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ABSTRACT

Speech codecs serve as bridges between speech signals and large language mod-
els. An ideal codec for speech language models should not only preserve acous-
tic information but also capture rich semantic information. However, existing
speech codecs struggle to balance high-quality audio reconstruction with ease of
modeling by language models. In this study, we analyze the limitations of pre-
vious codecs in balancing semantic richness and acoustic fidelity. We propose
XY-Tokenizer, a novel codec that mitigates the conflict between semantic and
acoustic capabilities through multi-stage, multi-task learning. Experimental re-
sults demonstrate that XY-Tokenizer achieves performance in both semantic and
acoustic tasks comparable to that of state-of-the-art codecs operating at similar
bitrates, even though those existing codecs typically excel in only one aspect.
Specifically, XY-Tokenizer achieves strong text alignment, surpassing distillation-
based semantic modeling methods such as SpeechTokenizer and Mimi, while
maintaining a speaker similarity score of 0.85 between reconstructed and orig-
inal audio. The reconstruction performance of XY-Tokenizer is comparable to
that of BigCodec, the current state-of-the-art among acoustic-only codecs, which
achieves a speaker similarity score of 0.84 at a similar bitrate.

1 INTRODUCTION

In recent years, large language models (LLMs) (Achiam et al., 2023; Yang et al., 2024a) have
achieved significant advancements in natural language processing, showcasing remarkable capabili-
ties in understanding and generating text for fluent and natural conversations. Consequently, speech
large language models (Speech LLMs) have garnered increasing attention (Zhang et al., 2023a; Chu
et al., 2024; Défossez et al., 2024). A critical component of Speech LLMs is the speech codec, which
transforms continuous speech signals into discrete tokens, aligning with the token-based approach
of LLMs (Zeghidour et al., 2021; Défossez et al., 2022; Kumar et al., 2023; Zhang et al., 2023b;
Défossez et al., 2024). Acoustic codecs trained through residual vector quantization GAN (RVQ-
GAN) capture the details of the audio waveform and allow for high-quality synthesis (Défossez
et al., 2022; Kumar et al., 2023; Wang et al., 2023; Xin et al., 2024). Self-supervised learning (SSL)
models (Devlin et al., 2019) trained with masked language modeling (MLM) capture contextual de-
pendencies in speech, making them widely used in Speech LLMs (Hsu et al., 2021; Chung et al.,
2021; Chen et al., 2022; Chiu et al., 2022). Additionally, automatic speech recognition (ASR) mod-
els trained on large-scale supervised datasets align well with the text modality (Radford et al., 2023),
and their discrete representations are often utilized as inputs for Speech LLMs (Zeng et al., 2024;
Ding et al., 2025).

Semantic tokens, typically derived from discretized self-supervised learning (SSL) models, are con-
sidered to exhibit high alignment with text while leading to poor reconstruction. In contrast, acoustic
tokens often derived from speech codecs trained through residual vector quantization GAN (RVQ-
GAN), are recognized for capturing the details of the audio waveform, enabling high-quality syn-
thesis, but they do not demonstrate strong alignment with text (Borsos et al., 2023). An ideal speech
codec should effectively model both semantic and acoustic information. SpeechTokenizer employs
semantic distillation, utilizing the output of the first layer of residual vector quantization (RVQ) to
distill representations from a teacher SSL model (Zhang et al., 2023b). Similarly, the Mimi codec in
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Figure 1: Comparison of speech codecs in semantic and acoustic performance. The horizontal
axis shows word error rate (WER) of the automatic speech recognition probing task (Section 4.2),
with lower values indicating better text alignment. The vertical axis measures audio reconstruction
quality (Section 4.2). Circle size represents bitrate. Ideally, a speech codec should appear towards
the top-left corner with a lower bitrate. Codec details are described in Section 4.1. The figure shows
that XY-Tokenizer achieves strong semantic and acoustic performance at approximately 1 kbps,
comparable to state-of-the-art codecs that typically excel in only one of the two aspects at a similar
bitrate.

Moshi adopts a split residual vector quantization architecture, distilling one channel’s output with a
pretrained SSL model (Défossez et al., 2024). XCodec introduces an “X-shaped” structure, ensur-
ing that tokens at each layer are semantically rich (Ye et al., 2025a). However, a key challenge in
modeling both semantic and acoustic information lies in the inherent conflict between these tasks,
particularly at low bitrates, where achieving high performance in both remains difficult.

In this work, we propose XY-Tokenizer, the first speech codec to successfully model both seman-
tic and acoustic information effectively at low bitrates. Our codec employs a dual-tower archi-
tecture that mitigates the conflict between semantic and acoustic tasks by minimizing shared
parameters in a multi-task learning framework. We introduce a multi-stage, multi-task train-
ing paradigm: the first stage aligns the codec with text using an LLM-based ASR approach and
employs a reconstruction loss on the original speech signal to ensure coarse-grained audio recon-
struction, utilizing a 2-channel encoder-decoder structure, forming an X-shaped architecture. The
second stage incorporates a discriminator to model fine-grained audio features using a generative
adversarial network (GAN) (Goodfellow et al., 2014). In this stage, the encoder and quantizer are
kept fixed to maintain the alignment between speech tokens and text, while the decoder discards the
text-alignment module, leading to a Y-shaped architecture.

Our contributions can be summarized as follows:

• We propose XY-Tokenizer, a speech codec with a 16kHz sampling rate and a 1kbps bitrate.
It employs a dual-tower architecture to model semantic and acoustic information simultane-
ously through multi-task learning, aligns with text using an LLM-based automatic speech
recognition approach, and ensures high-quality speech reconstruction via a codec decoder.

