

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 DOVER: INTERVENTION-DRIVEN AUTO DEBUGGING FOR LLM MULTI-AGENT SYSTEMS

Anonymous authors

Paper under double-blind review

ABSTRACT

Large language model (LLM)-based multi-agent systems are challenging to debug because failures often arise from long, branching interaction traces. The prevailing practice is to leverage LLMs for log-based failure localization, attributing errors to a specific agent and step. However, this paradigm has two key limitations: (i) log-only debugging lacks validation, producing untested hypotheses, and (ii) single-step or single-agent attribution is often ill-posed, as we find that multiple distinct interventions can independently repair the failed task. To address the first limitation, we introduce **DoVer**, an intervention-driven debugging framework, which augments hypothesis generation with active verification through targeted interventions (e.g., editing messages, altering plans). For the second limitation, rather than evaluating on attribution accuracy, we focus on measuring whether the system resolves the failure or makes quantifiable progress toward task success, reflecting a more outcome-oriented view of debugging. On the datasets derived from GAIA and AssistantBench, DoVer flips 18–28% of failed trials into successes, achieves up to 16% milestone progress, and validates or refutes 30-60% of failure hypotheses. Our findings highlight intervention as a practical mechanism for improving reliability in agentic systems and open opportunities for more robust, scalable debugging methods for LLM-based multi-agent systems.

1 INTRODUCTION

The advancement of Large Language Models (LLMs) has led to the rapid rise of LLM-based agent systems, particularly multi-agent architectures where agents of different roles work collaboratively to solve complex tasks Li et al. (2023); Wu et al. (2023a); Hong et al. (2024). As these systems are increasingly developed and deployed in production, the need to debug their failures becomes inevitable during their lifecycle. Importantly, by “failures” we do not refer to conventional software errors (e.g., exceptions or crashes), but rather to the errors where the system executes without interruption yet produces incorrect or unsatisfactory results Mialon et al. (2024); Yoran et al. (2024). Such failures frequently arise in scenarios where one diagnoses why an agent system underperforms on benchmark tasks during the development phase, or when one addresses user-reported dissatisfaction (e.g., a ‘thumbs-down’ signal with textual feedback) from an online deployed system.

Debugging failures in LLM-based agent systems presents unique challenges. These systems typically involve multiple rounds of LLM calls, each with extensive textual context, making manual log inspection labor-intensive. Furthermore, in multi-agent tasks, tracking inter-agent information flow is crucial, as failures often stem from *Inter-Agent Misalignment* Cemri et al. (2025). Recent efforts address these issues by using LLMs to analyze system failures Zhuge et al. (2024); Zhang et al. (2025b;a), often via single-agent, single-step failure attribution. In this method, an execution log is input to an LLM tasked with identifying the agent and step responsible for the failure Zhang et al. (2025b). However, as shown in our reproduction study (Section 3), log-based failure attribution is fundamentally limited by the uncertainty of ground-truth annotations. This uncertainty arises for several reasons: agent systems often employ multiple strategies (e.g., ReAct Yao et al. (2023)) with distinct failure points in a single session, and inter-agent misalignment can render the assignment of responsibility to a single agent or step ambiguous.

To circumvent the limitations of uncertain ground-truth attribution, we propose *explicit validation via intervention*, introducing **DoVer** (**D**o-then-**V**erify), an intervention-driven framework for auto-

054 mated debugging. DoVer explicitly validates failure hypotheses derived from session logs by intervening at suspected failure points, modifying agent instructions or task plans, while preserving prior context. The system is then re-executed from the intervention point onward. If the failure resolves, the hypothesis is supported; if it persists despite faithful intervention, the hypothesis is refuted. This process enables an iterative cycle of hypothesis generation and testing.

059 DoVer also supports interventions across multiple steps rather than restricting to single-point edits. 060 By decomposing the failure trace into separate trials, we intervene at each and assess the impact. 061 Experimental results show that this approach recovers 18% and 28% of failures in datasets from 062 AssistantBench Yoran et al. (2024) and GAIA Mialon et al. (2024), respectively. Furthermore, it 063 enables the validation or refutation of 30–60% of failure hypotheses, depending on task complexity.

064 To summarize, our main contributions are: (i) We propose **DoVer**, an intervention-driven framework 065 for automatically debugging failures in LLM-based multi-agent systems; (ii) We identify and 066 analyze the challenges posed by uncertain ground-truth annotations in log-based failure attribution; (iii) 067 We demonstrate experimentally that DoVer not only recovers a significant portion of failure cases 068 but also enables explicit validation and refutation of failure hypotheses.

071 2 RELATED WORK

074 2.1 FAILURE ANALYSIS AND ATTRIBUTION FOR LLM-BASED AGENT SYSTEMS.

076 LLM-based agent systems exhibit diverse and frequent failure patterns that accumulate along long 077 execution logs. To characterize why and where errors arise, **MAST** Cemri et al. (2025) catalogs 078 failures across task interpretation, planning, tool/environment interaction, and verification, while 079 evaluation frameworks Zhuge et al. (2024); Arabzadeh et al. (2024) argue that end-to-end pass/fail 080 is too coarse and introduce requirement graphs or task-utility criteria that reveal where progress 081 stalls. Extending this perspective to execution logs, **TRAIL** Deshpande et al. (2025) creates turn- 082 level traces and a fine-grained taxonomy (reasoning, planning, execution), empirically showing that 083 even strong long-context models struggle at trace debugging.

084 A parallel line of work seeks *failure attribution*: identifying the earliest decisive step or agent that 085 is responsible for the earliest sufficient cause of failure Zhang et al. (2025b;a). However, these 086 attributions are inferred from logs and remain an *untested hypothesis* unless validated by execution. 087 In DoVer, we treat attribution as a hypothesis to be tested. We apply a targeted edit at the implicated 088 location (message, plan, tool call), and rerun the system, judging success by milestone/utility gains. 089 This places emphasis on verified repair and is consistent with trajectory-aware evaluation advocated 090 in Arabzadeh et al. (2024); Deshpande et al. (2025).

092 2.2 DEBUGGING APPROACHES FOR LLM-BASED AGENT SYSTEMS

094 Beyond failure analysis and attribution, several systems explore how to *debug* trajectories, i.e., intervention 095 and replay. Human-in-the-loop tools such as AGDebugger Epperson et al. (2025) enable rewind/edit/re-execute with trace visualization, and graph runtimes like LangGraph LangChain 096 (2025) provide checkpoints, interrupts, and “time-travel” branching. These demonstrate that small, 097 targeted interventions often work, but they are manual and hard to scale. At the orchestration layer, 098 multi-agent systems such as Magentic-One (M1) Fourney et al. (2024) dynamically re-plan, track 099 stalls, and recover, yet typically stop short of testing concrete hypotheses about a failing step.

101 From the software-repair perspective, Rahardja et al. (2025) package real agent-system issues into 102 executable environments with failing tests (AgentIssue-Bench) and find low resolution rates for 103 current software engineering agents, highlighting the difficulty of maintaining agent software. In- 104 dustrial experience at Google similarly evaluates agent-based program repair on production bugs, 105 showing promise but also current limits Rondon et al. (2025). This motivates *auto debugging* that 106 verifies edits within the original run and measures intermediate progress. DoVer does so by choos- 107 ing a minimal intervention, re-running the trajectory, and scoring milestone/utility gains, in line 108 with Zhuge et al. (2024); Deshpande et al. (2025).

108 3 FROM LOG-BASED ATTRIBUTION TO INTERVENTION-BASED DEBUGGING
109110 In this section, we surface several subtleties in existing log-based failure analysis that motivate our
111 intervention-based auto-debugging system. We begin by recapping the prevailing task formulation
112 for log-based single-agent/step failure attribution, and then revisit evaluation on an existing bench-
113 mark to highlight sources of uncertainty in ground-truth annotation that shape our design.
114115 **Log-based Single-Agent/Single-Step Failure Attribution.** A common setup for log-based fail-
116 ure attribution proceeds as follows. The input is a session log, typically from an LLM-driven multi-
117 agent system, covering the full trajectory from an initial user query to either a final answer or ter-
118 mination caused by system-defined stopping rules (e.g., a maximum number of replanning rounds).
119 The log is a sequence of agent messages organized by turns.¹ The task is to identify the *single* agent
120 and *single* step responsible for the failure. A failure step is defined as a *decisive error*: if one were
121 to replace the agent’s incorrect action at that step with a correct one, the trajectory would subse-
122 quently succeed. To evaluate this setup, the Who&When (WW) dataset was introduced in Zhang
123 et al. (2025b). In WW, multiple annotators independently reviewed session logs and then recon-
124 ciled discrepancies through discussion. Reported results show that state-of-the-art LLMs at the time
125 achieved *below 10%* accuracy on failure step attribution.
126127 **Reproduction and Prompt Refinements.** We reproduced the WW step/agent attribution protocol
128 to understand why step-level accuracy is low. Through failure case analysis, we identified two
129 minimal, non-invasive prompt refinements that consistently improve accuracy: (i) adding *explicit*
130 *step indices* to the failure log, and (ii) embedding a *concise reminder of the annotators’ guidance* as
131 instructions. With these refinements, attribution accuracy rises noticeably. For example, on the Hand
132 Crafted category of WW (WW-HC) with the setting of including ground-truth answers and adopting
133 the *All-at-Once* prompt (a single LLM call over the full session log), step attribution accuracy for
134 GPT-4○ increases from 6% to 24%.² Reproduction details are provided in Appendix A.
135136 **Impact of Uncertain Ground-Truth Labels on Attribution.** Despite these gains, absolute step-
137 level accuracy remains low for practical deployment. By comparing model outputs against the
138 ground-truth (GT) labels, we found that uncertainty in the GT annotation is a major contributing
139 factor. Specifically, for the 29 GAIA Mialon et al. (2024) cases in WW, our independent review
140 suggests that 14 of 29 cases exhibit GT uncertainty. This is consistent with WW, which reports
141 annotator uncertainty of 15–30% and an average initial disagreement of ∼20% Zhang et al. (2025b).
142143 To assess the impact of GT uncertainty on model performance, we stratified evaluation into two
144 subsets. For the 14 uncertain cases, average step attribution accuracy is **24%** for GPT-4○ and **7%**
145 for GPT-5. In contrast, for the remaining certain 15 cases, average accuracy increases to **44%**
146 for GPT-4○ and **53%** for GPT-5. These results indicate that GT uncertainty substantially affects
147 model performance. Per-case annotation notes and results are provided in Appendix A.
148149 **Sources of Uncertainty in Failure Agent/Step Annotations.** Our re-annotation surfaced three
150 sources of GT uncertainty among the 14 uncertain GAIA cases in WW:
151152 **(1) Multiple trials within a single session.** Modern agentic systems frequently employ **ReAct**-
153 style Yao et al. (2023) loops with repeated planning–execution cycles, producing multiple *trials* of
154 task solving. We define a *trial* as the contiguous span starting from a planning step and continuing
155 through the execution steps for that plan. Each trial may contain its *own* decisive error step(s), espe-
156 cially when exploring new strategies or branches. For instance, Figure 1 illustrates the failure trace
157 of Case 3 in WW-HC, which comprises four distinct trials within a single session. Different strate-
158 gies were explored (e.g., Trial 1 attempted to locate the target webpage via *direct scrolling*, whereas
159 Trial 2 used the *calendar* feature), each introducing distinct potential error points. Consequently,
160 enforcing a single-step attribution across the entire session is intrinsically ambiguous. In our review,
161 9 of the 14 uncertain cases exhibit this pattern.
162163 ¹We do not consider logs from asynchronous agent executions in this work.
164165 ²Unless otherwise specified, GPT-4○ and GPT-5 refer to the versions of “GPT-4o-20241120” and “GPT-
166 5-chat-20250807”, respectively. All LLM API calls are made through Azure OpenAI using default parameters.
167

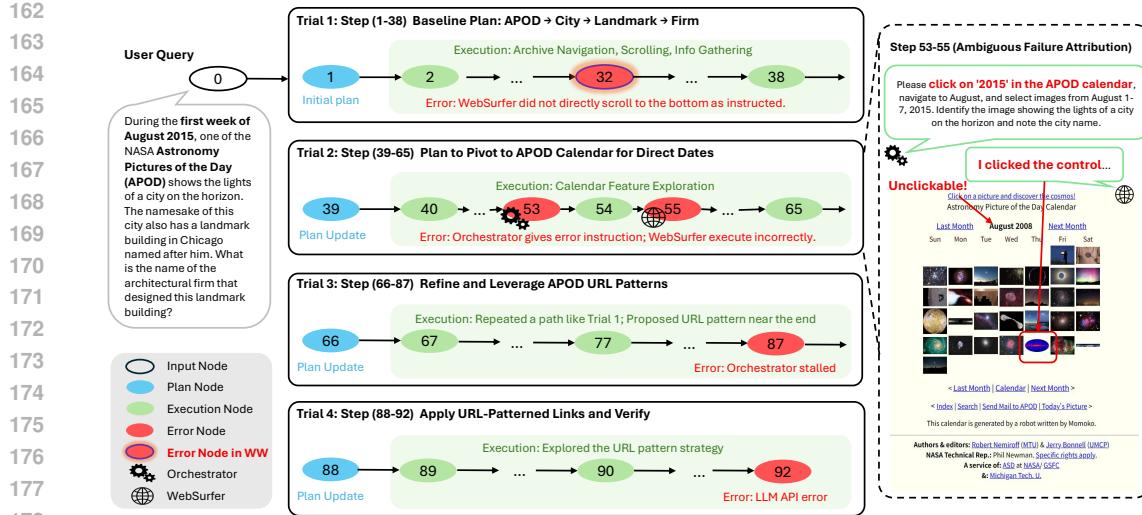


Figure 1: Failure trace of Case 3 in WW-HC, illustrating ambiguity in failure attribution. The session consists of four distinct trials, each initiated by a plan update and executed via a ReAct-style Yao et al. (2023) loop. Different strategies (e.g., direct scrolling in Trial 1 vs. calendar navigation in Trial 2) yield separate error points, making single-step attribution across the session inherently ambiguous. Trial 2 (Steps 53–55) further shows inter-agent misalignment: the Orchestrator issued an invalid instruction, while the WebSurfer compounded the error by executing an unrelated action.

