chen et al., 2022b; Cui et al., 2021; Yan et al.,
2021).

4.2 Implementation settings

In Few-Shot NER scenario, in order to guarantee
that each entity type has equal number of instances
in the training set, we can’t sample k sentences for
each entity type directly because a single sentence
may contain multiple entities, so the actual shot
will exceed k. Following (Wang et al., 2022), we
will apply a greedy sampling strategy (Yang and
Katiyar, 2020) instead, to sample the few-shot train-
ing set for each setting and due to the randomness
of the sampling, we will repeat 3 times for each ex-
periment. We use T5-large 4 as the backbone model
for fair comparision with (Wang et al., 2022). In
terms of the number of examples in in-context Ex-
ample field, we set the number to 5 for MIT Movie
and MIT Restaurant dataset, and 1 for ATIS dataset
as default 5. We only add in-context Example field
on main-task, and don’t include them in auxiliary
tasks. The ratio of auxiliary tasks is set to 1.0 6.
We set the batch size to 2/4/8, learning-rate to 2e-
5/5e-5 for 10/20/50 Shot settings respectively, and
set batch size to 32, learning-rate to 1e-4 for the
abundant data setting. The optimizer is Adam and
beam search is set to 2. For evaluation, we use F1
score as the metric for NER.

The names InstructionNER in the tables mean
training with main-task data only, indicating
the base model, and the subscript words in
the tables indicate addition to the base model:
+ET, +EE, +TE, +EX means adding Entity
Typing, Entity Extraction, Type Extraction, in-
context examples, respectively. And we named
InstructionNER+ET,EE,TE,EX as 2INER, which is
our final model.

4.3 Standard NER Setting

We use CoNLL-2003 dataset to conduct standard
NER experiment. We combine the train and vali-
dation set as described in (Yan et al., 2021) to train
the model. The result is in Table 1, which shows
that even though our method mainly focuses on
few-shot NER settings, it remains competitive with

4https://huggingface.co/t5-large
5ATIS has 79 entity types so we set the number to 1 to

avoid excessively long token lengths.
6The data size ratio between main task and each auxiliary

tasks. 1.0 means that each sample will be extended into 4
samples: one for main task, one for EE, ET, TE, respectively.

Model F1 Span-F1
(Yang et al., 2018) 90.77 -
(Ma and Hovy, 2016) 91.21 -
(Gui et al., 2020) 92.02 -
(Yamada et al., 2020)* 94.30 92.40
(Li et al., 2020a)† - 92.87
(Yu et al., 2020a)‡ - 92.50
LC-BERT 91.73 -
LC-BART 90.60 -
TemplateNER 91.90 -
BARTNER - 93.24
LightNER 92.93 -
2INER (InstructionNER+ET,EE,TE,EX) 90.71 93.93

Table 1: F1 and Span-F1 (%) on CoNLL-2003 Standard
NER setting. Our method is competitive with SOTA
algorithm and even outperform BARTNER (Yan et al.,
2021) in span-F1. "*" indicates training on external data.
"†" indicates the reproduction by (Yan et al., 2021). "‡"
indicates the reproduction with only the sentence-level
context by (Yan et al., 2021).

SOTA algorithm under standard NER setting and
even outperform BARTNER (Yan et al., 2021) in
span-F1, which is designed for rich-resource NER
settings. The performances of 2INER in data abun-
dant nested and discontinuous NER settings are in
Appendix A.

4.4 Few-Shot NER Setting

Under Few-Shot NER setting, we only use K-Shot
training samples to finetune our model and the re-
sults are in Table 2. According to the table, we
can find that: (1) Our models consistently outper-
form InstructionNER as well as other baselines on
all three datasets under 10/20/50 Shot settings (ex-
cept 50Shot in ATIS, which is slightly lower than
BARTNER). Especially in MIT Movie dataset, our
models have 7.33%, 6.76%, 5.39% improvements
compared to InstructionNER under 10/20/50 set-
tings. (2) Our 10Shot model even outperforms Tem-
plateNER’s 50Shot model by 20.73% and 7.06%
in MIT Movie and MIT Restaurant respectively,
which highlights the superiority and capability of
our model. (3) We have the same finding as In-
structionNER (Wang et al., 2022) that F1 improve-
ments are much more significant on MIT Movie
than on MIT Restaurant (7.33% / 6.76% / 5.39%
v.s. 6.86% / 3.24% / 3.3% under 10/20/50 Shot set-
tings), which indicates that although MIT Movie
has more entity types, text-to-text framework and
instruction-tuning can better utilize pre-training
knowledge, and through in-context learning, the
model can learn more about the relationships be-
tween entities. (4) In ATIS dataset, the improve-

