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Abstract

A Bayesian coreset is a small, weighted subset
of a data set that replaces the full data during in-
ference to reduce computational cost. The state-
of-the-art coreset construction algorithm, Coreset
Markov chain Monte Carlo (Coreset MCMC), uses
draws from an adaptive Markov chain targeting
the coreset posterior to train the coreset weights
via stochastic gradient optimization. However, the
quality of the constructed coreset, and thus the
quality of its posterior approximation, is sensi-
tive to the stochastic optimization learning rate. In
this work, we propose a learning-rate-free stochas-
tic gradient optimization procedure, Hot-start Dis-
tance over Gradient (Hot DoG), for training core-
set weights in Coreset MCMC without user tuning
effort. We provide a theoretical analysis of the con-
vergence of the coreset weights produced by Hot
DoG. We also provide empirical results demon-
strate that Hot DoG provides higher quality poste-
rior approximations than other learning-rate-free
stochastic gradient methods, and performs compet-
itively to optimally-tuned ADAM.

1 INTRODUCTION

Bayesian inference provides a flexible framework for param-
eter estimation and uncertainty quantification in statistical
models. Markov chain Monte Carlo [Robert and Casella,
2004; Robert and Casella, 2011; Gelman et al., 2013, Chs. 11
and 12], the standard methodology for performing Bayesian
inference, involves simulating carefully constructed Markov
chains whose stationary distribution is the target Bayesian
posterior. In the large-scale data setting, this procedure can
become prohibitively expensive, as it requires iterating over
the entire data set to simulate the next state.

Bayesian coresets [Huggins et al., 2016] are a popular ap-

Figure 1: Relative Coreset MCMC posterior approximation
error comparing ADAM (with different learning rates) and
the proposed Hot DoG method (under our recommended
setting). The metric plotted is the ratio of average squared z-
scores (defined in Eq. (6)) under ADAM to those under Hot
DoG. Values above the horizontal black line (100) indicate
that the proposed Hot DoG method outperformed ADAM.
Median values after 200,000 optimization iterations across
10 trials are used for the relative comparison for a variety of
datasets, models, and coreset sizes.

proach for speeding up Bayesian inference in the large-scale
data setting. A Bayesian coreset is a weighted subset of data
that replaces the full data set during inference, leveraging
the insight that large datasets often exhibit a significant de-
gree of redundancy.1 With a carefully constructed coreset,
one can significantly reduce the computational cost of in-

1A related approach, data distillation, constructs a small syn-
thetic data set for downstream tasks. However, this approach often
requires bespoke methods for non-real-valued data (see [Sachdeva
and McAuley, 2023, Sec. 3]). In contrast, Bayesian coresets do not
modify individual data points, and so are fully generic.
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ference while still obtaining samples from a high quality
approximation of the full Bayesian posterior. In fact, given
a data set of N points, a coreset of size O (logN) is suf-
ficient for providing a near-exact posterior approximation
in exponential family and other sufficiently simple models
[Naik et al., 2022, Thms. 4.1 and 4.2; Chen et al., 2022,
Prop. 3.1] and O(polylogN) is sufficient for more general
cases [Campbell, 2024, Cor. 6.1].

Constructing a coreset involves picking the data points to
include in the coreset and assigning each data point its
corresponding weight. The state-of-the-art method, Coreset
MCMC [Chen and Campbell, 2024], selects coreset points
by sampling them uniformly from the full data set, and
learns the weights using stochastic gradient optimization
techniques, e.g., ADAM [Kingma and Ba, 2014], where the
gradients are estimated using MCMC draws targeting the
current coreset posterior. However, as we demonstrate in
this paper, there are two issues with this approach. First,
the quality of the constructed coreset is sensitive to the
learning rate of the stochastic optimization algorithm. And
second, gradient estimates using MCMC draws are affected
strongly in early iterations by initialization bias, leading to
poor optimization performance.

To address these challenges, we first propose Hot-start Dis-
tance over Gradient (Hot DoG), a tuning-free stochastic gra-
dient optimization procedure that can be used for learning
coreset weights in Coreset MCMC. Hot DoG is a stochastic
gradient method combining techniques from Do(W)G [Ivgi
et al., 2023, Khaled et al., 2023], ADAM [Kingma and Ba,
2014], and RMSProp [Hinton et al., 2012] to set learning
rates automatically. Hot DoG also includes an automated
warm-up phase prior to weight optimization, which guards
against usage of low quality MCMC draws when estimating
the objective function gradients. We then analyze the con-
vergence behaviour of Hot DoG in a representative setting.
Empirically, Fig. 1 demonstrates that Hot DoG under our
recommended setting performs competitively to optimally-
tuned ADAM across a wide range of models, datasets, and
coreset sizes, and can be multiple orders of magnitude more
accurate than ADAM using other learning rates. Beyond the
results shown in Fig. 1, we provide an extensive empirical
investigation of the reliability of Hot DoG in comparison to
other methods across various synthetic and real experiments.

2 BACKGROUND

2.1 BAYESIAN CORESETS

We are given a data set (Xn)
N
n=1 of N observations, a log-

likelihood ℓn := log p(xn | θ) for observation n given
θ ∈ Θ, and a prior density π0(θ). We would like to sample

Algorithm 1 CoresetMCMC
Require: θ0, κw, S, M

▷ Initialize coreset weights
w0m = N

M , m = 1, · · · ,M
for t = 0, . . . , T do
▷ Subsample the data
St ← Unif(S, [N ]) (without replacement)
▷ Compute gradient estimate
ĝt ← g(wt, θt,St) (Eq. (4))
wt+1 ← stochastic_gradient_step(wt, ĝt)
▷ Step each Markov chain

for k = 1, . . . ,K do
θ(t+1)k ∼ κwt+1(· | θtk)

end for
end for

from the Bayesian posterior with density

π(θ) :=
1

Z
exp

(
N∑

n=1

ℓn(θ)

)
π0(θ),

where Z is the unknown normalizing constant. A Bayesian
coreset replaces the sum over N log-likelihood terms with
a weighted sum over a subset of size M , where M ≪ N .
Without loss of generality, we assume that these are the first
M points. The coreset posterior can then be written as

πw(θ) :=
1

Z(w)
exp

(
M∑

m=1

wmℓm(θ)

)
π0(θ), (1)

where w ∈ RM
+ is a vector of coreset weights. Recent core-

set construction methods uniformly select M points to in-
clude in the coreset [Naik et al., 2022, Chen et al., 2022,
Chen and Campbell, 2024], and then optimize the weights
of those M points as a variational inference problem [Camp-
bell and Beronov, 2019],

w⋆ = argmin
w∈RM

DKL(πw||π) s.t. w ∈ W, (2)

with objective function gradient

∇wDKL(πw||π) (3)

=Covπw


 ℓ1(θ)

...
ℓM (θ)

 ,
∑
m

wmℓm(θ)−
∑
n

ℓn(θ)

.

2.2 CORESET MCMC

The key challenge in solving Eq. (2) is that πw does not
admit tractable i.i.d. draws, and so unbiased estimates of the
gradient in Eq. (3) are not readily available. Coreset MCMC
[Chen and Campbell, 2024] is an adaptive algorithm that



Figure 2: Coreset MCMC posterior approximation error (as
defined in Eq. (6)) using ADAM with different learning
rates for a variety of datasets, models, and coreset sizes.
The lines indicate median values after 200,000 optimization
iterations across 10 trials.

addresses this issue. The method first initializes weights
w0 ∈ RM and K ≥ 2 samples θ0 = (θ01, . . . , θ0K) ∈ ΘK .
At iteration t ∈ N, given coreset weights wt and samples
θt ∈ ΘK , it then updates the weights wt → wt+1 using the
stochastic gradient estimate based on the draws θt,

g(wt, θt,St) = (4)

1

K−1

K∑
k=1

 ℓ̄1(θtk)
...

ℓ̄M (θtk)

(∑
m

wtmℓ̄m(θtk)−
N

S

∑
s∈St

ℓ̄s(θtk)

)
,

where St ⊆ [N ] is a uniform subsample of indices of size
S, and ℓ̄n(θtk) = ℓn(θtk)− 1

K

∑K
j=1 ℓn(θtj). To complete

the iteration, the method updates the samples by indepen-
dently drawing θ(t+1)k ∼ κwt+1

(θtk, ·) for each k ∈ [K],
where κw is a family of πw-invariant Markov kernels. The
pseudocode for Coreset MCMC is outlined in Algorithm 1.

3 TUNING-FREE CORESET MCMC

A key design choice when using Coreset MCMC is to spec-
ify how gradient estimates are used to optimize the weights.
One can use ADAM [Kingma and Ba, 2014], which is
used as the default optimizer for Coreset MCMC [Chen
and Campbell, 2024]: at iteration t, with γt > 0 being the
user-specified learning rate, we set

wt+1 ← proj≥0

(
wt − γt

m̂t√
v̂t + ϵ

)
,

where m̂t and v̂t are exponential averages of past gradients
(ĝi)

t
i=0 and their element-wise squares, and ϵ is a small con-

stant. There are a wide range of other first-order stochastic

methods available that could be used (e.g., vanilla stochas-
tic gradient descent, AdaGrad [Duchi et al., 2011], etc.).
However, like ADAM, most of these algorithms require
setting a learning rate γt. And as we show in Fig. 2, the
quality of samples obtained from Coreset MCMC can be
highly sensitive to the selected learning rate. In particular,
Fig. 2 shows that when using ADAM, no single learning
rate applies well across all problems and coreset sizes; and
for a given problem, the performance can vary by orders
of magnitude as one varies the learning rate. Furthermore,
the default ADAM learning rate of 10−3 [Kingma and Ba,
2014] provides poor results in most of the problems tested.
As a result, careful tuning of the learning rate is required to
obtain high quality posterior approximations. This usually
involves a search on a log-scaled grid, which is computation-
ally wasteful as the results for all but one of the parameter
values are thrown out. Moreover, in practice determining
which learning rate provides the best posterior approxima-
tion may not be straightforward, as we do not have access
to estimates of the objective function.

