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ABSTRACT

Class-incremental learning (CIL) aims to adapt to emerging new classes without
forgetting old ones. Traditional CIL models are trained from scratch to continually
acquire knowledge as data evolves. Recently, pre-training has achieved substantial
progress, making vast pre-trained models (PTMs) accessible for CIL. Contrary to
traditional methods, PTMs possess generalizable embeddings, which can be easily
transferred for CIL. In this work, we revisit CIL with PTMs and argue that the core
factors in CIL are adaptivity for model updating and generalizability for knowledge
transferring. 1) We first reveal that frozen PTM can already provide generalizable
embeddings for CIL. Surprisingly, a simple baseline (SimpleCIL) which continu-
ally sets the classifiers of PTM to prototype features can beat state-of-the-art even
without training on the downstream task. 2) Due to the distribution gap between
pre-trained and downstream datasets, PTM can be further cultivated with adaptivity
via model adaptation. We propose AdaPt and mERge (APER), which aggregates
the embeddings of PTM and adapted models for classifier construction. APER is a
general framework that can be orthogonally combined with any parameter-efficient
tuning method, which holds the advantages of PTM’s generalizability and adapted
model’s adaptivity. 3) Additionally, considering previous ImageNet-based bench-
marks are unsuitable in the era of PTM due to data overlapping, we propose four
new benchmarks for assessment, namely ImageNet-A, ObjectNet, OmniBench-
mark, and VTAB. Extensive experiments validate the effectiveness of APER with a
unified and concise framework.

1 INTRODUCTION

With the advancement of deep learning, deep models have achieved impressive feats in many fields (He
et al., 2016; Simonyan & Zisserman, 2014; Tan et al., 2020). However, most research focuses on
recognizing a limited number of classes in static environments. In the real world, applications often
deal with streaming data with incoming new classes (Gomes et al., 2017). To address this issue,
Class-Incremental Learning (CIL) has been proposed, which allows the model to learn from the
evolving data and continuously build a unified classification model. Nevertheless, when new classes
are added sequentially, the notorious catastrophic forgetting occurs (French, 1999), which erases the
previously learned knowledge. Many prior works (Li & Hoiem, 2017; Masana et al., 2022; De Lange
et al., 2021) are designed to continually build a holistic embedding without forgetting.

While typical methods assume that the model is “trained from scratch,” recent advancements in
pre-training (Han et al., 2021) have made Pre-Trained Models (PTMs) more accessible for designing
models in downstream tasks. These PTMs are often trained on massive corpus (Radford et al., 2021)
or countless images (Deng et al., 2009; Ridnik et al., 2021) with handcrafted tricks (Steiner et al.,
2021), resulting in strong generalizability. Consequently, several methods (Wang et al., 2022e;d;b;
Villa et al., 2022) propose to leverage PTM for better incremental learning.

Powerful PTMs alleviate the burden of the learning process, substantially surpassing the
performance upper bound of non-PTM-based methods (Zhou et al., 2023a). However,
upon revisiting the objective of CIL, we find essential differences between these protocols.
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Figure 1: Comparison of different PTM-based CIL
methods on VTAB dataset. X-axis stands for the num-
ber of tunable parameters, and Y-axis stands for the
average accuracy. The radius stands for the train-
ing time. Although consuming more tuning param-
eters and training time, current state-of-the-arts (i.e.,
L2P (Wang et al., 2022e) and DualPrompt (Wang et al.,
2022d)) still show inferior performance than the base-
line method SimpleCIL. By contrast, our APER con-
sistently improves the baseline with tiny costs.

Without PTMs, CIL models are trained from
random initialization to continually acquire the
knowledge of new classes and build a unified em-
bedding space, which requires the adaptivity for
sequential updating. In contrast, PTMs are trained
with massive datasets, which makes it easier to
achieve an ideal knowledge and embedding space
with strong generalizability. Take the human
learning process for an example; non-PTM meth-
ods aim to teach an infant to grow up and contin-
ually acquire knowledge through college, while
PTM-based methods teach an experienced adult
to do the same thing, which is much easier.

To evaluate the generalizability of PTMs, we for-
mulate a CIL task using the VTAB (Zhai et al.,
2019) dataset and test the performance of state-of-
the-art PTM-based methods (Wang et al., 2022d;e)
with a pre-trained ViT-B/16-IN1K in Figure 1. As
a comparison, we present a simple baseline Sim-
pleCIL to evaluate the quality of the pre-trained
features. With the pre-trained embedding function
frozen, SimpleCIL sets the classifier weights to the average embeddings (Snell et al., 2017) of each
new class for classification. If PTMs already possess generalizable features, directly matching the
average pattern to each query instance could also achieve competitive results. Surprisingly, we find
that SimpleCIL outperforms the current SOTA by 5% even without any tuning on these downstream
tasks, verifying its strong generalizability in knowledge transfer.

Although PTMs are generalizable for CIL, a domain gap may still exist between pre-trained and incre-
mental datasets (Zhou et al., 2022b; You et al., 2020). For instance, the ImageNet pre-trained model
may not generalize well to out-of-distribution (Hendrycks et al., 2021b) or specialized tasks (Alfassy
et al., 2022). Under such circumstances, freezing the embedding for knowledge transferring is not
a “panacea.” Accordingly, adaptivity becomes essential to enable the model to grasp task-specific
features. Nevertheless, sequentially tuning the PTM will harm the structural information and weaken
the generalizability (Kumar et al., 2022), leading to the irreversible forgetting of previous knowledge.
Is there a way to unify the generalizability of PTM with the adaptivity of the adapted model?

In this paper, we present AdaPt and mERge (APER) for class-incremental learning, which employs
PTM to enhance generalizability and adaptivity in a unified framework. To improve adaptivity, we
adapt the PTM in the first incremental stage via parameter-efficient tuning. Adapting the model helps
to obtain task-specific features and fills the domain gap between PTM and incremental data. We then
concatenate the adapted model with the PTM to extract average embeddings as the classifier, thereby
maintaining generalizability. APER restricts model tuning in the first stage, striking a balance between
adaptivity and generalizability. Moreover, typical ImageNet-based CIL benchmarks are unsuitable for
evaluation due to overlapping between pre-trained and downstream tasks. Therefore, we benchmark
PTM-based CIL with four new datasets that have large domain gaps with the pre-trained data.
Extensive experiments under various settings demonstrate the effectiveness of APER.

2 RELATED WORK

Class-Incremental Learning (CIL): enables a learning system to continually incorporate new
concepts without forgetting old ones (Zhou et al., 2023a). Typical CIL methods can be roughly
divided into four categories. The first group saves and replays exemplars from old classes to recover
former knowledge (Aljundi et al., 2019; Chaudhry et al., 2018; Iscen et al., 2020). The second
group utilizes knowledge distillation to align the outputs of old and new models, thereby maintaining
knowledge of old concepts (Li & Hoiem, 2017; Rebuffi et al., 2017b; Douillard et al., 2020; Zhang
et al., 2020; Hu et al., 2021). The third group rectifies the inductive bias in the incremental model
through normalization and logit/feature adjustment (Shi et al., 2022; Belouadah & Popescu, 2019;
Pham et al., 2022). Lastly, other works expand the network when needed to enhance representation
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ability (Yoon et al., 2018; Yan et al., 2021; Douillard et al., 2022; Wang et al., 2022a;d;e;b).
CIL with PTM: is becoming a popular topic with the increasing prevalence of PTMs (Dosovitskiy
et al., 2020; Radford et al., 2021). The aim is to sequentially adjust the PTM to stream data with
new classes. L2P (Wang et al., 2022e) applies visual prompt tuning (Jia et al., 2022) to CIL based
on the pre-trained Vision Transformer (Dosovitskiy et al., 2020) and learns a prompt pool to select
the instance-specific prompt. DualPrompt (Wang et al., 2022d) extends L2P with general and expert
prompts. Different from the key-value search in L2P, CODA-Prompt (Smith et al., 2023) improves
the prompt selection process with an attention mechanism. (Wang et al., 2022c) explores the anchor-
based energy self-normalization strategy to aggregate multiple pre-trained classifiers. When changing
ViT into CLIP (Radford et al., 2021), (Wang et al., 2022b; Villa et al., 2022) extend L2P by learning
prompts for both text and image modalities (Zhou et al., 2022c).
Parameter-Efficient Tuning for PTM: aims to adapt the PTM to downstream tasks by tuning only a
small number of (extra) parameters. Compared to fully finetuning, parameter-efficient tuning obtains
competitive or even better performance at a much lower cost. VPT (Jia et al., 2022) prepends tunable
prefix tokens (Li & Liang, 2021) to the input or hidden layers. LoRA (Hu et al., 2022) learns low-rank
matrices to approximate parameter updates. (Houlsby et al., 2019; Chen et al., 2022a) learn extra
adapter (Rebuffi et al., 2017a) modules with downsize and upsize projection. (Pfeiffer et al., 2021)
merges the learned adapters with a fusion module. SSF (Lian et al., 2022) addresses the scaling and
shifting operation for model tuning. Apart from additional modules in the network, (Bahng et al.,
2022) proposes learning tunable parameters in the input space. Finally, (He et al., 2022a) formulates
these works in a unified framework.

3 FROM OLD CLASSES TO NEW CLASSES

Class-incremental learning aims to learn from an evolving data stream with new classes to build a
unified classifier (Rebuffi et al., 2017b). There is a sequence of B training tasks

{
D1,D2, · · · ,DB

}
,

where Db =
{(

xb
i , y

b
i

)}nb

i=1
is the b-th incremental step with nb instances. Here, the training instance

xb
i ∈ RD belongs to class yi ∈ Yb, where Yb is the label space of task b. Yb ∩ Yb′ = ∅ for b ̸= b′.

During the b-th training stage, we can only access data from Db for model updating. This paper
focuses on the exemplar-free CIL setting (Zhu et al., 2021; Wang et al., 2022e), where no historical
data can be fetched for rehearsal. The goal of CIL is to incrementally build a unified model for all
seen classes, i.e., acquiring knowledge from new classes and meanwhile preserving knowledge from
former ones. The model’s capability is evaluated over all seen classes Yb = Y1 ∪ · · ·Yb after each
incremental task. Formally, the target is to fit a model f(x) : X → Yb that minimizes the empirical
risk across all testing datasets: ∑

(xj ,yj)∈D1
t∪···Db

t
ℓ (f (xj) , yj) , (1)

where ℓ(·, ·) measures the discrepancy between prediction and ground-truth label. Db
t denotes the

testing set of task b. A good CIL model satisfying Eq. 1 has discriminability among all classes, which
strikes a balance between learning new classes and remembering old ones.

Following (Wang et al., 2022e;d), we assume the availability of a pre-trained model (e.g., a ViT (Doso-
vitskiy et al., 2020) or ResNet (He et al., 2016)) on ImageNet (Deng et al., 2009), which we use as
the initialization of f(x). For clarity, we decouple the deep model into two parts: f(x) = W⊤ϕ(x),
where ϕ(·) : RD → Rd is the embedding function and W ∈ Rd×|Yb| is the classification head. We
denote the classifier for class k as wk: W = [w1, · · · ,w|Yb|]. We refer to the features after pooling
as ϕ(x) for convolutional networks. In a plain ViT, the input encoding layer transforms the image
into a sequence of output features xe ∈ RL×d, where L is the sequence length. We assume the first
token in xe to be the [CLS] token to simplify notation. xe is then fed into the subsequent layers
(i.e., multi-head self-attention and MLP) to produce the final embeddings. We treat the embedded
[CLS] token as ϕ(x) for ViT.

Adaptivity and Generalizability in CIL
CIL with Adaptivity: Before introducing PTMs into CIL, models are trained from scratch to
gradually acquire knowledge of new classes. The naive idea is to update the incremental model with
cross-entropy loss, which equips the model with adaptivity to adapt to new tasks:

L =
∑

(xi,yi)∈Db ℓ (f (xi) , yi) + Lreg , (2)
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where Lreg stands for the regularization terms to resist forgetting, e.g., knowledge distillation (Hinton
et al., 2015; Li & Hoiem, 2017) or parameter regularization (Kirkpatrick et al., 2017).

CIL with Generalizability: With the introduction of PTM to CIL (Wang et al., 2022e), continual
learners are born with generalizability, which can be directly transferred to downstream tasks without
learning. Correspondingly, we define a simple baseline, SimpleCIL, to transfer PTM for incremental
tasks. With the embedding function ϕ(·) frozen throughout the learning process, we extract average
embedding (i.e., prototype (Snell et al., 2017)) of each class:

pi =
1
K

∑|Db|
j=1 I(yj = i)ϕ(xj) , (3)

where K =
∑|Db|

j=1 I(yj = i), and I(·) is the indicator function. The averaged embed-
ding represents the most common pattern of the corresponding class. We set the prototype
as the classifier, i.e., wi = pi, to directly adjust the PTM for CIL. SimpleCIL demon-
strates competitive performance in Figure 1, confirming the strong generalizability of PTM.
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Figure 2: Performance of new and old classes in CIL with PTM.
Sequentially finetuning the model fills the domain gap and performs
better on new classes, while freezing the model has better general-
izability and performs better on old classes.

Generalizability vs. Adaptivity:
Eq. 2 and Eq. 3 address different as-
pects of CIL models. The former
aims to enhance the adaptivity by
enabling the model to be gradually
tuned. By contrast, the latter high-
lights the model’s generalizability by
freezing it throughout the learning pro-
cess. To understand their roles in
CIL, we conduct an experiment on
CIFAR100 with 20 incremental tasks
and compare the performance of fine-
tuning versus SimpleCIL. These meth-
ods are based on pre-trained ViT-B/16-
IN21K, and we separately report the performance of new (Yb) and old (Yb−1) classes in Figure 2.
Specifically, SimpleCIL relies on the generalizability of PTM, which works competitively even
without training on the target dataset. However, it can be further improved to grasp the task-specific
features, and finetuning shows better performance in new classes with the help of adaptivity. However,
finetuning suffers catastrophic forgetting of old classes since features are continually changing. To
summarize, these characteristics are two core aspects of CIL — adaptivity enables the model to bridge
the domain gap between pre-training and incremental learning, while generalizability encourages
knowledge transfer from pre-training to incremental learning. Therefore, both of them should be
cultivated to facilitate CIL.

4 APER: ADAPT AND MERGE PTMS FOR CIL

Motivated by the potential for enhancing both generalizability and adaptivity, can we achieve these
characteristics in a unified framework? Specifically, we aim to achieve this goal from two aspects. On
the one hand, to bridge the domain gap between the PTM and downstream datasets, model adaptation
is essential to move the PTM towards incremental data. On the other hand, since the adapted model
may lose the generalizability of high-level features, we attempt to merge the adapted model and PTM
into a unified network for future tasks. The merged embedding function is kept frozen throughout the
incremental learning process, transferring the generalizable embedding of model sets to incoming
new classes. In this way, generalizability and adaptivity are achieved in the unified framework. We
first introduce the framework of APER and then discuss the specific techniques for model adaptation.

4.1 TRAINING PROCEDURE OF APER

Although PTMs have discriminating features, there may exist a significant domain gap between the
pre-trained dataset and incremental data. For example, the PTM is optimized to capture the character-
istics of classes in ImageNet, while the incremental data stream may correspond to specialized data
that requires domain knowledge or has extensive concept drift from ImageNet. To bridge this gap, an
adapting process can be developed with the incremental data:

f∗(x) = F(f(x),D,Θ) , (4)
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Figure 3: Illustration of APER. Left: the training protocol of APER. We adapt the PTM using the first stage
training set D1 and then concatenate the embedding functions of PTM and the adapted model to maintain
generalizability and adaptivity. The aggregated embedding function [ϕ∗(·), ϕ(·)] is frozen throughout the
following stages, and we extract the prototypes via Eq. 6 to set the classifier. Middle: adapting pre-trained ViT
for CIL. We provide VPT Deep/Shallow, Scale & Shift, and Adapter for model adaptation. Right: adapting
pre-trained CNN for CIL. We provide BN tuning and Scale & Shift for model adaptation. APER is a general
framework that can be orthogonally combined with these adapting techniques. Red modules in the figure are
trainable, while gray ones are frozen.

where the adapting algorithm F takes the current model f(x) and the dataset D as input. It optimizes
the parameter set Θ and produces the adapted model f∗(x) that gains the domain-specific knowledge
in the corresponding dataset. We introduce the variations of F in Section 4.2. If we could obtain
all the incremental training sets at once, adapting the model via F(f(x),D1 ∪ D2 · · · ∪ DB ,Θ) can
transfer the knowledge from the PTM to the incremental dataset and grasp the task-specific features
for better performance.