(2) Ambiguity from multi-agent coordination. Attribution to a specific agent/step can be unclear when the underlying issue stems from inter-agent coordination. For instance, when a sub-agent fails to carry out an instruction, responsibility may lie with the sub-agent’s capabilities or with ambiguous/misaligned guidance from a supervising agent. In Trial 2 of Figure 1, for example, the Orchestrator agent instructed the WebSurfer agent to click on a non-existent control. Rather than reporting the issue, the WebSurfer instead clicked on an unrelated control that had no connection to the target year “2015”. In this case, both agents exhibited failures, making attribution to either one alone inappropriate. Such ambiguous attribution aligns with the *Inter-Agent Misalignment* category identified in Cemri et al. (2025). We observed this phenomenon in 5 of the 14 uncertain cases.

(3) Cross-annotator alignment challenges. Even with adjudication, achieving fully aligned labels can be difficult. For 7 of the uncertain cases in WW, we found no clear error at the GT-designed step, suggesting that differing interpretations can persist despite careful protocol design.

Implications for Intervention-Based Debugging. The above analysis suggests that *log-only* failure attribution can fundamentally suffer from the issue of uncertain ground-truth labels. Consequently, we propose *explicit validation via intervention*: hypothesize the failure step, *intervene* on it (e.g., replace the action or instruction), and verify whether the trajectory subsequently succeeds. This protocol operationalizes the “decisive error” definition while simultaneously eliminating dependence on noisy human labels and thus reducing annotation burden. Moreover, two design takeaways follow from our uncertainty study. **(i) Trial awareness.** Because logs often contain multiple planning–execution *trials*, interventions must be applied at the trial level, motivating our *trial-based intervention* framework. **(ii) Role-specific interventions.** Given ambiguity in attributing responsibility between an orchestrator and its sub-agents, we adopt a clear taxonomy of interventions: (a) interventions on the *orchestrator’s plan* and its *instructions to sub-agents*, and (b) direct capability improvements for sub-agents (e.g., skills). These implications motivate our *intervention-based auto debugging* system; in the next section, we detail the framework and its concrete instantiations.

4 METHODOLOGY

Following the implications for intervention-based debugging, we present **DoVer**, a *do-then-verify* debugging pipeline that turns failure-attribution hypotheses into controlled edits and checks whether

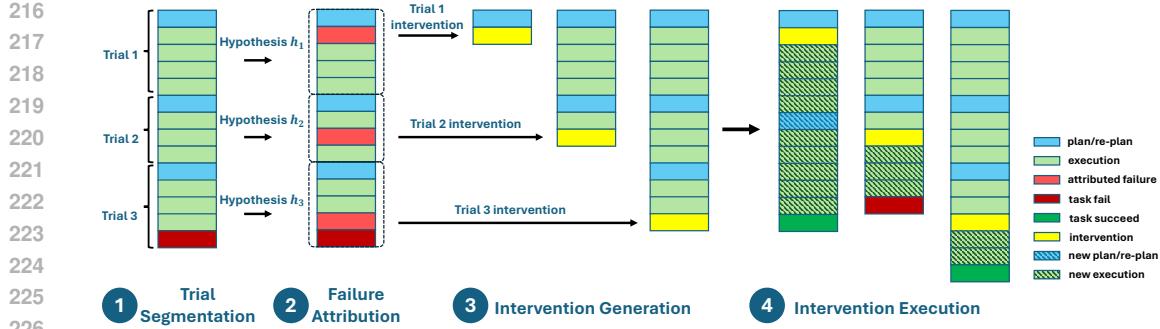


Figure 2: **DoVer** (Do-then-Verify) Debugging Pipeline. (1) *Trial segmentation*: split the failed session log into trials using re-plan steps as cut points. (2) *Failure attribution*: for each trial, propose a hypothesis h_i that marks a faulty step or agent. (3) *Intervention generation*: turn h_i into an actionable intervention that edits either the plan or the attributed message or step in the original log. (4) *Intervention execution*: replay the trajectory *in place*, i.e., preserve all steps before the intervened step, then execute the intervention and measure progress of the new log. Colors indicate plan/re-plan (blue), execution (green), attributed failure (red), terminal failure (dark red), terminal success (dark green), intervention (yellow), new plan/re-plan (blue hatch), and new execution (green hatch).

those edits change outcomes. As shown in Figure 2, DoVer consists of four stages: (1) *trace segmentation* to break an execution log into trials, (2) *hypothesis generation* to hypothesize a failure step or agent, (3) *intervention generation* to synthesize a testable change and replay the trace, and (4) *intervention execution* with differential evaluation against the original run using task success and a progress score.

4.1 DOVER PIPELINE

Trace Segmentation. After a task is executed by an agentic system, we have obtained a long execution session log $\tau = \{(a_t, m_t, \sigma_t)\}_{t=1}^T$, where a_t represents the active agent that produces the message m_t at step t , and σ_t keeps stateful information that is necessary for state restore and replay. This includes historical context (e.g., prior messages sent to LLMs) as well as browsing history for agents acting in a web-browsing role. Modern LLM-based agent systems Fourney et al. (2024); SmolAgents (2025); AutoGen2 (2025) have the self-reflection capabilities Yao et al. (2023); Shinn et al. (2023), and re-plan after reflection. We first segment the trace τ into trials τ^i using re-plan steps as segmentation point, as illustrated in Figure 2. This trial segmentation shortens context so LLMs can reason about a single causal chain, and enables independent and parallel interventions for efficiency. Thus, multiple hypotheses can be proposed for a single session trace, which is essential as many failures admit more than one viable repair.

While one could implement trace segmentation by leveraging system-specific message patterns (e.g., in the M1 agent system, plan or re-plan steps often begin with “*We are working to address the following user request*”), we instead adopt a prompt-based approach. Specifically, we employ LLMs to reason over the full session log and identify planning-related steps. This method generalizes more effectively to other agent systems whose log patterns for planning steps are not known a priori. The prompt used for trace segmentation is provided in Figure 4 in the Appendix B.

Failure Attribution. For each trial τ^i , we generate candidate failure attribution hypothesis

$$h_i = (\hat{a}_{\hat{t}}^i, r_{\hat{t}}^i),$$

where \hat{t} is the step index of attributed failure step, i is the trial index, \hat{a}^i the suspected agent, and r^i a natural-language rationale. We build on existing log-based attribution methods (e.g., our improved All-at-Once prompt from Section 3) but crucially do not require perfect precision, since correctness will later be tested via explicit intervention. Here we adapt the All-at-Once prompt (see Figure 5 in the Appendix B) so that it can be applied to session logs segmented into trials by the preceding step.

Intervention Generation. In this stage, failure attribution hypotheses are transformed into concrete interventions. Each intervention I_i represents a targeted edit to the failing context, informed both

270 by the specific failure hypothesis and by the broader context of the intervention step. As noted in
 271 Section 3, ambiguity may arise in attributing responsibility between the Orchestrator and its sub-
 272 agents. We thus distinguish interventions directed at Orchestrator from those directed at sub-agents.
 273

274 Direct interventions on sub-agents typically require substantial system modifications. For example,
 275 adapting the WebSurfer agent to support interventions such as in-page search would involve invasive
 276 code changes. To avoid this complexity, we focus on interventions at the Orchestrator level, so that
 277 they can be applied at the message-passing layer, making them agnostic to the underlying agent
 278 architecture. Specifically, we consider two categories:

279 • *Modified Instructions to Sub-Agents*: Adjusting the Orchestrator’s messages to sub-agents to clar-
 280 ify intent, correct arguments, or supply missing context. This approach indirectly influences sub-
 281 agent behavior.

282 • *Plan Updates*: Revising the Orchestrator’s high-level plan, e.g., reordering, decomposing, or re-
 283 placing steps, to route around the identified failure.

284 **Intervention Execution.** The agentic system replays each trial with interventions taken in place.
 285 All steps are preserved before the intervened step and execute the intervention I_i , yielding a counter-
 286 factual trace $\tilde{\tau}_I = \{\tau_1, \tau_2, \dots, \tau_{i-1}, \tilde{\tau}_i\}$. Note that one intervention creates one new trace, verifying
 287 the failure attribution of each trial.

289 4.2 EVALUATION METRICS

290 We consider two sets of evaluation metrics to address our research questions: (1) whether failed
 291 cases can be turned into successful ones through intervention and (2) how effective our debugging
 292 system is at validating or refuting the initial failure hypothesis. To reduce the impact of execution
 293 randomness (e.g., LLM stochasticity), we perform three independent runs for each intervention.
 294

295 **Metrics for Turning Failures into Successes.** To answer the first question, we introduce two
 296 failure-flipping related metrics: *Trial Success Rate* and *Progress Made*. The *Trial Success Rate* is
 297 defined as the ratio of trial runs that successfully complete the task after intervention. The *Progress*
 298 *Made* metric captures whether intervention brings a failed trial closer to success, even if it does
 299 not ultimately succeed. Thus, it provides a more fine-grained measure of improvement when the
 300 intervention makes the failed case “more correct”.

301 Specifically, when an intervention does not yield full success and human-annotated solution steps
 302 are available (e.g., in the GAIA benchmark Mialon et al. (2024)), we could evaluate the degree
 303 of progress by comparing the new execution trace against human-annotated steps. For each log
 304 τ , we extract up to $K \leq 5$ milestones $\{\mathbf{m}^k\}_{k=1}^K$ and measure how many of these milestones the
 305 new trace accomplishes. Both the extraction of milestones and their evaluation are performed using
 306 LLMs with carefully designed instructions. The actual prompts are provided in Figures 8 and 9 in
 307 Appendix B. We then define the milestone achievement count for a trace γ as:

$$309 \quad A(\gamma) = \sum_{k=1}^K \mathbb{I}[\text{milestone } \mathbf{m}^k \text{ is achieved in } \gamma].$$

310 We measure *Progress Made* as the ratio of additional milestones achieved:

$$314 \quad \text{Prog}(\tau \rightarrow \tilde{\tau}_I) = \frac{A(\tilde{\tau}_I) - A(\tau)}{K} \in [-1, 1],$$

315 where $\tilde{\tau}_I$ is the new execution trace after intervention, K is the number of extracted milestones from
 316 human-annotated trace.

317 In settings where human-annotated intermediate steps are unavailable, the progress metric above
 318 cannot be directly applied. In such cases, one may instead directly compare execution traces before
 319 and after intervention [with LLM-as-a-judge](#). We leave this alternative evaluation for future work.

320 **Metrics for Validating Failure Hypotheses.** To evaluate the effectiveness of our debugging sys-
 321 tem in validating or refuting the initial failure hypothesis, we classify each trial after intervention

324 into four categories: *Validated*, *Partially Validated*, *Refuted* and *Inconclusive*. The *Inconclusive* 325 category is necessary because we frequently observe that agents fail to follow the intervened instruction, 326 resulting in unsuccessful trials. In such cases, it is unclear whether the outcome stems from an 327 incorrect failure hypothesis or from other limitations of the system that prevent the intervention from 328 being carried out.

329 To handle this ambiguity, we conduct a comparative analysis of traces before and after intervention. 330 We leverage LLMs to determine whether the intervention was faithfully executed by the agent, 331 resulting in a boolean metric “*is_intervention_fulfilled*” for each trial run. The prompt employed in 332 this work can be found in Figure 10 in the Appendix B. Together with the overall *Trial Success Rate* 333 and *Progress Made* metrics, we define the four outcomes as follows:

- 335 • *Validated*: At least 2 of 3 repeated runs succeed.
- 336 • *Partially Validated*: Fewer than 2 of 3 runs succeed, and at least 2 of 3 runs both fulfill the 337 intervention and show additional 20% progress (i.e., they advance by one key milestone).
- 338 • *Refuted*: Same as “*Partially Validated*,” except that progress does not exceed 20%.
- 339 • *Inconclusive*: All other cases.