https://huggingface.co/t5-large


MIT Movie MIT Restaurant ATIS
Models 10 20 50 10 20 50 10 20 50

LC-BERT 25.2 42.2 49.6 21.8 39.4 52.7 44.1 76.7 90.7
LC-BART 10.2 27.5 44.2 6.3 8.5 51.3 42.0 72.7 87.5
TemplateNER 37.3 48.5 52.2 46.0 57.1 58.7 71.7 79.4 92.6
BARTNER∗ 41.1 54.0 67.7 44.0 56.0 64.0 77.7 86.1 93.4
LightNER 41.7 57.8 73.1 48.5 58.0 62.0 76.3 85.3 92.8

InstructionNER 64.4 (±2.1) 70.0 (±0.3) 74.1 (±1.2) 58.7 (±1.2) 65.5 (±1.4) 71.2 (±1.1) 90.14 (±0.12)† 91.22 (±0.19)† 92.53 (±0.14)†
InstructionNER+ET,EE 65.6 (±3.0) 70.1 (±1.9) 74.7 (±0.3) 58.9 (±0.8) 66.1 (±0.9) 71.1 (±0.9) 90.04 (±0.02)† 91.46 (±0.23)† 92.62 (±0.04)†

InstructionNER+EX 72.56 (±1.01) 74.99 (±0.27) 78.61 (±0.37) 64.07 (±1.25) 68.2 (±0.11) 74.38 (±0.19) 89.17 (±0.2) 91.33 (±0.05) 92.65 (±0.18)
InstructionNER+TE 72.0 (±0.25) 76.55 (±0.2) 80.02 (±0.26) 65.52 (±1.35) 68.67 (±0.95) 73.98 (±0.27) 90.77 (±0.6) 91.85 (±0.05) 92.69 (±0.1)

InstructionNER+ET,EE,TE,EX 72.93 (±0.91) 76.86 (±0.53) 80.09 (±0.22) 65.76 (±0.47) 69.34 (±0.81) 74.4 (±0.4) 90.47 (±0.26) 92.11 (±0.09) 92.83 (±0.15)

Table 2: The F1(%) on three dataset under 10/20/50 Shot settings. The bold number means the best F1 across
all models and the numbers in brackets means the standard deviation. The underline numbers mean the best
results in our experiments. The "†" numbers mean the results of our reproduction. "*" means the reproduction by
InstructionNER (Wang et al., 2022).

ment of our model is less significant compared to
other two dataset. We argue that this is because
ATIS contains 79 entity types and even if we only
provide one sample span for each entity types in
in-context Example field, the average token length
is 1099 compared to 368 with or without examples,
where the token length of the Alternative filed is
327. So the actual input Sentence X only accounts
for 3.7% of the total token length, which increases
the difficulty for the model to extract key informa-
tion from lengthy sentences. 7 So too many entity
types may potentially reduce model improvements.

4.5 Ablation Study
In order to find out the influence of our proposed
type extraction task and in-context examples on
model’s few-shot abilities, we conduct ablation
studies in Figure 2. The results indicate that
adding type extraction task and in-context exam-
ples can further enhance the model’s few-shot NER
abilities. We set InstructionNER as the baseline
here which only trains on main-task data without
any auxiliary tasks. Then we add type extraction
task (InstructionNER+TE) or in-context examples
(InstructionNER+EX) respectively on the baseline
model to explore their influences. The results
from Figure 2 shows that in terms of 10/20/50
Shot settings in few-shot NER, type extraction
task achieves an average improvements of 7.21%,
4.86%, 4.35% F1 and in-context example achieves
an average improvements of 6.76%, 3.84%, 3.84%
F1 in MIT Movie and MIT Restaurant dataset.

Moreover, adding type extraction task can
greatly increase the Span-F1 as well. Because
Span-F1 indicates the model’s ability to locate

7We try to use special-tokens to represent the entity types,
but the F1 is slightly lower than without using special-tokens
and the proportion of X to the total number of tokens is 4.5%.