However, since data in CIL arrive sequentially, we cannot hold all the training sets at once. Con-
tinuously adapting the model would consequently result in catastrophic forgetting (as shown in
Figure 2(b)). Hence, a naive solution is to adapt the model only in the first incremental stage:

f∗(x) = F(f(x),D1,Θ) . (5)

Since D1 is a subset of the incremental data stream, it also possesses domain-specific knowledge that
could facilitate model adaptation. The tuning process enhances the adaptivity of the CIL model, and
the next question is to ensure generalizability. Since Eq. 5 forces the original generalizable feature
to become more specialized to the downstream task, high-level features irrelevant to D1 shall be
overwritten and forgotten. Therefore, a better solution is to concatenate the features extracted by the
PTM and the adapted model, i.e., [ϕ∗(x), ϕ(x)], where ϕ∗(x) and ϕ(x) stand for the adapted and
pre-trained embedding functions, respectively.

To maintain generalizability, we freeze the concatenated embedding functions [ϕ∗(·), ϕ(·)] after
adaptation and extract prototypes for the following classes:

pi =
1
K

∑|Db|
j=1 I(yj = i)[ϕ∗(xj), ϕ(xj)] , (6)

where K =
∑|Db|

j=1 I(yj = i). Compared to Eq. 3, Eq. 6 contains additional information from
the adapted model, which incorporates domain-specific features for better recognition. These
prototypes reveal the most common patterns from the adapted and pre-trained models, ensuring both
generalizability and adaptivity. We directly adopt the class prototype as the classifier weight, i.e.,
wi = pi, and utilize a cosine classifier for classification: f(x) = ( W

∥W∥2
)⊤( [ϕ∗(x),ϕ(x)]

∥[ϕ∗(x),ϕ(x)]∥2
). Based

on the similarity between instance embedding and class prototype, it assigns a higher probability to
the class with a more similar prototype.

Effect of Adapt and Merge: We give the visualizations of APER in Figure 3 (left). Although D1 is a
subset of the entire training set, adapting with it still helps transfer the PTM from the upstream dataset
to the downstream task. The adapting process can be viewed as a further pre-training procedure, which
adapts the PTM to the incremental dataset and bridges the domain gap. By merging the embedding
functions of the PTM and the adapted model, the extracted features are more representative than any
one of them alone. Additionally, since the model is only trainable in the first incremental task, the
efficiency of APER is comparable to SimpleCIL, which does not require sequential tuning. On the
other hand, since the model is frozen in the subsequent tasks, it does not suffer catastrophic forgetting
of former concepts. We give the pseudo-code of APER in Algorithm 1. In the extreme case where
the adaptation process in Eq. 5 does nothing to the PTM, APER will degrade to SimpleCIL, which
guarantees the performance lower bound.
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4.2 ADAPTING THE PTM

To bridge the distribution gap between the pre-trained and incremental datasets, APER’s performance
depends on the effective adapting algorithm F . In this section, we discuss six specializations of F in
APER that can handle different types of PTMs, such as ViTs and CNNs.

Fully Finetune: is a naive idea when transferring the model to downstream tasks. It involves tuning
all parameters in the adapting process, i.e., Θ = θϕ ∪ θW , and minimizing the discrepancy between
the model’s output and the ground truth:

minθϕ∪θW

∑
(xj ,yj)∈D1 ℓ (f (xj) , yj) . (7)

However, the tuning cost could be relatively high for large-scale PTMs, e.g., ViTs. Therefore, some
parameter-efficient tuning techniques can alleviate the tuning cost and be better solutions.

Visual Prompt Tuning (VPT) (Jia et al., 2022): is a lightweight tuning technique for adapting ViTs,
which only prepends some learnable prompts P ∈ Rp×d to form the extended features [P,xe], where
xe is the encoded features of the input image. The extended features are then fed into the subsequent
layers of ViT to calculate the final embeddings. There are two variations of VPT: VPT-Deep, which
prepends the prompts at every attention layer, and VPT-Shallow, which only prepends the prompts at
the first layer. During optimization, it freezes the pre-trained weights in the embedding function and
optimizes these prompts and classification head, i.e., Θ = θP ∪ θW .

Scale & Shift (SSF) (Lian et al., 2022): aims to adjust the feature activation by scaling and shifting.
It appends an extra SSF layer after each operation layer (i.e., MSA and MLP) and adjusts the output
of these operations. Given the input xi ∈ RL×d, the output xo ∈ RL×d is formulated as:

xo = γ ⊗ xi + β , (8)

where γ ∈ Rd and β ∈ Rd are the scale and shift factors, respectively. ⊗ is Hadamard product
(element-wise multiplication). The model optimizes the SSF layers and classifier, i.e., Θ = θSSF ∪
θW , to trace the features of new tasks.

Adapter (Houlsby et al., 2019; Chen et al., 2022a): is a bottleneck module which contains a
down-projection Wdown ∈ Rd×r to reduce the feature dimension, a non-linear activation function,
and an up-projection Wup ∈ Rr×d to project back to the original dimension. We follow (Chen et al.,
2022a) to equip the original MLP structure in ViT with the adapter. Denote the input of the MLP
layer as xℓ, the output of AdaptMLP is formatted as:

MLP(xℓ) + ReLU(xℓWdown)Wup . (9)

With pre-trained weights frozen, it optimizes the adapter and classification head, i.e., Θ = θWdown ∪
θWup ∪ θW .

Batch Normalization Tuning: If the PTM is a convolutional network, e.g., CNNs, we can adjust the
BN (Ioffe & Szegedy, 2015) parameters. Since the running mean and variance in BN are compatible
with the upstream data distribution, they could be unstable for downstream tasks. Correspondingly,
we can reset the running statistics in BN and adapt to the current data via forward passing. No
backpropagation is required, making it quick and simple for the pre-trained model.

Discussions: We visualize the adapting process of APER in Figure 3. Compared to fully fine-
tuning, parameter-efficient tuning adjusts the PTM towards the downstream task and preserves its
generalizability. The adapted model can capture the specialized features in the incremental data,
leading to better adaptivity. Since L2P and DualPrompt are based on pre-trained ViT, they cannot
be deployed with CNN. In contrast, APER is a general framework that efficiently handles diverse
structures. Specifically, APER can be combined with VPT/SSF/Adapter for ViT and SSF/BN Tuning
for CNN. Since APER adopts the prototype-based classifier, the linear classifier W will be dropped
after adaptation.

5 EXPERIMENTS

This section compares APER with SOTA methods on benchmark datasets to show the superiority.
Due to the overlap between pre-trained datasets and traditional CIL benchmarks, we also advocate
four new benchmarks for evaluating PTM-based methods. Ablations and visualizations verify the
effectiveness of APER with new classes. We also explore the performance of different PTMs in CIL.
More details and extra results are included in Section C.
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Table 1: Average and last performance comparison on seven datasets with ViT-B/16-IN21K as the back-
bone. ‘IN-R/A’ stands for ‘ImageNet-R/A,’ ‘ObjNet’ stands for ‘ObjectNet,’ and ‘OmniBench’ stands for
‘OmniBenchmark.’ We report more results in Section D. The best performance is shown in bold.

Method CIFAR B0 Inc5 CUB B0 Inc10 IN-R B0 Inc5 IN-A B0 Inc10 ObjNet B0 Inc10 OmniBench B0 Inc30 VTAB B0 Inc10
Ā AB Ā AB Ā AB Ā AB Ā AB Ā AB Ā AB

Finetune 38.90 20.17 26.08 13.96 21.61 10.79 21.60 10.96 19.14 8.73 23.61 10.57 34.95 21.25
Finetune Adapter 60.51 49.32 66.84 52.99 47.59 40.28 43.05 37.66 50.22 35.95 62.32 50.53 48.91 45.12
LwF 46.29 41.07 48.97 32.03 39.93 26.47 35.39 23.83 33.01 20.65 47.14 33.95 40.48 27.54
SDC 68.21 63.05 70.62 66.37 52.17 49.20 26.65 23.57 39.04 29.06 60.94 50.28 45.06 22.50
L2P 85.94 79.93 67.05 56.25 66.53 59.22 47.16 38.48 63.78 52.19 73.36 64.69 77.11 77.10
DualPrompt 87.87 81.15 77.47 66.54 63.31 55.22 52.56 42.68 59.27 49.33 73.92 65.52 83.36 81.23
CODA-Prompt 89.11 81.96 84.00 73.37 64.42 55.08 48.51 36.47 66.07 53.29 77.03 68.09 83.90 83.02

SimpleCIL 87.57 81.26 92.20 86.73 62.58 54.55 60.50 49.44 65.45 53.59 79.34 73.15 85.99 84.38
APER w/ Finetune 87.67 81.27 91.82 86.39 70.51 62.42 61.57 50.76 61.41 48.34 73.02 65.03 87.47 80.44
APER w/ VPT-Shallow 90.43 84.57 92.02 86.51 66.63 58.32 57.72 46.15 64.54 52.53 79.63 73.68 87.15 85.36
APER w/ VPT-Deep 88.46 82.17 91.02 84.99 68.79 60.48 60.59 48.72 67.83 54.65 81.05 74.47 86.59 83.06
APER w/ SSF 87.78 81.98 91.72 86.13 68.94 60.60 62.81 51.48 69.15 56.64 80.53 74.00 85.66 81.92
APER w/ Adapter 90.65 85.15 92.21 86.73 72.35 64.33 60.53 49.57 67.18 55.24 80.75 74.37 85.95 84.35

5.1 IMPLEMENTATION DETAILS

Dataset: Following (Wang et al., 2022d; Yu et al., 2020), we evaluate the performance on CI-
FAR100 (Krizhevsky et al., 2009), CUB200 (Wah et al., 2011), and ImageNet-R (Hendrycks et al.,
2021a). Since PTMs are often trained with ImageNet21K (Deng et al., 2009), evaluating PTM-based
methods with ImageNet is meaningless. Hence, we advocate four new datasets that have large domain
gap with ImageNet, namely ImageNet-A (Hendrycks et al., 2021b), ObjectNet (Barbu et al., 2019),
Omnibenchmark (Zhang et al., 2022) and VTAB (Zhai et al., 2019). Among them, ImageNet-A
and ObjectNet contain challenging samples that ImageNet pre-trained models cannot handle, while
Omnibenchmark and VTAB contain diverse classes from multiple complex realms. To construct the
CIL task, we sample 200 classes from ObjectNet and ImageNet-A, and 300 from Omnibenchmark.
We sample 5 datasets from VTAB, each containing 10 classes, to construct the cross-domain CIL
setting. Following (Rebuffi et al., 2017b), we shuffle the classes with the same random seed and split
them into ‘B/Base-m, Inc-n.’ It means the first dataset contains m classes, and each following dataset
contains n classes. m = 0 means the total classes are equally divided into each task.
Comparison methods: We first compare to SOTA PTM-based CIL methods L2P (Wang et al.,
2022e), DualPrompt (Wang et al., 2022d), and CODA-Prompt (Smith et al., 2023). We also modify
classical CIL methods LwF (Li & Hoiem, 2017), SDC (Yu et al., 2020), iCaRL (Rebuffi et al., 2017b),
LUCIR (Hou et al., 2019), DER (Yan et al., 2021), FOSTER (Wang et al., 2022a), MEMO (Zhou
et al., 2023b), FACT (Zhou et al., 2022a) to utilize the same PTM as the initialization. Apart from
SimpleCIL, we also report the baseline, sequentially tuning the model, denoted as Finetune.
Training details: We use PyTorch (Paszke et al., 2019) to deploy all models on Tesla V100 with
the same network backbone. As there are various PTMs publicly available (Wightman, 2019), we
follow (Wang et al., 2022e;d) to choose the most representative ones, denoted as ViT-B/16-IN1K and
ViT-B/16-IN21K. Both are pre-trained on ImageNet21K, while the former is additionally finetuned
on ImageNet1K. During adaptation, we train the model with a batch size of 48 for 20 epochs and use
SGD with momentum for optimization. The learning rate starts from 0.01 and decays with cosine
annealing. The prompt length p is 5 for VPT, and the projection dim r is 16 for Adapter. The source
code will be publicly available upon acceptance.
Evaluation Metrics: Denote the accuracy after the b-th stage as Ab, we follow (Rebuffi et al., 2017b)
to use AB (last stage performance) and Ā = 1

B

∑B
b=1 Ab (average performance) for evaluation.

5.2 BENCHMARK COMPARISON

We report the incremental performance against SOTA methods in Table 1, where all methods are based
on the pre-trained ViT-B/16-IN21K. We also train these models with pre-trained ViT-B/16-IN1K and
show the incremental trend in Figure 4(a)∼4(f). These data splits include settings with large and
small base classes for a holistic evaluation.

Firstly, we can infer that the embeddings of PTMs are generalizable and can be directly applied for
CIL to beat the SOTA. Specifically, the baseline SimpleCIL outperforms DualPrompt by 20% on
CUB and 8% on ImageNet-A in terms of AB . However, strong PTMs can be further improved if
they are adapted by APER, as downstream tasks have a large domain gap with the pre-trained dataset.
Specifically, we find APER consistently outperforms SimpleCIL in seven benchmark datasets. In
contrast, sequentially finetuning the model suffers severe forgetting, which verifies the effectiveness of
the adapt and merge protocol. Since APER only requires tuning the PTM in the first stage, it requires
less training time and extra parameters than L2P and DualPrompt, as shown in Figure 1. Among the
variations of adapting techniques, we find SSF and Adapter are more efficient than VPT. We also
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(a) CIFAR B50 Inc5
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(c) ImageNet-A B100 Inc5
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(d) ImageNet-R B100 Inc5

150 200 250 300
Number of Classes

40

50

60

70

80

A
cc

ur
ac

y 
(%

)

L2P
DualPrompt
SimpleCIL
APER w/ Finetune

APER w/ VPT-Shallow
APER w/ VPT-Deep
APER w/ SSF
APER w/ Adapter

(e) OBenchark B150 Inc15

100 120 140 160 180 200
Number of Classes

20

30

40

50

60

70

A
cc

ur
ac

y 
(%

)

L2P
DualPrompt
SimpleCIL
APER w/ Finetune

APER w/ VPT-Shallow
APER w/ VPT-Deep
APER w/ SSF
APER w/ Adapter

(f) ObjectNet B100 Inc5

0 50 100 150 200
Number of Classes

40

50

60

70

80

90

A
cc

ur
ac

y 
(%

)

SimpleCIL
APER w/ Finetune
APER w/ SSF
APER w/ BN Tuning

(g) CUB B0 Inc5

0 50 100 150 200
Number of Classes

10

20

30

40

50

60

70

A
cc

ur
ac

y 
(%

)

SimpleCIL
APER w/ Finetune
APER w/ SSF
APER w/ BN Tuning

(h) ImageNet-A B0 Inc5

Figure 4: (a)∼(f): Incremental performance with ViT-B/16-IN1K as the backbone when half of the total
classes are base classes. (g)∼(h): Incremental performance when using ResNet18 as backbone. Since L2P and
Dualprompt cannot be deployed with ResNet, we do not report their performance. APER consistently improves
the performance of different backbones, i.e., ViT and CNN. ‘OBenchmark’ stands for ‘OmniBenchmark.’

compare to SOTA traditional CIL methods and modify their backbones into pre-trained ViT for a fair
comparison. However, we can infer from Table 2 that these methods work poorly without exemplars.

Table 2: Comparison to SOTA classical CIL methods
with ViT-B/16-IN1K. All methods are deployed without
exemplars.

Method ObjectNet B0 Inc20 ImageNet-A B0 Inc20
Ā AB Ā AB

iCaRL 33.43 19.18 29.22 16.16
LUCIR 41.17 25.89 31.09 18.59
DER 35.47 23.19 33.85 22.27
FOSTER 37.83 25.07 34.82 23.01
MEMO 38.52 25.41 36.37 24.46
FACT 60.59 50.96 60.13 49.82

SimpleCIL 62.11 51.13 59.67 49.44
APER w/ SSF 68.75 56.79 63.59 52.67

Apart from ViTs, APER also works well with
pre-trained CNNs. We adopt the pre-trained
ResNet18 (He et al., 2016) for evaluation
and plot the incremental performance in Fig-
ure 4(g),4(h). Results show that APER con-
sistently boosts the performance of pre-trained
ViTs and CNNs. See full results in Section D.

Lastly, as shown in Table 1, the performance on
typical benchmarks is approaching saturation as
they have a small domain gap with ImageNet.
By contrast, due to the large domain gap be-
tween our newly established benchmarks and
ImageNet, there is still space for improvement, indicating the effectiveness and necessity of these new
benchmarks. We also consider a more challenging TV series incremental learning task in Section C.1.