341 In summary, these metrics allow us to quantify both the extent to which interventions make failed 342 cases more correct and how effectively the system validates or refutes hypotheses. We now apply 343 them in the next subsection to analyze our experimental results.

345 5 EXPERIMENT RESULTS

346 5.1 EXPERIMENT SETUP

349 **Agent System.** We consider two distinct agent frameworks in this work. Following Zhang et al. 350 (2025b), we begin by conducting experiments using Magentic-One (M1) Fourney et al. (2024), a 351 popular LLM-based multi-agent framework that was also used for collecting failure traces in WW. 352 We enable DoVer on M1 by adapting the manual debugging tool AGDebugger Epperson et al. (2025) 353 so that DoVer can (without human intervention): (i) save the state at each step as a checkpoint; (ii) 354 load checkpoints from a prior failed run; (iii) intervene by modifying an agent message at a specified 355 step; and (iv) resume execution from the intervened step.

356 To evaluate DoVer’s generality, we further construct a MathChat multi-agent system using a sec- 357 ond framework, AutoGen2 (AG2) AutoGen2 (2025); Wu et al. (2023b). This MathChat system is 358 instantiated using the prompts provided in MAST Cemri et al. (2025), and we extend AG2 with 359 checkpointing and re-execution capabilities analogous to those in M1. Implementation details and 360 practical lessons for reducing the integration burden on new frameworks are provided in Appendix C. 361

362 **Datasets.** We first follow Zhang et al. (2025b) and include all cases in the *Hand Crafted* category 363 of WW: 28 cases from AssistantBench Yoran et al. (2024) and 29 cases spanning all three GAIA 364 levels Mialon et al. (2024). To increase data volume, we additionally include all 53 Level-1 cases 365 from GAIA’s validation set; after excluding those already present in WW, this yields 45 extra cases. 366 We refer to these three sets as *WW-AB*, *WW-GAIA*, and *GAIA-Level-1*, respectively.

367 For the MathChat system, following MAST Cemri et al. (2025), we additionally use the *GSMPlus* 368 dataset Li et al. (2024). Concretely, we adopt the 2,400 examples in the “*testmini*” split and re- 369 collect execution traces with checkpoints for all problems, forming the *GSMPlus* setting used in our 370 *AG2-based experiments*.

372 **Failure Trace Collection.** We begin with an initial run over all cases and evaluate outcomes to 373 identify failure traces. The failure logs published with WW and MAST are not directly usable for our 374 purposes: logs of agent messages alone are insufficient to support replay and targeted intervention. 375 The number of failed cases per dataset is given in Table 1 (“Failed Cases” column). The overall 376 success rate on the full GAIA Level-1 set matches the value reported for Magentic-One Fourney 377 et al. (2024), suggesting that our collected failure traces faithfully reflect M1’s capabilities. As in 378 WW and MAST, we use GPT-4○ both to generate traces and to power the intervened session runs.

	Total	Failed Cases	Intervened Cases	Intervened Trials	Trials per Case
WW-AB	28	26	23	72	3.1
WW-GAIA	29	26	25	99	4.0
GAIA-Level-1	45	26	25	63	2.5
GSMPlus	2400	214	141	198	1.4

Table 1: Summary of failed and intervened cases across datasets, showing the total number of cases, failed cases, intervened cases, total intervened trials, and the average number of trials per case.

Auto Debugging with DoVer. We apply DoVer to each failed trace using GPT-4o while obtaining the progress made metric and failure hypothesis validation results with GPT-5. As described in Section 4, DoVer first segments the full trace into distinct trials, then performs failure attribution and intervention generation for each trial. Finally, it collects the intervened session traces and conducts comparative analysis. Table 1 reports the number of cases for which an intervention was successfully generated (LLMs may occasionally conclude, incorrectly, that no mistake occurred), the total number of intervened trials, and the average number of intervened trials per case. On average, we perform about 3 (1.5) intervened trials per case in the AB and GAIA (GSMPlus) datasets, indicating that most cases contain multiple trials and multiple potential failure points, making them worthwhile targets for debugging.

5.2 QUANTITATIVE EVALUATION RESULTS

	Intervened Trials	Trial Success Rate	Progress Made
WW-AB	72	17.6%	+0%
WW-GAIA	99	17.6%	+8.8%
GAIA-Level-1	63	27.5%	+15.7%
GSMPlus	198	49.0%	-

Table 2: Experimental results on failure-flipping metrics across settings. The table reports the number of *Intervened Trials*, the *Trial Success Rate*, and the average *Progress Made*.

Table 2 presents the experimental results for the failure-flipping metrics. For making failure cases more correct, the *Trial Success Rate* across all intervened trials is 17.6% for cases in WW, compared to a higher success rate of 27.5% for GAIA-Level-1 cases. This difference can be explained by the fact that WW contains more challenging cases (e.g., Level-2/3 GAIA tasks). A similar pattern is observed for the *Progress Made* metric: interventions yield a 15.7% improvement (i.e., nearly one key milestone) in GAIA-Level-1, but considerably less progress in WW-AB and WW-GAIA. Notably, for WW-AB, almost no progress is achieved after intervention, suggesting that in some situations interventions may even hinder progress toward success. Finally, in the GSMPlus setting, DoVer achieves nearly a 50% trial success rate, underscoring that its effectiveness generalizes well across datasets and agent frameworks. Note that the *Progress Made* metric cannot be computed for GSMPlus due to the absence of human-annotated solution steps in the dataset.

	Intervened Trials	Validated	Inconclusive	Partially Validated	Refuted
WW-AB	72	11 (15.3%)	48 (66.7%)	3 (4.2%)	10 (13.9%)
WW-GAIA	99	16 (16.2%)	57 (57.6%)	5 (5.1%)	21 (21.2%)
GAIA-Level-1	63	22 (34.9%)	18 (28.6%)	8 (12.7%)	15 (23.8%)

Table 3: Validation outcomes of failure hypotheses across datasets. The table reports the number and percentage of trials classified as *Validated*, *Inconclusive*, *Partially Validated*, or *Refuted*.

Turning to the validation of failure hypotheses, Table 3 shows that for both WW-AB and WW-GAIA, the proportions of *Validated* and *Refuted* hypotheses are similar, each around 15%, while the majority (about 60%) fall into the *Inconclusive* category. In contrast, GAIA-Level-1 exhibits higher rates of both validated and refuted hypotheses, with inconclusive cases reduced to about 30%. This pattern suggests that the more difficult cases in WW make it harder for the agent system to reliably carry out the intended interventions.

432 5.3 ABLATION STUDY
433

434 **Impact of Different DoVer Underlying Models.** To test whether DoVer depends on a proprietary
435 frontier model, we vary its debugging model while keeping failure traces, the agent system, and all
436 prompts fixed. In the WW-GAIA setting, we replace GPT-4o with two locally hosted open-source
437 models, Qwen3-8B and Qwen3-32B in thinking mode. As shown in Table 4, Qwen3-8B recovers
438 11.3% of 77 trials and Qwen3-32B recovers 16.9% of 87 trials, compared to 17.6% for GPT-4o
439 over 99 trials. These results show that (i) DoVer does not rely on a single proprietary backend
440 and works with medium-sized local models, and (ii) larger open-source models (e.g., Qwen3-32B)
441 substantially narrow the gap to GPT-4o, underscoring DoVer’s generality and practicality for open-
442 source deployments.

443 DoVer Model	444 Intervened Trials	445 Trial Success Rate
444 Qwen3-8B (0-shot)	445 77	446 11.3%
445 Qwen3-8B (3-shot)	446 77	447 14.3%
446 Qwen3-32B (0-shot)	447 87	448 16.9%
447 GPT-4o (0-shot)	448 99	449 17.6%

448 Table 4: Ablation of DoVer models and few-shot prompting in the WW-GAIA setting.
449

450 **Effect of Few-Shot Prompting for Smaller DoVer Models.** To assess whether prompt-based
451 guidance can mitigate the limitations of smaller models, we compare DoVer performance with and
452 without few-shot examples. In the WW-GAIA setting described above, we enhance the intervention-
453 generation prompt for the Qwen3-8B model by adding three manually curated few-shot examples,
454 each demonstrating how the orchestrator refines an initially suboptimal instruction into a clear and
455 effective one, along with brief context before and after the intervention. The resulting trial success
456 rate is reported as “Qwen3-8B (3-shot)” in Table 4. The results show that Qwen3-8B with this 3-
457 shot prompt achieves a 14.3% trial success rate, compared to 11.3% in the zero-shot setting. This
458 improvement indicates that even small models can benefit considerably from lightweight in-context
459 supervision, suggesting that richer prompt design or future supervised or reinforcement learning on
460 intervention data may further narrow the gap to larger models.

461 **Compare with other Self-Improvement Methods.** To contextualize DoVer’s gains, we compare
462 against two self-improvement style methods adapted from Self-Refine Madaan et al. (2023) and
463 CRITIC Gou et al. (2023) in the WW-GAIA setting. In the Self-Refine-style baseline, the under-
464 lying LLM first critiques the final answer given the full session log and then generates a revised
465 answer in a second pass. In the CRITIC-style baseline, we similarly elicit feedback from the final
466 answer and log, but inject this feedback as an additional agent message and allow the agent system
467 to run for one extra round so that all tools and sub-agents can react to it. Across all 26 failed WW-
468 GAIA cases, neither baseline is able to flip any failure into success (0% recovery), whereas DoVer
469 recovers 17.6% of trials (Table 2). Further examination reveals why these self-improvement meth-
470 ods fall short: trial trajectories between the initial failure point and the final answer are often long,
471 noisy, and highly divergent, making end-of-trace refinement insufficient for reliably redirecting the
472 system. In contrast, DoVer performs *in-situ* interventions at potential failure points, enabling timely
473 and targeted corrections that are essential in multi-agent settings.

474 5.4 QUALITATIVE CASE STUDIES
475

476 We next present two representative case studies corresponding to the *Refuted* and *Inconclusive* of the
477 *above intervention outcome category* while leaving the other two categories in Appendix D. Each
478 vignette briefly introduce the task context, the hypothesized failure point, the concrete intervention
479 applied, and the observed outcome.

480 **(1) Refuted: Case 46 (Trial 1) in WW-GAIA**

481 - **Task:** What time was the Tri-Rail train that carried the most passengers on May 27, 2019, sched-
482 uled to arrive in Pompano Beach?
483 - **Diagnosis:** The failure proposer hypothesized that the issue arose from *WebSurfer*’s inability to
484 locate a data file at a particular step, even though *WebSurfer* had in fact already opened that file.

486 - **Intervention:** *WebSurfer* was explicitly instructed to open the file that it had already accessed.
 487
 488 - **Effect:** Although the intervention generator produced instructions consistent with the hypothesized
 489 failure, and the agents followed these instructions faithfully, the trials still failed. Because the agent
 490 correctly executed the intervention and the intervention accurately reflected the failure hypothesis,
 491 the resulting failure demonstrates that the original hypothesis was invalid. We therefore classify this
 492 trial as *refuted*.

493 **(2) Inconclusive: Case 21 (Trial 2) in WW-GAIA**

494 - **Task:** Locate the paper linked at the bottom of Carolyn Collins Petersen’s June 6, 2023 *Universe*
 495 *Today* article and identify the NASA award number that supported R. G. Arendt.

496 - **Diagnosis:** The *Orchestrator* remained stuck in the planning phase and never activated *WebSurfer*
 497 or other agents. No evidence was collected, leaving the trial incomplete.

498 - **Intervention:** The *WebSurfer* was told to bypass incremental scrolling and jump straight to the
 499 article’s footer to scan for DOIs, arXiv links, or other research references.

500 - **Effect:** The *WebSurfer* could not execute the “scroll-to-bottom” action. Instead, it performed a
 501 single page scroll without reaching the references, so the plan failed to advance. The inconclusive
 502 outcome reflected tool constraints rather than wrong failure hypothesis or intervention. Correct strat-
 503 egy was blocked by limited execution abilities, pointing to the need for stronger action primitives.

504 Across these four cases, **DoVer** exhibits all intended outcomes: (i) *validated* when a targeted edit
 505 repairs the trajectory; (ii) *partially validated* when the edit induces measurable progress yet external
 506 frictions block completion; (iii) *refuted* when faithful execution of the edit leaves the failure state
 507 intact; and (iv) *inconclusive* when tooling prevents faithful execution of the intended intervention.

510 **5.5 ANALYSIS OF INCONCLUSIVE CASES AND TARGETED TOOL ENHANCEMENT**

511 The 29–67% *Inconclusive* cases in Table 3 reveal the limits of orchestrator-level interventions: many
 512 failures arise from sub-agent capability gaps the orchestrator cannot resolve. These cases highlight
 513 the boundaries of sub-agent competence and indicate the improvement directions. We thus view
 514 DoVer as part of a larger debugging loop: (i) DoVer provides automated orchestrator-level interven-
 515 tions; (ii) unresolved failures surface sub-agent weaknesses requiring human or auto refinement.