A number of recent works in the literature propose learning-
rate-free stochastic optimization methods to address this
issue [Carmon and Hinder, 2022, Ivgi et al., 2023, Khaled
et al., 2023, Defazio and Mishchenko, 2023, Mishchenko
and Defazio, 2024]. Many of these methods are shown em-
pirically to work competitively compared to optimally-tuned
SGD on a wide range of large-scale, non-convex deep learn-
ing problems. Although different at first glance, all of these
methods arise from the same insight. Suppose one would
like to solve the stochastic optimization problem

min
w∈Rd

E [f(w, θ)] ,

where for all θ, f(·, θ) is convex and we only have access
to unbiased stochastic gradient gt = ∂f(wt, θt). Define the
initial distance to the optimal solution d0 = ∥w0 − w⋆∥
and the sum of all gradient norms GT =

∑
t≤T ∥gt∥2. By

setting the SGD learning rate γ⋆ = d0√
GT

, the average
iterate w̄ = 1

T

∑
t≤T wt satisfies the optimal error bound

E [f(w̄, θ)]− E [f(w⋆, θ)] ≤ d0
√
GT

T

after T iterations [Carmon and Hinder, 2022, Orabona and
Cutkosky, 2020]. Learning-rate-free methods therefore es-
sentially try to estimate or bound the initial distance to
the optimal solution d0, which is unknown in practice. To
the best of our knowledge, there are four state-of-the-art
methods that do this in a manner that does not require mul-
tiple optimization runs, knowledge of unknown constants,
or the ability to query the objective function: DoG [Ivgi
et al., 2023], DoWG [Khaled et al., 2023], D-Adaptation
[Defazio and Mishchenko, 2023] and prodigy [Mishchenko
and Defazio, 2024]. DoG and DoWG run vanilla stochastic
gradient descent (SGD),

wt+1 ← proj≥0(wt − γtgt),



(a) DoG (b) DoWG

(c) D-Adaptation SGD (d) prodigy ADAM

Figure 3: Traces of average squared coordinate-wise z-scores (defined in Eq. (6)) between the true and approximated
posterior for a Bayesian linear regression example with M = 1,000 coreset points. We evaluate four learning-rate-free SGD
methods: DoG and DoWG (with varying initial learning rate parameter), and D-Adaptation SGD and prodigy ADAM (with
default initial lower bound 10−6). The optimally-tuned ADAM baseline is shown in green. Results display the median after
200,000 optimization iterations across 10 trials.

with learning rate schedules

γt =
rt√
Gt

(DoG), γt =
r2t√∑

i≤t r
2
i ∥gi∥2

(DoWG), (5)

where r0 is set to some small constant and, for t ≥ 1,

rt = max
i≤t
∥wt − w0∥.

For D-Adaptation and prodigy, rt in Eq. (5) is replaced with
a lower bound dt on d0, which is updated using estimated
correlations between the gt and step direction w0 − wt:

dt+1 = max


∑t

i=0 di ⟨gi, w0 − wi⟩∥∥∥∑t
i=0 digi

∥∥∥ , dt

 .

D-Adaptation replaces rt in Eq. (5) (DoG) with dt, while
prodigy replaces rt in Eq. (5) (DoWG) with dt. Both D-
Adaptation and prodigy have SGD and ADAM-based vari-
ants. All four methods have been shown empirically to
match the performance of optimally-tuned SGD.

Fig. 3 shows the results from direct applications of DoG,
DoWG, D-Adaptation (SGD), and prodigy (ADAM) to
Coreset MCMC. We see that the quality of posterior approx-
imation from all of four methods are orders of magnitude
worse than optimally-tuned ADAM. With θ0 initialized far
away from high density regions of πw0

, the initial gradient
estimates are large in magnitude, which leads to small learn-
ing rates. The accumulation of these large gradient norms
in the learning rate denominator eventually causes the learn-
ing rate to vanish, halting the progress of coreset weight
optimization. We address these problems in the next section.

Before concluding this section, we note that there are other
approaches for making SGD free of learning rate tuning:
some methods involve using stochastic versions of line
search [Vaswani et al., 2019, Paquette and Scheinberg,
2020], and others do the same for the Polyak step size
[Loizou et al., 2021]. These methods are not applicable
in our setting as they require evaluating the objective func-
tion. Recall that due to the unknown Z(w) term in Eq. (1),
we do not have access to estimates of the objective function.



Algorithm 2 HotDoG

Require: β1 = 0.9, β2 = 0.999, ϵ = 10−8, r = 10−3

T , θ0, w0

v0 ← 0, m0 ← 0, d0 ← 0, c← 0, h← false
for t = 1, . . . , T do

if h then
c← c+ 1
St ← Unif(S, [N ]) (without replacement)
ĝt = g(wt−1, θt−1,St) (Eq. (4))
vt ← β2vt−1 + (1− β2)ĝ

2
t

mt ← β1mt−1 + (1− β1)ĝt
dt←β1dt−1+(1−β1)max {|wt−1−w0| , dt−1}
v̂t ← vt/(1− βc

2)
m̂t ← mt/(1− βc

1)

d̂t ← ( r1 if t==1 else dt/(1− βc−1
1 ) )

wt ← wt−1−d̂t
(
diag

(
(c (v̂t + ϵ))

1
2

))−1

⊙ m̂t

else
wt←wt−1, vt←vt−1, mt←mt−1, dt←dt−1

end if
for k = 1, . . . ,K do

θtk ∼ κwt(· | θ(t−1)k) ▷ record ℓtk
end for
▷ Hot-start test
h←(true if h else HotStartTest

(
(ℓik)

t,K
i=1,k=1, t

)
)

end for
return wT

4 HOT DOG

In this section, we develop our novel Markovian optimiza-
tion method, Hot-start DoG (Hot DoG), presented in Algo-
rithm 2. Our method extends the original DoG optimizer
in two ways: (1) we add a tuning-free hot-start test that au-
tomatically detects when the Markov chains have properly
mixed and stochastic gradient estimates are stable, at which
point we start coreset weight optimization; and (2) we apply
acceleration techniques to DoG.

4.1 HOT-START TEST

Poorly initialized Markov chain states θ0 can be detrimental
to the performance of learning-rate-free methods in Coreset
MCMC. Fig. 5, especially Figs. 5c to 5e show that this is
likely due to the bias of initial gradient estimates. When
θ0 is initialized far away from high density regions of πw0 ,
the initial gradient estimates can have norms that are orders
of magnitude larger than those computed using i.i.d. draws.
This leads to a quickly vanishing learning rate in Eq. (5).
Therefore, it is crucial to hot-start the Markov chains to
ensure they are properly mixed before training the coreset
weights. There are MCMC convergence diagnostics that
could be used for this purpose (e.g, R̂ [Vehtari et al., 2021]);
many work only with real-valued variables, and are overly

Algorithm 3 HotStartTest

Require: (ℓik)
t,K
i=1,k=1, t, c = 0.5

n = ceil(t/3)
for k = 1, . . . ,K do

s2k1 ← 1
n−2 mina,b∈R

∑2n
i=n+1 (a+ bi− ℓik)

2

s2k2 ← 1
n−2 mina,b∈R

∑t
i=2n+1 (a+ bi− ℓik)

2

uk ←
|( 1

n

∑2n
i=n+1 ℓik)−( 1

n

∑t
i=2n+1 ℓik)|

max{sk1,sk2}
end for
return (true if median(u1, . . . , uK) < c else false)

stringent for our application. We require a test that works
for general coreset posteriors of the form Eq. (1) and checks
only that gradient estimates have stabilized reasonably.

To address this challenge, we propose keeping the weights
fixed at their initialization (i.e., wt+1 ← wt) until a hot-start
test passes. For the test, for each Markov chain k ∈ [K], we
split the iterates i = 1, . . . , t into 3 segments, each of equal
length n = ⌈t/3⌉. We compute the average log-potentials
for the two latter segments mk1, mk2, and the standard
deviations of residual errors sk1, sk2 from a linear fit

mki=

∑(i+1)n
j=in+1ℓjk

n
, s2ki=

mina,b
∑(i+1)n

j=in+1(a+bj−ℓjk)2

n− 2
.

Here ℓjk =
∑M

m′=1 w0m′ℓm′(θjk) is the log-potential for
chain k at iteration j. Our test monitors the difference be-
tween mk1 and mk2 relative to sk1 and sk2. A small differ-
ence in the averages indicates that the chains have stabilized.
The residual standard errors allows us to remove trends from
the noise computation. We define, for each k ∈ [K],

uk =
|mk1 −mk2|
max{sk1, sk2}

,

and use the median of (uk)
K
k=1 as our test statistic. This

test statistic is checked against a threshold c; the test passes
when the median test statistic is less than c. Algorithm 3
shows the pseudocode for the hot-start test. We find in prac-
tice setting c = 0.5 works well in general.