5.3 ABLATION STUDY

Downscale features: Since the feature of APER is aggregated with PTM and adapted model, which is
twice that of a PTM. We conduct an ablation with APER w/ SSF on CIFAR100 Base50 Inc5 to show
whether these features are essential for CIL. Specifically, we train a PCA (Pearson, 1901) model in
the first stage to reduce embedding dimension for the following stages. Denote the target dimension
as k, we train the PCA model PCA([ϕ∗(x), ϕ(x)]) : Rd → Rk, and append it to the feature extractor.
Hence, the features and prototypes are projected to k dimensions. We plot the performance with the
change of k in Figure 5(a). Specifically, APER obtains competitive performance to DualPrompt (with
768 dims) even if the features are projected to 50 dims. We also experiment by randomly sampling k
features from the original feature space and report the results in Figure 5(b). The conclusions are
consistent with the former ones, showing that randomly sampling 200 dimensions of APER achieves
the same performance scale as DualPrompt. The accuracy-dimension curves are shown in Figure 5(c).

Sub-modules: Since APER is concatenated with PTM and adapted model, we conduct ablations on
ImageNet-A Base100 Inc5 with ViT-B/16-IN21K to compare APER w/ Finetune and its sub-modules.
Specifically, we build SimpleCIL with ϕ(·) and ϕ∗(·), respectively, denoted as SimpleCIL-PTM
and SimpleCIL-Adapted. The former represents the capability of PTM, while the latter stands
for the power of the adapted model. Both are compositional modules in APER. Besides, we build
SimpleCIL based on concatenated pre-trained ViT-B/16-IN21K and ViT-B/16-IN1K, denoted as
SimpleCIL-21K+1K. It utilizes the aggregated features of two embedding functions, which has the
same dimension as APER. As shown in Figure 5(d), SimpleCIL-Adapted outperforms SimpleCIL-
PTM, indicating the importance of model adaptation. However, adapting the model also overwrites
the high-level features, which reduces the model’s generalizability. The adapted model suffers larger
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Figure 5: Ablation study. We use PCA or random sample to downscale the dimension of aggregated embeddings
in (a)∼(c). We also compare APER to its sub-modules for ablation in (d).

performance degradation than vanilla SimpleCIL, indicating the effect of generalizability in resisting
forgetting. APER outperforms every sub-module with unified adaptivity and generalizability.

Different PTMs: Observing the performance gap between ViT-B/16-IN21K and ViT-
B/16-IN1K, we seek to explore different kinds of PTMs on ImageNet-R Base0 Inc20.
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Figure 6: CIL with different kinds of PTMs.
APER consistently improves the performance
of different PTMs.

We choose publicly available PTMs, i.e.,
ResNet18/50/152 (He et al., 2016), ViT-B/16-
IN1K/21K, ViT-L/16-IN1K, ViT-B/16-DINO (Caron
et al., 2021), ViT-B/16-SAM (Chen et al., 2022b), ViT-
B/16-MAE (He et al., 2022b), ViT-B/16-CLIP (Radford
et al., 2021) (image encoder) for a holistic evaluation,
and report the results in Figure 6. We can draw three
main conclusions. 1) Pre-trained ViTs show better
generalizability than ResNets. 2) Larger ViTs generalize
better than small ones, and ViTs trained with supervised
loss perform better than unsupervised ones. 3) Owing
to the massive training corpus and the contrastive loss,
CLIP performs better than ImageNet21K pre-trained ViTs. Finally, we find APER w/ Finetune
consistently improves the performance of SimpleCIL for any PTM, thus validating its effectiveness.

(a) First stage (b) Second stage
Figure 7: Visualization of the decision bound-
ary on CIFAR100 between two incremental
tasks. Old classes are shown in dots, and new
classes are shown in triangles. Decision bound-
aries are shown with the shadow region.

Visualizations: We visualize the learned decision
boundaries with t-SNE (Van der Maaten & Hinton, 2008)
on CIFAR100 dataset between two incremental stages,
as shown in Figure 7(a), 7(b). We visualize the classes
from the first and second incremental tasks with colorful
dots and triangles. Correspondingly, the class prototypes
are represented by squares. As we can infer from these
figures, PTM works competitively, which well separates
the instances into their corresponding classes. The class
prototypes are situated at the center of each class, ver-
ifying their representativeness in recognition. When
extending the model from the first to the second stage,
we find APER performs well on both old and new classes. Visualizations verify the generalizability
and adaptivity of APER. More visualizations are shown in Section C.4.

6 CONCLUSION

Learning with incremental classes is of great importance in real-world applications, which requires
adaptivity for updating and generalizability for knowledge transfer. In this paper, we systematically
revisit CIL with PTMs and draw three conclusions. Firstly, a frozen PTM can provide generalizable
embeddings for CIL, enabling a prototype-based classifier to outperform the current state-of-the-art.
Secondly, due to the distribution gap between pre-trained and downstream datasets, PTMs can
be further harnessed to enhance their adaptivity. To this end, we propose APER, which can be
orthogonally combined with any parameter-efficient tuning method to unify generalizability and
adaptivity for CIL. Lastly, due to data overlapping, traditional ImageNet-based benchmarks are
unsuitable for evaluation in the era of PTM. Hence, we propose four new benchmarks to evaluate
PTM-based CIL methods. Extensive experiments verify APER’s state-of-the-art performance. Future
work includes exploring task-specific tuning methods and structures.
Limitations include the restriction of exemplars. It turns into exemplar-based CIL if sufficient old
class instances are available, where adaptivity can be further addressed through data rehearsal.
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Supplementary Material
Class-incremental learning (CIL) is of great importance to the machine learning community, and
Pre-Trained Models (PTMs) have boosted its performance in recent years. In the main paper, we
revisit PTM-based CIL and draw three conclusions. 1) We empirically prove that frozen PTM can
provide generalizable embeddings for CIL. To our surprise, a simple baseline (SimpleCIL) that
continually sets the classifiers of PTM to prototype features can beat state-of-the-art performance
even without training on the downstream task. 2) We show that PTM can be further cultivated with
adaptivity through model adaptation. We propose AdaPt and mERge (APER), which holds the
advantages of PTM’s generalizability and adapted model’s adaptivity. 3) Previous benchmarks are
unsuitable in the era of PTM due to data overlapping. Hence, we propose four new benchmarks,
namely ImageNet-A, ObjectNet, OmniBenchmark, and VTAB, that have a large domain gap with
ImageNet pre-trained model for evaluation.

In the supplementary, we provide more details about the experimental results mentioned in the main
paper, as well as additional empirical evaluations and discussions. The supplementary material is
organized as follows:

• Section A provides the background information on vision transformer and parameter-efficient
tuning methods. It also includes a discussion on model tuning in APER and a discussion
about related concepts in continual learning. We also summarize and discuss the main
contributions of this paper.

• Section B discusses the implementation details in the main paper, including the introduction
of compared methods, hyper-parameters, pre-trained models, and datasets.

• Section C presents additional ablations of APER, including the influence of adapting stages,
hyper-parameters, and classifier types. It also contains extra experimental evaluations that
could not be included in the main paper due to page limits, such as more visualizations of
Grad-CAM. Additionally, we also create a fine-grained TV series classification dataset that
strictly has no data overlapping with the pre-training dataset. We also supply the incremental
learning results on this new dataset.

• Section D reports the full experimental results of 7 datasets and 45 splits, including the
numerical results and performance curves. It also includes experiments with pre-trained
ResNets.

A BACKGROUNDS ABOUT VIT AND PARAMETER-EFFICIENT TUNING

In this section, we provide background information on vision transformers and parameter-efficient
tuning techniques adopted in the main paper.

A.1 VISION TRANSFORMER

The concept of Vision Transformers (ViTs) is first introduced in (Dosovitskiy et al., 2020) to the
computer vision field. In a plain ViT, an RGB image x ∈ R3×H×W is first divided into non-
overlapping patches, where (H,W ) denotes the height and width of the input image. These patches
are then appended with a class token [CLS] and then fed into an embedding layer followed by the
vision transformer blocks with self-attention (Vaswani et al., 2017) as the core operation. Following
the notations in the main paper, we denote the features after the embedding layer as xe ∈ RL×d, and
the first element in xe is the [CLS] token. L is the length of sequence, and d is the embedding dim.

Each vision transformer block mainly consists of two modules, i.e., a multi-head self-attention layer
(MSA) and a two-layer MLP. In MSA, the tokens xe are first linearly projected into query Q ∈ RL×d,
key K ∈ RL×d, and value V ∈ RL×d. The self-attention is performed via:

Attention(Q,K, V ) = Softmax

(
QKT

√
d

)
V . (10)

The output tokens are then sent to a LayerNorm (Ba et al., 2016) and the MLP block. Denote the
output of Eq. 10 as xℓ, this process is formulated as:

xℓ + MLP(LN(xℓ)) , (11)
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which aggregates the projected features and the original features for further information extraction.
After the transformation of N cascaded transformer blocks, ViT takes the [CLS] token as the feature
for final recognition. We refer the readers to the original work (Dosovitskiy et al., 2020) for more
details about ViT.

A.2 PARAMETER-EFFICIENT TUNING

In this section, we introduce more details about the parameter-efficient tuning techniques adopted
in the main paper, including visual prompt tuning (VPT) (Jia et al., 2022), adapters (Houlsby et al.,
2019; Chen et al., 2022a), scale & shift (SSF) (Lian et al., 2022), and batch normalization tuning.
Before addressing these methods, we revisit the target of parameter-efficient tuning, which aims to
adapt the model with the least tunable parameters. Denote the tuning process as:

f∗(x) = F(f(x),D1,Θ) , (12)
which freezes the parameters in the pre-trained model and only adjusts the parameters in Θ. In the
main paper, we optimize the selected parameters via cross-entropy loss:

minΘ
∑

(xj ,yj)∈D1 ℓ (f (xj) , yj) . (13)

A.2.1 VISUAL PROMPT TUNING (VPT)

VPT (Jia et al., 2022) aims to prepend some learnable prompts P ∈ Rp×d to form the extended
embedding features [P,xe], where xe is the encoded features of the input image. The extended
features are then fed into the subsequent transformer blocks of ViT to calculate the final embeddings.
Depending on where the prompts are inserted, VPT can be further divided into two types: VPT-Deep
and VPT-Shallow.

Specifically, VPT-Shallow only learns the prompts in the first transformer block. Denote the function
of k-th transformer block as Lk, the operations of VPT-Shallow can be denoted as:

[Z1,E1] = L1 ([P,xe])

[Zi,Ei] = Li ([Zi−1,Ei−1]) i = 2, 3, . . . , N ,
(14)

where Zi ∈ Rp×d denotes the encoded feature of prompts, N is the number of transformer blocks.
Correspondingly, VPT-Deep learns the prompts in each transformer block:

[ ,Ei] = Li ([Pi−1,Ei−1]) i = 1, 2, . . . , N , (15)
where E0 = xe is the encoded feature of image patches. During optimization, VPT freezes the pre-
trained weights in the embedding layer and only optimizes these learnable prompts and classification
head1, i.e., Θ = θP ∪ θW .

Specifically, the number of tunable parameters in VPT-Shallow is p× d, and that of VPT-Shallow is
p× d×N , where N is the number of transformer blocks. For example, we set the prompt length to
5 for the ViT-B/16 model. The tunable parameters are 5× 786 = 0.004 million in VPT-Shallow and
5× 786× 12 = 0.046 million for VPT-Deep, which is negligible compared to the ViT-B/16 with 86
million parameters.

A.2.2 ADAPTER

Adapter (Houlsby et al., 2019; Chen et al., 2022a; Rebuffi et al., 2017a) is a bottleneck module that
allows adjusting the output of ViT. Formally, it comprises a down-projection Wdown ∈ Rd×r to reduce
the feature dimension, a non-linear activation function, and an up-projection Wup ∈ Rr×d to project
back to the original dimension. Following the implementation of AdaptFormer (Chen et al., 2022a),
we replace the original MLP structure in ViT with the AdaptMLP structure. Specifically, denote the
input of the MLP layer as xℓ, the output of AdaptMLP is formatted as:

MLP(xℓ) + s · ReLU(xℓWdown)Wup , (16)
which is a residual structure. s is an optional learnable parameter for re-scaling the output. During
adaptation, the model freezes the pre-trained weights and only optimizes the extra parameters, i.e.,
Θ = θWdown ∪ θWup ∪ θW . Specifically, we set the hidden dim r to 16, and the number of tunable
parameters in the Adapter is approximately 0.3 million, which is negligible compared to the ViT-B/16
with 86 million parameters.

1Note that the classification head W is only optimized in the adaptation process. Since we use a prototype-
based classifier for classification after model merge, W will be dropped after adaptation.
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A.2.3 SCALE & SHIFT

Scale & Shift (SSF) (Lian et al., 2022) aims to adjust the feature activation by scaling and shifting
operations. SSF only appends an extra SSF layer after each operation layer (e.g., MSA and MLP) and
adjusts the output of these operations. Given the input xi ∈ RL×d, the output xo ∈ RL×d follows:

xo = γ ⊗ xi + β , (17)

where γ ∈ Rd and β ∈ Rd are the scale and shift factors, respectively. ⊗ is Hadamard product
(element-wise multiplication). The model optimizes the SSF layers and classification head, i.e.,
Θ = θSSF ∪ θW , to trace the features of new tasks. In the implementation, we add the SSF layer after
the MSA and MLP operations, and the number of tunable parameters in SSF is around 0.2 million,
which is negligible compared to the ViT-B/16 with 86 million parameters.

Note that the SSF layer can also be deployed for the pre-trained residual networks. We append SSF
layers after the residual blocks to re-scale the output for better adaptation.

A.2.4 BATCH NORMALIZATION TUNING

If the PTM uses ResNet structures, we can also adjust the BN (Ioffe & Szegedy, 2015) parameters,
including the running mean and running variance. Specifically, BN is designed to normalize each
feature dimension and overcome internal covariate shift. It records the running mean and variance in
the training stage:

µB =
1

m

m∑
i=1

xi

σ2
B =

1

m

m∑
i=1

(xi − µB)
2
,

(18)

where xi denotes the feature of the i-th instance and m is the batch size. µB and σ2
B are then utilized

to normalize the instances in the testing process. However, since the running mean and variance in
PTM are compatible with the upstream data distribution, they could be unstable for the downstream
tasks, leading to abnormal outputs (Sun et al., 2021; Niu et al., 2023).

To handle the incompatible BN statistics in pre-trained and incremental datasets, we first zero the
running statistics in BN and then forward pass the data in D1 to record the current data distribution.
In other words, BN can be updated by feeding the model with new class instances, i.e., f(x). These
statistical parameters are then fit for the current data to alleviate the domain gap. Notably, BN tuning
does not require backpropagation, making it an efficient solution.

A.3 SUMMARY OF PTM TUNING

Parameter-efficient tuning enables the model adaptation with the least number of tunable parameters,
which guarantees the model’s adaptivity. Specifically, we also observe that fully finetuning could
fail in cases where training data is rare. In such circumstances, parameter-efficient tuning could be a
better solution for model adaptation. Accordingly, we notice APER w/ Finetune performs worse than
SimpleCIL on CUB B0 Inc10, ObjectNet B0 Inc10, and OmniBenchmark B0 Inc30, while APER
with other tuning methods perform better. On the other hand, since parameter-efficient tuning freezes
the pre-trained weights, the generalizability of the model is also maintained. It must be noted that the
PTM in the model merge is the same as the PTM before the model adaptation.

In summary, APER is a general framework for class-incremental learning, which can be applied with
different types of backbones and tuning techniques. Specifically, we can use VPT-Deep, VPT-Shallow,
Scale & Shift, Adapter for ViT, and Scale & Shift and BN tuning for CNN. In the implementation, we
only choose one specific tuning structure among these techniques and do not consider the combination
of multiple tuning methods.

A.4 DISCUSSIONS ABOUT RELATED CONCEPTS IN CONTINUAL LEARNING

There is a famous trade-off in class-incremental learning, namely “stability-plasticity
dilemma” (Grossberg, 2012; Mermillod et al., 2013; Mirzadeh et al., 2020). Among them, “stability”
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Figure 8: Number of total parameters of different compared methods. The bars with shadow denote
the parameters used during training but dropped during inference. APER obtains better performance
than compared methods with the same scale or fewer parameters.

denotes the ability of a continual learner to remember the old knowledge, while “plasticity” refers
to the ability to learn new concepts. These concepts are similar to the concept of “generalizability
and adaptivity” in this paper. However, there are some main differences that need to be highlighted
among these concepts:

• “stability-plasticity dilemma” mainly refers to the problem of training from scratch, where
the model needs to balance learning new concepts and remembering the old. These concepts
are two ultimate goals of continual learning, which do not conflict with “generalizability
and adaptivity” raised in this paper.