• We introduce a multi-stage, multi-task training paradigm for modeling semantic and acous-
tic information concurrently. The first stage aligns the codec with text and models coarse-
grained audio features, while the second stage incorporates a discriminator to model fine-
grained audio features using a generative adversarial network.
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• We analyze the limitations of current speech codecs, particularly the inherent conflict be-
tween semantic and acoustic objectives, and propose solutions such as leveraging pre-
trained automatic speech recognition models and minimizing shared parameters to mitigate
these conflicts.

• XY-Tokenizer achieves performance at 1kbps comparable to the 4kbps codec that simul-
taneously models semantic and acoustic information (e.g., SpeechTokenizer) in both se-
mantic and acoustic dimensions. At similar low bitrates, it excels in both tasks and matches
the performance of state-of-the-art codecs specialized in a single aspect, such as BigCodec,
which models only acoustic quality without explicitly modeling semantic information. We
conducted extensive ablation studies to validate the effectiveness of our approach, and we
will open-source our repository and pretrained models.

2 PRELIMINARY EXPERIMENTS

Table 1: Comparison between pretrained ASR/SSL models in reconstructed audio quality; bold
indicates best performance.

Model SIM ↑ STOI ↑ PESQ-NB ↑ PESQ-WB ↑
HuBERT 0.42 0.80 1.46 1.20
WavLM 0.53 0.83 1.53 1.26
Whisper 0.68 0.88 2.03 1.65

Self-supervised learning (SSL) models for speech, such as those trained with masked language
modeling (Hsu et al., 2021; Chen et al., 2022), effectively capture high-level speech features and
are widely used in speech large language models (Speech LLMs) (Zhang et al., 2023a; 2024b).
Similarly, automatic speech recognition (ASR) models, trained on large-scale paired speech–text
datasets, achieve strong alignment between speech and text modalities (Ao et al., 2021; Tang
et al., 2022; Radford et al., 2023). However, training a speech codec from scratch to align with the
text modality is data-intensive. To address this, our proposed XY-Tokenizer leverages pretrained
ASR or SSL models for the encoder to reduce training complexity. Although these ASR and SSL
models exhibit strong alignment with text, their ability to retain paralinguistic information re-
mains underexplored. To identify the most suitable pretrained model for our codec, we conduct a
preliminary experiment to evaluate their performance in preserving acoustic information.

For this experiment, we selected three pre-trained models: Whisper (Radford et al., 2023), an ASR
model, as well as HuBERT (Hsu et al., 2021) and WavLM (Chen et al., 2022), which are self-
supervised learning (SSL) models. We trained an auto-encoder, which differs from a codec by
removing the quantizer, to assess the reconstruction capabilities of these pre-trained models. Specif-
ically, we used the pre-trained Whisper, HuBERT, and WavLM models as fixed encoders, each
paired with a decoder of identical parameter size to ensure a fair comparison. The experimental
setup and details are provided in Appendix A. As shown in Table 1, Whisper achieves superior
reconstruction performance, effectively preserving paralinguistic information, such as speaker
timbre and acoustic details. In contrast, HuBERT and WavLM exhibit limitations in preserving cer-
tain aspects of speaker timbre and fine-grained acoustic details. Furthermore, Whisper’s pretraining
on ASR tasks aligns closely with the LLM-based tasks employed in our codec, facilitating better
speech-text alignment. Based on these findings, we selected Whisper to initialize the encoder of our
proposed XY-Tokenizer and further fine-tuned it for our codec training pipeline.

3 METHOD

3.1 XY-TOKENIZER

Motivation An ideal speech codec should effectively balance two goals: high-fidelity audio re-
construction and strong semantic alignment with text (Zhang et al., 2023b; Yang et al., 2024b).
However, these two objectives often conflict, as optimizing for one can degrade the other (Défossez
et al., 2024). Our empirical analysis, as shown in Table 2, shows that decreasing the number of
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Figure 2: Illustration of XY-Tokenizer. The upper half depicts the pre-training stage, aligning
XY-Tokenizer with text while preserving coarse acoustic features. The lower half illustrates the
post-training stage, modeling finer-grained acoustic features. Model architecture and training pro-
cedure are detailed in Section 3.

Table 2: Impact of shared parameters on semantic and acoustic modeling performance. Details of
the model architecture are provided in Appendix C. For Mimi-8, the shared parameters between the
two tasks are the encoder and the semantic channel of the quantizer. WER is reported in the range
[0, 1].

Model Shared Parameters SIM ↑ WER ↓
SpeechTokenizer-x1 Encoder + Quantizer 0.65 0.34
Mimi-8 Encoder 0.73 0.28
XCodec2.0 Quantizer 0.82 0.30

shared parameters between semantic and acoustic modeling pathways effectively mitigates the trade-
off between high-fidelity audio reconstruction and strong semantic alignment. Moreover, semantic
modeling can be effectively approached through automatic speech recognition (ASR) tasks, while
acoustic modeling aligns closely with reconstruction through a codec decoder. To this end, we pro-
pose a dual-channel codec architecture that jointly models semantic and acoustic information in a
multi-task setup, combining ASR and audio reconstruction, with shared parameters limited to the
residual vector quantization (RVQ) module and its adjacent components.

Encoder The encoder comprises two parallel branches: a semantic channel and an acoustic chan-
nel, both processing mel-spectrogram inputs at 100 Hz. Each channel is initialized with a Whisper
encoder (Radford et al., 2023), with the semantic encoder’s parameters fixed and the acoustic en-
coder’s parameters trainable. The semantic channel extracts linguistic features, while the acoustic
channel captures paralinguistic information. The outputs of both channels are concatenated and fur-
ther processed to produce the final encoder output. Additional details of the encoder architecture are
provided in Appendix B.
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Quantizer We employ a residual vector quantization (RVQ) module with 8 layers operating on
the encoder output at a temporal resolution of 12.5 Hz (Zeghidour et al., 2021). Each layer uses a
codebook of size 1024, resulting in a total bitrate of 1 kbps. The quantizer is integrated with adapter
and convolution modules, with details provided in Appendix B.