4.2 ACCELERATION

To accelerate DoG, we begin by noting that the denominator
of the DoG learning rate in Eq. (5) is similar to that of Ada-
Grad [Duchi et al., 2011] in that it is a cumulative sum of
some function of the gradient. Therefore, we can leverage
the idea used in RMSProp [Hinton et al., 2012] for acceler-
ating AdaGrad to accelerate DoG. In particular, at iteration
t, we can replace

∑
i≤t ∥ĝi∥2 with tv̂t, the bias-corrected

exponential moving average of the squared gradient. This
allows us to exponentially decrease the weights of past gra-
dient norms. As a result, the effect of the early ∥ĝt∥2 terms
on the learning rate diminishes over time, resulting in less



conservative learning rates. To account for situations where
the gradient estimates differ in scale across dimensions, we
apply the above acceleration technique in a coordinate-wise
fashion and obtain the following update rule for v̂t:

vt = β2vt−1 + (1− β2)ĝ
2
t , v̂t =

vt
1− βt

2

,

where β2 ∈ (0, 1) is the exponential decay rate, v0 = 0,
and ĝ2t denotes the vector with each entry of ĝt squared. We
further apply the same idea to rt, the maximum distance
traveled from w0, and ĝt, the gradient estimate itself. We use
β1 ∈ (0, 1) to denote the exponential decay rate for these
two quantities. Our final proposed optimization procedure
is outlined in Algorithm 2. Note that in Algorithm 2, all
computations are coordinate-wise.

In Hot DoG, we set the exponential decay rates, β1 and β2,
to be the same as those in Kingma and Ba [2014], and we
set the initial learning rate r to a small constant (default
10−3) following the recommendation of Ivgi et al. [2023].

4.3 CONVERGENCE ANALYSIS

In this subsection, we present a theoretical analysis of the
convergence of the coreset weights produced by Hot DoG.
We begin by stating the set of assumptions, under which
our analysis is conducted. These assumptions are stated for-
mally stated in Appendix C.2. As required by Algorithm 2,
we have that |β1| < 1, |β2| < 1, and ϵ, r > 0. We further
impose a set of assumptions about the feasible region W
of the coreset weights. Namely, we assume (1) the coreset
weights are non-negative and their sum is bounded above
by a constant B (Assumptions C.2 and C.1), and (2) the
existence of an exact coreset w⋆ ∈ W in the sense that
DKL(πw⋆ ||π) = 0. Both of these assumptions greatly sim-
plify the analysis without sacrificing the representative na-
ture of our assumed model. A typical choice for the coreset
weight bound is to set B = N , where N is the total number
of observations. In terms of the optimal coreset, past work
has shown that it provides a near-exact approximation with
high probability for the wide class of strongly log-concave
models [Naik et al., 2022, Thm. 4.2]. Under Assumption C.2,
which is similar to Assumption 3.1 in Chen and Campbell
[2024], we do not expect the convergence result to change
in a meaningful way, aside from there being a persistent
error corresponding to the optimal coreset error.

Finally, we state our assumptions regarding the stochastic
gradient (Eq. (4)), which estimates Eq. (3). We assume that
the stochastic gradients are uniformly bounded above by
a constant U (Assumption C.3). Now note that in Eq. (4),
Monte Carlo error from the MCMC samples θt contributes
to the stochasticity. We additionally impose a mixing condi-
tion on the Markov chains (Assumption C.4), and assume
that the Monte Carlo error is controlled (Assumption C.5).

We now present our main theorem in Theorem 4.1. The

proof of Theorem 4.1 can be found in Appendix C.3. Our
result shows that Hot DoG produces coreset weights that
converge to the optimum in expectation at a sublinear rate.
This convergence rate is consistent with ADAM and other
learning-rate-free stochastic gradient methods discussed in
the paper (see for example [Ivgi et al., 2023, Thm. 3.10 and
[Mishchenko and Defazio, 2024, Thm. 2]).

Theorem 4.1 (Hot DoG convergence). Suppose Assump-
tions C.1 to C.5 hold. As t→∞,

E∥wt−w⋆∥2 = O

(
1√
t

)
.

It is worth noting that whether to employ the hot-start test
does not alter the convergence rate of Hot DoG as shown
in Theorem 4.1. Instead, the hot-start test can lead to a
more favourable constant in the convergence rate. As we
discussed in Section 4.1, the hot-start test helps avoid updat-
ing the coreset weights using initial gradient estimates that
may have unusually large norms. In terms of our analysis,
by holding off optimizing w until the hot-start test passes,
we can obtain a tighter bound on the gradient norm (i.e.,
a smaller U in Assumption C.3). This results in a smaller
constant in the convergence rate given in Theorem 4.1, ulti-
mately leading to improved finite-time performance.

5 EXPERIMENTS

In this section, we demonstrate the effectiveness of Hot
DoG and compare our method against other learning-rate-
free stochastic gradient methods: optimally-tuned ADAM
from a log scale grid search, as well as prodigy ADAM
[Mishchenko and Defazio, 2024], DoG [Ivgi et al., 2023],
and DoWG [Khaled et al., 2023] over different initial param-
eters. We compare the quality of posterior approximations
over different coreset sizes M and weight optimization pro-
cedures. Following Chen and Campbell [2024], we set the
number of Markov chains to K = 2 and subsample size to
S = M in Eq. (4). We set κw to the hit-and-run slice sam-
pler with doubling [Bélisle et al., 1993, Neal, 2003] for all
real data experiments. For the Gaussian location model, we
use a kernel that directly samples from πw [Chen and Camp-
bell, 2024, Sec. 3.4]; for the sparse regression example, we
use Gibbs sampling [George and McCulloch, 1993].

We compare these algorithms using six different Bayesian
models, the details of which are in Appendix A. We use
Stan [Carpenter et al., 2017] to obtain full data inference re-
sults for real data experiments, and Gibbs sampling [George
and McCulloch, 1993] for the sparse regression model with
discrete variables. For all experiments, we measure the pos-
terior approximation quality using the average squared z-
score, which we define as

1

D

D∑
i=1

(
µi − µ̂i

σi
)2. (6)



(a) Gaussian location (b) Sparse regression (c) Linear regression

(d) Logistic regression (e) Poisson regression (f) Bradley-Terry

Figure 4: Traces of average squared coordinate-wise z-scores between the true and approximated posterior across all
experiments, obtained using Hot DoG with and without hot-start test. All figures share the legend in Fig. 4c. The coreset
size M is 1000 and each line represents a different initial learning rate parameter. The lines indicate the median from 10
runs. Orange lines indicate runs with hot-start test and blue lines without.

(a) Gaussian location (b) Sparse regression (c) Linear regression

(d) Logistic regression (e) Poisson regression (f) Bradley-Terry

Figure 5: Trace of gradient estimate norms (blue) and hot-start test statistics (green) before weight optimization across all
experiments with M = 1000. The orange horizontal line is the test statistic threshold c = 0.5.



(a) Gaussian location (b) Sparse regression (c) Linear regression

(d) Logistic regression (e) Poisson regression (f) Bradley-Terry

Figure 6: Traces of average squared coordinate-wise z-scores between the true and approximated posterior across all
experiments, obtained from Hot DoG and optimally-tuned ADAM. All figures share the legend in Fig. 6c. The coreset size
M = 1000 and each line represents a different initial learning rate parameter. The lines indicate the median from 10 runs.

(a) DoG (b) DoWG (c) ADAM (d) prodigy ADAM

(e) DoG with hot-start (f) DoWG with hot-start (g) ADAM with hot-start (h) prodigy ADAM with hot-start

Figure 7: Relative Coreset MCMC posterior approximation error comparing different optimization algorithms (labeled in the
subfigure captions) and the proposed Hot DoG method (with fixed r = 0.001 and c = 0.5). The metric plotted is the ratio
of average squared z-scores (defined in Eq. (6)) under the algorithm labeled in each subfigure caption to those under Hot
DoG. Values above the horizontal black line (100) indicate that the proposed Hot DoG method outperformed the method it
compared to. Median values after 200, 000 optimization iterations across 10 trials are used for the relative comparison for a
variety of datasets, models, and coreset sizes.



In the above definition, D denotes the dimension of Θ; µi

and σi are, respectively, the coordinate-wise mean and stan-
dard deviation estimated using the full data posterior, and
µ̂i is the coordinate-wise mean estimated using draws from
Coreset MCMC. This estimate is computed in a streaming
fashion using the second half of all draws at the time; note
this includes draws from πw0 before the hot-start test passes.

Each algorithm was run on 8 single-threaded cores
of a 2.1GHz Intel Xeon Gold 6130 processor with
32GB memory. Code for these experiments is avail-
able at https://github.com/NaitongChen/
automated-coreset-mcmc-experiments. More
experimental details and additional plots are in Appen-
dices A and B.