516 To illustrate the effectiveness of this “DoVer automation + human-in-the-loop” cycle, we analyzed
 517 the failure traces of inconclusive cases in WW-GAIA and discovered two recurring failure modes
 518 in *WebSurfer*: (i) missing a “scroll-to-bottom” tool, causing repeated partial scrolling, and (ii) in-
 519 ability to process PDFs, leading to empty summaries. We implemented targeted fixes by adding the
 520 scrolling tool and revising PDF handling. After these upgrades, previously inconclusive Cases 20,
 521 21, and 26 can now be solved using only DoVer’s orchestrator-level interventions. This shows that
 522 DoVer not only repairs recoverable failures but also surfaces concrete sub-agent bottlenecks.

523 We see two future work directions depending on the degree of permissible system modification: (i)
 524 fully automated debugging loops, where DoVer’s insights feed into automated sub-agent improve-
 525 ment (e.g., using a coding agent to implement fixes). (ii) capability-aware intervention generation,
 526 allowing DoVer to tailor interventions to known sub-agent limits when code changes are not allowed.
 527 Both directions support the goal of building robust, self-improving multi-agent systems.

531 **6 CONCLUSION**

532 We introduced **DoVer**, an intervention-driven framework that reframes debugging in LLM-based
 533 multi-agent systems as a do-then-verify process. Rather than relying solely on log-based attribu-
 534 tion, DoVer actively tests failure hypotheses through targeted interventions, recovering 18–28% of
 535 failed trials, making measurable progress in others, and validating or refuting a majority of hypothe-
 536 ses. This outcome-oriented perspective highlights intervention as a practical and scalable tool for
 537 improving reliability, while reducing dependence on ambiguous human annotations. By bridging
 538 failure analysis with practical repair, DoVer takes a step toward more robust, verifiable, and self-
 539 improving multi-agent systems.

540
541 ETHICS STATEMENT

542 We acknowledge the ICLR Code of Ethics and confirm that our work complies with its principles.
 543 Our research does not involve human subjects or personally identifiable information. All datasets
 544 used are publicly available, and we adhered to their licenses and usage policies. We considered
 545 potential risks of privacy leakage, bias, or unfairness, and we believe our findings provide a positive
 546 contribution to the research community without foreseeable harmful applications.

547
548 REPRODUCIBILITY STATEMENT
549

550 The optimized results on the WW dataset and all major prompt templates are illustrated in the
 551 appendix figures. We provide an anonymous repository containing the complete source code and
 552 experiment scripts at: <https://anonymous.4open.science/r/DoVer-0734/>.

553
554 REFERENCES
555

556 Negar Arabzadeh, Siqing Huo, Nikhil Mehta, Qingyun Wu, Chi Wang, Ahmed Hassan Awadallah,
 557 Charles L. A. Clarke, and Julia Kiseleva. Assessing and verifying task utility in LLM-
 558 powered applications. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Pro-
 559 ceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp.
 560 21868–21888, Miami, Florida, USA, November 2024. Association for Computational Linguis-
 561 tics. doi: 10.18653/v1/2024.emnlp-main.1219. URL <https://aclanthology.org/2024.emnlp-main.1219/>.

563 AutoGen2. Autogen 0.2: An open-source programming framework for agentic ai. <https://microsoft.github.io/autogen/0.2/>, 2025. Accessed: 2025-09-01.

564 Mert Cemri, Melissa Z. Pan, Shuyi Yang, Lakshya A. Agrawal, Bhavya Chopra, Rishabh Tiwari,
 565 Kurt Keutzer, Aditya Parameswaran, Dan Klein, Kannan Ramchandran, Matei Zaharia, Joseph E.
 566 Gonzalez, and Ion Stoica. Why do multi-agent llm systems fail?, 2025. URL <https://arxiv.org/abs/2503.13657>.

567 Darshan Deshpande, Varun Gangal, Hersh Mehta, Jitin Krishnan, Anand Kannappan, and Rebecca
 568 Qian. TRAIL: trace reasoning and agentic issue localization. *CoRR*, abs/2505.08638, 2025.
 569 doi: 10.48550/ARXIV.2505.08638. URL <https://doi.org/10.48550/arXiv.2505.08638>.

570 Will Epperson, Gagan Bansal, Victor C Dibia, Adam Journey, Jack Gerrits, Erkang (Eric) Zhu, and
 571 Saleema Amershi. Interactive debugging and steering of multi-agent ai systems. In *Proceed-
 572 ings of the 2025 CHI Conference on Human Factors in Computing Systems*, CHI '25, pp. 1–15.
 573 ACM, April 2025. doi: 10.1145/3706598.3713581. URL <http://dx.doi.org/10.1145/3706598.3713581>.

574 Adam Journey, Gagan Bansal, Hussein Mozannar, Cheng Tan, Eduardo Salinas, Erkang Zhu,
 575 Friederike Niedtner, Grace Proebsting, Griffin Bassman, Jack Gerrits, Jacob Alber, Peter Chang,
 576 Ricky Loynd, Robert West, Victor Dibia, Ahmed Awadallah, Ece Kamar, Rafah Hosn, and
 577 Saleema Amershi. Magentic-one: A generalist multi-agent system for solving complex tasks.
 578 *CoRR*, abs/2411.04468, 2024. doi: 10.48550/ARXIV.2411.04468. URL <https://doi.org/10.48550/arXiv.2411.04468>.

579 Zhibin Gou, Zihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Nan Duan, and Weizhu Chen.
 580 Critic: Large language models can self-correct with tool-interactive critiquing. *arXiv preprint*
 581 *arXiv:2305.11738*, 2023.

582 Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao
 583 Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng
 584 Xiao, Chenglin Wu, and Jürgen Schmidhuber. Metagpt: Meta programming for A multi-agent
 585 collaborative framework. In *The Twelfth International Conference on Learning Representa-
 586 tions, ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenReview.net, 2024. URL <https://openreview.net/forum?id=VtmBAGCN7o>.

594 LangChain. Langgraph: Time travel (checkpoints & forking) — human-in-the-loop.
 595 https://langchain-ai.github.io/langgraph/how-tos/human_in_the_
 596 loop/time-travel/, 2025. Accessed: 2025-09-01.

597

598 Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbulin, and Bernard Ghanem. CAMEL:
 599 communicative agents for "mind" exploration of large language model society. In Alice Oh,
 600 Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.),
 601 *Advances in Neural Information Processing Systems 36: Annual Conference on Neural In-*
 602 *formation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -*
 603 *16, 2023*, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/a3621ee907def47c1b952ade25c67698-Abstract-Conference.html.

604

605 Qintong Li, Leyang Cui, Xueliang Zhao, Lingpeng Kong, and Wei Bi. Gsm-plus: A comprehensive
 606 benchmark for evaluating the robustness of llms as mathematical problem solvers. *arXiv preprint*
 607 *arXiv:2402.19255*, 2024.

608

609 Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
 610 Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
 611 with self-feedback. *Advances in Neural Information Processing Systems*, 36:46534–46594, 2023.

612 Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. GAIA:
 613 a benchmark for general AI assistants. In *The Twelfth International Conference on Learning*
 614 *Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenReview.net, 2024. URL
 615 <https://openreview.net/forumReact?id=fibxvahvs3>.

616

617 Alfin Wijaya Rahardja, Junwei Liu, Weitong Chen, Zhenpeng Chen, and Yiling Lou. Can agents fix
 618 agent issues? *CoRR*, abs/2505.20749, 2025. doi: 10.48550/ARXIV.2505.20749. URL <https://doi.org/10.48550/arXiv.2505.20749>.

619

620 Pat Rondon, Renyao Wei, José Cambronero, Jürgen Cito, Aaron Sun, Siddhant Sanyam, Michele
 621 Tufano, and Satish Chandra. Evaluating agent-based program repair at google. In *47th*
 622 *IEEE/ACM International Conference on Software Engineering: Software Engineering in Prac-*
 623 *tice, SEIP@ICSE 2025, Ottawa, ON, Canada, April 27 - May 3, 2025*, pp. 365–376. IEEE,
 624 2025. doi: 10.1109/ICSE-SEIP66354.2025.00038. URL <https://doi.org/10.1109/ICSE-SEIP66354.2025.00038>.

625

626 Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Re-
 627 flexion: language agents with verbal reinforcement learning. In Alice Oh, Tristan Naun-
 628 mann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), *Advances*
 629 *in Neural Information Processing Systems 36: Annual Conference on Neural Infor-*
 630 *mation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -*
 631 *16, 2023*, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html.

632

633 SmolAgents. smolagents: a barebones library for agents that think in code. <https://github.com/huggingface/smolagents>, 2025. Accessed: 2025-09-01.

634

635 Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li,
 636 Li Jiang, Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen LLM applications via
 637 multi-agent conversation framework. *CoRR*, abs/2308.08155, 2023a. doi: 10.48550/ARXIV.
 638 2308.08155. URL <https://doi.org/10.48550/arXiv.2308.08155>.

639

640 Yiran Wu, Feiran Jia, Shaokun Zhang, Hangyu Li, Erkang Zhu, Yue Wang, Yin Tat Lee, Richard
 641 Peng, Qingyun Wu, and Chi Wang. Mathchat: Converse to tackle challenging math problems
 642 with llm agents. *arXiv preprint arXiv:2306.01337*, 2023b.

643

644 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R. Narasimhan, and Yuan
 645 Cao. React: Synergizing reasoning and acting in language models. In *The Eleventh International*
 646 *Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023*, 2023.
 647 URL https://openreview.net/forum?id=WE_vluYUL-X.

648 Ori Yoran, Samuel Joseph Amouyal, Chaitanya Malaviya, Ben Bogin, Ofir Press, and Jonathan
 649 Berant. Assistantbench: Can web agents solve realistic and time-consuming tasks? In
 650 Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Confer-
 651 ence on Empirical Methods in Natural Language Processing, EMNLP 2024, Miami, FL, USA,
 652 November 12-16, 2024*, pp. 8938–8968. Association for Computational Linguistics, 2024. doi:
 653 10.18653/V1/2024.EMNLP-MAIN.505. URL <https://doi.org/10.18653/v1/2024.emnlp-main.505>.

654 Guibin Zhang, Junhao Wang, Junjie Chen, Wangchunshu Zhou, Kun Wang, and Shuicheng
 655 Yan. Agentracer: Who is inducing failure in the llm agentic systems? *arXiv preprint
 656 arXiv:2509.03312*, 2025a.

657 Shaokun Zhang, Ming Yin, Jieyu Zhang, Jiale Liu, Zhiuguang Han, Jingyang Zhang, Beibin Li,
 658 Chi Wang, Huazheng Wang, Yiran Chen, and Qingyun Wu. Which agent causes task failures
 659 and when? on automated failure attribution of LLM multi-agent systems. In *Forty-second In-
 660 ternational Conference on Machine Learning*, 2025b. URL <https://openreview.net/forum?id=Gaz1TYxZss>.

661 Mingchen Zhuge, Changsheng Zhao, Dylan R. Ashley, Wenyi Wang, Dmitrii Khizbulin, Yunyang
 662 Xiong, Zechun Liu, Ernie Chang, Raghuraman Krishnamoorthi, Yuandong Tian, Yangyang Shi,
 663 Vikas Chandra, and Jürgen Schmidhuber. Agent-as-a-judge: Evaluate agents with agents. *CoRR*,
 664 abs/2410.10934, 2024. doi: 10.48550/ARXIV.2410.10934. URL <https://doi.org/10.48550/arXiv.2410.10934>.

665 A REVISIT LOG-BASED FAILURE ATTRIBUTION ON THE WHO&WHEN 666 DATASET

667 Method	668 Hand Crafted		669 Algorithm Generated	
	670 Agent-Level Acc.	671 Step-Level Acc.	672 Agent-Level Acc.	673 Step-Level Acc.
674 Random	675 12.00	676 4.16	677 29.10	678 19.06
679 Baseline (WW)	680 55.17	681 5.26	682 54.33	683 12.50
684 Baseline (GPT-4○)	685 55.17±8.09	686 6.04±2.23	687 55.16±2.71	688 15.28±2.70
689 + Step Index (GPT-4○)	690 52.30±1.00	691 20.69±2.98	692 58.73±3.46	693 40.47±4.20
694 + Guidance (GPT-4○)	695 59.19±1.99	696 23.56±4.98	697 57.41±1.83	698 35.45±3.58
699 + Guidance (GPT-5)	700 59.19±1.99	701 23.56±1.00	702 62.43±1.66	703 45.77±1.65

683 Table 5: Reproduced evaluation results on the WW dataset using the All-at-Once method with
 684 the ground-truth annotation. Results are reported for both Hand-Crafted and Algorithm-Generated
 685 scenarios at agent-level and step-level accuracy. Rows show baseline results from WW, our repro-
 686 duction with GPT-4○, and refinements with explicit step indices and guidance reminders, as well
 687 as the latest GPT-5 model.