• “generalizability and adaptivity” in this paper is the new characteristic in the era of pre-trained
models. Specifically, a randomly initialized model does not have such “generalizability,”
which cannot be directly applied to the downstream tasks. However, continual learners are
born with “generalizability” if starting with a pre-trained model, and we observe a simple
baseline (SimpleCIL) shows strong performance. Furthermore, we find “generalizability”
is not enough for all downstream tasks, especially in the case that downstream task comes
from a different distribution (as we see in the main paper). In this case, we need to enhance
the pre-trained model’s “adaptivity” by further tuning it with the downstream task. Finally,
by aggregating the features extracted by the pre-trained and adapted models, we find a way
to unify these characteristics in a single model.

In summary, the “generalizability and adaptivity” in this paper is a new characteristic in class-
incremental learning with pre-trained models. We aim to unify these characteristics in CIL and
propose our APER by aggregating the adapted and pre-trained models.

A.5 SUMMARY OF CONTRIBUTIONS

Our main contributions can be summarized as follows: 1) We reveal that a simple baseline (Simple-
CIL) outperforms even state-of-the-art methods when fairly compared using the same pre-trained
model. It indicates that SimpleCIL should stand as a strong baseline in pre-trained model-based class-
incremental learning in future works. 2) We point out two core factors when deploying pre-trained
models in class-incremental learning, i.e., generalizability and adaptivity. We also propose a simple
yet effective method to unify these characteristics in a single model. 3) APER is a general framework
that can be combined with various parameter-efficient tuning algorithms. It achieves state-of-the-art
performance in extensive experiments on seven newly established benchmark datasets that have large
domain gaps with the pre-trained dataset.
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Table 3: Introduction about adopted model architectures in the main paper.

Model # params Link

ViT-B/16-IN1K 86M Link
ViT-B/16-IN21K 86M Link
ResNet18 11M Link
ResNet50 23M Link
ResNet101 43M Link
ResNet152 58M Link

ViT-L/16-IN1K 303M Link
ViT-B/16-DINO 86M Link
ViT-B/16-SAM 86M Link
ViT-B/16-MAE 86M Link
ViT-B/16-CLIP 86M Link

Table 4: Introduction about benchmark datasets. ObjectNet, OmniBenchmark, and VTAB contain
massive classes, and we sample a subset from them to construct the incremental learning task.

Dataset # training instances # testing instances # Classes Link

CIFAR100 50,000 10,000 100 Link
CUB200 9,430 2,358 200 Link
ImageNet-R 24,000 6,000 200 Link

ImageNet-A 5,981 1,519 200 Link
ObjectNet 26,509 6,628 200 Link
OmniBenchmark 89,697 5,985 300 Link
VTAB 1,796 8,619 50 Link

B IMPLEMENTATION DETAILS

In this section, we discuss the detailed implementation in APER, including the pseudo code, introduc-
tion of compared methods, hyper-parameters, selection of pre-trained models, and discussion about
datasets.

B.1 PSEUDO CODE

We summarize the training protocol of APER in Algorithm 1. Given the pre-trained model, we first
adapt it with the first training dataset via Eq. 5 to get the adapted model. Afterward, we freeze the
pre-trained model and adapted model and merge the embeddings. For the subsequent tasks, we get a
new dataset and replace the classifier weights with prototypical features (i.e., class centers).

B.2 COMPARED METHODS

We first introduce the compared methods in the main paper. These methods are as follows:

• Finetune: directly trains the model with new datasets incrementally, which leads to catas-
trophic forgetting;

• Finetune Adapter (Chen et al., 2022a): freezes the pre-trained weights and sequentially
optimizes the adapter module. To improve its performance, only the specific classifiers in
the current dataset (i.e., wi, i ∈ Yb), are tuned, and the classifiers for former classes (i.e.,
wi, i ∈ Yb−1) are frozen;

• LwF (Li & Hoiem, 2017): utilizes knowledge distillation (Hinton et al., 2015) as a regular-
ization term to overcome forgetting, which relies on the supervision of old model to produce
soft targets;
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Figure 9: Dataset visualizations of our new benchmarks. ImageNet-A and ObjectNet contain hard
samples that ImageNet pre-trained models cannot handle, while OmniBenchmark and VTAB
contain classes from multiple domains.

Algorithm 1 AdaPt and mERge (APER) for CIL

Input: Incremental datasets:
{
D1,D2, · · · ,DB

}
, Pre-trained Model: f(x);

Output: Updated model;
1: Adapt the model to D1 via Eq. 5; ▷ Model adapt
2: Freeze the embedding functions ϕ∗(·) and ϕ(·);
3: Merge the embeddings, i.e., [ϕ∗(x), ϕ(x)]; ▷ Model merge
4: for b = 1, 2 · · · , B do ▷ Incremental learning
5: Get the incremental training set Db;
6: Extract the prototypes via Eq. 6;
7: Replace the classifier weight with prototype;

return the updated model;

• SDC (Hou et al., 2019): combines feature distillation, metric learning, and normalized
classifier for class-incremental learning. It builds the mapping between the features of the
old model and the current model to resist forgetting;

• DER (Yan et al., 2021): state-of-the-art class-incremental learning method, which creates a
new backbone for each new incremental task. All these features are concatenated together
to learn the unified classifier;

• FOSTER (Wang et al., 2022a): state-of-the-art class-incremental learning method, which
extends DER with a model compression stage to control the memory budget;

• MEMO (Zhou et al., 2023b): state-of-the-art class-incremental learning method. It creates
new residual layers instead of the whole backbone to reduce memory costs. In the imple-
mentation, we change the residual layers into transformer blocks to keep consistent with the
ViT structure;

• FACT (Zhou et al., 2022a): state-of-the-art class-incremental learning method, which also
builds a prototype-based classifier. It reserves the embedding space for new classes in the
incremental learning process;

• L2P (Wang et al., 2022e): state-of-the-art PTM-based CIL method. It freezes the pre-
trained model and optimizes a prompt pool to fit new patterns. To determine which prompt
to use, it designs a ‘key-value’ pair for prompt matching and utilizes an extra pre-trained
model to provide the embeddings for prompt retrieval;
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• DualPrompt (Wang et al., 2022d):state-of-the-art PTM-based class-incremental learning
method. It extends L2P with two kinds of prompts, namely general and expert prompts.
Similar to L2P, it also relies on another pre-trained model for prompt retrieval;

• CODA-Prompt (Smith et al., 2023):state-of-the-art PTM-based class-incremental learning
method. It replaces the hard prompt retrieval process in L2P via the attention mechanism.
To enhance the diversity of prompts in the prompt pool, it designs an extra orthogonality
constraint.

Note that all methods are based on the pre-trained ViT in the main paper. For methods requiring back-
bone expansion (e.g., DER, MEMO, and FOSTER), we also use pre-trained ViT as the initialization
of new backbones.

Discussion about total parameters: Since L2P and DualPrompt have prompt pools, they rely on
another pre-trained ViT as the ‘retriever’ to search for the instance-specific prompt. Hence, APER
shares the same scale of total parameters as these methods. We list the total number of parameters of
these methods in Figure 8, which indicates that APER obtains better performance than the compared
methods with the same scale or fewer parameters. Additionally, since APER utilizes parameter-
efficient tuning techniques to obtain the adapted model, most of the parameters in the adapted model
is the same as the pre-trained weight. Hence, the memory budget of APER can be further alleviated,
which we will explore in future works.

B.3 IMPLEMENTATIONS AND HYPER-PARAMETERS

For compared methods, we adopt the PyTorch implementation2 of L2P3 (Wang et al., 2022e) and
DualPrompt4 (Wang et al., 2022d). We follow the implementations in PyCIL5 to re-implement other
compared methods with ViT, i.e., Finetune, Finetune Adapter, LwF, DER, FOSTER, MEMO, and
FACT.

Specifically, for APER, the number of the prompt length p in VPT is set to 5, and the projected
dimension of the Adapter r is set to 16. There are no other hyper-parameters for APER to set,
which ensures the robustness of our proposed method. We conduct experiments to investigate the
influence of these parameters in Section C.3. Following (Wang et al., 2022e), we use the same data
augmentation for all methods, i.e., random resized crop and horizontal flip. Input images are resized
to 224×224 before feeding into the model. Following (Rebuffi et al., 2017b), all classes are randomly
shuffled with Numpy random seed 1993 before splitting into incremental tasks. A specific case is
VTAB, where we force the classes to emerge from domain to domain, as discussed in Section B.5
and D.7.

B.4 PRE-TRAINED MODELS

Since there are various kinds of pre-trained models publicly available, we follow (Wang et al., 2022e;d)
to choose the most commonly used ones in the main paper for evaluation, denoted as ViT-B/16-IN1K
and ViT-B/16-IN21K. Specifically, both models are pre-trained on ImageNet21K (Deng et al., 2009),
while ViT-B/16-IN1K is further finetuned with ImageNet1K. We follow timm (Wightman, 2019)
implementation and report the details about these models in Table 3. For ResNet, we utilize the
Pytorch (Paszke et al., 2019) pre-trained models. Additionally, we report the backbones adopted
in the ablation study, including ViT-L/16-IN1K, ViT-B/16-DINO (Caron et al., 2021), ViT-B/16-
SAM (Chen et al., 2022b), ViT-B/16-MAE (He et al., 2022b), ViT-B/16-CLIP (Radford et al., 2021)
(image encoder), in the table. Among them, ViT-B/16-DINO and ViT-B/16-MAE are trained with
self-supervised loss, and ViT-B/16-CLIP is trained on 400 million image-text pairs with contrastive
loss.

2The original implementation https://github.com/google-research/l2p is based on JAX.
3https://github.com/JH-LEE-KR/l2p-pytorch
4https://github.com/JH-LEE-KR/dualprompt-pytorch
5https://github.com/G-U-N/PyCIL
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B.5 DATASETS

Discussions about dataset selection: In this section, we provide an introduction to the datasets used
in the main paper. We list the details of seven adopted datasets in Table 4. Specifically, CIFAR100,
CUB200, and ImageNet-R are benchmark CIL datasets widely adopted in (Rebuffi et al., 2017b;
Wang et al., 2022d; Yu et al., 2020). However, due to the data overlap between ImageNet-based
benchmarks and the pre-trained dataset, ImageNet is unsuitable for evaluating PTM-based CIL
methods (Wang et al., 2022e). As a result, we introduce four new benchmarks for CIL that 1) do
not overlap with the ImageNet dataset, 2) have a large domain gap with ImageNet, increasing the
burden of PTM to generalize, and 3) contain large-scale datasets from multiple realms that can form
the cross-domain class-incremental benchmark. We list the detailed information below.

• CIFAR100 (Krizhevsky et al., 2009) contains 100 classes with 60,000 images, of which
50,000 are training instances, and 10,000 are testing ones, with 100 images per class.

• CUB200 (Wah et al., 2011) is a widely-used dataset for fine-grained visual categorization
task. It contains 11,788 images of 200 subcategories belonging to birds, with 9,430 for
training and 2,358 for testing.

• ImageNet-R (Hendrycks et al., 2021a) is introduced into CIL by (Wang et al., 2022d). It
contains newly collected data of different styles, such as cartoons, graffiti, and origami,
as well as hard examples from ImageNet that standard ImageNet pre-trained models fail
to classify. Following (Wang et al., 2022d), there are 24,000 training instances and 6,000
testing instances from 200 classes.

• ImageNet-A (Hendrycks et al., 2021b) ImageNet-A is a dataset of real-world adversarially
filtered images that fool current ImageNet pre-trained classifiers. It was exported from sites
including iNaturalist, Flickr, and DuckDuckGo, and adversarially selected by removing
examples that fail to fool ResNet50. We select 5,981 training instances and 1,519 testing
instances from 200 classes.

• ObjectNet (Barbu et al., 2019) is a large, real-world dataset for object recognition with
controlled variations in object backgrounds, rotations, and imaging viewpoints, making
finetuning a challenge due to only small performance increases. When tested on ObjectNet,
object detectors experience a 40∼45% drop in performance compared to their performance
on other benchmarks. The original ObjectNet contains classes from 313 classes, and we
select a subset of 200 classes for class-incremental learning. Among them, 26,509 instances
are for training, and 6,628 are for testing.

• OmniBenchmark (Zhang et al., 2022) is a concise and diverse benchmark for evaluating pre-
trained model generalization across semantic super-concepts/realms. It contains 21 semantic
realm-wise datasets that have no overlapping concepts. The original OmniBenchmark is
constituted of 7,372 classes, from which we sample 300 categories to construct the class-
incremental learning dataset. The subset contains 89,697 training instances and 5,985
testing instances. As these selected classes are from multiple realms, it is harder to conduct
incremental learning with OmniBenchmark than other datasets due to the domain gap among
different classes.

• VTAB (Zhai et al., 2019) includes 19 evaluation tasks spanning a variety of domains that
can be grouped into three categories — natural, specialized, and structured. The Natural
group includes images of the natural world captured through standard cameras, representing
generic objects, fine-grained classes, or abstract concepts. The Specialized group utilizes
images captured using specialist equipment, such as medical images or remote sensing. The
Structured group derives from artificial environments that target understanding of specific
changes between images, such as predicting the distance to an object in a 3D scene, counting
objects, or detecting orientation. Since the original VTAB contains 19 datasets, we select 5
to construct a cross-domain class-incremental learning setting, i.e., Resisc45 (Cheng et al.,
2017), DTD (Cimpoi et al., 2014), Pets (Parkhi et al., 2012), EuroSAT (Helber et al., 2019),
and Flowers (Nilsback & Zisserman, 2006). In VTAB, we do not shuffle the classes and
make the classes emerge from domain to domain, which is a more realistic incremental
learning setting.

We give the visualizations of our newly introduced datasets in Figure 9. As shown in the figure,
ImageNet-A and ObjectNet contain hard samples that could be misclassified by the ImageNet pre-
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1923

46 Days

And Just Like That

Am I Being Unreasonable

Figure 10: The visualization of four classes in the TV series dataset. Each line corresponds to the
same class. We collect these classes with TV series after the year 2021, and crawl images from
Google and IMDB. Since these TV series are released after the collection of ImageNet, there is no
data or class overlapping to the pre-training dataset.

trained model. In contrast, OmniBenchmark and VTAB contain cross-domain instances, which
increase the difficulty of incremental learning. Since the distribution gap from domain to domain has
not been explored in former CIL tasks, exploring the cross-task incremental learning problem with
OmniBenchmark and VTAB is very challenging.

It must be noted that there are two main sources of the distribution shift, i.e., class drift and distribution
drift. The former denotes that the classes are totally different between the two sets. By directly
matching the class names to ImageNet21K, we find only 17% classes are overlapped for ObjectNet
and Omnibenchmark, while only 10% for VTAB. The overlapping rate of these newly established
benchmarks is much lower than the typical benchmark CIFAR100 (56%). Hence, these datasets
do have a large domain gap to ImageNet21K. Furthermore, although ImageNet-A and ImageNet-R
share the same class space as ImageNet21K, the input distribution shifts substantially between them.
As shown in Figure 9, these datasets contain hard samples or out-of-distribution instances that a
pre-trained model cannot handle. In summary, the introduction of these new benchmarks enables a
holistic comparison of different CIL methods in the era of PTM.

Apart from these new benchmarks, we also collect a new dataset with no class overlapping and data
overlapping with ImageNet21K, and we report the collection process and experimental results in
Section C.1.

C EXTRA EXPERIMENTAL EVALUATIONS

In this section, we conduct experiments to investigate the variations of APER. Specifically, we collect
a new dataset without any class/data overlapping to ImageNet, and conduct experiments with it. We
also compare the results of model adaptation with different incremental stages to determine the best
solution in model adaptation. Besides, we also explore the influence of hyper-parameters in model
adaptation, e.g., the prompt length in VPT and the projection dimension in Adapter. Additionally, we
provide additional Grad-CAM results for better visualization.