Effect of hot-start test. Fig. 4 compares Hot DoG with and
without the hot-start test for M = 1000 across all experi-
ments; the same plots for other coreset sizes can be found in
Appendix B. Without the hot-start test, the traces often hit
a long plateau, before the effect of exponentially-weighted
averaging is able to decay early large gradient norms. On
the other hand, with burn-in, we begin by simulating from
Markov chains targeting πw0

, and start optimizing the core-
set weights only after the hot-start test has passed. In terms
of the number of log potential evaluations, Hot DoG with
burn-in leaves the plateau sooner than without burn-in.

Fig. 5 examines the behaviour of the hot-start test in more
detail, showing the traces of the gradient estimate norms
∥ĝt∥ and test statistics median(u1, . . . , uK) across opti-
mization iterations when using Hot DoG. Here we only
show plots for M = 1000; the same plots for other coreset
sizes can be found in Appendix B. In some experiments, the
Markov chains are initialized reasonably well where the gra-
dient norms are already stabilized, and the test passes almost
immediately. In others, the Markov chains are initialized
poorly and the gradient norms are large, but nevertheless,
the hot-start test passes shortly after they stabilize. Across
all experiments, a test statistic threshold of 0.5 worked well.

Robustness to fixed parameter r. Figure 6 provides an
examination of the robustness of the proposed method to
the fixed initial learning rate parameter r. Across all exper-
iments, different values of r spanning multiple orders of
magnitude result in similar posterior approximations across
optimization iterations. Note that M is 1000 for all plots
in Fig. 6. The same trends can be observed over different
coreset sizes (see Appendix B). In practice, we follow the
recommendation of Ivgi et al. [2023] and set r = 0.001.

Comparison with other related methods. Figure 7 shows a
comparison between our method and DoG, DoWG, ADAM,
as well as prodigy ADAM. We fix r = 0.001 and c = 0.5
for Hot DoG. Since the hot-start test itself can be applied to
all methods, Hot DoG is compared against others both with
and without burn-in. The posterior approximation quality
of Hot DoG is orders of magnitude better than all other

methods in many settings tested, and remain competitive
otherwise. In particular, Hot DoG is capable of matching
the performance of optimally-tuned ADAM without tuning.

6 CONCLUSION

This paper introduced Hot DoG, a learning-rate-free stochas-
tic gradient method designed for learning coreset weights us-
ing Coreset MCMC. Our method extends DoG, but includes
adjustments tailored to the Markovian setting of Coreset
MCMC. In particular, Hot DoG includes a hot-start test
detecting when to start training coreset weights as well as
acceleration techniques. Our method is shown to produce
coreset weights that converge to the optimum. The quality
of coresets constructed by Hot DoG and their correspond-
ing posterior approximation are robust to input parame-
ters. Empirically, Hot DoG under our recommended setting
(r = 0.001 and c = 0.5) produces better posterior approx-
imations than other learning-rate-free stochastic gradient
methods, and is competitive to optimally-tuned ADAM.
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A DETAILS OF EXPERIMENTS

A.1 MODEL SPECIFICATION

In this subsection, we describe the six examples (two synthetic and four real data) that we used for our experiments. Pro-
cessed versions of all datasets used for the experiments are available at https://github.com/NaitongChen/
automated-coreset-mcmc-experiments. For each of the regression models, we are given a set of points
(xn, yn)

N
n=1, each consisting of features xn ∈ Rp and response yn.

Bayesian sparse linear regression: This is based on Example 4.1 from George and McCulloch [1993]. We use the model

σ2 ∼ InvGam (ν/2, νλ/2) ,

∀i ∈ [p], γi
iid∼ Bern(q),

βi | γi
ind∼ N

(
0, (1(γi = 0)τ + 1(γi = 1)cτ)

2
)
,

∀n ∈ [N ], yn | xn, β, σ
2 ind∼ N

(
x⊤
n β, σ

2
)
,

where we set ν = 0.1, λ = 1, q = 0.1, τ = 0.1, and c = 10. Here we model the variance σ2, the vector of regression
coefficients β =

[
β1 . . . βp

]⊤ ∈ Rp and the vector of binary variables γ =
[
γ1 . . . γp

]⊤ ∈ {0, 1}p indicating the

inclusion of the pth feature in the model. We set N = 50,000, p = 10, β⋆ =
[
0 0 0 0 0 5 5 5 5 5

]⊤
, and

generate a synthetic dataset by

∀n ∈ [N ], xn
iid∼ N (0, I) ,

ϵn
iid∼ N

(
0, 252

)
,

yn = x⊤
n β

⋆ + ϵn.

Bayesian linear regression: We use the model[
β log σ2

]⊤ ∼ N (0, I),

∀n ∈ [N ], yn | xn, β, σ
2 ind∼ N

([
1 x⊤

n

]
β, σ2

)
,

where β ∈ Rp+1 is a vector of regression coefficients and σ2 ∈ R+ is the noise variance. Note that the prior here is
not conjugate for the likelihood. The dataset consists of flight delay information from N = 98,673 observations and
was constructed using flight delay data from https://www.transtats.bts.gov/Homepage.asp and historical
weather information from https://www.wunderground.com/. We study the difference, in minutes, between the
scheduled and actual departure times against p = 10 features including flight-specific and meteorological information.

mailto:<naitong.chen@stat.ubc.ca>?Subject=Your UAI 2025 paper
https://github.com/NaitongChen/automated-coreset-mcmc-experiments
https://github.com/NaitongChen/automated-coreset-mcmc-experiments
https://www.transtats.bts.gov/Homepage.asp
https://www.wunderground.com/


Bayesian logistic regression: We use the model

∀i ∈ [p+ 1], βi
iid∼ Cauchy(0, 1),

∀n ∈ [N ], yn
ind∼ Bern

((
1 + exp

(
−
[
1 x⊤

n

]
β
))−1

)
,

where β =
[
β1 . . . βp+1

]⊤ ∈ Rp+1 is a vector of regression coefficients. Here we use the same dataset as in linear
regression, but instead model the relationship between whether a flight is cancelled using the same set of features. Note that
of all flights included, only 0.058% were cancelled.

Bayesian Poisson regression: We use the model

β ∼ N (0, I),

∀n ∈ [N ], yn | xn, β
ind∼ Poiss

(
log

(
1 + e

[
1 x⊤

n

]
β
))

,

where β ∈ Rp+1 is a vector of regression coefficients. The dataset consists of N = 15,641 observations, and we model
the hourly count of rental bikes against p = 8 features (e.g., temperature, humidity at the time, and whether or not the day
is a workday). The original bike share dataset is available at https://archive.ics.uci.edu/dataset/275/
bike+sharing+dataset.

The remaining two non-regression models are specified as follows.

Gaussian location: We use the model

θ ∼ N (0, I),

∀n ∈ [N ], Xn
iid∼ N (θ, I),

where θ,Xn ∈ Rd. Here we model the mean θ. We set N = 10,000, d = 20 and generate a synthetic dataset by

∀n ∈ [N ], xn
iid∼ N (0, I).

Bradley-Terry model: We use the model

θ
iid∼ N (0, I),

∀n ∈ [N ], yn | hn, vn, θ
ind∼ Bern

(
(1 + exp ((θvn − θhn

)/400))
−1
)
,

where θ ∈ Rd. The dataset was constructed using games statistics from https://www.nba.com/stats and consists
of data of N = 26, 651 NBA games between the 2004 and 2022 seasons. hn and vn are the home team and visitor team IDs
for the nth game in the dataset, and yn denotes the outcome of the game (yn = 1 if the home team won and yn = 0 if the
visitor team won). θ ∈ Rd represents the Elo ratings or relative skill levels [Elo, 1978, Ch. 1] for each of the d = 30 teams.
We model the Elo ratings using outcomes of pairwise comparisons between teams using game outcomes.

A.2 PARAMETER SETTINGS

For full-data inference results of all examples except for the sparse linear regression model, we ran Stan [Carpenter et al.,
2017] with 10 parallel chains, each taking 100,000 steps with the first 50,000 discarded, for a combined 500,000 draws.
For full-data inference result of the sparse linear regression example, we use the Gibbs sampler developed by George and
McCulloch [1993] to generate 200,000 draws, with the first half discarded as burn-in.

To account for changes in w, for all real data experiments, we use the hit-and-run slice sampler with doubling [Bélisle et al.,
1993, Neal, 2003]; for the Gaussian location model, we use a kernel that directly samples from πw [Chen and Campbell,
2024, Sec. 3.4]. for the sparse regression, we use the Gibbs sampler developed by George and McCulloch [1993].

We use Stan [Carpenter et al., 2017] to obtain full data inference results for real data experiments, and Gibbs sampling
[George and McCulloch, 1993] for the sparse regression model with discrete variables. The true posterior distribution for
the Gaussian location model is available in closed form.

https://archive.ics.uci.edu/dataset/275/bike+sharing+dataset
https://archive.ics.uci.edu/dataset/275/bike+sharing+dataset
https://www.nba.com/stats


For ADAM, we test multiple learning rates over a log scale grid
(
10k
)

for k = −3,−2, . . . , 1. For each experiment under
each coreset size, the optimally-tuned ADAM is the one that obtained the lowest average squared z-score after 200, 000
iterations of weight optimization. For all learning-rate-free methods, we test different initial parameters (initial lower bound
for prodigy ADAM and r0 for Hot DoG, DoG, and DoWG) over a log scaled grid

(
10k
)

for k = −3,−2, . . . , 1.