688 In this section, we revisit the log-based failure attribution task on the Who&When (WW) dataset. We
 689 present the details of our reproduced evaluation on WW as well as two minimal, non-invasive prompt
 690 refinements. We further examine the ground-truth labels in WW, providing detailed annotation notes
 691 for each examined case and discussing sources of uncertainty during ground-truth annotation.

692 Our reproduced evaluation on WW focuses on the All-at-Once (AAO) method, in which a single
 693 LLM call is made over the full input log. While we also reproduced results for the other two
 694 methods, “Step-by-Step” and “Binary Search” introduced in WW, we focus on AAO because it
 695 requires only one LLM call and achieves performance comparable to the other methods. In our
 696 reproduction, we run experiments with both GPT-4○ and GPT-5, repeating each run three times to
 697 reduce randomness. Detailed results are shown in Table 5. Following WW, we include the ground-
 698 truth annotation in the AAO prompt (the “With Ground-Truth” setting); results without ground-truth
 699 are similar and omitted for brevity.

700 Table 5 first lists the “Random” setting and the reported results in WW (denoted as “Baseline”).
 701 Examining the baseline failure cases yields two observations. *First*, for some cases the predicted

failure step index is hallucinated, i.e., the index exceeds the total number of steps in the log. Specifically, we find that the percentages of cases exhibiting this issue are 13.8% and 20.6% for the “Hand Crafted” and “Algorithm Generated” scenarios, respectively. To mitigate this, we add *explicit step indices* to the failure log (see Figure 3). The corresponding results appear in the “+Step Index” row of Table 5. This simple change substantially improves step-level attribution accuracy. We additionally verify that no outputs have out-of-range indices after this modification. *Second*, the baseline AAO prompt does not explicitly restate the guidance used during ground-truth annotation, which may cause LLMs and human annotators to apply different criteria for the failure agent/step. To align the criteria, we embed *a concise reminder of the annotators’ guidance* into the baseline prompt (see Figure 3). With this addition, attribution performance improves further; see the “+Guidance” row in Table 5.

Despite these prompt refinements, step-level attribution accuracy remains only around 20%, even with the latest GPT-5 model. To better understand this gap, we compare model outputs with ground-truth labels and find that a major contributing factor is uncertainty in the ground-truth annotation. As discussed in Section 3, we identify three sources of annotation uncertainty. Table 6 provides detailed annotation notes for each GAIA case presented in WW. For example, for Case 3, we list the step ranges for all 4 trial presented in the log. In each trial, we also provide the annotation notes for key steps (e.g., for the current ground-truth annotation Step 32, we agree that it can be a potential error step). Brief trial summary for later Trials 2/3/4 are also given in which we explicitly point out whether new strategies of solving task are explored. Note that we exclude Case 25 due to ambiguity in its question (i.e., two different ways of interpreting the year of 2019).

In our independent annotation, we also tag each case along the following dimensions: (i) whether the ground-truth failure step appears correct; (ii) whether alternative failure steps can be justified when the log contains multiple trials exploring different strategies; (iii) whether agent/step attribution is ambiguous; and (iv) whether API errors or flaky behavior are present. We then mark a case as *uncertain* if any of the first three tags is positive. The full tagging results are summarized in Table 7, which also includes auxiliary information such as the number of trials, the GT failure step from WW, and the outputs from each model run. Outputs matching the GT failure step are highlighted in green. As shown, agreement between model outputs and GT labels is substantially higher for cases with uncertain GT annotation (i.e., where the “Is Current GT Uncertain?” column equals 1) than for cases with more certain GT annotation. This finding indicates that current log-based failure attribution can be confounded by uncertainty in ground-truth labels, motivating the intervention-based auto-debugging approach presented in the main text.

Table 6: Detailed annotation notes for each GAIA case in WW. The table records trial-level observations, potential errors, ambiguous attributions, and API issues associated with the ground-truth labels.

WW ID	Annotation Notes
3	<p>Trial 1 (Step 0–38):</p> <ul style="list-style-type: none"> – Step 32: current GT; potential error as WebSurfer did not directly scroll to the bottom as instructed. <p>Trial 2 (Step 39–65): Tried a new strategy using the calendar feature but remained stuck navigating within the calendar.</p> <ul style="list-style-type: none"> – Steps 53–55: Ambiguous Agent/Step Attribution; WebSurfer could not click the target year instructed by Orchestrator because the calendar tool lacks a year filter. <p>Trial 3 (Step 66–87): Repeated a path similar to Trial 1, proposing a new strategy of leveraging URL patterns near the end.</p> <p>Trial 4 (Step 88–92): Explored the URL-pattern strategy but encountered an LLM API error.</p> <ul style="list-style-type: none"> – Step 92: LLM API error due to content filter.
5	<p>Step 12: current GT; potential error due to missing OCR text.</p> <p>Steps 12–16: Ambiguous Agent/Step Attribution; Orchestrator did not verify the OCR output but still instructed WebSurfer to proceed, and WebSurfer did not perform a sanity check and guessed the answer.</p>

Continued on next page

756

Continued from previous page

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

WW ID	Annotation Notes
9	<p>Trial 1 (0–25):</p> <ul style="list-style-type: none"> – Step 25: current GT; potential error due to unnecessary replanning. <p>Trial 2 (26–51): Repeated the strategy in Trial 1.</p> <p>Trial 3 (52–74): Tried a new website.</p> <p>Trial 4 (75–94): Visited the same websites as before.</p>
11	<p>Trial 1 (Step 0–38):</p> <ul style="list-style-type: none"> – Step 24: current GT; no obvious error. If attributing a mistake to not recognizing clickable tabs, one may attribute earlier Steps such as 12/16/20. <p>Trial 2 (39–73): Repeated the same page-scrolling as Trial 1; tried a new strategy of in-page search but got stuck.</p> <ul style="list-style-type: none"> – Step 67: potential error using the email feature for search. <p>Trial 3 (74–115): Made progress and identified the correct oldest flavor; stuck at inspecting the background photo.</p> <p>Trial 4 (116–129): Tried directly searching for the target photo from other sources; terminated due to max rounds reached.</p> <ul style="list-style-type: none"> – Step 129: almost solved the task but stopped due to max rounds reached.
20	<p>Trial 1 (0–34):</p> <ul style="list-style-type: none"> – Step 3: current GT; no obvious error. – Step 24: potential error; unable to open the downloaded PDF. – Steps 30–32: Ambiguous Agent/Step Attribution; Orchestrator asked FileSurfer to open a paper that had not been downloaded; FileSurfer tried to open a hallucinated file path. <p>Trial 2 (35–66): Still stuck downloading/opening the PDF; LLM API error due to content filter.</p> <ul style="list-style-type: none"> – Step 66: LLM API error due to content filter.
21	<p>Step 4: current GT; no obvious error.</p> <p>Step 24: LLM API error due to content filter.</p>
22	<p>Step 4: current GT; no obvious error.</p> <p>Steps 14–20: Ambiguous Agent/Step Attribution; Orchestrator instructed FileSurfer to process a downloaded PDF that WebSurfer had not clearly downloaded, resulting in “File not found.”</p> <p>Step 23: LLM API error due to content filter.</p>
27	<p>Trial 1 (Step 0–30):</p> <ul style="list-style-type: none"> – Step 4: current GT; no obvious error. – Steps 18–20: Ambiguous Agent/Step Attribution; Orchestrator instructed FileSurfer to process a downloaded PDF that WebSurfer had not clearly downloaded, resulting in “File not found.” <p>Trial 2 (Step 31–50): Encountered the same “File not found” issue, tried to resolve it, then terminated due to LLM API error.</p> <ul style="list-style-type: none"> – Step 50: LLM API error due to content filter.
41	<p>Trial 1 (0–37):</p> <ul style="list-style-type: none"> – Step 8: current GT; no obvious error. – Step 16: potential error; access to the desired website was blocked by human verification. <p>Trial 2 (38–82): Tried a different website; attempted a new strategy of asking for help by submitting a post; terminated due to LLM API error from content filter.</p> <ul style="list-style-type: none"> – Step 82: LLM API error due to content filter.

Continued on next page

802

803

804

805

806

807

808

809

810

Continued from previous page

811

812

WW ID	Annotation Notes
46	<p>Trial 1 (0–42):</p> <ul style="list-style-type: none"> – Step 32: current GT; if attributing to this step due to failure to retrieve the desired information, one may attribute earlier steps such as Step 20. <p>Trial 2 (43–93): Initially still stuck finding relevant information; later tried a new strategy of contacting a potential source via email but was unable to send it.</p> <p>Trial 3 (94–123): Continued exploring direct-contact strategies; tried a new strategy of live chat and phone call but did not succeed.</p> <p>Trial 4 (124–129): Continued direct-contact strategy; terminated due to max rounds reached.</p> <ul style="list-style-type: none"> – Step 129: max rounds reached.
47	<p>Trial 1 (0–50):</p> <ul style="list-style-type: none"> – Step 24: potential error; FileSurfer did not follow the instruction to unzip a file. <p>Trial 2 (51–66): Tried a new strategy using ComputerTerminal to run code generated by Orchestrator; got a wrong answer due to incorrect code.</p> <ul style="list-style-type: none"> – Step 51: current GT; potential error due to wrong code.
51	<p>Trial 1 (0–31):</p> <ul style="list-style-type: none"> – Step 5: current GT; potential error; FileSurfer unable to transcribe an MP3 audio file. <p>Trial 2 (32–46): Tried another device but was not successful.</p> <p>Trial 3 (47–99): Attempted to use a new strategy of using online service to transcribe audio; not successful.</p> <p>Trial 4 (100–122): Continued exploring the online-service approach.</p>
56	<p>Trial 1 (0–33):</p> <ul style="list-style-type: none"> – Step 4: current GT; no obvious error. <p>Trial 2 (34–67): Tried a different website; stuck locating the desired information.</p> <p>Trial 3 (68–94): Tried another website but still could not locate the desired information.</p> <p>Trial 4 (95–128): Returned to the initially explored website; deeply explored its content; terminated due to max rounds reached.</p> <ul style="list-style-type: none"> – Step 128: max rounds reached.
58	<p>Trial 1 (0–22):</p> <ul style="list-style-type: none"> – Step 22: current GT; potential error due to unnecessary triggering of replanning. <p>Trial 2 (23–81): Repeated steps from Trial 1; made progress and explored new ways to find the “Regression” label but each attempt failed.</p> <p>Trial 3 (82–105): Continued web search for the desired page but landed on the wrong page, leading to an incorrect final result.</p>
7	GT appears correct.
12	GT appears correct.
14	GT appears correct.
24	GT appears correct.
26	Step 32: current GT; LLM API error due to content filter.
29	Step 12: current GT; LLM API error due to content filter.
33	Step 8: current GT; LLM API error due to content filter.
34	Step 4: current GT; LLM API error due to content filter.
37	<p>Trial 1 (0–24):</p> <ul style="list-style-type: none"> – Step 4: current GT; potential error due to unspecified search query. <p>Trial 2 (24–58): Continued the same strategy as Trial 1.</p> <ul style="list-style-type: none"> – Step 58: LLM API error due to content filter.
42	GT appears correct.
43	GT appears correct.
45	Step 20: current GT; LLM API error due to content filter.
49	GT appears correct.
53	GT appears correct.
54	GT appears correct.

862

863

864
865
866
867
868
869
870
871
872

873 **Optimal Prompt Template**

874 You are an AI assistant tasked with analyzing a multi-agent conversation history when solving a real world problem.

875 Here is the Annotation Guideline:

876 Failure Responsible Agent:

877 a) Select the single agent that should be directly responsible for this failure in your mind. Allow for some subjectivity, but be prepared to give your reasons.
878 b) Don't be too strict. If there exist agents that do redundant steps and agents that make mistakes, choose the agent who makes mistakes.
879 c) If there are no agents that make obvious mistakes, decide one single agent in your mind.
880 d) If multiple agents make mistakes, choose the one that made the most serious mistake.

881 Decisive error step:

882 a) First decide one single mistake agent, then decide one single mistake step. The Mistake step must be made by the mistake agent.
883 b) If the mistake agent makes mistakes in multiple steps, choose the first step.
884 c) Index from 0.
Failure Reasons:
884 a) First, use natural language to describe the reason. E.g.,
885 "The agent wrote the wrong code."
b) Make sure the reader could understand the annotations.

886 Others:

887 a) Accurately record the time of labeling.
888 b) Mark all annotation if you have any uncertain, and then we need to vote and discuss later.

889 While following the Annotation Guideline above, you must still strictly produce the final answer in the exact output format specified below.

890 The problem is: {problem}
The Answer for the problem is: {ground_truth}
891 Identify which agent made an error, at which step, and explain the reason for the error. Here's the conversation:
892 [Step {step_idx_i}] {agent_name_i}: {content_i}...