C.1 EXPERIMENT ON NON-OVERLAPPING DATASET

In the main paper, we mainly focus on existing benchmark datasets in the research community that
have large domain gaps to ImageNet, e.g., CIFAR100 and CUB (typical benchmark for CIL evalua-
tion), ImageNet-R (the benchmark for CIL with pre-trained models), ImageNet-A, OmniBenchmark,
ObjectNet, and VTAB (benchmark datasets that have domain gap to ImageNet). However, one shall
argue that even if these benchmarks contain out-of-distribution instances that the pre-trained model
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Figure 11: Experiments on TV series dataset. This is a strictly non-overlapping dataset to the pre-
trained data, consisting of TV series images after 2021. APER still outperforms other competitors by
a substantial margin on this dataset. We denote the improvement compared to the runner-up method
at the end of the performance curve.

cannot recognize, the objects may still overlap with the pre-trained dataset. To tackle this problem,
we manually collect a new dataset for evaluation, namely the TV series dataset.

Noticing that ImageNet is targeted for recognizing the common objects in the real world, we aim to
collect a dataset that emerged recently, which strictly has no overlapping with ImageNet. TV series
are emerging frequently in our daily lives, spreading all over the world. It inspires us that “Can
we collect a dataset for TV series classification?” To achieve this goal, we collect the TV series
items from the internet and only keep those TV series after the year 2021. Since the ImageNet
dataset (Russakovsky et al., 2015) was collected before 2016, the images collected from these TV
series will have no overlapping with the pre-trained dataset.

After collecting the TV series items, we manually collect images of these TV series from Google
search and IMDB. These images contain the TV series poster, actor images, stage photos, etc. Hence,
we can construct the classification task by “classifying the related images to the corresponding TV
series.” We further manually delete the repeated and irrelevant images from the raw image pool, and
randomly select 100 classes as the classification task. Figure 10 shows a subset of this dataset. We
will open-source this dataset upon acceptance.

After the data collection, we report the experimental results in Figure 11. Since there are 100 classes
in total, we adopt two data splits, i.e., Base 0 Inc 10 and Base 50 Inc10. We keep other settings the
same as the main paper and compare APER w/ Adapter to L2P, DualPrompt, SimpleCIL, and CODA-
Prompt. As we can infer from the figure, APER still outperforms other competitors by a substantial
margin, e.g., 4.31% in Figure 11(a) and 14.54% in Figure 11(b). It indicates that APER shows
consistent improvement on various datasets (including the benchmark datasets in the main paper
and this non-overlapping dataset), verifying APER a strong baseline in the era of class-incremental
learning with pre-trained models.

C.2 INFLUENCE OF ADAPTING STAGES

As discussed in the main paper, we only adapt the pre-trained model in the first incremental stage
with D1 in APER. There are two reasons: 1) Sequentially tuning the model will suffer catastrophic
forgetting. 2) Since we utilize a prototype-based classifier, tuning the model with multiple stages will
result in incompatible features between former and new prototypes.

In this section, we conduct an ablation to determine the influence of adapting stages and report
the results in Figure 12. We conduct the experiment on CIFAR100 Base0 Inc10 setting with pre-
trained ViT-B/16-IN21K. There are 10 incremental stages in total. We denote the tuning stages
as T and train APER w/ Adapter for ablation. Specifically, we change the tuning stages among
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Figure 12: Influence of tuning stages. Left: the accuracy trend with the change of tuning stages.
Adapt-T denotes the model is adapted for the first T incremental tasks. T = 0 denotes Simple-
CIL. Right: the average/last accuracy with the change of tuning stages. APER achieves the best
performance when the model is only tuned with the first incremental task.
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Figure 13: Influence of prompt length. The performance of APER is robust with the change of the
prompt length, and we set p = 5 as the default setting.

{0, 1, 2, · · · , 10} to determine the influence on the final performance. In the first T stages, we adapt
the PTM incrementally with adapter and replace the classifier with prototypes. Afterward, in the T -th
stage, we freeze the encoding functions and only extract prototypes for the following stages. T = 0
denotes vanilla SimpleCIL. To prevent forgetting, we freeze the classifier weight of former classes
when learning new classes.

As shown in Figure 12(a), tuning the model with the first stage achieves the best performance among
all settings. Specifically, multi-stage tuning harms generalizability and results in the incompatible
features of former and new classes. We also plot the trend of average/last accuracy with the change
of tuning stages in Figure 12(b), where T = 1 achieves the best performance in both measures.

C.3 INFLUENCE OF HYPER-PARAMETERS

In this section, we explore the influence of hyper-parameters in APER. Specifically, since APER
is optimized with parameter-efficient tuning, the only hyper-parameters come from these tuning
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Figure 14: Influence of projected dimension in adapter. The performance of APER is robust with
the change of the projected dimension, and we set r = 16 as the default setting.
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Figure 15: Grad-CAM results. Compared to PTM, APER concentrates more on task-specific
features.

methods, i.e., the prompt length p in VPT and the projection dim r in Adapter. We train the model on
CIFAR100 B50 Inc5 with pre-trained ViT-B/16-IN1K in this section.

Firstly, we investigate the influence of the prompt length in Figure 13. The figure shows that
APER’s performance is robust with the change of the prompt length. Therefore, we use p = 5 as a
default parameter for all settings. Similarly, we observe similar phenomena in Figure 14, where the
performance is robust with the change of the projection dimension. As a result, we set r = 16 as a
default parameter for all settings.

C.4 GRAD-CAM RESULTS

Apart from the t-SNE visualizations in the main paper, we also visualize the Grad-CAM (Selvaraju
et al., 2017) results on OmniBenchmark dataset based on pre-trained ResNet18. Grad-CAM is
utilized to highlight the critical regions in the image for predicting the corresponding concept. The
results are shown in Figure 15, indicating APER concentrates more on task-specific features than
vanilla PTM, confirming the effectiveness of model adaptation in capturing task-specific features.

C.5 INFLUENCE OF COSINE CLASSIFIER

In this section, we verify the necessity of using a cosine classifier in APER. Specifically, we report the
performance of SimpleCIL and APER and their variations without the cosine classifier in Table 5. As
we can infer from the table, replacing the cosine classifier with an unnormalized classifier will lead
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Table 5: Ablation study on cosine classifier (CC) with ViT-B/16-IN1K. Cosine classifier is essential
for building PTM-based CIL models with prototypical classifiers.

Method ObjectNet B100 Inc5 ImageNet-A B0 Inc40
Ā AB Ā AB

SimpleCIL w/o CC 51.83 45.07 55.03 43.72
SimpleCIL w/ CC 56.02 51.13 58.53 49.44
APER w/ SSF w/o CC 62.17 54.76 62.75 50.91
APER w/ SSF w/ CC 66.31 60.64 65.74 56.09

to a performance gap of approximately 5%. Therefore, the cosine classifier is essential in building
PTM-based models with prototypical classifiers.

It must be noted that we do not claim the SimpleCIL baseline to be with novelty since it is a direct
and straightforward idea to apply a pre-trained model in class-incremental learning. However, our
contribution lies in the observation that SimpleCIL sometimes beats current state-of-the-art, which
points out the possible direction of future designs in CIL.

Backbone Method Ā AB

ViT-B/16-IN1K

L2P (Wang et al., 2022e) 85.44 79.03
DualPrompt (Wang et al., 2022d) 83.73 76.23

SimpleCIL 82.79 76.21
APER w/ Finetune 83.10 76.14
APER w/ VPT-Shallow 88.73 82.90
APER w/ VPT-Deep 87.07 80.38
APER w/ SSF 85.76 78.97
APER w/ Adapter 88.61 82.98

ViT-B/16-IN21K

L2P (Wang et al., 2022e) 85.94 79.93
DualPrompt (Wang et al., 2022d) 87.87 81.15

SimpleCIL 87.57 81.26
APER w/ Finetune 87.67 81.27
APER w/ VPT-Shallow 90.43 84.57
APER w/ VPT-Deep 88.46 82.17
APER w/ SSF 87.78 81.98
APER w/ Adapter 90.65 85.15

Table 6: Results on CIFAR100 Base0 Inc5 set-
ting.

Backbone Method Ā AB

ViT-B/16-IN1K

L2P (Wang et al., 2022e) 88.88 83.36
DualPrompt (Wang et al., 2022d) 87.88 81.27

SimpleCIL 82.31 76.21
APER w/ Finetune 82.87 76.09
APER w/ VPT-Shallow 89.04 83.77
APER w/ VPT-Deep 89.14 83.26
APER w/ SSF 89.75 83.91
APER w/ Adapter 90.94 85.75

ViT-B/16-IN21K

L2P (Wang et al., 2022e) 88.34 84.57
DualPrompt (Wang et al., 2022d) 89.69 84.14

SimpleCIL 87.13 81.26
APER w/ Finetune 87.12 81.23
APER w/ VPT-Shallow 90.25 85.04
APER w/ VPT-Deep 90.40 84.62
APER w/ SSF 90.61 85.14
APER w/ Adapter 92.24 87.49

Table 7: Results on CIFAR100 Base0 Inc10
setting.

Backbone Method Ā AB

ViT-B/16-IN1K

L2P (Wang et al., 2022e) 90.43 86.15
DualPrompt (Wang et al., 2022d) 89.97 85.17

SimpleCIL 81.12 76.21
APER w/ Finetune 84.57 77.92
APER w/ VPT-Shallow 87.86 83.32
APER w/ VPT-Deep 89.85 85.08
APER w/ SSF 90.40 85.44
APER w/ Adapter 91.52 87.52

ViT-B/16-IN21K

L2P (Wang et al., 2022e) 90.68 86.99
DualPrompt (Wang et al., 2022d) 91.21 86.85

SimpleCIL 86.11 81.26
APER w/ Finetune 86.06 81.29
APER w/ VPT-Shallow 87.80 83.17
APER w/ VPT-Deep 91.57 87.06
APER w/ SSF 91.40 86.79
APER w/ Adapter 92.41 88.48

Table 8: Results on CIFAR100 Base0 Inc20
setting.

Backbone Method Ā AB

ViT-B/16-IN1K

L2P (Wang et al., 2022e) 80.34 69.78
DualPrompt (Wang et al., 2022d) 80.97 70.11

SimpleCIL 78.54 76.21
APER w/ Finetune 85.98 80.15
APER w/ VPT-Shallow 85.82 83.45
APER w/ VPT-Deep 88.73 86.12
APER w/ SSF 88.87 85.87
APER w/ Adapter 91.43 89.20

ViT-B/16-IN21K

L2P (Wang et al., 2022e) 81.27 70.96
DualPrompt (Wang et al., 2022d) 82.12 72.04

SimpleCIL 83.78 81.26
APER w/ Finetune 83.18 75.57
APER w/ VPT-Shallow 86.25 84.13
APER w/ VPT-Deep 91.04 88.71
APER w/ SSF 89.91 87.17
APER w/ Adapter 91.89 89.67

Table 9: Results on CIFAR100 Base50 Inc5
setting.
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(a) CIFAR B0 Inc5, ViT-B/16-IN1K
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(b) CIFAR B0 Inc10, ViT-B/16-
IN1K
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(c) CIFAR B0 Inc20, ViT-B/16-
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(d) CIFAR B50 Inc5, ViT-B/16-
IN1K
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(e) CIFAR B50 Inc10, ViT-B/16-
IN1K
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(f) CIFAR B50 Inc25, ViT-B/16-
IN1K
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(g) CIFAR B0 Inc5, ViT-B/16-
IN21K
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(h) CIFAR B0 Inc10, ViT-B/16-
IN21K
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(i) CIFAR B0 Inc20, ViT-B/16-
IN21K
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(j) CIFAR B50 Inc5, ViT-B/16-
IN21K
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(k) CIFAR B50 Inc10, ViT-B/16-
IN21K
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Figure 16: Experimental results on CIFAR100. (a)∼(f): Incremental performance comparison with
ViT-B/16-IN1K as backbone. (g)∼(l): Incremental performance when using ViT-B/16-IN21K as
backbone.
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D FULL EXPERIMENTAL RESULTS ON 7 DATASETS

In this section, we report the full experimental performance on seven benchmark datasets with the
numerical results and accuracy curves. We also report the results of residual networks with APER.
Specifically, there are 45 dataset splits from seven datasets, and we report the performance of two
backbones (ViT-B/16-IN1K and ViT-B/16-IN21K) on them.

Backbone Method Ā AB

ViT-B/16-IN1K

L2P (Wang et al., 2022e) 86.21 79.49
DualPrompt (Wang et al., 2022d) 86.32 79.97

SimpleCIL 78.66 76.21
APER w/ Finetune 86.17 80.15
APER w/ VPT-Shallow 85.91 83.45
APER w/ VPT-Deep 88.78 86.12
APER w/ SSF 88.95 85.87
APER w/ Adapter 91.45 89.20

ViT-B/16-IN21K

L2P (Wang et al., 2022e) 86.89 80.80
DualPrompt (Wang et al., 2022d) 87.86 82.57

SimpleCIL 83.88 81.26
APER w/ Finetune 87.19 82.57
APER w/ VPT-Shallow 86.31 84.13
APER w/ VPT-Deep 91.07 88.71
APER w/ SSF 89.96 87.17
APER w/ Adapter 91.90 89.67

Table 10: Results on CIFAR100 Base50 Inc10
setting.

Backbone Method Ā AB

ViT-B/16-IN1K

L2P (Wang et al., 2022e) 90.35 87.31
DualPrompt (Wang et al., 2022d) 89.25 85.85

SimpleCIL 78.85 76.21
APER w/ Finetune 87.06 80.77
APER w/ VPT-Shallow 86.16 83.45
APER w/ VPT-Deep 88.94 86.12
APER w/ SSF 89.15 85.87
APER w/ Adapter 91.64 89.20

ViT-B/16-IN21K

L2P (Wang et al., 2022e) 90.63 87.89
DualPrompt (Wang et al., 2022d) 90.32 87.46

SimpleCIL 84.10 81.26
APER w/ Finetune 85.61 82.19
APER w/ VPT-Shallow 86.48 84.13
APER w/ VPT-Deep 91.25 88.71
APER w/ SSF 90.11 87.17
APER w/ Adapter 92.07 89.67

Table 11: Results on CIFAR100 Base50 Inc25
setting.

D.1 CIFAR100 RESULTS

For CIFAR100, we design 6 dataset splits to divide these 100 classes, namely Base0 Inc5, Base0
Inc10, Base0 Inc20, Base 50 Inc5, Base50 Inc10, Base50 Inc25. We report the results in Table 6, 7,
8, 9, 10, 11, and plot the corresponding incremental performance in Figure 16.

D.2 CUB200 RESULTS

For CIFAR100, we design 8 dataset splits to divide these 200 classes, namely Base0 Inc5, Base0
Inc10, Base0 Inc20, Base0 Inc40, Base 100 Inc5, Base100 Inc10, Base100 Inc20, Base100 Inc50.
We report the results in Table 12, 13, 14, 15, 16, 17, 18, 19 and plot the corresponding incremental
performance in Figure 17.

Backbone Method Ā AB

ViT-B/16-IN1K

L2P (Wang et al., 2022e) 64.08 49.11
DualPrompt (Wang et al., 2022d) 68.20 54.32

SimpleCIL 91.22 85.16
APER w/ Finetune 91.52 85.67
APER w/ VPT-Shallow 91.11 85.33
APER w/ VPT-Deep 90.19 84.05
APER w/ SSF 91.24 85.88
APER w/ Adapter 91.18 85.20

ViT-B/16-IN21K

L2P (Wang et al., 2022e) 66.53 52.74
DualPrompt (Wang et al., 2022d) 75.02 62.42

SimpleCIL 92.46 86.73
APER w/ Finetune 92.57 86.94
APER w/ VPT-Shallow 92.29 86.60
APER w/ VPT-Deep 91.37 85.96
APER w/ SSF 92.17 86.73
APER w/ Adapter 92.46 86.73

Table 12: Results on CUB200 Base0 Inc5 set-
ting.

Backbone Method Ā AB

ViT-B/16-IN1K

L2P (Wang et al., 2022e) 66.69 56.01
DualPrompt (Wang et al., 2022d) 74.84 60.84

SimpleCIL 90.96 85.16
APER w/ Finetune 90.98 85.58
APER w/ VPT-Shallow 90.70 85.54
APER w/ VPT-Deep 89.48 83.42
APER w/ SSF 90.67 85.37
APER w/ Adapter 90.96 85.11

ViT-B/16-IN21K

L2P (Wang et al., 2022e) 67.05 56.25
DualPrompt (Wang et al., 2022d) 77.47 66.54

SimpleCIL 92.20 86.73
APER w/ Finetune 91.82 86.39
APER w/ VPT-Shallow 92.02 86.51
APER w/ VPT-Deep 91.02 84.99
APER w/ SSF 91.72 86.13
APER w/ Adapter 92.21 86.73

Table 13: Results on CUB200 Base0 Inc10 set-
ting.
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(e) CUB B100 Inc5, ViT-
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(f) CUB B100 Inc10, ViT-
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(g) CUB B100 Inc20, ViT-
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(h) CUB B100 Inc50, ViT-
B/16-IN1K
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(i) CUB B0 Inc5, ViT-
B/16-IN21K
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(j) CUB B0 Inc10, ViT-
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(l) CUB B0 Inc40, ViT-
B/16-IN21K
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(m) CUB B100 Inc5, ViT-
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(o) CUB B100 Inc20, ViT-
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Figure 17: Experimental results on CUB. (a)∼(h): Incremental performance comparison with
ViT-B/16-IN1K as backbone. (i)∼(p): Incremental performance when using ViT-B/16-IN21K as
backbone.