Decoder The decoder consists of two parallel branches: a semantic channel and an acoustic
channel, both processing the quantized encoder output. The semantic channel, a decoder-only large
language model, generates text transcriptions, while the acoustic channel reconstructs the waveform.
For details of the decoder, see Appendix B.

3.2 TWO STAGE TRAINING STRATEGY

To streamline the training process and enhance efficiency, we propose a two-stage training strategy,
consisting of a pre-training stage and a post-training stage. In the pre-training stage, we employ
multi-task learning to simultaneously model semantic features and coarse acoustic features. In the
post-training stage, we focus on modeling fine-grained acoustic features. This section elaborates on
these stages.

3.2.1 PRE-TRAINING STAGE

In the pre-training stage, we focus on two tasks: audio reconstruction and automatic speech recog-
nition (ASR). All model parameters are trainable, except for the weights of the semantic encoder,
initialized from Whisper encoder (Radford et al., 2023), and the large language model (LLM) which
is initialized from Qwen2.5 (Yang et al., 2024a). To align with text generation, we use the cross-
entropy loss for the LLM, defined as:

Lasr = −
N∑
t=1

log p(yt | y<t, f ; θLLM )

where yt is the predicted text token at time step t, y<t denotes the sequence of preceding tokens, f
represents the audio features input to the LLM, N is the total number of predicted text tokens, and
θLLM denotes the parameters of the LLM.

For modeling acoustic features, we employ a multi-scale mel-spectrogram reconstruction loss:

Lrecon =
∑
i∈e

∥Si(x)− Si(x̂)∥1

where Si is the mel-spectrogram at scale i, computed using a normalized short-time fourier trans-
form (STFT) with a window size of 2i and a hop length of 2i−2. The set of scales is defined as
e = {5, . . . , 11}. Here, x is the ground-truth audio waveform, and x̂ is the predicted waveform
from the acoustic decoder. No waveform-based reconstruction loss is used.

Additionally, we incorporate a commitment loss to ensure effective quantization:

Lcommit =

Nq∑
i=1

∥zi − sg(qi(zi))∥1

where zi is the input to the i-th layer of the quantizer, qi(zi) is its quantized output, Nq is the
number of quantized vectors, and sg denotes the stop-gradient operation, which prevents gradients
from propagating to the quantizer’s codebook.

The total loss for the pre-training stage is a weighted combination of individual losses:

Lpretraining = λasrLasr + λreconLrecon + λcommitLcommit

where λasr, λrecon, λcommit are hyperparameters that balance the weights of each loss term.

3.2.2 POST-TRAINING STAGE

After the pre-training stage, we obtain an encoder capable of producing rich semantic features.
However, the codec’s output may contain artifacts, which significantly degrade perceptual quality
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and listening experience. To address this, the post-training stage focuses on modeling fine-grained
audio details. The approach is detailed below.

We adopt a generative adversarial network (GAN) framework for post-training. For the generator,
which corresponds to the codec, we fix the encoder and quantizer to maintain the alignment between
speech tokens and text, discard the semantic decoder used in the pre-training stage, and keep all other
parameters consistent with the pre-training stage, with these parameters remaining trainable. For the
discriminator, we employ multi-period discriminator (MPD), multi-scale discriminator (MSD), and
multi-scale short-time fourier transform discriminator (MS-STFTD) to model higher-level features
and improve the perceptual quality of the generated audio (Kong et al., 2020; Kumar et al., 2019;
Défossez et al., 2022).

The discriminator loss follows the least squares GAN (LSGAN) formulation (Mao et al., 2017),
given by:

LD(x, x̂) =
1

K

K∑
k=1

(1−Dk(x))
2 +D2

k(x̂)

where Dk represents the k-th discriminator (from MPD, MSD, or MS-STFTD), K is the total num-
ber of discriminators, x is the ground-truth audio, and x̂ is the predicted audio.

For the generator loss, we use the same multi-scale mel-spectrogram reconstruction loss as in the
pre-training stage, denoted Lrecon. Additionally, we include a feature matching loss:

Lfeat(x, x̂) =
1

KL

K∑
k=1

L∑
l=1

∥∥Dl
k(x)−Dl

k(x̂)
∥∥
1

mean(
∥∥Dl

k(x)
∥∥
1
)

(1)

where Dl
k denotes the feature representation from the l-th layer of the k-th discriminator, L is the

number of layers per discriminator, and the mean is computed over all dimensions of Dl
k(x). We

also incorporate an adversarial loss:

Ladv(x̂) =
1

K

K∑
k=1

(1−Dk(x̂))
2

The total generator loss is a weighted combination of these terms:

LG(x, x̂) = λreconLrecon + λfeatLfeat + λadvLadv

where λrecon, λfeat, λadv are hyperparameters that balance the contributions of each loss term.