893 Based on this conversation, please predict the following:
1. The name of the agent who made a mistake that should be directly responsible for the wrong solution to the real world problem.
894 If there are no agents that make obvious mistakes, decide one single agent in your mind. Directly output the name of the Expert.
2. In which step the mistake agent first made mistake. For example, in a conversation structured as follows:
895 {
896 [Step 0] "agent a": "xx",
[Step 1] "agent b": "xxxx",
897 [Step 2] "agent c": "xxxxx",
[Step 3] "agent a": "xxxxxxxx"
898 },
899 each entry represents a 'step' where an agent provides input. The 'x' symbolizes the speech of each agent. If the mistake is in agent c's speech, the step number is 2. If the second speech by 'agent a' contains the mistake, the step number is 3, and so on.
900 Please determine the step number where the first mistake occurred.
Important: Count steps strictly using the bracketed indices [Step k] shown in the conversation/example, and report the first [Step k] where the mistake first appears.
901 3. The reason for your prediction.
902 Output exactly in this format (no extra text):
903 Please answer in the format:
904 Agent Name: (Your prediction)\nStep Number: (Your prediction)\n905 Reason for Mistake: \n

906
907
908
909
910
911
912
913
914
915
916
917

Figure 3: Extended prompt template: **orange** marks explicit step indices, and **blue** marks the embedded concise reminder of annotators' guidance.

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

WW ID	Is Current GT Uncertain?	Does GT Step Look Correct?	Can Multi-Failures be Extracted from Multi-Trials?	Has Ambiguity in Agent/Step Attribution?	Is API Error or Flaky Issue Observed?	Trial Count	Ground-truth Mistake Step			GPT-4o-20241120			GPT-5-chat-20250807		
							Run 1	Run 2	Run 3	Run 1	Run 2	Run 3	Run 1	Run 2	Run 3
3	1	0	1	1	1	4	32	16	16	16	16	16	39	39	39
5	1	0	0	0	0	1	12	16	16	16	16	16	16	16	16
9	1	0	1	0	0	4	25	42	3	42	26	26	26	26	26
11	1	1	1	0	0	4	24	4	4	4	4	128	128	128	128
20	1	0	1	1	1	2	3	4	3	3	20	20	20	20	20
21	1	1	0	0	0	1	1	4	4	16	24	24	24	24	24
22	1	1	0	1	1	1	1	4	4	9	20	23	23	23	23
27	1	1	1	1	1	2	4	4	4	16	24	20	20	20	20
41	1	1	1	0	0	1	2	8	16	6	5	4	4	4	4
46	1	0	1	0	0	0	4	32	4	58	63	129	129	129	129
47	1	0	1	0	0	0	2	51	16	4	4	59	59	59	59
51	1	0	1	0	0	0	4	5	5	5	5	5	5	5	5
56	1	1	1	1	0	0	4	4	4	11	11	11	11	11	11
58	1	0	1	0	0	0	3	22	4	4	4	39	39	39	39
7	0	0	0	0	0	0	1	8	4	4	4	4	4	4	4
12	0	0	0	0	0	0	1	16	16	16	16	16	16	16	16
14	0	0	0	0	0	0	1	14	31	31	30	14	14	14	14
24	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1
26	0	0	0	0	0	1	1	32	16	16	16	16	16	16	16
29	0	0	0	0	0	1	1	8	4	4	4	6	6	6	10
33	0	0	0	0	0	1	1	4	4	2	4	6	0	0	0
34	0	0	0	0	0	1	2	4	4	4	3	4	4	4	4
37	0	0	0	0	0	0	0	1	29	28	4	29	29	29	29
42	0	0	0	0	0	0	1	12	12	12	12	12	12	12	12
43	0	0	0	0	0	0	1	20	4	6	8	1	1	1	1
45	0	0	0	0	0	1	1	12	12	12	12	12	12	12	12
49	0	0	0	0	0	0	1	24	24	24	24	24	24	24	24
53	0	0	0	0	0	0	1	15	16	16	16	16	16	16	16
54	0	0	0	0	0	0	1	15	16	16	16	16	16	16	16

Table 7: Tagging results for each GAIA case in WW. The table reports ground-truth annotations, uncertainty tags, possibility for multi-failure step attribution, presence of ambiguous attributions, potential API or flaky errors, and case-specific details such as number of trials and model outputs. Model predictions matching the ground-truth failure step are highlighted in green.

972 **B PROMPTS USED IN DOVER**
973974 In our debugging pipeline, we adopt a layered prompt template design to enable systematic diagnosis
975 and intervention. The *Trial Segmenter* first partitions the full session log into trials according to
976 the “plan–execution” structure, identifying the indices of the initial planning step and each major
977 plan update. It outputs only the step indices and criteria for initial planning and update planning,
978 providing anchor points for subsequent trial-level analysis.979 Next, the *Failure Proposer* summarizes each trial by extracting its plan and execution trajectory,
980 reporting success or failure. In case of failure, it locates the earliest error step, identifies the responsi-
981 ble agent, and articulates the error reason—information that drives the subsequent generation of
982 interventions.983 The *Intervention Recommender* then generates the minimal executable fix under the combined con-
984 straints of task description, ground-truth answer, and localized failure context (previous two steps +
985 failure step). Its output is unified in JSON format, specifying both the intervention category and the
986 proposed replacement text.987 In parallel, the *Ground-Truth Milestone Extractor* abstracts each problem and its answer into at most
988 five tool-agnostic milestones, each containing *order*, *title*, *action*, and *result*, to serve as a process-
989 oriented progress standard. The *Milestone Evaluator* then aligns the real execution trace with these
990 milestones, classifying each as *achieved*, *partial*, or *missed*, and detecting whether a “new path”
991 was explored along with its feasibility and contribution—thus providing a quantitative measure of
992 whether substantial progress was made.993 Finally, the module *mislocalization or insufficient fix proposer* is applied after re-running the sys-
994 tem with the intervention, distinguishing between “success after intervention,” “instruction not exe-
995 cuted,” and “applied but mislocalized/insufficient fix,” and providing alignment evidence to support
996 hypothesis validation and close-loop feedback.997 **C ENABLING DOVER ON AUTOGEN2**
9981000 To assess whether DoVer can be applied beyond Magentic-One, we integrated it with a MathChat
1001 multi-agent system built on the AutoGen2 (AG2) framework for the GSMPlus experiments. This
1002 appendix summarizes how we added checkpoint and re-execution functions to AG2 and how DoVer
1003 reuses this mechanism with minimal changes.1004 **Overview of MathChat in AG2.** MathChat in AG2 follows a group-chat pattern rather than an
1005 explicit planner–executor loop as in M1. A manager agent coordinates several specialized workers
1006 (e.g., a problem solver, a code executor, and a verifier). At each turn, the manager selects the
1007 next speaker based on the conversation state. There is no dedicated “planner” agent; instead, new
1008 reasoning attempts or verification cycles emerge when different specialists are invoked.1009 **Enhancing AG2 with Checkpointing and Replay.** Since AG2 does not natively support check-
1010 pointing and replay functions, we implemented a lightweight checkpointing layer around the AG2
1011 conversation manager. Specifically, after each agent turn, we serialize the full logical state needed
1012 to resume the run, including:1013

- 1014 • the conversation history up to that step (messages, speaker identities, and any tool outputs);
1015 • the configuration of all agents in the chat (roles, prompts, tool bindings);
1016 • the underlying LLM configuration (model name, temperature, decoding parameters).

1017 For MathChat, there is no persistent external environment beyond these components, so we do not
1018 need to snapshot additional tool state. Each checkpoint is stored as a structured object keyed by
1019 the step index, enabling us to load the system state at any past turn. We have released this AG2
1020 enhancement with checkpointing and replay functions in our anonymous repository linked in this
1021 paper.1022 **Enabling DoVer on MathChat in AG2.** To run DoVer interventions, we load the checkpoint
1023 corresponding to the target step, reconstruct the manager and agents from the serialized state, and

1026 then apply the intervention by editing the message at the target step (for example, replacing the
 1027 manager’s instruction with the text proposed by DoVer). We then resume the conversation from
 1028 the target step onward using the original AG2 run loop. Because interventions operate only at
 1029 the message-passing layer over restored state, this integration does not require changes to AG2’s
 1030 core scheduling or tool interfaces; the DoVer pipeline, including trial segmentation and intervention
 1031 generation, can be reused unchanged after adapting prompts to the MathChat setting.

1032

1033 **Implementation Effort.** The AG2 integration required adding a checkpoint-aware wrapper
 1034 around the conversation manager and a small amount of glue code to bridge checkpoints with
 1035 DoVer’s intervention executor. In practice, this amounted to on the order of one thousand lines
 1036 of code and a few days of work by a single engineer, aided by LLM-based coding assistance. Once
 1037 this infrastructure is in place, plugging DoVer into a new AG2-based multi-agent application mainly
 1038 requires registering checkpoint capture, exposing a replay entry point from a given step index, and
 1039 mapping DoVer’s intervention categories to concrete message edits at that step.

1040

1041 **Guidelines for Enabling DoVer in Other Agent Frameworks.** We highlight several design prin-
 1042 ciples from the above integration experience:

1043

1. *Minimal-invasive Design:* By wrapping core components (e.g., chat manager in AG2) with
 1044 checkpoint-aware versions, we preserved existing architecture while enabling checkpointing.
2. *Capture Full System State:* We used LLM-assisted tooling to identify all relevant state variables
 1046 (e.g., agent configs, LLM settings, conversation history), ensuring accurate restoration.
3. *Intervention via Checkpoint Manipulation:* Interventions operate directly on structured check-
 1048 point data, enabling seamless reuse of restoration and replay logic.

1049

1050 We hope these guidelines make it easier to integrate DoVer into a wide range of agent systems.

1051

1052 D SAMPLE “VALIDATED” AND “PARTIALLY VALIDATED” CASES

1053

1054 (1) Validated: Case 3 (Trial 1) in WW-GAIA

1055

- **Task:** Identify the architectural firm associated with a Chicago landmark referred to indirectly via
 1056 a NASA APOD entry from Aug. 1–7, 2015, as shown in Figure 1.

1058

- **Diagnosis:** The *WebSurfer* agent engaged in prolonged, aimless scrolling of the APOD archive
 1059 and repeatedly missed the required date-bounded entries, despite receiving explicit guidance.

1060

- **Intervention:** We replaced unstructured scrolling with an in-archive, date-bounded keyword strat-
 1061 egy: “*Search the APOD archive directly, restrict to August 1–7, 2015, and scan for ‘city lights’ /*
 1062 *‘horizon’; report the entry title, date, and a brief summary*”.

1063

- **Effect:** The system revised its plan to prioritize date/keyword filters, issued a targeted query, and
 1064 quickly converged along the reasoning chain *Marquette (city)* → *Jacques Marquette (namesake)*
 1065 → *Marquette Building (Chicago)* → *Holabird & Roche (architects)*, yielding the correct first name
 1066 “Holabird.” The failed trial flipped to success, *validating* both the hypothesis (strategy error) and
 1067 the remedy (focused retrieval).

1068

1069 (2) Partially Validated: Case 56 (Trial 3) in WW-GAIA

1070

- **Task:** According to Google Finance, when was the first year the Apple stock went above \$50
 1071 (without adjusting for stock split)?

1072

- **Diagnosis:** Execution stalled while probing Alpha Vantage as a source for unadjusted historical
 1073 prices; the agent failed to complete source verification.

1074

- **Intervention:** We redirected exploration *away* from generic search results and *toward* Alpha Van-
 1075 tage’s homepage, instructing the agent to verify data availability and note access requirements.

1077

- **Effect:** The trajectory moved onto the correct information source, but repeated script errors and
 1078 API key frictions blocked completion. The outcome was clear forward progress without a final
 1079 result and the hypothesis was partially validated since the re-planning was correct but execution was
 constrained by environment and tooling.