Backbone Method Ā AB

ViT-B/16-IN1K

L2P (Wang et al., 2022e) 74.17 61.95
DualPrompt (Wang et al., 2022d) 76.96 62.38

SimpleCIL 90.56 85.16
APER w/ Finetune 90.63 85.41
APER w/ VPT-Shallow 90.58 85.62
APER w/ VPT-Deep 89.76 84.48
APER w/ SSF 90.43 85.62
APER w/ Adapter 90.68 85.67

ViT-B/16-IN21K

L2P (Wang et al., 2022e) 76.86 65.15
DualPrompt (Wang et al., 2022d) 80.77 68.45

SimpleCIL 91.82 86.73
APER w/ Finetune 91.45 86.26
APER w/ VPT-Shallow 80.78 71.59
APER w/ VPT-Deep 91.33 86.51
APER w/ SSF 91.47 86.22
APER w/ Adapter 92.11 87.11

Table 14: Results on CUB200 Base0 Inc20 set-
ting.

Backbone Method Ā AB

ViT-B/16-IN1K

L2P (Wang et al., 2022e) 77.41 68.76
DualPrompt (Wang et al., 2022d) 79.46 68.18

SimpleCIL 89.92 85.16
APER w/ Finetune 89.71 85.45
APER w/ VPT-Shallow 89.88 85.41
APER w/ VPT-Deep 90.24 85.92
APER w/ SSF 89.97 85.75
APER w/ Adapter 90.02 85.67

ViT-B/16-IN21K

L2P (Wang et al., 2022e) 79.72 69.68
DualPrompt (Wang et al., 2022d) 82.85 73.65

SimpleCIL 91.26 86.73
APER w/ Finetune 89.62 84.44
APER w/ VPT-Shallow 91.05 86.43
APER w/ VPT-Deep 90.96 86.51
APER w/ SSF 91.33 86.77
APER w/ Adapter 91.67 87.32

Table 15: Results on CUB200 Base0 Inc40 set-
ting.
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Backbone Method Ā AB

ViT-B/16-IN1K

L2P (Wang et al., 2022e) 69.73 54.11
DualPrompt (Wang et al., 2022d) 70.91 57.90

SimpleCIL 87.36 85.16
APER w/ Finetune 87.96 85.62
APER w/ VPT-Shallow 83.60 81.17
APER w/ VPT-Deep 80.54 77.06
APER w/ SSF 88.34 86.34
APER w/ Adapter 88.33 86.09

ViT-B/16-IN21K

L2P (Wang et al., 2022e) 70.53 55.85
DualPrompt (Wang et al., 2022d) 74.57 62.32

SimpleCIL 88.93 86.73
APER w/ Finetune 86.96 84.10
APER w/ VPT-Shallow 88.66 86.64
APER w/ VPT-Deep 89.50 87.53
APER w/ SSF 89.15 87.23
APER w/ Adapter 89.84 87.70

Table 16: Results on CUB200 Base100 Inc5
setting.

Backbone Method Ā AB

ViT-B/16-IN1K

L2P (Wang et al., 2022e) 71.55 56.97
DualPrompt (Wang et al., 2022d) 73.18 61.40

SimpleCIL 87.40 85.16
APER w/ Finetune 88.00 85.62
APER w/ VPT-Shallow 83.62 81.17
APER w/ VPT-Deep 80.52 77.06
APER w/ SSF 88.37 86.34
APER w/ Adapter 88.37 86.09

ViT-B/16-IN21K

L2P (Wang et al., 2022e) 72.30 58.23
DualPrompt (Wang et al., 2022d) 77.47 67.46

SimpleCIL 88.94 86.73
APER w/ Finetune 86.98 84.10
APER w/ VPT-Shallow 88.67 86.64
APER w/ VPT-Deep 89.51 87.53
APER w/ SSF 89.18 87.23
APER w/ Adapter 89.86 87.70

Table 17: Results on CUB200 Base100 Inc10
setting.

Backbone Method Ā AB

ViT-B/16-IN1K

L2P (Wang et al., 2022e) 74.14 61.94
DualPrompt (Wang et al., 2022d) 75.69 64.97

SimpleCIL 87.48 85.16
APER w/ Finetune 88.03 85.62
APER w/ VPT-Shallow 83.71 81.17
APER w/ VPT-Deep 80.52 77.06
APER w/ SSF 88.45 86.34
APER w/ Adapter 88.42 86.09

ViT-B/16-IN21K

L2P (Wang et al., 2022e) 75.35 63.81
DualPrompt (Wang et al., 2022d) 79.68 70.91

SimpleCIL 89.00 86.73
APER w/ Finetune 87.04 84.10
APER w/ VPT-Shallow 88.72 86.64
APER w/ VPT-Deep 89.57 87.53
APER w/ SSF 89.23 87.23
APER w/ Adapter 89.93 87.70

Table 18: Results on CUB200 Base100 Inc20
setting.

Backbone Method Ā AB

ViT-B/16-IN1K

L2P (Wang et al., 2022e) 78.58 69.74
DualPrompt (Wang et al., 2022d) 79.42 72.35

SimpleCIL 87.50 85.16
APER w/ Finetune 88.03 85.62
APER w/ VPT-Shallow 83.79 81.17
APER w/ VPT-Deep 80.67 77.06
APER w/ SSF 88.34 86.34
APER w/ Adapter 88.38 86.09

ViT-B/16-IN21K

L2P (Wang et al., 2022e) 79.19 70.38
DualPrompt (Wang et al., 2022d) 82.74 76.95

SimpleCIL 88.96 86.73
APER w/ Finetune 87.07 84.10
APER w/ VPT-Shallow 88.70 86.64
APER w/ VPT-Deep 89.52 87.53
APER w/ SSF 89.26 87.23
APER w/ Adapter 89.87 87.70

Table 19: Results on CUB200 Base100 Inc50
setting.

D.3 IMAGENET-R RESULTS

For ImageNet-R, we design 8 dataset splits to divide these 200 classes, namely Base0 Inc5, Base0
Inc10, Base0 Inc20, Base0 Inc40, Base 100 Inc5, Base100 Inc10, Base100 Inc20, Base100 Inc50.
We report the results in Table 20, 21, 22, 23, 24, 25, 26, 27 and plot the corresponding incremental
performance in Figure 18.

Backbone Method Ā AB

ViT-B/16-IN1K

L2P (Wang et al., 2022e) 69.97 62.77
DualPrompt (Wang et al., 2022d) 69.25 61.64

SimpleCIL 68.04 61.28
APER w/ Finetune 72.62 65.25
APER w/ VPT-Shallow 71.85 64.53
APER w/ VPT-Deep 73.17 65.55
APER w/ SSF 72.16 64.93
APER w/ Adapter 74.43 67.32

ViT-B/16-IN21K

L2P (Wang et al., 2022e) 66.53 59.22
DualPrompt (Wang et al., 2022d) 63.31 55.22

SimpleCIL 62.58 54.55
APER w/ Finetune 70.51 62.42
APER w/ VPT-Shallow 66.63 58.32
APER w/ VPT-Deep 68.79 60.48
APER w/ SSF 68.94 60.60
APER w/ Adapter 72.35 64.33

Table 20: Results on ImageNet-R Base0 Inc5
setting.

Backbone Method Ā AB

ViT-B/16-IN1K

L2P (Wang et al., 2022e) 75.28 69.33
DualPrompt (Wang et al., 2022d) 74.48 68.64

SimpleCIL 67.58 61.28
APER w/ Finetune 73.34 65.77
APER w/ VPT-Shallow 72.09 65.47
APER w/ VPT-Deep 77.01 70.07
APER w/ SSF 75.54 68.52
APER w/ Adapter 77.29 70.47

ViT-B/16-IN21K

L2P (Wang et al., 2022e) 73.82 67.13
DualPrompt (Wang et al., 2022d) 70.32 64.80

SimpleCIL 61.99 54.55
APER w/ Finetune 71.29 63.35
APER w/ VPT-Shallow 70.19 62.75
APER w/ VPT-Deep 74.46 66.47
APER w/ SSF 73.07 65.00
APER w/ Adapter 75.08 67.20

Table 21: Results on ImageNet-R Base0 Inc10
setting.
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(a) ImageNet-R B0 Inc5,
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(c) ImageNet-R B0 Inc20,
ViT-B/16-IN1K
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(d) ImageNet-R B0 Inc40,
ViT-B/16-IN1K

100 120 140 160 180 200
Number of Classes

40

50

60

70

80

A
cc

ur
ac

y 
(%

)

L2P
DualPrompt
SimpleCIL
APER w/ Finetune

APER w/ VPT-Shallow
APER w/ VPT-Deep
APER w/ SSF
APER w/ Adapter

(e) ImageNet-R B100 Inc5,
ViT-B/16-IN1K
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(f) ImageNet-R B100
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(g) ImageNet-R B100
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(h) ImageNet-R B100
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(i) ImageNet-R B0 Inc5,
ViT-B/16-IN21K
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(j) ImageNet-R B0 Inc10,
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(k) ImageNet-R B0 Inc20,
ViT-B/16-IN21K
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(l) ImageNet-R B0 Inc40,
ViT-B/16-IN21K
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(m) ImageNet-R B100
Inc5, ViT-B/16-IN21K
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Figure 18: Experimental results on ImageNet-R. (a)∼(h): Incremental performance comparison with
ViT-B/16-IN1K as backbone. (i)∼(p): Incremental performance when using ViT-B/16-IN21K as
backbone.

Backbone Method Ā AB

ViT-B/16-IN1K

L2P (Wang et al., 2022e) 76.78 72.35
DualPrompt (Wang et al., 2022d) 76.23 70.96

SimpleCIL 67.06 61.28
APER w/ Finetune 71.98 63.23
APER w/ VPT-Shallow 72.50 66.28
APER w/ VPT-Deep 79.00 72.38
APER w/ SSF 78.80 72.07
APER w/ Adapter 79.39 72.87

ViT-B/16-IN21K

L2P (Wang et al., 2022e) 75.46 69.77
DualPrompt (Wang et al., 2022d) 73.10 67.18

SimpleCIL 61.26 54.55
APER w/ Finetune 68.54 58.37
APER w/ VPT-Shallow 68.83 62.03
APER w/ VPT-Deep 77.05 69.47
APER w/ SSF 75.47 67.02
APER w/ Adapter 75.82 67.95

Table 22: Results on ImageNet-R Base0 Inc20
setting.

Backbone Method Ā AB

ViT-B/16-IN1K

L2P (Wang et al., 2022e) 77.40 73.59
DualPrompt (Wang et al., 2022d) 76.39 72.29

SimpleCIL 65.84 61.28
APER w/ Finetune 75.32 66.28
APER w/ VPT-Shallow 71.80 66.83
APER w/ VPT-Deep 79.99 74.27
APER w/ SSF 79.70 73.97
APER w/ Adapter 79.85 74.23

ViT-B/16-IN21K

L2P (Wang et al., 2022e) 76.82 72.07
DualPrompt (Wang et al., 2022d) 73.91 68.81

SimpleCIL 59.81 54.55
APER w/ Finetune 71.77 61.25
APER w/ VPT-Shallow 69.06 63.62
APER w/ VPT-Deep 77.64 71.63
APER w/ SSF 76.72 69.53
APER w/ Adapter 76.03 70.00

Table 23: Results on ImageNet-R Base0 Inc40
setting.
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Backbone Method Ā AB

ViT-B/16-IN1K

L2P (Wang et al., 2022e) 61.46 49.03
DualPrompt (Wang et al., 2022d) 70.54 66.31

SimpleCIL 63.41 61.28
APER w/ Finetune 78.13 72.67
APER w/ VPT-Shallow 69.39 67.03
APER w/ VPT-Deep 78.69 76.18
APER w/ SSF 78.53 75.75
APER w/ Adapter 78.72 76.30

ViT-B/16-IN21K

L2P (Wang et al., 2022e) 60.55 46.94
DualPrompt (Wang et al., 2022d) 64.96 57.57

SimpleCIL 56.88 54.55
APER w/ Finetune 75.79 69.35
APER w/ VPT-Shallow 64.89 62.58
APER w/ VPT-Deep 74.15 71.15
APER w/ SSF 76.42 72.87
APER w/ Adapter 75.47 72.63

Table 24: Results on ImageNet-R Base100 Inc5
setting.

Backbone Method Ā AB

ViT-B/16-IN1K

L2P (Wang et al., 2022e) 66.69 56.25
DualPrompt (Wang et al., 2022d) 72.26 69.25

SimpleCIL 63.40 61.28
APER w/ Finetune 78.18 72.67
APER w/ VPT-Shallow 69.37 67.03
APER w/ VPT-Deep 78.67 76.18
APER w/ SSF 78.50 75.75
APER w/ Adapter 78.70 76.30

ViT-B/16-IN21K

L2P (Wang et al., 2022e) 64.87 53.38
DualPrompt (Wang et al., 2022d) 69.24 64.37

SimpleCIL 56.87 54.55
APER w/ Finetune 75.86 69.35
APER w/ VPT-Shallow 64.91 62.58
APER w/ VPT-Deep 74.12 71.15
APER w/ SSF 76.39 72.87
APER w/ Adapter 75.46 72.63

Table 25: Results on ImageNet-R Base100
Inc10 setting.

Backbone Method Ā AB

ViT-B/16-IN1K

L2P (Wang et al., 2022e) 70.91 64.04
DualPrompt (Wang et al., 2022d) 73.42 71.32

SimpleCIL 63.52 61.28
APER w/ Finetune 78.39 72.67
APER w/ VPT-Shallow 69.47 67.03
APER w/ VPT-Deep 78.75 76.18
APER w/ SSF 78.59 75.75
APER w/ Adapter 78.78 76.30

ViT-B/16-IN21K

L2P (Wang et al., 2022e) 69.75 61.55
DualPrompt (Wang et al., 2022d) 71.14 67.29

SimpleCIL 57.00 54.55
APER w/ Finetune 76.08 69.35
APER w/ VPT-Shallow 64.97 62.55
APER w/ VPT-Deep 74.20 71.15
APER w/ SSF 76.45 72.87
APER w/ Adapter 75.51 72.63

Table 26: Results on ImageNet-R Base100
Inc20 setting.

Backbone Method Ā AB

ViT-B/16-IN1K

L2P (Wang et al., 2022e) 75.42 72.13
DualPrompt (Wang et al., 2022d) 74.36 72.72

SimpleCIL 63.61 61.28
APER w/ Finetune 78.92 72.67
APER w/ VPT-Shallow 69.62 67.03
APER w/ VPT-Deep 78.78 76.18
APER w/ SSF 78.71 75.75
APER w/ Adapter 78.81 76.30

ViT-B/16-IN21K

L2P (Wang et al., 2022e) 74.60 70.51
DualPrompt (Wang et al., 2022d) 72.45 69.71

SimpleCIL 57.14 54.55
APER w/ Finetune 76.84 69.35
APER w/ VPT-Shallow 65.24 62.58
APER w/ VPT-Deep 74.33 71.15
APER w/ SSF 76.60 72.87
APER w/ Adapter 75.66 72.63

Table 27: Results on ImageNet-R Base100
Inc50 setting.

D.4 IMAGENET-A RESULTS

For ImageNet-A, we design 8 dataset splits to divide these 200 classes, namely Base0 Inc5, Base0
Inc10, Base0 Inc20, Base0 Inc40, Base 100 Inc5, Base100 Inc10, Base100 Inc20, Base100 Inc50.
We report the results in Table 28, 29, 30, 31, 32, 33, 34, 35 and plot the corresponding incremental
performance in Figure 19.