For the logistic regression example, to account for the class imbalance problem, we include all observations from the rare
positive class if the coreset size is more than twice as big as the total number of observations with positive labels. Otherwise
we sample our coreset to have 50% positive labels and 50% negative labels. Coreset points are uniformly subsampled for all
other models.

B ADDITIONAL RESULTS

Figs. 4 to 6 in the main text show the traces of average squared coordinate-wise z-scores, as well as the gradient estimate
norms and hot-start test statistics for Hot DoG when M = 1000. In this subsection, we show the same sets of plots for
M = 100 and M = 500. Similarly to Fig. 4, Figs. 8 and 9 compare Hot DoG with and without hot-start test. Similarly to
Fig. 5, Figs. 10 and 11 show the gradient estimate norms and hot-start test statistics during burn-in. Similarly to Fig. 6,
Figs. 12 and 13 compare Hot DoG (with hot-start test) and optimally-tuned ADAM. We see that all plots show the same
trends as the ones in Section 5, where M = 1000. As a result, we arrive at similar observations as in Section 5. In particular,
Hot DoG with burn-in leaves the plateau sooner than without burn-in; the hot-start test passes and thus burn-in terminates
shortly after gradient norms are stabilized; Hot DoG is robust to the fixed parameter r.

(a) Gaussian location (b) Sparse regression (c) Linear regression

(d) Logistic regression (e) Poisson regression (f) Bradley-Terry

Figure 8: Traces of average squared coordinate-wise z-scores between the true and approximated posterior across all
experiments, obtained using Hot DoG with and without hot-start test. All figures share the legend in Fig. 8c. The coreset
size M is 100 and each line represents a different initial learning rate parameter. The lines indicate the median from 10 runs.
Orange lines indicate runs with hot-start test and blue lines without.



(a) Gaussian location (b) Sparse regression (c) Linear regression

(d) Logistic regression (e) Poisson regression (f) Bradley-Terry

Figure 9: Traces of average squared coordinate-wise z-scores between the true and approximated posterior across all
experiments, obtained using Hot DoG with and without hot-start test. All figures share the legend in Fig. 9c. The coreset
size M is 500 and each line represents a different initial learning rate parameter. The lines indicate the median from 10 runs.
Orange lines indicate runs with hot-start test and blue lines without.

(a) Gaussian location (b) Sparse regression (c) Linear regression

(d) Logistic regression (e) Poisson regression (f) Bradley-Terry

Figure 10: Trace of gradient estimate norms (blue) and hot-start test statistics (green) before weight optimization across all
experiments with M = 100. The orange horizontal line is the test statistic threshold c = 0.5.



(a) Gaussian location (b) Sparse regression (c) Linear regression

(d) Logistic regression (e) Poisson regression (f) Bradley-Terry

Figure 11: Trace of gradient estimate norms (blue) and hot-start test statistics (green) before weight optimization across all
experiments with M = 500. The orange horizontal line is the test statistic threshold c = 0.5.

(a) Gaussian location (b) Sparse regression (c) Linear regression

(d) Logistic regression (e) Poisson regression (f) Bradley-Terry

Figure 12: Traces of average squared coordinate-wise z-scores between the true and approximated posterior across all
experiments, obtained from Hot DoG and optimally-tuned ADAM. All figures share the legend in Fig. 12c. The coreset size
M = 100 and each line represents a different initial learning rate parameter. The lines indicate the median from 10 runs.



(a) Gaussian location (b) Sparse regression (c) Linear regression

(d) Logistic regression (e) Poisson regression (f) Bradley-Terry

Figure 13: Traces of average squared coordinate-wise z-scores between the true and approximated posterior across all
experiments, obtained from Hot DoG and optimally-tuned ADAM. All figures share the legend in Fig. 13c. The coreset size
M = 500 and each line represents a different initial learning rate parameter. The lines indicate the median from 10 runs.



C HOT DOG CONVERGENCE

C.1 UPDATE RULE

The Hot DoG update for coordinate i ∈ [M ] at iteration n ∈ N+ can be written as

mt,i = β1mt−1,i + gi(wt−1, θt−1,St−1) (7)

vt,i = β2vt−1,i + (gi(wt−1, θt−1,St−1))
2 (8)

wt,i = wt−1,i − αt,i
mt,i√

t · (ϵ+ vt,i)
,

where

αt,i =
1− β1

1− βt
1

√
1− βt

2√
1− β2

r̃t,i

r̃t,i = (1− βt
1)

−1

(
(1− β1)

(
t−1∑
k=0

βk
1 r̄t−k,i

)
+ βt

1r̄0,i

)

r̄t,i =

(
max
k≤t
{|wt,i − w0,i|}

)
∨ rδ.

We initialize the algorithm such that m0 = 0 and v0 = 0. Define st ∈ RN such that ∀j ∈ St, stj = N
S and 0 otherwise. The

M -dimensional subsampled gradient estimate as defined in Eq. (4) then takes the form

g(wt−1, θt−1,St−1) = Gt−1(wt−1 − w⋆) +Ht−1(1− st−1), (9)

where

Gt−1=
1

K−1

K∑
k=1

 ℓ̄1(θ(t−1)k)
...

ℓM (θ(t−1)k)


 ℓ̄1(θ(t−1)k)

...
ℓM (θ(t−1)k)


⊤

∈RM×M , Ht−1=
1

K−1

K∑
k=1

 ℓ̄1(θ(t−1)k)
...

ℓ̄M (θ(t−1)k)


 ℓ̄1(θ(t−1)k)

...
ℓ̄N (θ(t−1)k)


⊤

∈RM×N .

Note that in Eq. (9), both matrix-vector products on the right hand side give us vectors of dimension M , which aligns with
the desired dimension of the gradient estimate. We also define here two quantities that improves the readability of proofs
presented in following subsections:

Rt−1 =
[ αt,1√

t·(ϵ+vt,1)
· · · αt,M√

t·(ϵ+vt,M )

]⊤
, ∆t−j = wt−j−1 − wt−j = αt−j ⊙

mt−j√
(t− j) · (ϵ+ vt−j)

. (10)

C.2 ASSUMPTIONS

Assumption C.1 (Coreset weight constraint). W = {w ∈ RM : wt ≥ 0,
∑M

m=1 wtm ≤ B}.

Assumption C.2 (Exact coreset). There exists a w⋆ ∈ RM , c⋆ ∈ R such that w⋆ ∈ W and

N∑
n=1

ℓn(·) =
M∑

m=1

w⋆
mℓm(·) + c⋆ π0 − a.e.v.

Assumption C.3 (Bounded gradient). There exists U > 0 such that

∀wt ∈ W, θt ∈ ΘK ,St ⊆ [N ] ∥g(wt, θt,St)∥∞ ≤ U.

Assumption C.4 (Markov gradient mixing). There exists λ > 0 such that

∀wt ∈ W, θt−1 ∈ ΘK E [Gt|wt, θt−1] ⪰ λI.

Assumption C.5 (Markov gradient noise boundedness). There exists 0 < λ̄ <∞ such that

∀wt, wt−j ∈ W, θt−1, θt−j−i ∈ ΘK E
[
G⊤

t−jGt

∣∣wt, θt−1, wt−j , θt−j−1

]
⪯ λ̄I.



C.3 CONVERGENCE PROOF

Proof of Theorem 4.1. We begin by applying the projected gradient update to get

∥wt − w⋆∥2 =

∥∥∥∥∥projW
(
wt−1 − αt ⊙

mt√
t · (ϵ+ vt)

)
− w⋆

∥∥∥∥∥
2

=

∥∥∥∥∥projW
(
wt−1 − αt ⊙

mt√
t · (ϵ+ vt)

)
− projW w⋆

∥∥∥∥∥
2

≤

∥∥∥∥∥wt−1 − αt ⊙
mt√

t · (ϵ+ vt)
− w⋆

∥∥∥∥∥
2

. (11)

Here ⊙ denotes element-wise multiplication, and the fraction mt√
t·(ϵ+vt)

is also applied element-wise. The second equality

follows because w⋆ ∈ W by assumption. The inequality follows becauseW defined in Assumption C.1 is convex and
closed, and hence projW is a contraction. We unroll mt by Eq. (7) and use Rt−1 as defined in Eq. (10) to get

αt ⊙
mt√

t · (ϵ+ vt)
= diag(Rt−1)

t−1∑
k=0

βk
1 g(wt−k−1, θt−k−1,St−k−1). (12)

By substituting Eqs. (9) and (12) into Eq. (11) and taking expectations on both sides, we get

E∥wt − w⋆∥2

≤ E

∥∥∥∥∥
(
(wt−1−w⋆)−diag(Rt−1)

t−1∑
k=0

βk
1Gt−k−1(wt−k−1−w⋆)

)
−

(
diag(Rt−1)

t−1∑
k=0

βk
1Ht−k−1(1−st−k−1)

)∥∥∥∥∥
2


= E

∥∥∥∥∥(wt−1 − w⋆)− diag(Rt−1)

t−1∑
k=0

βk
1Gt−k−1(wt−k−1 − w⋆)

∥∥∥∥∥
2


− 2E

((wt−1−w⋆)−diag(Rt−1)

t−1∑
k=0

βk
1Gt−k−1(wt−k−1−w⋆)

)⊤(
diag(Rt−1)

t−1∑
k=0

βk
1Ht−k−1(1−st−k−1)

)
+ E

∥∥∥∥∥diag(Rt−1)

t−1∑
k=0

βk
1Ht−k−1(1− st−k−1)

∥∥∥∥∥
2


= E

∥∥∥∥∥(wt−1−w⋆)−diag(Rt−1)

t−1∑
k=0

βk
1Gt−k−1(wt−k−1−w⋆)

∥∥∥∥∥
2
+ E

∥∥∥∥∥diag(Rt−1)

t−1∑
k=0

βk
1Ht−k−1(1−st−k−1)

∥∥∥∥∥
2
 .