1080 **LLM USAGE**
10811082 In accordance with the ICLR 2026 policy, we disclose the use of LLMs during the preparation
1083 of this work. We used GPT-5 (via ChatGPT) to aid in polishing the writing style and improving
1084 the readability of the manuscript. In addition, we occasionally used LLMs to assist with literature
1085 discovery and brainstorming possible experiment variations. All research design decisions, analyses,
1086 and reported results were conceived, implemented, and validated by the authors.
1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

Trial Segmenter Prompt

```

- You are an experienced system log analyzer and decomposer, who can effectively decompose and organize complex session logs into meaningful components.
- Your task is to analyze a session log from a Large Language Model (LLM) based agent system, and decompose the session log into a series of trials that the system had made to solve a given task.
- Refer to Section 'On the LLM-based Agent System' for details about the LLM-based agent system.
- Refer to Section 'On the Input Data Structure' for details on the data structure of the input logs.
- Refer to Section 'Guidance for Log Decomposition' for details on how to perform the log decomposition.
- Refer to Section 'On the Output Format' for details on the output data structure.

# On the LLM-based Agent System
- The LLM-based agent system can be a single or multi-agent system.
- The system is often tasked with a problem, and agents in the system work collectively to solve the task.
- Agents in the system can have different roles and responsibilities, and they may need to communicate and collaborate with others to achieve the overall goal.
- Agents work in the SEQUENTIAL manner, namely, agents are invoked one by one and no agents are executing in parallel.
- There often exists an agent playing the role of Orchestrator, who devises and updates a plan for solving the task and coordinates with the agents to solve the task.
- The general flow of the system follows the cycle of "make a plan", "execute plan", "update plan", and so on.

# On the Input Data Structure
- The input data are collected from a session in the LLM-based agent system.
- The session contains a series of interactions among agents in the system. The interaction often starts with a specific task and the goal of the system is to finish task successfully.
- The input data are in the following Json format:
{
  'problem': <problem>,
  'ground_truth_answer': <ground_truth_answer>,
  'session_logs': <session_logs>
}
- 'problem' denotes the specific task that the agent system needs to solve.
- 'ground_truth_answer' is the corresponding ground truth answer for the problem.
- 'session_logs' provides the details of the session trace, and is a string object with the following format:
...
[Step 0] "agent a": "xx",
[Step 1] "agent b": "xxxx",
[Step 2] "agent c": "xxxxx",
[Step 3] "agent a": "xxxxxx"
...
Each entry in the above represents a 'Step' where an agent provides input. The 'x' symbolizes the speech/message of each agent.

# Guidance for Log Decomposition
- The goal is to decompose the session logs into a series of 'Trial's that had been made by the system.
- Each 'Trial' is defined as an attempt to solve the problem, consisting of a 'Planning' step and its corresponding 'Execution' steps.
- Both 'Planning' and its 'Execution' are manifested by 'Step's in the log.
- The 'Planning' steps outline the strategy for solving the problem, while the 'Execution' steps are the actual attempts made by the agents to implement the plan.
- 'Planning' steps include both the initial planning and any subsequent updates to the plan.
- If 'Planning' is updated in the log (e.g., due to no progress made after executing current plan), NEW 'Trial' should be considered.
- The key of log decomposition is to categorize all 'Step's in the log into Four categories, 'Initial_Planning', 'Update_Planning', 'Execution', and 'Others'. Refer to the following guidance for the categorization:
- 'Initial_Planning' step are the step taken to create a plan for solving the problem. These steps typically involve brainstorming, outlining step-by-step strategies, and setting goals. Only ONE step in the log should be classified as 'Initial_Planning'.
- 'Update_Planning' steps are those that modify or refine the existing plan based on new information or feedback. These steps may involve re-evaluating the strategy, adjusting goals, or incorporating lessons learned from previous attempts. Note that the 'Update_Planning' step refers to the major update of the whole task plan. The small changes of in the execution of a plan (e.g., clicking another links in the search result page when the previous link click returns no useful result) do NOT count as the 'Update_Planning' step, as it is still part of a plan execution but just a different execution detail.
- Both 'Initial_Planning' and 'Update_Planning' steps are often carried out by the agent of the Orchestrator role. But not all 'Step's from the Orchestrator agent are 'Planning' steps, as the Orchestrator agent can have responsibilities other than planning. For example, when executing a plan, the Orchestrator agent may provide instructions and guidance to other agents for better plan execution or coordination among agents.
- Not every 'Initial_Planning' or 'Update_Planning' step is required to be followed by 'Execution' steps. This can occur if the plan is not executed or if the execution details are not captured in the log. Thus, it is acceptable to have several consecutive steps are labelled as 'Planning' steps.
- 'Others' steps are auxiliary steps that do not directly contribute to the planning or execution of the task. These may include acknowledgments of the task receipt, final result collection and report result to the user, or other non-essential messages related to the core task-solving process. They often appear at the begining and end of the session logs.
- Follow the below steps to decompose the session logs into 'Trial's:
- 1. Read through the 'session_logs' to understand the overall context. Specifically,
  - Understand the task and identify the set of agents has been assembled to solve the task.
  - Identify the specific roles and responsibilities of each agent in the context of the task. Identify the Orchestrator agent and how it coordinate other agents.
- 2. Categorize each 'Step' in the log into 'Initial_Planning', 'Update_Planning', 'Execution' and 'Others' categories based on the guidance provided above.
- 3. Only output the step indices of the 'Initial_Planning' and 'Update_Planning' steps and the reasons for their categorization.

# On the Output Format
- The output should be a Json object with the following structure:
{
  'initial_planning_step': {
    'step_index': <the original step index of the initial planning step, e.g., 0>,
    'reason': <the reason why this Step 0 is identified as an initial planning step>
  },
  'plan_update_steps': [
    ...
    {
      'plan_update_step_index': <the original step index of the plan update step, e.g., 5>,
      'reason': <the reason why this Step 5 is identified as a plan update step>
    },
    ...
  ]
}
```

Figure 4: Trial segmenter prompt: log decomposition of full session into planning–execution trials.

1188
1189
1190
1191
1192 **Failure Proposer Prompt 1**
1193 - You are an experienced system log analyzer and summarizer, who can effectively analyze and summarize complex session logs into concise insights.
1194 - Your task is to analyze a partial session log related to a trial to solve a given task in a Large Language Model (LLM) based agent system, and summarize the key process of the trial as well as perform root cause analysis of the trial if it is a failed trial.
1195 - Refer to Section 'On the LLM-based Agent System' for the background knowledge about the LLM-based agent system.
1196 - Refer to Section 'On the Trial and Session Log Decomposition' for the background knowledge about log of a session and how the prior process of decomposing the whole session log into different trials.
1197 - Refer to Section 'On the Input Data Structure' for details on the input data for the current trial summarization task.
1198 - Refer to Section 'Guidance for Trial Summarization' for details on how to perform the log analysis and trial summarization.
1199 - Refer to Section 'On the Output Format' for details on the output data structure.
1200
1201 **# On the LLM-based Agent System**
1202 - The LLM-based agent system can be a single or multi-agent system.
1203 - The system is often tasked with a problem, and agents in the system work collectively to solve the task.
1204 - Agents in the system can have different roles and responsibilities, and they may need to communicate and collaborate with others to achieve the overall goal.
1205 - Agents work in the SEQUENTIAL manner, namely, agents are invoked one by one and no agents are executing in parallel.
1206 - There often exists an agent playing the role of Orchestrator, who devises and updates a plan for solving the task and coordinates with the agents to solve the task.
1207 - The general flow of the system follows the cycle of "make a plan", "execute plan", "update plan", and so on.
1208
1209 **# On the Trial and Session Log Decomposition**
1210 - The input trial log data are part of a session in the LLM-based agent system.
1211 - The session contains a series of interactions among agents in the system. The interaction often starts with a specific task and the goal of the system is to finish task successfully.
1212 - The whole log of the session ('session_logs') is structured as the step-by-step messages from agents, namely,
1213 ...
1214 [Step 0] "agent a": "xx",
1215 [Step 1] "agent b": "xxxx",
1216 [Step 2] "agent c": "xxxxx",
1217 [Step 3] "agent a": "xxxxxxxx"
1218 [
1219 Each entry in the above represents a 'Step' where an agent provides input. The 'x' symbolizes the speech/message of each agent.
1220 - The whole session log had been decomposed into different 'Trial's with the following requirements:
1221 - Each 'Trial' is defined as an attempt to solve the problem, consisting of a 'Planning' step and its corresponding 'Execution' steps.
1222 - Both 'Planning' and its 'Execution' are manifested by 'Step's in the log.
1223 - The 'Planning' steps outline the strategy for solving the problem, while the 'Execution' steps are the actual attempts made by the agents to implement the plan.
1224 - 'Planning' steps include both the initial planning and any subsequent updates to the plan.
1225 - Going through the session log, if there is a step related to plan update (e.g., due to no progress made after executing the existing plan), the existing 'Trial' would terminate and a new 'Trial' would be considered to start.
1226 - The decomposition of the session log into 'Trial's allows for a more granular analysis of the agent system's behavior and performance.
1227
1228 **# On the Input Data Structure**
1229 - The input data are in the following Json format:
1230 {
1231 'problem': <problem>,
1232 'ground_truth_answer': <ground_truth_answer>,
1233 'previous_trial_summary': [
1234 ...
1235 {
1236 'trial_index': <trial_index>,
1237 'trial_plan': <trial_plan>,
1238 'trial_execution': <trial_execution>,
1239 'is_succeed': <is_succeed>,
1240 'trial_summary': <trial_summary>
1241 },
1242 ...
1243],
1244 'trial_logs_to_summarize': <trial_logs_to_summarize>,
1245 }
1246 }
1247 - 'problem' denotes the specific task that the agent system needs to solve.
1248 - 'ground_truth_answer' is the corresponding ground truth answer for the problem.
1249 - 'previous_trial_summary' provides the history of all previous trials in the session. Each element corresponds to each historical trial, including their 'trial_index', 'trial_plan' (i.e., step by step plan for the trial), 'trial_execution' (i.e., execution details for the trial), 'trial_summary' and the indicator of 'is_succeed' to denote whether the trial successfully solves the task or not. Empty list for the first trial.
1250 - 'trial_logs_to_summarize' provides the log details related to the trial intended to be summarized. It still follows the above step-by-step style of 'session_logs' but only contains the steps related to the specific trial.
1251 ...
1252 [Step n] "agent a": "xx",
1253 [Step n+1] "agent b": "xxxx",
1254 ...
1255 [Step m] "agent c": "xxxxxxxx"
1256
1257 The initial step of the trial, (i.e., 'Step n') often refers to the above 'Planning' step, involving an initial plan creation or update, and the following steps belong to the execution of the plan of this trial.

Figure 5: Trial summarizer + failure proposer prompt: per-trial summary and root-cause localization, part 1.

1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249

Failure Proposer Prompt 2

1250 # Guidance for Trial Summarization
 1251 - The goal is to summarize the provided `trial_logs_to_summarize` based on the overall context including the task and previous trial history.
 1252 - Follow the below steps for trial summarization:
 1253 - 1. Read through the `problem` and `ground_truth_answer` to understand the task and its ground truth answer.
 1254 - 2. Read through the `previous_trial_summary` to understand how agents try to solve the task in previous trials.
 1255 - 3. Examine the `trial_logs_to_summarize` to understand the specific steps taken in the current trial. Specifically,
 1256 - Understand the first planning step of the current trial. If it involves a plan update, you need to derive the reasoning
 1257 behind the update by considering the `trial_plan` and `trial_summary` of the last trial.
 1258 - Closely track the execution steps after the planning step of the current trial and examine how they carry out the plan
 1259 and solve the task. Note that there can be NO execution steps after the planning step, e.g., due to no execution in reality.
 1260 - Pay high attention to the final outcome of the trial, especially whether it successfully solve the task or not. If
 1261 succeed, please reflect how and why this trial solves the task successfully, and compare its success with the prior failed
 1262 trials. If not, please reflect why it fails and which mistake agents and steps are responsible for the failure.
 1263 - 4. Output the trial summary with the following key components:
 1264 - `trial_context`: the context in which the trial was conducted, including relevant information from previous trials and
 1265 the current task.
 1266 - `trial_plan`: a detailed plan for the current trial. The plan should be self-contained, namely, if the original log at
 1267 the plan step only contains the plan update part, you should derive the missing context from the previous trial's plan and
 1268 summary. Output the plan in the step-by-step format and number them for the progress tracking, e.g., ["1. xxx", "2. xxx", ...].
 1269 - `trial_execution`: a detailed description of the execution process during the CURRENT trial, NOT the whole session. Only
 1270 extract execution details from the logs given in the current trial logs (`trial_logs_to_summarize`). NEVER quote execution
 1271 details from prior trials. If no execution details can be found after the planning step in the current trial (e.g., due to no
 1272 execution in reality), directly output "No execution details found".
 1273 - `plan_fulfillment_status`: summarize the plan fulfillment status based on `trial_execution` and `trial_plan`. You need to
 1274 map the progress from execution to the numbered planned steps in `trial_plan`. Namely, output the plan fulfillment status as a
 1275 json object:
 1276 {
 1277 "fully_fulfilled_plan_steps": [<plan_step_index>],
 1278 "partially_fulfilled_plan_steps": [<plan_step_index>],
 1279 "unfulfilled_plan_steps": [<plan_step_index>]
 1280 }
 1281 Note that `<plan_step_index>` refers to the plan step index in `trial_plan`, not the step index in the original session
 1282 logs.
 1283 - `is_succeed`: whether the current trial successfully solves the task or not.
 1284 - `trial_reflection`: a reflection on the trial's outcomes, including what worked well, what didn't, and any insights
 1285 gained for future trials.
 1286 - `mistake_agent`: only required for failed trials. Identify which agent is mainly responsible for the trial failure. If
 1287 multiple agents are responsible, only choose the most relevant one.
 1288 - `mistake_step_index`: only required for failed trials. Identify the specific step in the trial where the mistake
 1289 occurred.
 1290 - `mistake_reason`: only required for failed trials. Explain why you choose the mistake agent and step.
 1291 - `trial_overall_summary`: a summary of the trial's overall performance, including key process, successes and failures.
 1292 # On the Output Format
 1293 - The output should be a Json object with the following structure:
 1294 {
 1295 "trial_context": <the context in which the trial was conducted. Object Type: string>,
 1296 "trial_plan": <a detailed plan for the current trial. Object Type: list of string>,
 1297 "trial_execution": <a detailed description of the execution process and progress made during the trial. Output "No
 1298 execution details found" if no execution steps after the planning step. Object Type: string>,
 1299 "trial_progress": {
 1300 "fully_fulfilled_plan_steps": [<plan_step_index, Object Type: int>],
 1301 "partially_fulfilled_plan_steps": [<plan_step_index, Object Type: int>],
 1302 "unfulfilled_plan_steps": [<plan_step_index, Object Type: int>]
 1303 },
 1304 "is_succeed": <whether the current trial successfully solves the task or not. Object Type: boolean>,
 1305 "trial_reflection": <a reflection on the trial's outcomes. Object Type: string>,
 1306 "mistake_agent": <the agent mainly responsible for the trial failure, if applicable. Object Type: string>,
 1307 "mistake_step_index": <the specific step in the trial where the mistake occurred, if applicable. Object Type: int>,
 1308 "mistake_reason": <an explanation of why the identified agent and step are considered mistakes, if applicable. Object Type:
 1309 string>,
 1310 "trial_overall_summary": <a summary of the trial's overall performance, including key process, successes and failures.
 1311 Object Type: string>
 1312 }
 1313