Figure 2: F1 and Span-F1 (%) on MIT Movie and MIT
Restaurant through 10/20/50 Shot settings with different
task combinations. The deep and light color indicate F1
and Span-F1 respectively.

spans, the results reveal that through training on
type extraction task, span recognition can be ben-
efit from having a deeper understanding of the la-
bels from the overall semantic level of sentence.
Therefore, it proves the effectiveness of three steps
of NER abilities we proposed in 3.3, and shows
that type extraction task can simultaneously im-
prove span recognition and entity labeling abilities
through understanding label semantic.

5 Analysis

5.1 Increase Example Number

In this section, we will focus on how the number of
examples in in-context Example field influence the
model performance. We will sequentially change
the number of examples to 1, 3, 5, 10, and 15, and
train corresponding models to observe the change
of F1 on MIT Restaurant dataset. We train our
model with main-task and in-context example with-
out any auxiliary tasks (InstructionNER+EX) in this
section. The results are in Table 3.



InstructionNER+EX MIT Restaurant
Examples 20 Shot 50 Shot

0 65.5 (±1.4) 71.2 (±1.1)
1 67.74 (±0.22) 73.89 (±0.15)
3 67.89 (±0.3) 74.15 (±0.39)
5 68.2 (±0.11) 74.38 (±0.19)

10 69.47 (±0.35) 74.41 (±0.18)
15 69.52 (±0.16) 74.64 (±0.49)

Table 3: F1 scores(%) on MIT Restaurant dataset
while changing number of examples using
InstructionNER+EX. Bold numbers indicate the
best F1 and the numbers in brackets means the standard
deviation.

As the number of examples increases, F1 score
continues to increase and the largest improvement
in F1 score occurs when going from zero exam-
ples to one example. As the number of examples
increases further, the F1 will continue to increase
but the rate of improvement gradually slows down.
This suggests that when only one in-context exam-
ple is provided, the model can quickly learn the
specific meanings of each entity type from the ex-
ample. While more examples may lead to repetitive
cues to the model so a balance should be made be-
tween model performance and computational cost.

5.2 Effect of In-Context Example on Auxiliary
task

In this section, we will discuss whether to add in-
context examples on auxiliary task. The model is
2INER (InstructionNER+ET,EE,TE,EX) and we will
compare two settings: add examples only on main-
task, add examples on main-task as well as three
auxiliary tasks. The results in Table 4 indicates
that adding examples on auxiliary task will slightly
decrease the F1 performance. Because adding ex-
amples to auxiliary tasks may potentially reduce
their difficulty and make it too easy for the model,
thereby reducing the auxiliary tasks’ effectiveness
in aiding the main task. So adding examples only
to the main task is a better approach.

5.3 Increase Shot

In this section, we will discuss the model per-
formance under relatively abundant settings. We
increase the shots to 100, 200 and 500 in
MIT Movie and MIT Restaurant datasets using
2INER (InstructionNER+ET,EE,TE,EX). As shown
in Table 5, compared to InstructionNER, 2INER
achieves 5.43%, 3.98%, 3.19% improvements in
F1 under 100/200/500 shots settings respectively.

MIT Restaurant
10 Shot 20 Shot 50 Shot

2INER 65.26 69.27 74.2
Examples on all tasks (±0.49) (±0.89) (±0.45)

2INER 65.76 69.34 74.4
Examples only on Main-Task (±0.47) (±0.81) (±0.4)

Table 4: The comparison between adding in-context
examples only on main-task and on all tasks including
auxiliary tasks. Bold numbers indicate the best F1 and
the numbers in brackets means the standard deviation.

Models MIT Movie MIT Restaurant
100 200 500 100 200 500

LC-BERT 50.7 59.3 74.4 53.5 57.4 61.3
LC-BART 47.5 54.2 64.1 52.2 56.3 60.2
TemplateNER 56.3 62.0 74.9 60.1 62.8 65.0
BARTNER∗ 70.1 74.6 82.6 65.3 74.4 75.7
LightNER 78.0 80.6 84.8 70.8 75.5 80.2
InstructionNER+ET,EE 74.3 78.4 82.3 72.7 75.5 76.6
2INER 81.3 83.54 86.16 76.57 78.31 79.11

Table 5: The F1 (%) under relatively abundant settings.
"*" indicates the reproduction results by (Wang et al.,
2022). Bold numbers indicate the best F1.