Backbone Method Ā AB

ViT-B/16-IN1K

L2P (Wang et al., 2022e) 41.20 30.59
DualPrompt (Wang et al., 2022d) 50.39 40.35

SimpleCIL 61.20 49.44
APER w/ Finetune 63.51 52.01
APER w/ VPT-Shallow 54.82 43.65
APER w/ VPT-Deep 58.87 47.86
APER w/ SSF 63.30 52.01
APER w/ Adapter 61.29 49.51

ViT-B/16-IN21K

L2P (Wang et al., 2022e) 35.53 26.12
DualPrompt (Wang et al., 2022d) 46.12 32.82

SimpleCIL 61.17 48.91
APER w/ Finetune 61.60 49.44
APER w/ VPT-Shallow 49.69 37.59
APER w/ VPT-Deep 55.92 43.91
APER w/ SSF 62.97 50.49
APER w/ Adapter 61.26 48.98

Table 28: Results on ImageNet-A Base0 Inc5
setting.

Backbone Method Ā AB

ViT-B/16-IN1K

L2P (Wang et al., 2022e) 47.16 38.48
DualPrompt (Wang et al., 2022d) 52.56 42.68

SimpleCIL 60.50 49.44
APER w/ Finetune 61.57 50.76
APER w/ VPT-Shallow 57.72 46.15
APER w/ VPT-Deep 60.59 48.72
APER w/ SSF 62.81 51.48
APER w/ Adapter 60.53 49.57

ViT-B/16-IN21K

L2P (Wang et al., 2022e) 41.46 34.86
DualPrompt (Wang et al., 2022d) 51.15 39.64

SimpleCIL 60.63 48.91
APER w/ Finetune 60.68 48.58
APER w/ VPT-Shallow 58.85 47.66
APER w/ VPT-Deep 58.00 46.28
APER w/ SSF 62.80 51.48
APER w/ Adapter 60.59 48.91

Table 29: Results on ImageNet-A Base0 Inc10
setting.
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(b) ImageNet-A B0 Inc10,
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(c) ImageNet-A B0 Inc20,
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(d) ImageNet-A B0 Inc40,
ViT-B/16-IN1K
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(e) ImageNet-A B100 Inc5,
ViT-B/16-IN1K
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(f) ImageNet-A B100
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(h) ImageNet-A B100
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(i) ImageNet-A B0 Inc5,
ViT-B/16-IN21K
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(j) ImageNet-A B0 Inc10,
ViT-B/16-IN21K
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(k) ImageNet-A B0 Inc20,
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(l) ImageNet-A B0 Inc40,
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(m) ImageNet-A B100
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(o) ImageNet-A B100
Inc20, ViT-B/16-IN21K
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Figure 19: Experimental results on ImageNet-A. (a)∼(h): Incremental performance comparison with
ViT-B/16-IN1K as backbone. (i)∼(p): Incremental performance when using ViT-B/16-IN21K as
backbone.

Backbone Method Ā AB

ViT-B/16-IN1K

L2P (Wang et al., 2022e) 50.01 42.47
DualPrompt (Wang et al., 2022d) 55.25 45.43

SimpleCIL 59.67 49.44
APER w/ Finetune 64.79 53.98
APER w/ VPT-Shallow 58.62 48.98
APER w/ VPT-Deep 61.91 50.82
APER w/ SSF 63.59 52.67
APER w/ Adapter 59.89 49.51

ViT-B/16-IN21K

L2P (Wang et al., 2022e) 49.39 41.71
DualPrompt (Wang et al., 2022d) 53.71 41.67

SimpleCIL 59.77 48.91
APER w/ Finetune 61.01 49.57
APER w/ VPT-Shallow 58.39 47.20
APER w/ VPT-Deep 58.48 48.52
APER w/ SSF 61.30 50.03
APER w/ Adapter 60.47 49.37

Table 30: Results on ImageNet-A Base0 Inc20
setting.

Backbone Method Ā AB

ViT-B/16-IN1K

L2P (Wang et al., 2022e) 53.79 45.74
DualPrompt (Wang et al., 2022d) 55.73 46.62

SimpleCIL 58.53 49.44
APER w/ Finetune 64.36 54.77
APER w/ VPT-Shallow 60.74 52.01
APER w/ VPT-Deep 63.47 54.97
APER w/ SSF 65.74 56.09
APER w/ Adapter 61.95 53.06

ViT-B/16-IN21K

L2P (Wang et al., 2022e) 52.16 43.81
DualPrompt (Wang et al., 2022d) 54.92 45.25

SimpleCIL 58.19 48.91
APER w/ Finetune 60.27 50.63
APER w/ VPT-Shallow 60.51 50.49
APER w/ VPT-Deep 62.54 53.59
APER w/ SSF 63.23 53.79
APER w/ Adapter 60.58 51.28

Table 31: Results on ImageNet-A Base0 Inc40
setting.
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Backbone Method Ā AB

ViT-B/16-IN1K

L2P (Wang et al., 2022e) 46.12 37.74
DualPrompt (Wang et al., 2022d) 45.21 36.19

SimpleCIL 53.50 49.44
APER w/ Finetune 58.26 53.92
APER w/ VPT-Shallow 55.37 51.48
APER w/ VPT-Deep 65.46 60.76
APER w/ SSF 66.27 61.09
APER w/ Adapter 63.90 59.32

ViT-B/16-IN21K

L2P (Wang et al., 2022e) 44.56 35.31
DualPrompt (Wang et al., 2022d) 43.26 32.63

SimpleCIL 53.26 48.91
APER w/ Finetune 52.78 48.19
APER w/ VPT-Shallow 52.81 48.26
APER w/ VPT-Deep 63.23 58.39
APER w/ SSF 63.73 58.66
APER w/ Adapter 61.73 56.75

Table 32: Results on ImageNet-A Base100 Inc5
setting.

Backbone Method Ā AB

ViT-B/16-IN1K

L2P (Wang et al., 2022e) 48.28 40.71
DualPrompt (Wang et al., 2022d) 48.24 40.95

SimpleCIL 53.54 49.44
APER w/ Finetune 58.30 53.92
APER w/ VPT-Shallow 55.42 51.48
APER w/ VPT-Deep 65.45 60.76
APER w/ SSF 66.28 61.09
APER w/ Adapter 63.94 59.32

ViT-B/16-IN21K

L2P (Wang et al., 2022e) 47.14 39.30
DualPrompt (Wang et al., 2022d) 46.27 37.53

SimpleCIL 53.33 48.91
APER w/ Finetune 52.82 48.19
APER w/ VPT-Shallow 52.87 48.26
APER w/ VPT-Deep 63.30 58.39
APER w/ SSF 63.76 58.66
APER w/ Adapter 61.77 56.75

Table 33: Results on ImageNet-A Base100
Inc10 setting.

Backbone Method Ā AB

ViT-B/16-IN1K

L2P (Wang et al., 2022e) 50.44 45.08
DualPrompt (Wang et al., 2022d) 49.87 43.10

SimpleCIL 53.62 49.44
APER w/ Finetune 58.40 53.92
APER w/ VPT-Shallow 55.50 51.48
APER w/ VPT-Deep 65.44 60.76
APER w/ SSF 66.31 61.09
APER w/ Adapter 63.97 59.32

ViT-B/16-IN21K

L2P (Wang et al., 2022e) 49.52 42.59
DualPrompt (Wang et al., 2022d) 48.28 40.97

SimpleCIL 53.38 48.91
APER w/ Finetune 52.83 48.19
APER w/ VPT-Shallow 52.90 48.26
APER w/ VPT-Deep 63.24 58.39
APER w/ SSF 63.76 58.66
APER w/ Adapter 61.77 56.75

Table 34: Results on ImageNet-A Base100
Inc20 setting.

Backbone Method Ā AB

ViT-B/16-IN1K

L2P (Wang et al., 2022e) 52.10 46.81
DualPrompt (Wang et al., 2022d) 53.18 48.01

SimpleCIL 53.79 49.44
APER w/ Finetune 58.67 53.92
APER w/ VPT-Shallow 55.67 51.48
APER w/ VPT-Deep 65.62 60.76
APER w/ SSF 66.73 61.09
APER w/ Adapter 64.14 59.32

ViT-B/16-IN21K

L2P (Wang et al., 2022e) 51.62 45.68
DualPrompt (Wang et al., 2022d) 51.04 44.83

SimpleCIL 53.38 48.91
APER w/ Finetune 52.79 48.19
APER w/ VPT-Shallow 52.92 48.26
APER w/ VPT-Deep 63.43 58.39
APER w/ SSF 63.95 58.66
APER w/ Adapter 61.87 56.75

Table 35: Results on ImageNet-A Base100
Inc50 setting.

D.5 OBJECTNET RESULTS

For ObjectNet, we design 8 dataset splits to divide these 200 classes, namely Base0 Inc5, Base0
Inc10, Base0 Inc20, Base0 Inc40, Base 100 Inc5, Base100 Inc10, Base100 Inc20, Base100 Inc50.
We report the results in Table 36, 37, 38, 39, 40, 41, 42, 43 and plot the corresponding incremental
performance in Figure 20.

Backbone Method Ā AB

ViT-B/16-IN1K

L2P (Wang et al., 2022e) 57.38 46.38
DualPrompt (Wang et al., 2022d) 41.68 37.61

SimpleCIL 63.71 51.13
APER w/ Finetune 68.21 55.73
APER w/ VPT-Shallow 64.81 52.10
APER w/ VPT-Deep 63.08 50.11
APER w/ SSF 67.29 54.72
APER w/ Adapter 64.21 51.39

ViT-B/16-IN21K

L2P (Wang et al., 2022e) 58.13 46.68
DualPrompt (Wang et al., 2022d) 50.87 41.75

SimpleCIL 66.04 53.59
APER w/ Finetune 68.04 55.75
APER w/ VPT-Shallow 62.93 50.42
APER w/ VPT-Deep 64.13 51.13
APER w/ SSF 67.74 55.13
APER w/ Adapter 66.31 53.83

Table 36: Results on ObjectNet Base0 Inc5 set-
ting.

Backbone Method Ā AB

ViT-B/16-IN1K

L2P (Wang et al., 2022e) 62.70 51.36
DualPrompt (Wang et al., 2022d) 54.37 47.28

SimpleCIL 63.12 51.13
APER w/ Finetune 64.42 50.92
APER w/ VPT-Shallow 64.51 52.66
APER w/ VPT-Deep 66.66 53.62
APER w/ SSF 67.28 54.57
APER w/ Adapter 66.19 53.82

ViT-B/16-IN21K

L2P (Wang et al., 2022e) 63.78 52.19
DualPrompt (Wang et al., 2022d) 59.27 49.33

SimpleCIL 65.45 53.59
APER w/ Finetune 61.41 48.34
APER w/ VPT-Shallow 64.54 52.53
APER w/ VPT-Deep 67.83 54.65
APER w/ SSF 69.15 56.64
APER w/ Adapter 67.18 55.24

Table 37: Results on ObjectNet Base0 Inc10
setting.

35



Under review as a conference paper at ICLR 2024

0 50 100 150 200
Number of Classes

20

40

60

80

A
cc

ur
ac

y 
(%

)

L2P
DualPrompt
SimpleCIL
APER w/ Finetune

APER w/ VPT-Shallow
APER w/ VPT-Deep
APER w/ SSF
APER w/ Adapter

(a) ObjectNet B0 Inc5,
ViT-B/16-IN1K
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(b) ObjectNet B0 Inc10,
ViT-B/16-IN1K
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(c) ObjectNet B0 Inc20,
ViT-B/16-IN1K
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(d) ObjectNet B0 Inc40,
ViT-B/16-IN1K
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(e) ObjectNet B100 Inc5,
ViT-B/16-IN1K
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(f) ObjectNet B100 Inc10,
ViT-B/16-IN1K
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(g) ObjectNet B100 Inc20,
ViT-B/16-IN1K
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(h) ObjectNet B100 Inc50,
ViT-B/16-IN1K
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(i) ObjectNet B0 Inc5, ViT-
B/16-IN21K
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(j) ObjectNet B0 Inc10,
ViT-B/16-IN21K
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(k) ObjectNet B0 Inc20,
ViT-B/16-IN21K
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(l) ObjectNet B0 Inc40,
ViT-B/16-IN21K
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(m) ObjectNet B100 Inc5,
ViT-B/16-IN21K
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(n) ObjectNet B100 Inc10,
ViT-B/16-IN21K
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(o) ObjectNet B100 Inc20,
ViT-B/16-IN21K
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(p) ObjectNet B100 Inc50,
ViT-B/16-IN21K

Figure 20: Experimental results on ObjectNet. (a)∼(h): Incremental performance comparison with
ViT-B/16-IN1K as backbone. (i)∼(p): Incremental performance when using ViT-B/16-IN21K as
backbone.

Backbone Method Ā AB

ViT-B/16-IN1K

L2P (Wang et al., 2022e) 65.31 56.08
DualPrompt (Wang et al., 2022d) 60.25 53.14

SimpleCIL 62.11 51.13
APER w/ Finetune 62.18 51.13
APER w/ VPT-Shallow 66.20 55.45
APER w/ VPT-Deep 68.85 57.14
APER w/ SSF 68.75 56.79
APER w/ Adapter 68.01 56.82

ViT-B/16-IN21K

L2P (Wang et al., 2022e) 65.89 56.31
DualPrompt (Wang et al., 2022d) 64.20 53.95

SimpleCIL 64.58 53.59
APER w/ Finetune 64.59 53.58
APER w/ VPT-Shallow 68.37 57.60
APER w/ VPT-Deep 69.58 57.79
APER w/ SSF 69.87 58.24
APER w/ Adapter 68.97 58.03

Table 38: Results on ObjectNet Base0 Inc20
setting.

Backbone Method Ā AB

ViT-B/16-IN1K

L2P (Wang et al., 2022e) 67.29 58.20
DualPrompt (Wang et al., 2022d) 62.72 56.64

SimpleCIL 60.32 51.13
APER w/ Finetune 63.19 50.97
APER w/ VPT-Shallow 65.08 55.82
APER w/ VPT-Deep 66.79 56.89
APER w/ SSF 69.23 59.49
APER w/ Adapter 68.18 58.72

ViT-B/16-IN21K

L2P (Wang et al., 2022e) 67.84 59.31
DualPrompt (Wang et al., 2022d) 66.54 57.77

SimpleCIL 63.03 53.59
APER w/ Finetune 63.04 53.59
APER w/ VPT-Shallow 66.98 57.54
APER w/ VPT-Deep 69.31 59.58
APER w/ SSF 70.37 60.53
APER w/ Adapter 69.63 60.43

Table 39: Results on ObjectNet Base0 Inc40
setting.
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Backbone Method Ā AB

ViT-B/16-IN1K

L2P (Wang et al., 2022e) 51.12 37.59
DualPrompt (Wang et al., 2022d) 55.31 47.44

SimpleCIL 56.02 51.13
APER w/ Finetune 64.75 57.06
APER w/ VPT-Shallow 59.38 54.22
APER w/ VPT-Deep 66.55 61.03
APER w/ SSF 66.31 60.64
APER w/ Adapter 66.99 61.78

ViT-B/16-IN21K

L2P (Wang et al., 2022e) 50.85 37.44
DualPrompt (Wang et al., 2022d) 56.65 46.08

SimpleCIL 58.62 53.59
APER w/ Finetune 61.65 53.35
APER w/ VPT-Shallow 59.85 54.63
APER w/ VPT-Deep 67.16 62.16
APER w/ SSF 67.83 62.49
APER w/ Adapter 68.66 63.55

Table 40: Results on ObjectNet Base100 Inc5
setting.

Backbone Method Ā AB

ViT-B/16-IN1K

L2P (Wang et al., 2022e) 54.69 42.34
DualPrompt (Wang et al., 2022d) 58.96 53.06

SimpleCIL 56.00 51.13
APER w/ Finetune 64.76 57.06
APER w/ VPT-Shallow 60.48 55.61
APER w/ VPT-Deep 66.51 61.03
APER w/ SSF 66.26 60.64
APER w/ Adapter 66.94 61.78

ViT-B/16-IN21K

L2P (Wang et al., 2022e) 54.26 41.63
DualPrompt (Wang et al., 2022d) 61.61 53.18

SimpleCIL 58.61 53.59
APER w/ Finetune 61.63 53.35
APER w/ VPT-Shallow 62.32 57.24
APER w/ VPT-Deep 67.14 62.16
APER w/ SSF 67.81 62.49
APER w/ Adapter 68.65 63.55

Table 41: Results on ObjectNet Base100 Inc10
setting.

Backbone Method Ā AB

ViT-B/16-IN1K

L2P (Wang et al., 2022e) 58.78 47.87
DualPrompt (Wang et al., 2022d) 60.90 55.85

SimpleCIL 55.94 51.13
APER w/ Finetune 64.80 57.06
APER w/ VPT-Shallow 60.45 55.61
APER w/ VPT-Deep 66.47 61.03
APER w/ SSF 66.24 60.64
APER w/ Adapter 66.93 61.78

ViT-B/16-IN21K

L2P (Wang et al., 2022e) 58.40 47.73
DualPrompt (Wang et al., 2022d) 63.62 56.51

SimpleCIL 58.60 53.59
APER w/ Finetune 61.74 53.35
APER w/ VPT-Shallow 62.29 57.24
APER w/ VPT-Deep 67.13 62.16
APER w/ SSF 67.80 62.49
APER w/ Adapter 68.67 63.55

Table 42: Results on ObjectNet Base100 Inc20
setting.