4 EXPERIMENTS

4.1 SETTINGS

Dataset and Training Details We trained XY-Tokenizer using the full Emilia dataset, compris-
ing approximately 101k hours of audio data, equivalent to about 37 million (audio, transcription)
pairs (He et al., 2024). All audio data was resampled to 16 kHz. In the pre-training stage, audio
clips longer than 30 seconds were truncated to the first 30 seconds, while clips shorter than 30 sec-
onds were padded to 30 seconds, with loss computed only on the non-padded portions. We utilized
32 NVIDIA H100 GPUs, each with a batch size of 4, a maximum learning rate of 1 × 10−4, and
trained for 800,000 steps using DeepSpeed Zero2 (Rajbhandari et al., 2020). We used the AdamW
optimizer with a weight decay of 0.01 (Loshchilov & Hutter, 2017). In the post-training stage,
we randomly sampled 5-second segments from each audio clip for training, using a single NVIDIA
H100 GPU with a batch size of 16. The generator was trained with a maximum learning rate of
1× 10−5, and the discriminator with a maximum learning rate of 1× 10−4, for 600,000 steps. For
both the pre-training stage and post-training stage, we set λrecon = 15. In the pre-training stage,
we set λasr = 20 and λcommit = 1. In the post-training stage, we set λfeat = 1 and λadv = 1.

Model Details We have detailed the codec architecture in Section 3.1 and Appendix B.

Baselines We use SpeechTokenizer (Zhang et al., 2023b), Mimi (Défossez et al., 2024),
XCodec2.0 (Ye et al., 2025b), and Baichuan Audio Tokenizer (Li et al., 2025) as our baseline

6
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Table 3: Comparisons between different codecs in terms of semantic and acoustic performance
on Librispeech dataset. WER refers to the word error rate measured on the ASR probing task,
detailed in Section 4.2. Lower WER indicates better alignment with the original text content. WER
is reported in the range [0, 1]; for example, a WER of 0.13 for XY-Tokenizer corresponds to a
13% word error rate on the ASR probing task. For codecs with >2k bps, bold values indicate
SOTA performance; for low bitrate (∼1k bps) codecs, bold indicates the top 2 performing models.
Baichuan refers to Baichuan Audio Tokenizer.

Semantic Acoustic

Model BPS Frame
Rate

Model
Semantic

WER
↓

SIM
↑

STOI
↑

PESQ-
NB ↑

PESQ-
WB ↑

DAC-8 6k 75 No 0.74 0.88 0.95 3.79 3.46
SpeechTokenizer 4k 50 Yes 0.20 0.84 0.92 3.05 2.60
Mimi-32 4.4k 12.5 Yes 0.28 0.93 0.96 3.79 3.42

DAC-2 1.5k 75 No 0.98 0.49 0.83 1.91 1.51
BigCodec 1.04k 80 No 0.49 0.84 0.93 3.26 2.68
SpeechTokenizer-x1 1.5k 50 Yes 0.34 0.65 0.88 2.58 2.10
SpeechTokenizer-x2 1.5k 50 Yes 0.22 0.60 0.86 2.35 1.87
SpeechTokenizer-x3 1.5k 50 Yes 0.18 0.48 0.83 1.95 1.53
Mimi-8 1.1k 12.5 Yes 0.28 0.73 0.90 2.79 2.24
Baichuan 1.075k 12.5 Yes 0.10 0.70 0.88 2.45 1.93
XCodec2.0 0.8k 50 Yes 0.30 0.82 0.91 3.03 2.43
XY-Tokenizer(ours) 1k 12.5 Yes 0.13 0.85 0.92 3.10 2.50

codecs, which simultaneously model semantic and acoustic information. Details of these models
are provided in Appendix C. Additionally, we include BigCodec (Xin et al., 2024), Descript Audio
Codec (Kumar et al., 2023), which exclusively model acoustic information.

4.2 METRICS

Reconstruction Evaluation To evaluate the preservation of acoustic information, we employ sev-
eral metrics. Speaker similarity (SIM) is calculated as the cosine similarity between speaker em-
beddings extracted from original and reconstructed audio using a pre-trained speaker verification
model1. We also use short-time objective intelligibility (STOI) (Taal et al., 2010) to measure speech
intelligibility and perceptual evaluation of speech quality (PESQ) (Rix et al., 2001) to assess au-
dio quality. All evaluations were conducted on the LibriSpeech test-clean subset (Panayotov et al.,
2015).

Semantic Evaluation To evaluate the semantic alignment between the codec and text, we employ an
automatic speech recognition (ASR) probing task, adapted from the SUPERB framework (Yang
et al., 2021), to assess the semantic quality of tokenized representations. We trained a downstream
ASR model using quantized embeddings, with the pretrained codec fixed. These quantized em-
beddings are upsampled to a minimum frame rate of 50 Hz via replication before being fed into
a downstream model (see Appendix D for details). The downstream model comprises a two-layer
bidirectional LSTM optimized with CTC loss for character-level prediction (Hochreiter & Schmid-
huber, 1997; Graves et al., 2006). All models are trained on the LibriSpeech train-clean-100 subset
and evaluated on the LibriSpeech dev-clean subset (Panayotov et al., 2015), using word error rate
(WER) as the metric for semantic performance, where a lower WER indicates better semantic align-
ment. The ASR probing task experiments are conducted with a batch size of 4, a maximum learning
rate of 1× 10−4, and training for 400,000 steps.

4.3 EVALUATION RESULTS

As shown in Table 3, XY-Tokenizer achieves SOTA-comparable performance at similar bitrates,
simultaneously excelling in both speech reconstruction and semantic preservation tasks.

Speech Reconstruction XY-Tokenizer achieves higher SIM scores than Mimi-8, SpeechTokenizer-
RVQ-3 (including SpeechTokenizer-x1, SpeechTokenizer-x2, SpeechTokenizer-x3), and Baichuan

1https://github.com/microsoft/UniSpeech/tree/main/downstreams/speaker_
verification
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Table 4: Impact of reducing shared parameters between semantic and acoustic tasks. WER refers to
word error rate on the automatic speech recognition probing task (detailed in Section 4.2). WER is
reported in the range [0, 1]. Two Channel indicates whether the encoder simultaneously uses both
semantic and acoustic channels.