Figure 6: Trial summarizer + failure proposer prompt: continuation of Figure 5, part 2.

```

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313 Intervention Recommender Prompt
1314 You are an expert in debugging multi-agent systems. A failure proposer has analyzed a Magentic-One execution and identified a
1315 problematic step.
1316 Use this as guidance to design a precise, minimal intervention that fixes the root cause.
1317
1318 ## Task Context
1319 Here is the original task: {problem}
1320 And here is the ground truth for guidance: {ground truth}
1321 ## Failure Analysis
1322 Failed step index: {step index}
1323 Failed agent: {agent}
1324 Diagnosed reason: {reason}
1325 ## Execution Context
1326 Here are the two steps immediately before the failure and the failed step itself:
1327 {Two steps context}
1328 ## System specifics and intervention policy:
1329 - If failure is in Orchestrator: Task Full Ledger issues -> provide ONLY the minimal replacement snippet(s) for the affected
1330 section(s): Facts and/or Plan. Use tags [FACTS_REPLACEMENT]: ... and/or [PLAN_REPLACEMENT]: ...; do not output the entire Task
1331 Full Ledger. Use this only when the failed content is the Task Full Ledger content (starts with 'We are working to address the
1332 following user request:' and includes the Facts/Plan sections).
1333 - If Orchestrator instruction is wrong/ambiguous -> provide the exact corrected instruction as a single atomic next step. If the
1334 message is not the Task Full Ledger scaffold, or when unsure, treat it as orchestrator_instruction.
1335 - If a subagent failed -> infer, from the provided context, how that subagent or tool should have acted; rewrite the
1336 Orchestrator's instruction to that subagent/tool so that it leads to the correct behavior.
1337 - Keep changes minimal and targeted. Avoid global resets.
1338 - Do not give any ground truth in the intervention message.
1339 Return STRICT JSON with the following schema:
1340 {
1341     "category": one of ["orchestrator_ledger", "orchestrator_instruction", "subagent_instruction"],
1342     "replacement_text": "exact text that should replace the problematic content"
1343 }
1344 Respond with JSON only, no extra commentary.
1345
1346
1347
1348
1349

```

Figure 7: Intervention recommender prompt: minimal, executable fix classification; JSON category and replacement text.

```

1350
1351
1352
1353
1354 Milestone extractor Prompt
1355
1356 ## Role & Task Introduction
1357 You are “Milestone Extractor”, a precise formatter that converts a research QA task into a compact set of high-level
1358 milestones. Given a “question”, its “ground-truth answer”, and “human annotation steps” (which may include tool
1359 usage), produce a short, ordered list of the “key individual milestones” needed to achieve the answer. Focus on
1360 abstraction and outcome, not tool-specific clicks.
1361
1362 Your goal: “summarize the path to the answer in ≤5 milestones” that capture the essential reasoning and actions,
1363 suitable for audit or scripting.
1364
1365 ## Inputs
1366 You will receive a single JSON object with the following fields:
1367
1368 - ‘question’ *(string, required)* – The task question.
1369 - ‘ground_truth_answer’ *(string, required)* – The validated answer.
1370 - ‘human_annotation_steps’ *(string or object, optional)* – Notes describing how a human solved it (may include step
1371 lists, links, or tool mentions).
1372
1373 ## Input Assumptions
1374 - ‘human_annotation_steps’ may be verbose or noisy; assume it’s trustworthy but not necessarily well-structured.
1375 - If ‘human_annotation_steps’ is missing or incomplete, infer reasonable milestones from the ‘question’ and the nature of
1376 the task.
1377
1378 ## Example Input Format
1379 **Minimal (string steps):**
1380 ```json
1381 {
1382   “question”: "...",
1383   “ground_truth_answer”: "...",
1384   “human_annotation_steps”: “Searched X → Identified Y → Opened Z → Extracted answer.”
1385 ```
1386
1387 ## Guidance
1388
1389 1. **Abstract, don’t recount.**
1390   Convert granular browsing/clicking into conceptual milestones (e.g., “Resolve riddle of journal identity” rather than
1391   “open Wikipedia page X”).
1392
1393 2. **Preserve causal order.**
1394   Maintain the minimal sequence from problem framing → locating the source → isolating evidence → confirming the answer.
1395
1396 3. **Cap at five milestones.**
1397   If more than five logical steps exist, merge adjacent ones by theme (e.g., “Locate issue & open target article”).
1398
1399 4. **Use consistent fields.**
1400   Each milestone must include:
1401   - ‘order’ *(1-based integer)*
1402   - ‘title’ *(short noun phrase)*
1403   - ‘action’ *(what to do; imperative, concise)*
1404   - ‘result’ *(what this step yields toward the answer)*
1405
1406 5. **Be tool-agnostic.**
1407   Avoid naming specific search engines, sites, clicks, or UI elements unless essential for understanding.
1408
1409 6. **Echo the answer.**
1410   Ensure the final milestone logically confirms or extracts the ‘ground_truth_answer’.
1411
1412 7. **Clarity over completeness.**
1413   Prefer short, crisp phrasing. No extraneous commentary, citations, or links.
1414
1415 ## Output Format
1416
1417 Produce “only” a JSON object with the following structure:
1418
1419 ```json
1420 {
1421   “question”: <string>,
1422   “ground_truth_answer”: <string>,
1423   “milestones”: [
1424     {
1425       “order”: 1,
1426       “title”: <short title>,
1427       “action”: <imperative action>,
1428       “result”: <concise outcome>
1429     }
1430     // up to 5 total milestones
1431   ]
1432 }
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603

```

Figure 8: Ground-truth milestone extractor prompt: ≤ 5 tool-agnostic milestones.

```

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

    Milestone Evaluator Prompt

    ## Role & Task Introduction
    You are **SessionLog Milestone Evaluator**, a precise formatter that analyzes an LLM-agent session log against a
    predefined set of milestones and outputs a compact progress report plus an assessment of any alternate ("new") exploration
    paths taken.

    ## Inputs
    You will receive a single JSON object with the following fields:
    - `question` *(string, optional)* - The task question (for context).
    - `ground_truth_answer` *(string, optional)* - The validated answer (for context).
    - `milestones` *(array, required)* - The authoritative list of milestones to evaluate. Each item includes:
        - `order` *(int, 1-based)*,
        - `title` *(string)*,
        - `action` *(string)*,
        - `result` *(string)*,
        - **Note:** If more than 5 milestones are provided, evaluate only the first five.
    - `session_log` *(array, required)* - The actual agent trace. Entries may include fields like `name`, `content`,
    `timestamp`, `step_idx` (values may vary).

    ## Input Assumptions
    - The `milestones` list is authoritative; **do not invent, merge, or reorder milestones**.
    - The `session_log` may be verbose, noisy, or partially redundant.
    - Evidence should be grounded **only** in the provided `session_log` (no external browsing or assumptions).

    ## Example Input Format
    **Minimal (string steps):**
    ```json
 {
 "question": "...",
 "ground_truth_answer": "...",
 "milestones": "[...]",
 "session_log": "[...]"
 }
    ```

    ## Evaluation Rules

    ## 1) Milestone Progress
    For each milestone:
    - Determine `status` as one of:
        - `achieved` - clear evidence the milestone's intended **result** occurred.
        - `partial` - meaningful progress toward the result, but incomplete.
        - `missed` - no sufficient evidence of progress toward the result.
    - Provide `evidence`:
        - Be concise (1-2 sentences).
        - Quote short phrases from the log **or** reference `step_idx` values where available (e.g., "step_idx 16-18").
        - Explain **why** the status is assigned (what the log shows or fails to show).

    ## 2) New Path Assessment
    Identify whether the session explored **alternate paths** not implied by the milestones' normal route (e.g., detours to
    secondary indexes, different tools, or file-download attempts not required by the milestones).
    - `is_new_path_explored` *(boolean)* - true if such deviations exist.
    - `evidence` *(string)* - brief proof from the log (e.g., tool/site names, failed downloads, HTTP errors), ideally with
    `step_idx` references.
    - `is_viable` *(boolean)* - whether the alternate path is **in principle** a reasonable way to solve the task (even if it
    failed here).
    - `viability_evidence` *(string)* - justification for `is_viable` grounded in the log (e.g., "issue page offered a PDF
    link; using full-issue PDFs is a common route").
    - `is_successful` *(boolean)* - whether the alternate path **actually yielded** the required progress or answer in this
    session.
    - `success_evidence` *(string)* - concise support for `is_successful` (e.g., "FileNotFoundException persisted; no quotation
    extracted").

    ## Classification Hints
    - Prefer `achieved` only when the milestone's **result** is explicitly met (not just attempted).
    - Use `partial` when the agent reached the correct resource or intermediate state but didn't complete the intended
    extraction/verification.
    - Use `missed` when there's no concrete evidence the agent moved toward the intended outcome.
    - A "new path" is about **method divergence**, not minor navigation within the same path.

    ## Output Format
    Produce **only** a JSON object with the following structure (no extra text, comments, or markdown fences):
    ```json
 {
 "milestone_progress": [
 {
 "order": 1,
 "milestone": "<title from milestones[i].title>",
 "status": "achieved | partial | missed",
 "evidence": "<brief, log-grounded justification (may include step_idx refs)>"
 }
 // ... up to 5 items total
],
 "new_path_assessment": {
 "is_new_path_explored": true,
 "evidence": "<brief proof from session_log>",
 "is_viable": true,
 "viability_evidence": "<why this method is generally reasonable, grounded in the log>",
 "is_successful": false,
 "success_evidence": "<why it did or did not work in this session>"
 }
 }
    ```

    ## Style & Constraints
    - Be concise and neutral; no speculation beyond the log.
    - Do not include URLs, citations, or external sources outside what's quoted from session_log.
    - Do not exceed two sentences per evidence field.
    - Do not add fields or commentary outside the specified schema.

```

Figure 9: Milestone evaluator prompt: progress vs milestones and new-path assessment.

1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475

Mislocalization or Insufficient Fix Proposer Prompt

You are an expert judge analyzing post-intervention runs.

Input is a `usr_msg` JSON object with keys: `problem`, `ground_truth_answer`, `initial_session_log`, `initial_failure_analysis`, `intervention_details`, `post_intervention_runs` (a single run: list with one `{session_log}`).

Use all content as-is without truncation.

Classify the single run and the overall outcome into exactly one of:

- `success_after_intervention`: the subagent explicitly follows the new intervention instruction and the final outcome is correct.
- `execution_issue_intervention_not_applied`: the subagent does not follow the new intervention instruction; the outcome remains incorrect.
- `proposer_mislocalization_or_insufficient_fix`: the intervention is observed/applied but the injection point/fix is wrong; the outcome remains incorrect.

For each run, write a concise reason that includes these parts: `before_intervention`: <what the system/subagent did that led to failure>, `after_intervention`: <what changed in this run after the injection>, `system_action`: <whether/how the subagent followed the new instruction>, `final_outcome`: <correct/incorrect vs ground_truth>.

Strictly output JSON:

```
{
  "overall": [
    {
      "label", "reason", "evidence": {"quotes_or_tokens": [], "ground_truth_match": bool, "intervention_applied": bool}
    }
  ]
}.
```

Evidence should include 1-3 verbatim quotes from the logs.

1493
 1494 Figure 10: Post-intervention outcome classifier prompt: mislocalization or insufficient fix proposer.
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511