Backbone Method Ā AB

ViT-B/16-IN1K

L2P (Wang et al., 2022e) 64.58 58.12
DualPrompt (Wang et al., 2022d) 62.27 58.18

SimpleCIL 55.96 51.13
APER w/ Finetune 65.14 57.06
APER w/ VPT-Shallow 60.56 55.61
APER w/ VPT-Deep 66.52 61.03
APER w/ SSF 66.36 60.64
APER w/ Adapter 67.02 61.78

ViT-B/16-IN21K

L2P (Wang et al., 2022e) 63.89 57.02
DualPrompt (Wang et al., 2022d) 65.13 59.44

SimpleCIL 58.70 53.59
APER w/ Finetune 62.06 53.35
APER w/ VPT-Shallow 62.37 57.24
APER w/ VPT-Deep 67.31 62.16
APER w/ SSF 67.94 62.49
APER w/ Adapter 68.87 63.55

Table 43: Results on ObjectNet Base100 Inc50
setting.

D.6 OMNIBENCHMARK RESULTS

For OmniBenchmark, we design 6 dataset splits to divide these 300 classes, namely Base0 Inc15,
Base0 Inc30, Base0 Inc50, Base150 Inc15, Base 150 Inc30, Base150 Inc50. We report the results
in Table 44, 45, 46, 47, 48, 49, and plot the corresponding incremental performance in Figure 21.
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(a) Omnibenchmark B0 Inc15, ViT-
B/16-IN1K
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(b) Omnibenchmark B0 Inc30, ViT-
B/16-IN1K
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(c) Omnibenchmark B0 Inc50, ViT-
B/16-IN1K
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(d) Omnibenchmark B150 Inc15,
ViT-B/16-IN1K
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(e) Omnibenchmark B150 Inc30,
ViT-B/16-IN1K
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(f) Omnibenchmark B150 Inc50,
ViT-B/16-IN1K
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(g) Omnibenchmark B0 Inc15, ViT-
B/16-IN21K
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(h) Omnibenchmark B0 Inc30, ViT-
B/16-IN21K
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(i) Omnibenchmark B0 Inc50, ViT-
B/16-IN21K
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(j) Omnibenchmark B150 Inc15,
ViT-B/16-IN21K
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(k) Omnibenchmark B150 Inc30,
ViT-B/16-IN21K
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(l) Omnibenchmark B150 Inc50,
ViT-B/16-IN21K

Figure 21: Experimental results on Omnibenchmark. (a)∼(f): Incremental performance comparison
with ViT-B/16-IN1K as backbone. (g)∼(l): Incremental performance when using ViT-B/16-IN21K
as backbone.
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Backbone Method Ā AB

ViT-B/16-IN1K

L2P (Wang et al., 2022e) 69.73 59.90
DualPrompt (Wang et al., 2022d) 73.13 63.29

SimpleCIL 79.27 72.21
APER w/ Finetune 77.39 70.04
APER w/ VPT-Shallow 79.53 72.58
APER w/ VPT-Deep 79.75 72.36
APER w/ SSF 79.71 72.43
APER w/ Adapter 79.62 72.75

ViT-B/16-IN21K

L2P (Wang et al., 2022e) 70.29 60.19
DualPrompt (Wang et al., 2022d) 73.69 64.39

SimpleCIL 79.96 73.15
APER w/ Finetune 72.86 64.70
APER w/ VPT-Shallow 79.72 73.12
APER w/ VPT-Deep 80.56 72.90
APER w/ SSF 80.59 73.28
APER w/ Adapter 80.40 73.53

Table 44: Results on OmniBenchmark Base0
Inc15 setting.

Backbone Method Ā AB

ViT-B/16-IN1K

L2P (Wang et al., 2022e) 72.27 63.12
DualPrompt (Wang et al., 2022d) 74.26 65.24

SimpleCIL 78.61 72.21
APER w/ Finetune 77.35 69.49
APER w/ VPT-Shallow 78.81 72.48
APER w/ VPT-Deep 79.91 73.23
APER w/ SSF 80.07 73.62
APER w/ Adapter 79.77 73.25

ViT-B/16-IN21K

L2P (Wang et al., 2022e) 73.36 64.69
DualPrompt (Wang et al., 2022d) 73.92 65.52

SimpleCIL 79.34 73.15
APER w/ Finetune 73.02 65.03
APER w/ VPT-Shallow 79.63 73.68
APER w/ VPT-Deep 81.05 74.47
APER w/ SSF 80.53 74.00
APER w/ Adapter 80.75 74.37

Table 45: Results on OmniBenchmark Base0
Inc30 setting.

Backbone Method Ā AB

ViT-B/16-IN1K

L2P (Wang et al., 2022e) 77.51 66.30
DualPrompt (Wang et al., 2022d) 77.84 68.42

SimpleCIL 78.23 72.21
APER w/ Finetune 78.37 70.49
APER w/ VPT-Shallow 78.38 72.70
APER w/ VPT-Deep 80.25 73.83
APER w/ SSF 79.91 73.80
APER w/ Adapter 79.83 73.82

ViT-B/16-IN21K

L2P (Wang et al., 2022e) 78.10 67.10
DualPrompt (Wang et al., 2022d) 78.29 69.40

SimpleCIL 78.95 73.15
APER w/ Finetune 80.35 73.55
APER w/ VPT-Shallow 79.16 73.18
APER w/ VPT-Deep 80.80 74.92
APER w/ SSF 79.90 73.90
APER w/ Adapter 80.55 74.92

Table 46: Results on OmniBenchmark Base0
Inc50 setting.

Backbone Method Ā AB

ViT-B/16-IN1K

L2P (Wang et al., 2022e) 63.35 49.51
DualPrompt (Wang et al., 2022d) 72.24 65.57

SimpleCIL 74.42 72.21
APER w/ Finetune 80.87 77.14
APER w/ VPT-Shallow 74.86 72.66
APER w/ VPT-Deep 77.10 74.74
APER w/ SSF 75.73 73.57
APER w/ Adapter 77.16 74.84

ViT-B/16-IN21K

L2P (Wang et al., 2022e) 63.96 50.58
DualPrompt (Wang et al., 2022d) 72.62 63.29

SimpleCIL 75.25 73.15
APER w/ Finetune 78.71 74.50
APER w/ VPT-Shallow 75.26 73.33
APER w/ VPT-Deep 77.55 75.46
APER w/ SSF 76.20 74.20
APER w/ Adapter 77.60 75.54

Table 47: Results on OmniBenchmark Base150
Inc15 setting.

Backbone Method Ā AB

ViT-B/16-IN1K

L2P (Wang et al., 2022e) 69.68 59.79
DualPrompt (Wang et al., 2022d) 75.61 70.09

SimpleCIL 74.56 72.21
APER w/ Finetune 81.05 77.14
APER w/ VPT-Shallow 75.01 72.66
APER w/ VPT-Deep 77.22 74.74
APER w/ SSF 75.88 73.57
APER w/ Adapter 77.29 74.84

ViT-B/16-IN21K

L2P (Wang et al., 2022e) 70.22 60.42
DualPrompt (Wang et al., 2022d) 74.98 68.63

SimpleCIL 75.38 73.15
APER w/ Finetune 78.91 74.50
APER w/ VPT-Shallow 75.39 73.33
APER w/ VPT-Deep 77.65 75.46
APER w/ SSF 76.34 74.20
APER w/ Adapter 77.73 75.54

Table 48: Results on OmniBenchmark Base150
Inc30 setting.

Backbone Method Ā AB

ViT-B/16-IN1K

L2P (Wang et al., 2022e) 74.14 66.51
DualPrompt (Wang et al., 2022d) 76.52 70.73

SimpleCIL 74.79 72.21
APER w/ Finetune 81.29 77.14
APER w/ VPT-Shallow 75.21 72.66
APER w/ VPT-Deep 77.47 74.74
APER w/ SSF 76.07 73.57
APER w/ Adapter 77.48 74.84

ViT-B/16-IN21K

L2P (Wang et al., 2022e) 74.44 67.03
DualPrompt (Wang et al., 2022d) 76.84 71.04

SimpleCIL 75.64 73.15
APER w/ Finetune 79.11 74.50
APER w/ VPT-Shallow 75.64 73.33
APER w/ VPT-Deep 77.88 75.46
APER w/ SSF 76.50 74.20
APER w/ Adapter 77.99 75.54

Table 49: Results on OmniBenchmark Base150
Inc50 setting.

D.7 VTAB RESULTS

Since VTAB is a complex dataset with multiple domains, we select five domains to construct a
cross-domain class-incremental learning setting. Specifically, we fix the domain order to “Resisc45
→ DTD → Pets → EuroSAT → Flowers”. Each domain contains 10 classes, and we formulate the
VTAB Base0 Inc10 setting. We report the results in Table 50 and plot the corresponding incremental
performance in Figure 22.
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(a) VTAB B0 Inc10, ViT-B/16-IN1K
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(b) VTAB B0 Inc10, ViT-B/16-IN21K

Figure 22: Experimental results on VTAB. (a): Incremental performance comparison with ViT-B/16-
IN1K as backbone. (b): Incremental performance when using ViT-B/16-IN21K as backbone.

Table 50: Results on VTAB Base0 Inc10 setting.

Backbone Method Ā AB

ViT-B/16-IN1K

L2P (Wang et al., 2022e) 80.64 77.93
DualPrompt (Wang et al., 2022d) 79.55 80.02

SimpleCIL 85.43 83.61
APER w/ Finetune 88.92 84.70
APER w/ VPT-Shallow 86.65 84.81
APER w/ VPT-Deep 87.52 83.19
APER w/ SSF 88.59 85.10
APER w/ Adapter 89.58 85.87

ViT-B/16-IN21K

L2P (Wang et al., 2022e) 77.11 77.10
DualPrompt (Wang et al., 2022d) 83.36 81.23

SimpleCIL 85.99 84.38
APER w/ Finetune 87.47 80.44
APER w/ VPT-Shallow 87.15 85.36
APER w/ VPT-Deep 86.59 83.06
APER w/ SSF 85.66 81.92
APER w/ Adapter 85.95 84.35

D.8 APER WITH RESNET

In this section, we give the visualizations of APER to boost the performance of pre-trained ResNet.
Specifically, we choose one split from each dataset and choose pre-trained ResNet18/50/101/152 as
the backbone to evaluate the performance of APER. We report the numerical results in Table 51, 52,
53, 54, 55, 56 and plot the incremental performance in Figure 23. Results indicate APER also works
competitively with ResNets.
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(a) CIFAR B0 Inc5, ResNet18
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(b) CUB200 B0 Inc5, ResNet18
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(c) ImageNet-R B0 Inc5, ResNet18
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(d) ImageNet-A B0 Inc5, ResNet18
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(e) ObjectNet B0 Inc5, ResNet18
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(f) OmniBenchmark B0 Inc15,
ResNet18

Figure 23: Experimental results with pre-trained ResNet18 as backbone. APER consistently im-
proves the performance of pre-trained models in class-incremental learning.

Backbone Method Ā AB

ResNet18

SimpleCIL 48.68 36.85
APER w/ Finetune 51.37 38.51
APER w/ SSF 58.80 47.17
APER w/ BN Tuning 58.93 47.22

ResNet50

SimpleCIL 62.91 52.84
APER w/ Finetune 64.99 54.32
APER w/ SSF 64.57 54.71
APER w/ BN Tuning 64.56 54.67

ResNet101

SimpleCIL 69.06 59.22
APER w/ Finetune 71.93 62.00
APER w/ SSF 70.89 60.59
APER w/ BN Tuning 70.91 60.65

ResNet152

SimpleCIL 72.13 61.62
APER w/ Finetune 74.04 63.32
APER w/ SSF 73.44 62.93
APER w/ BN Tuning 73.45 62.89

Table 51: Results on CIFAR100 B0 Inc5 with
pre-trained ResNet.

Backbone Method Ā AB

ResNet18

SimpleCIL 55.05 40.80
APER w/ Finetune 63.82 51.27
APER w/ SSF 63.38 50.72
APER w/ BN Tuning 64.56 52.76

ResNet50

SimpleCIL 63.20 50.59
APER w/ Finetune 68.44 56.40
APER w/ SSF 68.55 56.57
APER w/ BN Tuning 66.28 53.52

ResNet101

SimpleCIL 62.61 49.96
APER w/ Finetune 66.36 54.88
APER w/ SSF 66.59 54.92
APER w/ BN Tuning 66.65 54.16

ResNet152

SimpleCIL 62.67 49.36
APER w/ Finetune 66.77 53.27
APER w/ SSF 66.69 53.27
APER w/ BN Tuning 65.51 51.61

Table 52: Results on CUB200 B0 Inc5 with
pre-trained ResNet.
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Backbone Method Ā AB

ResNet18

SimpleCIL 40.23 30.07
APER w/ Finetune 49.54 38.83
APER w/ SSF 49.57 38.87
APER w/ BN Tuning 49.54 38.80

ResNet50

SimpleCIL 50.35 43.00
APER w/ Finetune 55.16 46.70
APER w/ SSF 54.93 46.63
APER w/ BN Tuning 54.91 46.50

ResNet101

SimpleCIL 52.71 45.03
APER w/ Finetune 59.58 51.97
APER w/ SSF 59.43 51.72
APER w/ BN Tuning 59.63 51.97

ResNet152

SimpleCIL 54.48 47.33
APER w/ Finetune 60.25 53.27
APER w/ SSF 59.88 52.97
APER w/ BN Tuning 59.99 53.10

Table 53: Results on ImageNet-R B0 Inc5 with
pre-trained ResNet.

Backbone Method Ā AB

ResNet18

SimpleCIL 19.46 10.80
APER w/ Finetune 23.83 12.64
APER w/ SSF 23.79 12.90
APER w/ BN Tuning 25.07 14.61

ResNet50

SimpleCIL 35.11 22.32
APER w/ Finetune 37.20 23.90
APER w/ SSF 37.20 23.83
APER w/ BN Tuning 34.86 22.25

ResNet101

SimpleCIL 38.13 23.57
APER w/ Finetune 40.03 26.07
APER w/ SSF 40.25 26.00
APER w/ BN Tuning 38.45 24.88

ResNet152

SimpleCIL 39.98 26.66
APER w/ Finetune 42.80 29.36
APER w/ SSF 43.31 29.30
APER w/ BN Tuning 39.69 26.27

Table 54: Results on ImageNet-A B0 Inc5 with
pre-trained ResNet.

Backbone Method Ā AB

ResNet18

SimpleCIL 36.31 22.22
APER w/ Finetune 42.98 28.64
APER w/ SSF 42.93 28.46
APER w/ BN Tuning 43.11 28.68

ResNet50

SimpleCIL 52.47 37.67
APER w/ Finetune 54.35 39.91
APER w/ SSF 54.36 39.79
APER w/ BN Tuning 54.23 39.85

ResNet101

SimpleCIL 52.95 38.05
APER w/ Finetune 54.85 40.30
APER w/ SSF 54.88 40.28
APER w/ BN Tuning 54.85 40.36

ResNet152

SimpleCIL 53.88 39.42
APER w/ Finetune 55.99 41.96
APER w/ SSF 55.63 41.52
APER w/ BN Tuning 55.80 41.70

Table 55: Results on ObjectNet B0 Inc5 with
pre-trained ResNet.

Backbone Method Ā AB

ResNet18

SimpleCIL 53.70 43.79
APER w/ Finetune 56.19 45.36
APER w/ SSF 61.50 52.45
APER w/ BN Tuning 61.49 52.60

ResNet50

SimpleCIL 65.41 54.97
APER w/ Finetune 66.75 55.51
APER w/ SSF 67.50 56.91
APER w/ BN Tuning 67.47 56.89

ResNet101

SimpleCIL 65.20 54.90
APER w/ Finetune 68.53 56.79
APER w/ SSF 67.68 56.98
APER w/ BN Tuning 67.93 57.18

ResNet152

SimpleCIL 64.93 54.65
APER w/ Finetune 66.43 55.07
APER w/ SSF 67.18 56.61
APER w/ BN Tuning 67.29 56.64

Table 56: Results on OmniBenchmark B0 Inc5
with pre-trained ResNet.
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