Semantic Acoustic

Model Encoder
Two

Channel
Encoder

Params (M)
WER
↓

SIM
↑

STOI
↑

PESQ-
NB ↑

PESQ-
WB ↑

(1) XY-Tokenizer Whisper small YES 259 0.13 0.80 0.92 3.12 2.61
(2) Single-channel Whisper small NO 115 0.13 0.77 0.92 2.92 2.45
(3) Single-channel Whisper medium NO 356 0.12 0.77 0.92 2.88 2.38

Audio Tokenizer, with performance comparable to BigCodec, XCodec2.0, and SpeechTokenizer.
These results provide preliminary evidence of the model’s effectiveness in reconstructing speech.
However, XY-Tokenizer’s reconstruction quality is slightly inferior to high-bitrate codecs like DAC-
8, likely due to greater information loss in low-bitrate codecs. We believe that low-bitrate codecs
have significant potential for further enhancement in reconstruction performance.

ASR Probing Results XY-Tokenizer exhibits text alignment performance comparable to Baichuan
Audio Tokenizer. XY-Tokenizer’s word error rate (WER) on the ASR probing task is substantially
lower than that of codecs employing representation distillation, such as SpeechTokenizer, Mimi-
Codec, and XCodec 2.0. This performance may be attributed to language-based ASR tasks facili-
tating stronger text alignment compared to semantic distillation approaches, while also creating less
conflict with reconstruction objectives. Conversely, codecs like DAC and BigCodec, which lack
supervised text alignment during pretraining, exhibit higher WER in ASR probing tasks, likely due
to a significant disparity between their compressed representations and textual content.

Semantic-Acoustic Comprehensive Analysis Considering both speech reconstruction and text
alignment capabilities, our proposed XY-Tokenizer achieves excellent results in both aspects. While
SpeechTokenizer performs well in both reconstruction and semantic tasks at higher bitrates, we
observe that at lower bitrates, stronger distillation supervision leads to poorer reconstruction qual-
ity. This indicates that representation distillation methods can cause significant conflicts between
semantic and acoustic learning objectives during codec training. Mimi-8 and XCodec2.0 demon-
strate better reconstruction metrics at comparable bitrates than SpeechTokenizer, but perform less
effectively on semantic tasks, which we attribute to the inherent trade-off between representation
distillation and audio reconstruction objectives. Our proposed XY-Tokenizer achieves favorable re-
sults in both semantic and acoustic dimensions, suggesting that it effectively mitigates the conflict
between these competing tasks to a noticeable extent. For ablation studies on conflict resolution
approaches, please refer to Section 4.4.

Additional Evaluations We conducted further experiments to investigate the generalization capa-
bility of XY-Tokenizer. On cross-lingual and out-of-distribution datasets, XY-Tokenizer demon-
strates superior or comparable performance in both text alignment and reconstruction compared to
codecs operating at similar bitrates. Moreover, in LLM-based understanding and generation tasks,
XY-Tokenizer consistently outperforms codecs with comparable bitrates, such as Mimi-8. Detailed
results are provided in Appendix E and Appendix F.

4.4 ABLATION STUDY

To evaluate the effectiveness of our proposed XY-Tokenizer in simultaneously modeling semantic
and acoustic features while mitigating conflicts between these tasks, we conducted a series of abla-
tion experiments. Unless otherwise specified, all ablation experiments were performed during the
pre-training phase without a post-training stage, utilizing the same dataset and preprocessing meth-
ods as described in Section 4.1. We employed a global batch size of 128, a maximum learning rate
of 1 × 10−4, and trained for 200,000 steps, with all loss weights consistent with those outlined in
Section 4.1.

Shared Parameters Cause Conflicts In XY-Tokenizer, parameters between semantic and acoustic
tasks are shared only in the residual vector quantization (RVQ) module and its adjacent components.
To assess the effectiveness of minimizing shared parameters in reducing semantic-acoustic conflicts,
we trained three models: (1) the proposed XY-Tokenizer, (2) XY-Tokenizer without a semantic en-
coder, where the encoder is a single-channel, trainable acoustic encoder, and (3) XY-Tokenizer

8
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Table 5: Impact of LLM trainability on model performance over training steps. LLM WER refers
to the WER of text decoded by the LLM-based semantic decoder during pretraining. Probing WER
refers to the word error rate measured on the ASR probing task(detailed in Section 4.2). Both LLM
WER and Probing WER are reported in the range [0, 1].

Semantic Acoustic

Model
Train
Steps

Probing
WER ↓

LLM
WER ↓

SIM
↑

STOI
↑

PESQ-
NB ↑

PESQ-
WB ↑

(1) Fixed LLM

200K 0.13 0.06 0.80 0.92 3.12 2.61
400K 0.13 0.05 0.81 0.93 3.22 2.67
600K 0.14 0.05 0.83 0.93 3.30 2.78
800K 0.13 0.05 0.84 0.93 3.35 2.83

(2) Trainable LLM

200K 0.18 0.03 0.80 0.93 3.21 2.69
400K 0.20 0.04 0.82 0.93 3.32 2.77
600K 0.22 0.03 0.83 0.94 3.41 2.88
800K 0.24 0.03 0.84 0.94 3.46 2.96

without a semantic encoder, with the acoustic encoder initialized using Whisper-medium weights,
maintaining a parameter count comparable to (1). In models (2) and (3), the semantic and acoustic
tasks share both the encoder and RVQ modules. As shown in Table 4, all three models perform well
on the ASR probing task, demonstrating that leveraging an LLM-based ASR approach enables the
codec to effectively align with textual semantics. However, models (2) and (3) exhibit inferior per-
formance on reconstruction metrics compared to (1), despite model (3) having a similar parameter
count to (1). This suggests that sharing model parameters across semantic and acoustic tasks
is a primary cause of task conflict. Thus, reducing shared parameters is an effective strategy for
simultaneously achieving high-quality audio reconstruction and improved text alignment.