And 2INER outperforms LightNER in all settings
except 500-shots in MIT Restaurant, which shows
that 2INER has great NER abilities under data abun-
dant scenario as well. We argue that the in-context
Example field may help the model to learn from
more diverse samples from the abundant training
set and turn the general knowledge into specialized
capabilities, leading to the improvement in F1.

6 Conclusion

In this paper, we propose 2INER for few-shot NER
using both instruction finetuning and in-context
learning by converting NER into a text-to-text
framework. Based on InstructionNER, we create a
template to concatenate task-specific instructions,
input sentence and entity alternatives to make full
use of the pre-training knowledge. Besides, we
decompose NER into three steps and introduce an-
other auxiliary tasks, called type extraction, to help
the model better understand the general semantic
meaning of the entity types, which can improve
both span recognition and entity labeling abilities.
Moreover, we apply the in-context examples to en-
able the model to learn from additional contextual
information, enhancing few-shot abilities. Multiple
experiments on four NER datasets prove 2INER’s
effectiveness in few-shot NER scenario by consis-
tently outperforming other baselines.



Limitations

One limitation of our work is the extensive length
of the Example and Alternative field when there
are too many existed entity types. While incorpo-
rating in-context examples in the input sentence
can improve few-shot NER performance, it poses
a challenge when the Example field becomes too
long because we add at least one examples for each
potential entity type, especially when the Alterna-
tive list contains numerous entity types. This can
result in less improvement gains and more compu-
tational costs. To address this issue, we assume that
larger PLMs such as the recently proposed LLaMA
(Touvron et al., 2023) could potentially be explored
in future research as a means of resolution.

Ethics Statement

In consideration of ethical concerns, we would
make the following descriptions: (1) All of our
experiments are conducted using existing datasets
sourced from publicly available scientific papers.
(2) Our few-shot methods don’t require a lot of
computational resources. (3) Our text generation
models will generate texts based on existing tem-
plates, so it won’t generate harmful sentences.
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A Appendix

In this section, we will discuss the remaining two
NER settings: nested NER and discontinuous NER.
Because the text-to-text structure of our proposed
method can be easily adapted to all three NER
settings, which will result in a unified structure for
solving NER problems. Here, we mainly discuss
standard NER scenarios with abundant data.

For data abundant nested NER, We conduct ex-
periments on Genia (Kim et al., 2003). We follow
BARTNER (Yan et al., 2021) to use five entities
types and split the train, dev, test as 8.1:0.9:1.0.
The results are in Table 6.

For data abundant discontinuous NER, we con-
duct experiments on CADEC (Karimi et al., 2015).
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Genia: Model P R F
(Li et al., 2020b)[BERT-Large]† 81.25 76.36 78.72
(Yu et al., 2020b)[BERT-Large]† 79.43 78.32 78.87
(Wang et al., 2020)[BERT-Large] 79.45 78.94 79.19
BARTNER (Yan et al., 2021) 78.87 79.6 79.23
2INER 82.9 80.74 81.81

Table 6: Span-F1 (%) on Genia Nested data abundant
NER setting. The "†" mean the reproduction by (Yan
et al., 2021).

CADEC: Model P R F
(Metke-Jimenez and Karimi, 2016) 64.4 56.5 60.2
(Tang et al., 2018) 67.8 64.9 66.3
(Dai et al., 2020)[ELMo] 68.9 69.0 69.0
BARTNER (Yan et al., 2021) 70.08 71.21 70.64
2INER 71.18 75.26 73.16

Table 7: Span-F1 (%) on CADEC discontinuous data
abundant NER setting.

Following BARTNER (Yan et al., 2021), since only
the Adverse Drug Events (ADEs) entities include
discontinuous data, only these entities were consid-
ered. The results are in Table 7.

The experiment settings are the same as flat NER.
We use T5-large as the backbone model and report
span-level F1. The results show that in data abun-
dant nested and discontinuous NER setting, our
proposed method greatly outperforms BARTNER
(Yan et al., 2021) and other SOTA methods, which
demonstrates that our methods do have a poten-
tial to handle different NER settings in a unified
framework.