(13)



In the above, the last equality follows due to unbiased subsampling, i.e., for all t, E[1− st] = 0. We now rewrite the first
term in Eq. (13) as follows:

E

∥∥∥∥∥(wt−1−w⋆)−diag(Rt−1)

t−1∑
k=0

βk
1Gt−k−1(wt−k−1−w⋆)

∥∥∥∥∥
2


= E

∥∥∥∥∥(wt−1 − w⋆)− diag(Rt−1)

t−1∑
k=0

βk
1Gt−k−1(wt−k−1 − w⋆ + wt−1 − wt−1)

∥∥∥∥∥
2


= E

∥∥∥∥∥(wt−1 − w⋆)− diag(Rt−1)

t−1∑
k=0

βk
1Gt−k−1(wt−1 − w⋆)− diag(Rt−1)

t−1∑
k=0

βk
1Gt−k−1(wt−k−1 − wt−1)

∥∥∥∥∥
2


= E


∥∥∥∥∥∥
(
I − diag(Rt−1)

t−1∑
k=0

βk
1Gt−k−1

)
(wt−1 − w⋆)− diag(Rt−1)

t−1∑
k=1

βk
1Gt−k−1

 k∑
j=1

∆t−j

∥∥∥∥∥∥
2
 ,

where ∆t−j is as defined in Eq. (10). The last equality above follows by rewriting wt−k−1 − wt−1 as a telescoping

sum. Now let At =
(
I − diag(Rt−1)

∑t−1
k=0 β

k
1Gt−k−1

)
, bt = diag(Rt−1)

∑t−1
k=1 β

k
1Gt−k−1

(∑k
j=1 ∆t−j

)
, and ct =

diag(Rt−1)
∑t−1

k=0 β
k
1Ht−k−1(1− st−k−1). Eq. (13) then becomes

E∥wt − w⋆∥2

≤ E
[
∥At(wt−1 − w⋆)− bt∥2

]
+ E

[
∥ct∥2

]
= E

[
E
[
(wt−1 − w⋆)⊤A⊤

t At(wt−1 − w⋆)− 2b⊤t At(wt−1 − w⋆) + b⊤t bt
∣∣wt−1

]]
+ E

[
∥ct∥2

]
≤ E

[
(wt−1 − w⋆)⊤E

[
A⊤

t At

∣∣wt−1

]
(wt−1 − w⋆) + 2

∣∣E [b⊤t At(wt−1 − w⋆)
∣∣wt−1

]∣∣+ E
[
∥bt∥2

∣∣wt−1

]]
+ E

[
∥ct∥2

]
≤ E

[
(wt−1 − w⋆)⊤E

[
A⊤

t At

∣∣wt−1

]
(wt−1 − w⋆) + 2

√
E [∥bt∥2|wt−1]

√
E [∥At(wt−1 − w⋆)∥2|wt−1]

]
+ E

[
E
[
∥bt∥2

∣∣wt−1

]]
+ E

[
∥ct∥2

]
= E

[
(wt−1−w⋆)⊤E

[
A⊤

t At

∣∣wt−1

]
(wt−1−w⋆)+2

√
E [∥bt∥2|wt−1]

√
(wt−1−w⋆)⊤E

[
A⊤

t At

∣∣wt−1

]
(wt−1−w⋆)

]
+ E

[
E
[
∥bt∥2

∣∣wt−1

]]
+ E

[
∥ct∥2

]
,

where the last inequality is by Cauchy-Schwartz. By Lemmas C.6 to C.8, we know that there exists T ⋆ <∞ and C1, C2 > 0
such that for all t > T ⋆,

E
[
A⊤

t At

∣∣wt−1

]
⪯ exp

(
− D√

t

)
I, E

[
∥bt∥2

∣∣wt−1

]
≤ C1

t2
, E

[
∥ct∥2

]
≤ C2

t
.

Here D = λ(1−β1)rδ

2
√

ϵ+(1−β2)−1U2
is as defined in Lemma C.6. We know e−D/

√
t ≤ 1. By Assumption C.1, we also have that for

all t ≥ 1, ∥wt−1 − w⋆∥2 ≤
∑M

m=1 B
2 = MB2. Therefore,

E∥wt − w⋆∥2 ≤ e−D/
√
t E∥wt−1 − w⋆∥2 + 2E

[√
C1

t2

√
exp

(
− D√

t

)
∥wt−1 − w⋆∥2

]
+

C1

t2
+

C2

t

≤ e−D/
√
t E∥wt−1 − w⋆∥2 + 2

B
√
MC1

t
+

C1

t2
+

C2

t

≤ e−D/
√
t E∥wt−1 − w⋆∥2 + 2B

√
MC1 + C1 + C2

t
.

We unroll this recursion backward from t to T ⋆ to get

E∥wt − w⋆∥2 ≤ e
−D

∑t
τ=T⋆+1

1√
τ E
[
∥wT⋆ − w⋆∥2

]
+
(
2B
√
MC1 + C1 + C2

) t∑
τ=T⋆+1

1

τ
e
−D

∑t
u=τ+1

1√
u

≤MB2e
−D

∑t
τ=T⋆+1

1√
τ +

(
2B
√

MC1 + C1 + C2

) t∑
τ=T⋆+1

1

τ
e
−D

∑t
u=τ+1

1√
u ,



where the last inequality again uses ∥wT⋆ − w⋆∥2 ≤= MB2. Since 1√
τ

monotonically decreases in τ , we have that∑t
τ=T⋆+1

1
τ ≥

∫ t

T⋆+1
1√
τ
dτ = 2

(√
t −
√
T ⋆ + 1

)
. Therefore, as t→∞,

E∥wt − w⋆∥2 ≤MB2e−2D(
√
t −

√
T⋆+1 ) + (2B

√
MC1 + C1 + C2)

t∑
τ=T⋆+1

1

τ
e−2D(

√
t −

√
τ+1 )

≤MB2e2D
√
T⋆+1 e−2D

√
t +

(
2B
√

MC1 + C1 + C2

)
e−2D

√
t

t∑
τ=1

1

τ
e2D

√
τ+1

= O

(
e−2D

√
t + e−2D

√
t

t∑
τ=1

1

τ
e2D

√
τ+1

)
.

It is obvious that e−2D
√
t = O

(
1√
t

)
as t→∞. It remains to show that e−2D

√
t
∑t

τ=1
1
τ e

2D
√
τ+1 = O

(
1√
t

)
as t→∞.

We begin by noting that, since ∀τ ≥ 1, τ+1
τ ≤ 2,

t∑
τ=1

1

τ
e2D

√
τ+1 =

t∑
τ=1

1

τ
e2D

√
τ+1 τ

τ + 1

τ + 1

τ
≤ 2

t∑
τ=1

1

τ + 1
e2D

√
τ+1 = 2

t+1∑
τ=2

1

τ
e2D

√
τ .

We can then equivalently show 2e−2D
√
t
∑t+1

τ=2
1
τ e

2D
√
τ = O

(
1√
t

)
as t→∞. We know that there exists T ′ <∞ such

that for all τ ≥ T ′, 1
τ e

2D
√
τ monotonically increases with τ . We therefore split the sum at g(t), with T ′ ≤ g(t) ≤ t, to get

2e−2D
√
t

t+1∑
τ=2

1

τ
e2D

√
τ = 2e−2D

√
t

g(t)−1∑
τ=2

1

τ
e2D

√
τ + 2e−2D

√
t

t+1∑
τ=g(t)

1

τ
e2D

√
τ . (14)

We can bound the first term in Eq. (14) as follows

2e−2D
√
t

g(t)−1∑
τ=2

1

τ
e2D

√
τ ≤ 2e

2D
(√

g(t) −
√
t
) g(t)−1∑

τ=2

1

τ
≤ 2e

2D
(√

g(t) −
√
t
)
(ln (g(t)) + 1) . (15)

Looking at the second term in Eq. (14), since τ ≥ g(t) is large enough that the summand monotonically increases with τ ,

2e−2D
√
t

t+1∑
τ=g(t)

1

τ
e2D

√
τ ≤ 2e−2D

√
t

∫ t+1

g(t)

e2D
√
τ

τ
dτ = 4e−2D

√
t

∫ √
t+1

√
g(t)

e2Ds

s
ds, (16)

Where the last equality follows by setting s =
√
τ , τ = s2, dτ = 2sds. Now for the integral in Eq. (16), we integrate by

parts by defining y = 1
s and dv = e2Dsds:∫ √

t+1

√
g(t)

e2Ds

s
ds =

1

2D
√
t+ 1

e2D
√
t+1 − 1

2D
√

g(t)
e2D
√

g(t) +
1

2D

∫ √
t+1

√
g(t)

e2Ds

s2
ds

≤ 1

2D
√
t+ 1

e2D
√
t+1 +

e2D
√
t+1

2D

∫ √
t+1

√
g(t)

1

s2
ds

=
1

2D
√
t+ 1

e2D
√
t+1 +

e2D
√
t+1

2D

(
1√
g(t)

− 1√
t+ 1

)
.