Fixing LLM for Enhanced Training Stability In the pre-training stage of our XY-Tokenizer, the
pretrained LLM is kept fixed. To explore whether allowing the LLM to be trainable could yield
better results, we trained two models: (1) the proposed XY-Tokenizer with a fixed LLM, and (2)
XY-Tokenizer with a trainable LLM. Table 5 indicates that both models achieve comparable audio
reconstruction quality. On the Word Error Rate (WER) of text decoded by the LLM, model (2)
outperforms model (1) with a lower WER. However, on the ASR probing task, model (2) performs
worse than model (1). Moreover, as training progresses, the performance of model (2) on the ASR
probing task deteriorates, while model (1) remains stable. We hypothesize that allowing the LLM
to be trainable increases the flexibility of the semantic decoder, causing the encoder’s text-
alignment capability to gradually shift toward the semantic decoder. This shift likely explains
the discrepancy between the ASR probing task and LLM decoder WER performance in models (1)
and (2). We conclude that fixing the LLM is a more appropriate approach, offering stability and
effectively balancing semantic and acoustic modeling.

Additional Ablation Studies We conduct further ablations on training strategies and model archi-
tectures, with detailed results provided in Appendix G.

5 RELATED WORK

Related work about speech large language models and neural speech codecs is provided in Ap-
pendix H.

6 CONCLUSION

In this study, we propose XY-Tokenizer, a novel codec that mitigates the conflict between under-
standing and generation capabilities through multi-task learning, enhances reconstruction quality,
and improves text alignment at low bitrates. Experimental results demonstrate that XY-Tokenizer
excels in both speech reconstruction and understanding tasks. We conducted ablation studies to opti-
mize the modeling of semantic and acoustic information. Please refer to the appendix for additional
experimental details.
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A PRELIMINARY EXPERIMENT SETTINGS

Model Architecture For the preliminary experiments to select the encoder for the XY-Tokenizer,
we utilized three pre-trained models: whisper-small2, hubert-large-ll6k3, and wavlm-large4. These
encoders were kept frozen during training to evaluate their reconstruction capabilities. A
decoder with approximately 250M parameters was used, without a quantizer.

Dataset and Training The auto-encoders were trained on the full Emilia dataset. Training was
performed on a single NVIDIA H100 GPU with a batch size of 8. The training process consisted of
200,000 steps. The maximum learning rate was set to 1 × 10−4, and DeepSpeed Zero-2 was used
for optimization.

2https://huggingface.co/openai/whisper-small
3https://huggingface.co/facebook/hubert-large-ll60k
4https://huggingface.co/microsoft/wavlm-large
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B MODEL DETAILS

B.1 ADAPTER

To enhance the flexibility of embeddings, we incorporate lightweight Transformer-based (Vaswani
et al., 2017) adapter modules at multiple components of the XY-Tokenizer. Each adapter consists of
a 4-layer Transformer with a hidden dimension of 768, a feed-forward network (FFN) dimension of
3072, and 12 attention heads. Adapters are placed after the semantic encoder, before and after the
quantizer, and before the LLM-based semantic decoder.

B.2 ENCODER

The input waveform is resampled to 16 kHz, and an 80-channel Mel spectrogram is computed using
a 25 ms window length and a 10 ms hop length to serve as the input to the encoder.

The semantic encoder adopts the whisper-small encoder configuration and processes the Mel spec-
trogram through the following modules: (1) a 1D convolutional layer with a kernel size of 3 and a
stride of 1, projecting the 80-dimensional input to a hidden dimension of 768; (2) a GELU activation
function (Hendrycks & Gimpel, 2016); (3) a second 1D convolutional layer with a kernel size of 3
and a stride of 2, reducing the sequence length by a factor of 2; (4) another GELU activation func-
tion; (5) sinusoidal positional embeddings; (6) a transformer with 12 layers, 12 attention heads, a
dimension of 768, and a feed-forward network dimension of 3072. The semantic encoder’s output is
then passed to (7) an adapter module (detailed in Appendix B.1). The semantic encoder’s parameters
are fixed during training.

The acoustic encoder follows a similar architecture to the semantic encoder but is trainable and
excludes the adapter module. The outputs of the semantic and acoustic encoders are concatenated
along the feature dimension.

B.3 QUANTIZER

We employ a residual vector quantizer (RVQ) with 8 layers and a codebook size of 1024 per layer.
The codebook is updated using an exponential moving average (EMA) with a weight decay of
0.99. To prevent codebook collapse, unused codebook entries are randomly replaced with input
vectors from the current batch after several training steps. The codebook is initialized using k-
means clustering with 10 iterations. A 4× downsampling convolutional layer is applied before the
quantizer, reducing the encoder’s 50 Hz embeddings to 12.5 Hz, resulting in a bitrate of 1 kbps
for our proposed XY-Tokenizer. Adapter modules (detailed in Appendix B.1) are placed before the
downsampling convolution and after the quantizer.

B.4 DECODER

The decoder processes quantized features through two distinct pathways: the semantic decoder for
text prediction and the acoustic decoder for audio reconstruction.

The semantic decoder takes the output of the quantizer as input, passes it through an adapter (de-
tailed in Appendix B.1), and uses the resulting features as conditioning input for a decoder-only
large language model (LLM). The LLM, based on Qwen2.5-0.5B (Yang et al., 2024a), has a hidden
dimension of 896, an intermediate layer size of 4864, and 24 layers, generating the final predicted
text corresponding to the input speech.

The acoustic decoder takes the output of the quantizer as input, applies a 4x upsampling convolution
to reach 50 Hz, and follows a structure symmetric to the acoustic encoder to achieve 100 Hz. Finally,
a 30-layer Vocos model (Siuzdak, 2023) with a hop size of 160 reconstructs the 16 kHz audio
waveform.

Discriminators To ensure high perceptual quality, we employ three discriminator models: multi-
period discriminator (MPD) (Kong et al., 2020), multi-scale discriminator (MSD) (Kumar et al.,
2019), and multi-scale short-time fourier transform discriminator (MS-STFTD) (Défossez et al.,
2022). The parameters of our discriminator models are consistent with those used in SpeechTok-
enizer (Zhang et al., 2023b).

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C BASELINE MODEL DETAILS

In this section, we provide detailed descriptions of the baseline models used in our experiments.
For Mimi, we adopt the official RVQ-8 and RVQ-32 versions, referred to as Mimi-8 and Mimi-
32, respectively. For XCodec 2.0, Baichuan Audio Tokenizer, and BigCodec, we use the official
checkpoints provided by their respective authors.

For Descript Audio Codec (DAC), we utilize the official implementation with a sampling rate of
24 kHz and residual vector quantization (RVQ) levels of 2 and 8, denoted as DAC-2 and DAC-8.

For SpeechTokenizer, we employ the official speechtokenizer hubert avg version 5. Ad-
ditionally, we train three variants of SpeechTokenizer using the official codebase, modifying only
the RVQ layers and the distillation weight (distill loss lambda). Specifically, we reduce
the RVQ layers from 8 to 3 and train three versions: (1) RVQ-3 with distill loss lambda
= 24 (5× smaller than the official setting), denoted as SpeechTokenizer-x1, (2) RVQ-3 with
distill loss lambda = 120 (matching the official setting), denoted as SpeechTokenizer-x2,
and (3) RVQ-3 with distill loss lambda = 600 (5× larger than the official setting), denoted
as SpeechTokenizer-x3.

5https://huggingface.co/fnlp/SpeechTokenizer/tree/main/speechtokenizer_
hubert_avg
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D ASR PROBING TASK DETAILS

To enable effective alignment in the automatic speech recognition (ASR) probing task, particularly
for low-bitrate codecs, we upsample the embeddings for models with a frame rate below 50 Hz to
a minimum of 50 Hz using replication. This upsampling is necessary because an insufficient input
sequence length (T ) relative to the target sequence length (U ) can prevent the connectionist temporal
classification (CTC) loss from effectively aligning the input sequence (quantized features) with the
target sequence (transcription characters). Specifically, CTC requires T ≥ U to accommodate at
least one time step per target label, and in the worst case, T ≥ 2U + 1 to account for potential
blank labels between each target label and at the sequence boundaries. Upsampling ensures that
T is sufficiently large, particularly for low-frame-rate codes, to satisfy these constraints and enable
effective alignment.
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E EVALUATING XY-TOKENIZER’S GENERALIZATION CAPABILITIES

Table 6: Comparisons between different codecs in terms of semantic and acoustic performance in
cross-lingual scenarios. WER refers to the word error rate measured on the ASR probing task,
detailed in Section 4.2. Lower WER indicates better alignment with the original text content. WER
is reported in the range [0, 1]. For codecs with >2k bps, bold values indicate SOTA performance;
for low bitrate (∼1k bps) codecs, bold indicates the top 2 performing models. Baichuan refers to
Baichuan-Audio-Tokenizer.

Semantic Acoustic

Model BPS Frame
Rate

Model
Semantic

WER
↓

SIM
↑

STOI
↑

PESQ-
NB ↑

PESQ-
WB ↑

DAC-8 6k 75 No 0.95 0.93 0.94 3.74 3.41
SpeechTokenizer 4k 50 Yes 0.68 0.89 0.90 2.96 2.53
Mimi-32 4.4k 12.5 Yes 0.78 0.95 0.95 3.68 3.26

DAC-2 1.5k 75 No 1.00 0.60 0.82 1.79 1.42
BigCodec 1.04k 80 No 0.85 0.88 0.92 3.14 2.55
SpeechTokenizer-x1 1.5k 50 Yes 0.78 0.75 0.88 2.56 2.11
SpeechTokenizer-x2 1.5k 50 Yes 0.69 0.70 0.85 2.29 1.84
SpeechTokenizer-x3 1.5k 50 Yes 0.67 0.56 0.80 1.86 1.48
Mimi-8 1.1k 12.5 Yes 0.77 0.80 0.89 2.66 2.13
Baichuan 1.075k 12.5 Yes 0.52 0.75 0.84 2.13 1.68
XCodec2.0 0.8k 50 Yes 0.75 0.87 0.90 2.93 2.36
XY-Tokenizer(ours) 1k 12.5 Yes 0.47 0.86 0.89 2.61 2.09

Table 7: Comparisons between different codecs in terms of semantic and acoustic performance
in out-of-domain (OOD) scenarios. WER refers to the word error rate measured on the ASR
probing task, detailed in Section 4.2. Lower WER indicates better alignment with the original
text content. WER is reported in the range [0, 1]. For codecs with >2k bps, bold values indicate
SOTA performance; for low bitrate (∼1k bps) codecs, bold indicates the top 2 performing models.
Baichuan refers to Baichuan-Audio-Tokenizer.