Substituting the above back into Eq. (16) to get

2e−2D
√
t

t+1∑
τ=g(t)

1

τ
e2D

√
τ ≤ 4e−2D

√
t

(
1

2D
√
t+ 1

e2D
√
t+1 +

e2D
√
t+1

2D

(
1√
g(t)

− 1√
t+ 1

))

=
2

D
√
t+ 1

e2D(
√
t+1 −

√
t ) +

2

D
e2D(

√
t+1 −

√
t )

(
1√
g(t)

− 1√
t+ 1

)

≤ 2e2D

D
√
t+ 1

+
2e2D

D

(
1√
g(t)

− 1√
t+ 1

)
. (17)



Let g(t) = t
2 . Then T ′ ≤ g(t) ≤ t is satisfied for all t ≥ 2T ′. We can then combine Eqs. (15) and (17), and have that for all

t ≥ 2T ′,

2e−2D
√
t

t+1∑
τ=2

1

τ
e2D

√
τ ≤ 2e

2D
(√

t/2 −
√
t
)(

ln

(
t

2

)
+ 1

)
+

2e2D

D
√
t+ 1

+
2e2D

D

(
1√
t/2
− 1√

t+ 1

)

= 2e
−2D

(
1− 1√

2

)√
t
(ln t− ln 2 + 1) +

2e2D

D
√
t+ 1

+
4e2D

D
√
t
,

which is O
(

1√
t

)
as t→∞. Therefore, we arrive at the desired result that as t→∞,

E∥wt − w⋆∥2 ≤ O

(
e−2D

√
t + 2e

−2D
(
1− 1√

2

)√
t
(ln t− ln 2 + 1) +

2e2D

D
√
t+ 1

+
4e2D

D
√
t

)
= O

(
1√
t

)
.

C.4 USEFUL LEMMAS

We used several lemmas in the above proof of Theorem 4.1. In this subsection, we present the proof of these lemmas.

Lemma C.6. Suppose Assumptions C.1 to C.5 hold. Define D = λ(1−β1)rδ

2
√

ϵ+(1−β2)−1U2
. There exists T <∞ such that ∀t ≥ T ,

E

(I − diag(Rt−1)

t−1∑
k=0

βk
1Gt−k−1

)⊤(
I − diag(Rt−1)

t−1∑
k=0

βk
1Gt−k−1

)∣∣∣∣∣∣wt−1

 ⪯ (exp(− D√
t

))
I.

Proof of Lemma C.6. We begin by expanding the matrix product

E

(I − diag(Rt−1)

t−1∑
k=0

βk
1Gt−k−1

)⊤(
I − diag(Rt−1)

t−1∑
k=0

βk
1Gt−k−1

)∣∣∣∣∣∣wt−1


= I − 2E

[
diag(Rt−1)

t−1∑
k=0

βk
1Gt−k−1

∣∣∣∣∣wt−1

]
+ E

(t−1∑
k=0

βk
1Gt−k−1

)⊤

diag(R2
t−1)

(
t−1∑
k=0

βk
1Gt−k−1

)∣∣∣∣∣∣wt−1

 . (18)

We bound the first expectation from below and the second expectation from above.

We being by bounding E
[
diag(Rt−1)

∑t−1
k=0 β

k
1Gt−k−1

∣∣∣wt−1

]
from below. Following the update rule as specified in

Appendix C.1, we expand the ith entry of Rt−1 as defined by Eq. (10) and get

Rt−1,i =
αt,i√

t(ϵ+ vt,i)
=

(
1− β1

1− βt
1

)(√
1− βt

2√
1− β2

)
1

1− βt
1

(
(1− β1)

(
t−1∑
k=0

βk
1 r̄t−k,i

)
+ βt

1r̄0,i

)
1√

t(ϵ+ vt,i)
.

(19)

By Assumption C.3 and that |β2| < 1, we can bound vt,i as defined in Eq. (8) by

vt,i =

t−1∑
k=0

βk
2 g

2
i (wt−k−1, θt−k−1) ≤ U2

t−1∑
k=0

βk
2 ≤ U2(1− β2)

−1.

Together with |β1| < 1 and that ∀t, i, r̄t,i ≥ rδ ,

Rt−1,i ≥
(
1− β1

1− βt
1

)(√
1− βt

2√
1− β2

)
rδ

1− βt
1

1
√
t
√
ϵ+ (1− β2)−1U2

≥ (1− β1)rδ√
t
√

ϵ+ (1− β2)−1U2
.



As a result, for all t, we have that diag(Rt−1) ⪰ (1−β1)rδ√
t
√

ϵ+(1−β2)−1U2
I .

Now let A = diag(Rt−1) − 1
2 (min1≤i≤M Rt−1,i) I . We know A is diagonal and A ⪰ (1−β1)rδ

2
√
t
√

ϵ+(1−β2)−1U2
I . We also

know Q :=
∑t−1

k=0 β
k
1Gt−k−1 ⪰ 0 since Gt are sample covariance matrices. Together, using Λmin to denote the minimum

eigenvalue, we have Λmin (AQ) = Λmin

(
A

1
2QA

1
2

)
≥ 0, and so AQ ⪰ 0. Therefore,

diag(Rt−1)

t−1∑
k=0

βk
1Gt−k−1 ⪰

1

2

(
min

1≤i≤M
Rt−1,i

) t−1∑
k=0

βk
1Gt−k−1 =

(1− β1)rδ

2
√
t
√
ϵ+ (1− β2)−1U2

t−1∑
k=0

βk
1Gt−k−1.

Using the above, we have that

E

[
diag(Rt−1)

t−1∑
k=0

βk
1Gt−k−1

∣∣∣∣∣wt−1

]
⪰ (1− β1)rδ

2
√
t
√

ϵ+ (1− β2)−1U2

t−1∑
k=0

βk
1E [Gt−k−1|wt−1]

=
(1− β1)rδ

2
√
t
√

ϵ+ (1− β2)−1U2

t−1∑
k=0

βk
1E [E [Gt−k−1|wt−k−1, θt−k−2]|wt−1]

⪰ λ(1− β1)rδ

2
√
t
√

ϵ+ (1− β2)−1U2

(
t−1∑
k=0

βk
1

)
I

⪰ λ(1− β1)rδ

2
√
t
√

ϵ+ (1− β2)−1U2
I, (20)

where the inequalities are due to Assumption C.4 and |β1| < 1.

We now bound E
[(∑t−1

k=0 β
k
1Gt−k−1

)⊤
diag(R2

t−1)
(∑t−1

k=0 β
k
1Gt−k−1

)∣∣∣∣wt−1

]
. We similarly begin by bounding Rt−1,i

from the other direction. By Assumption C.1, r̄t,i ≤ B. Together with vt,i ≥ 0, and that |β1| < 1, |β2| < 1, we can bound
Eq. (19) from above by

Rt−1,i ≤
(
1− β1

1− βt
1

)(√
1− βt

2√
1− β2

)
B

1− βt
1

1√
t
√
ϵ
≤ B

tϵ(1− β1)
√
1− β2

. (21)

Again using |β1| < 1, |β2| < 1, and squaring Rt−1,i, we have that

diag(R2
t−1) ⪯

B2

tϵ(1− β1)2(1− β2)
I. (22)

Therefore,

E

(t−1∑
k=0

βk
1Gt−k−1

)⊤

diag(R2
t−1)

(
t−1∑
k=0

βk
1Gt−k−1

)∣∣∣∣∣∣wt−1


⪯ B2

tϵ(1− β1)2(1− β2)
E

(t−1∑
k=0

βk
1Gt−k−1

)⊤(t−1∑
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βk
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=

B2

tϵ(1− β1)2(1− β2)
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βk
1β

k′

1 E
[
G⊤

t−k−1Gt−k′−1

∣∣wt−1

]
=

B2

tϵ(1− β1)2(1− β2)

t−1∑
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t−1∑
k′=0
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k′

1 E
[
E
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G⊤
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]∣∣wt−1

]
⪯ λ̄B2

tϵ(1− β1)2(1− β2)

(
t−1∑
k=0

βk
1

)2

I

⪯ λ̄B2

tϵ(1− β1)4(1− β2)
I, (23)



where the second last inequality is due to Assumption C.5, and the last inequality is by |β1| < 1. Let D′ = λ̄B2

ϵ(1−β1)4(1−β2)

and recall that D = λ(1−β1)rδ

2
√

ϵ+(1−β2)−1U2
. Together by Eqs. (20) and (23), we can bound Eq. (18) by

E

(I − diag(Rt−1)

t−1∑
k=0

βk
1Gt−k−1

)⊤(
I − diag(Rt−1)

t−1∑
k=0

βk
1Gt−k−1

)∣∣∣∣∣∣wt−1

 ⪯ (1− 2D√
t
+

D′

t

)
I.

Since D,D′ > 0, we have for all t ≥ D′2

D2 , 1− 2D√
t
+ D′

t ≤ 1− D√
t
≤ exp

(
− D√

t

)
. Therefore, for all t ≥ D2

2

D2
1

, we have that

E

(I − diag(Rt−1)

t−1∑
k=0

βk
1Gt−k−1

)⊤(
I − diag(Rt−1)

t−1∑
k=0

βk
1Gt−k−1

)∣∣∣∣∣∣wt−1

 ⪯ (exp(− D√
t

))
I.

Lemma C.7. Suppose Assumptions C.1 to C.5 hold. We have that as t→∞,

E


∥∥∥∥∥∥diag(Rt−1)

t−1∑
k=1

βk
1Gt−k−1

 k∑
j=1

∆t−j

∥∥∥∥∥∥
2
∣∣∣∣∣∣∣wt−1

 = O

(
1

t2

)
.

Proof of Lemma C.7. We begin by expanding the norm

E


∥∥∥∥∥∥diag(Rt−1)

t−1∑
k=1

βk
1Gt−k−1

 k∑
j=1

∆t−j

∥∥∥∥∥∥
2
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∥∥∥∥∥∥
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tϵ(1− β1)2(1− β2)
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t−k−1Gt−k′−1

 k′∑
j=1
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=
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∣∣∣∣∣∣wt−1

 , (24)

where the second inequality is by Eq. (22), and the last equality follows after writing wt−k−1 − wt−1 as a telescoping sum.
Using Assumption C.5, we can bound the expectation in Eq. (24) as follows:
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k,k′=1

βk+k′
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Therefore,
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≤ λ̄B2

tϵ(1− β1)2(1− β2)
E

 t−1∑
k,k′=1

βk+k′

1

 k∑
j=1

∆t−j

⊤ k′∑
j=1

∆t−j


∣∣∣∣∣∣∣wt−1


≤ λ̄B2

tϵ(1− β1)2(1− β2)
E

 t−1∑
k,k′=1

βk+k′

1

∥∥∥∥∥∥
k∑

j=1

∆t−j

∥∥∥∥∥∥
∥∥∥∥∥∥

k′∑
j=1

∆t−j

∥∥∥∥∥∥
∣∣∣∣∣∣wt−1

 .

We now bound
∥∥∥∑k

j=1 ∆t−j

∥∥∥2.

∥∥∥∥∥∥
k∑

j=1

∆t−j

∥∥∥∥∥∥
2

=
k∑

j,j′=1

∆⊤
t−j∆t−j′ ≤

k∑
j,j′=1

∥∆t−j∥∥∆t−j′∥.

By Eqs. (10) and (7), we can write

∥∆t−j∥2 =

M∑
i=1

R2
n−j,im

2
n−j,i

≤ B2

(t− j)ϵ(1− β1)2(1− β2)

M∑
i=1

m2
n−j,i

=
B2

(t− j)ϵ(1− β1)2(1− β2)

M∑
i=1

(
t−j−1∑
k=0

βk
1 gi(wt−j−k−1, θt−j−k−1)

)2

≤ U2B2

(t− j)ϵ(1− β1)2(1− β2)

M∑
i=1

(
t−j−1∑
k=0

βk
1

)2

≤ U2B2M

(t− j)ϵ(1− β1)4(1− β2)
,

where the first inequality is by Eq. (21), and the second inequality by Assumption C.3, and the last inequality by |β1| < 1.
Let D1 = λ̄B2

ϵ(1−β1)2(1−β2)
, D2 = U2B2M

ϵ(1−β1)4(1−β2)
, we have

E


∥∥∥∥∥∥diag(Rt−1)

t−1∑
k=1

βk
1Gt−k−1

 k∑
j=1

∆t−j

∥∥∥∥∥∥
2
∣∣∣∣∣∣∣wt−1


≤ D1

t

t−1∑
k,k′=1

βk+k′

1

k∑
j,j′=1

√
D2√
t− j

√
D2√

t− j′
=

D1D2

t

t−1∑
k=1

βk
1

k∑
j=1

1√
t− j

2

.

If we can show that, as t → ∞, S(t) :=
∑t−1

k=1 β
k
1

∑k
j=1

1√
t−j

= O
(

1√
t

)
, then we have, as t → ∞,

D1D2

t

(∑t−1
k=1 β

k
1

∑k
j=1

1√
t−j

)2
= O

(
1
t2

)
, thus concluding the proof. We now show that S(t) = O

(
1√
t

)
as t→∞.

S(t) =

t−1∑
k=1

βk
1

k∑
j=1

1√
t− j

=

t−1∑
j=1

t−1∑
k=j

βk
1

1√
t− j

=

t−1∑
j=1

1√
t− j

t−1∑
k=j

βk
1 =

t−1∑
j=1

1√
t− j

βj
1(1− βt−j

1 )

1− β1
.



We decompose the above into two sums to get

S(t) =
1

1−β1

t−1∑
j=1

βj
1√

t− j
− 1

1− β1

t−1∑
j=1

βj
1β

t−j
1√

t− j
=

1

1−β1

t−1∑
j=1

βj
1√

t− j
− βt

1

1− β1

t−1∑
j=1

1√
t− j

≤ 1

1− β1

t−1∑
j=1

βj
1√

t− j
.

Splitting the sum above at ⌊t/2⌋, we get that

S(t) =
1

1− β1

⌊t/2⌋∑
j=1

βj
1√

t− j
+

1

1− β1

t−1∑
j=⌊t/2⌋+1

βj
1√

t− j
.

In the first sum, since j ≤ ⌊t/2⌋, we know t− j ≥ t− t
2 = t

2 . Then

1

1− β1

⌊t/2⌋∑
j=1

βj
1√

t− j
≤ 1

1− β1

√
2√
t

⌊t/2⌋∑
j=1

βj
1 ≤

β1

√
2

(1− β1)2
√
t
.

In the second sum, since ⌊t/2⌋+ 1 ≤ j ≤ t− 1, we know t− j ≥ 1. Then

1

1− β1

t−1∑
j=⌊t/2⌋+1

βj
1√

t− j
≤ 1

1− β1

t−1∑
j=⌊t/2⌋+1

βj
1 ≤

1

1− β1

∞∑
j=⌊t/2⌋+1

βj
1 ≤

β
⌊t/2⌋+1
1

(1− β1)2
.

Since |β1| < 1, β⌊t/2⌋+1
1 decays faster than 1√

t
as t→∞. Therefore, we have that, as t→∞, S(t) = O

(
1√
t

)
.

Lemma C.8. Suppose Assumptions C.1 to C.5 hold. We have that as t→∞,

E

∥∥∥∥∥diag(Rt−1)

t−1∑
k=0

βk
1Ht−k−1(1− st−k−1)

∥∥∥∥∥
2
 = O

(
1

t

)
.

Proof of Lemma C.8. We begin by expanding the norm

E

∥∥∥∥∥diag(Rt−1)

t−1∑
k=0

βk
1Ht−k−1(1− st−k−1)

∥∥∥∥∥
2


=

t−1∑
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βk+k′

1 E
[
(Ht−k−1(1− st−k−1))

⊤
diag(R2

t−1) (Ht−k′−1(1− st−k′−1))
]

≤ B2

tϵ(1− β1)2(1− β2)
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βk+k′

1 E
[
(1− st−k−1)

⊤H⊤
t−k−1Ht−k′−1(1− st−k′−1)

]
=
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tϵ(1− β1)2(1− β2)
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β2k
1 E

[
(1− st−k−1)

⊤H⊤
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]
=

B2

tϵ(1− β1)2(1− β2)

t−1∑
k=0

β2k
1 E

[
∥Ht−k−1(1− st−k−1)∥2

]
.

In the above, the inequality is by Eq. (22); the second last equality is due to unbiased subsampling and that when k ̸= k′,
st−k−1 ⊥⊥ st−k′−1. If we can show ∀t, E

[
∥Ht(1− st)∥2

]
is uniformly bounded above by some constant C, then we have

E

∥∥∥∥∥diag(Rt−1)

t−1∑
k=0

βk
1Ht−k−1(1− st−k−1)

∥∥∥∥∥
2


≤ CB2

tϵ(1− β1)2(1− β2)

t−1∑
k=0

β2k
1

≤ CB2

tϵ(1− β1)2(1− β2)

1

1− β2
1

,



where the last line is by |β1| < 1. We can therefore conclude as t→∞, E
[∥∥∥diag(Rt−1)

∑t−1
k=0 β

k
1Ht−k−1(1−st−k−1)

∥∥∥2] =
O
(
1
t

)
. It now remains to show that ∀t, E

[
∥Ht(1− st)∥2

]
is uniformly bounded above by a constant.

By Eq. (9), we have that

E
[
∥g(wt, θt,St)∥2

]
= E

[
∥Gt(wt − w⋆)∥2 + ∥Ht(1− st)∥2 + 2(wt − w⋆)⊤G⊤

t Ht(1− st)
]

= E
[
∥Gt(wt − w⋆)∥2 + ∥Ht(1− st)∥2 + 2(wt − w⋆)⊤G⊤

t HtE [(1− st)|wt, θt]
]

= E
[
∥Gt(wt − w⋆)∥2 + ∥Ht(1− st)∥2

]
,

where the last equality is due to unbiased subsampling. Together with Assumption C.3, we have

E
[
∥Ht(1− st)∥2

]
≤ E

[
∥Gt(wt − w⋆)∥2 + ∥Ht(1− st)∥2

]
≤ E

[
∥g(wt, θt,St)∥2

]
≤MU2,

thus concluding the proof.
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