Semantic Acoustic

Model BPS Frame
Rate

Model
Semantic

WER
↓

SIM
↑

STOI
↑

PESQ-
NB ↑

PESQ-
WB ↑

DAC-8 6k 75 No 0.80 0.91 0.94 3.69 3.22
SpeechTokenizer 4k 50 Yes 0.38 0.83 0.90 2.82 2.31
Mimi-32 4.4k 12.5 Yes 0.41 0.94 0.95 3.77 3.26

DAC-2 1.5k 75 No 0.97 0.54 0.82 1.83 1.42
BigCodec 1.04k 80 No 0.56 0.84 0.92 3.06 2.46
SpeechTokenizer-x1 1.5k 50 Yes 0.52 0.65 0.87 2.41 1.93
SpeechTokenizer-x2 1.5k 50 Yes 0.44 0.59 0.84 2.16 1.72
SpeechTokenizer-x3 1.5k 50 Yes 0.42 0.47 0.80 1.78 1.41
Mimi-8 1.1k 12.5 Yes 0.41 0.79 0.90 2.80 2.25
Baichuan 1.075k 12.5 Yes 0.19 0.70 0.86 2.29 1.82
XCodec2.0 0.8k 50 Yes 0.43 0.85 0.91 2.94 2.39
XY-Tokenizer(ours) 1k 12.5 Yes 0.25 0.87 0.91 2.99 2.49

We conducted the following experiments to investigate the generalization capabilities of XY-
Tokenizer in more complex scenarios.

Cross-Lingual Performance We randomly selected 100 hours of audio from the MLS-
Dutch(Pratap et al., 2020) train-subset as our training set for the ASR probing task mentioned in
Section 4.2. We then tested the WER and reconstruction metrics on the dev-clean dataset. As shown
in Table 6, we found that XY-Tokenizer performed best on the ASR probing task, which we attribute
to the generalization capabilities of our LLM-based ASR task across languages. Regarding recon-
struction metrics, among low-BPS codecs, BigCodec, Mimi-8, XCodec2.0, and XY-Tokenizer all
performed well. However, XY-Tokenizer was slightly inferior to XCodec2.0, which we hypothesize
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is because XCodec2.0’s training set included MLS, whereas XY-Tokenizer’s did not. The recon-
struction metrics of low-BPS codecs still lag behind high-BPS codecs, a gap we aim to bridge with
better methods in the future.

Out-of-Distribution Data We randomly selected 100 hours of audio from the VoxPopuli-EN(Wang
et al., 2021) train-subset as our training set for the ASR probing task mentioned in Section 4.2. We
then tested the WER and reconstruction metrics on the dev-clean dataset. As shown in Table 7, we
found that XY-Tokenizer achieved strong results on both the ASR probing task and reconstruction
metrics, demonstrating its generalization ability on out-of-distribution datasets.
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F EVALUATING XY-TOKENIZER’S PERFORMANCE ON LLM-BASED
UNDERSTANDING AND GENERATION TASKS

We conducted experiments on XY-Tokenizer and other speech codecs with similar experimental
settings, using LLM-based understanding and generation tasks with discrete tokens as input.

F.1 LLM-BASED UNDERSTANDING TASK

Table 8: Performance of different codecs on the Librispeech dataset in an LLM-based understanding
task. WER is calculated on the text decoded from the LLM and the ground truth transcription. WER
is reported in the range [0, 1]. Lower WER indicates better alignment with the original text content.

Model WER-dev-clean WER-test-clean WER-test-other

Mimi-8 0.096 0.096 0.242
XCodec2.0 0.138 0.141 0.324
XY-Tokenizer 0.055 0.059 0.116

We trained a decoder-only LLM-based ASR model using Qwen3 0.6B (Yang et al., 2025) as the
base and the Librispeech train subset (train-clean-100, train-clean-360, and train-other-500, a total
of 960 hours) as the training data. We use discrete tokens of codec as LLM’s input and the LLM
is trained to autoregressively predict text tokens.

We evaluated the model on the Librispeech dev-clean, test-clean, and test-other subsets, using Word
Error Rate (WER) to measure the alignment between the speech codec’s tokens and text, as well as
its capabilities in LLM-based understanding.

As shown in Table 8, XY-Tokenizer demonstrates a significantly lower WER than Mimi-8 and
XCodec2.0. This indicates that the speech tokens of XY-Tokenizer align better with text, making
it more suitable as a speech tokenizer for Speech LLMs.

F.2 LLM-BASED GENERATION TASK

Table 9: Performance of different codecs on zero-shot TTS task.

test-clean test-other

Model WER↓ SIM↑ UTMOS↑ WER↓ SIM↑ UTMOS↑
Mimi-8 0.109 0.44 3.38 0.1708 0.38 2.96
XY-Tokenizer 0.107 0.51 4.01 0.1272 0.47 3.55

We trained a Text-to-Speech (TTS) model using XY-Tokenizer and other speech codecs to evaluate
their performance on a zero-shot TTS task. For training, we used Qwen3 0.6B (Yang et al., 2025) as
the base and the Emilia dataset as the training set to train a purely autoregressive (AR) LLM-based
Text-to-Speech (TTS) model with a delay interleaving pattern as mentioned in MusicGen (Copet
et al., 2023).

For evaluation, we randomly selected 100 audio clips between 3 and 10 seconds from the Lib-
rispeech test-clean and test-other subsets to serve as prompts. For each prompt, we randomly se-
lected another utterance by the same speaker. We then concatenated the prompt text, the text to be
generated, and the prompt speech and fed this into the speech LLM to synthesize the audio. We
used Speaker Similarity, WER (transcribed by Whisper large v3), and UTMOS (Saeki et al., 2022)
to evaluate the performance of the TTS model.

As shown in Table 9, XY-Tokenizer outperforms Mimi-8 on the zero-shot TTS task, indicating that
XY-Tokenizer is well-suited for speech LLM modeling. This further demonstrates the effective-
ness of our proposed methods: mitigating semantic-acoustic conflicts by reducing shared parame-
ters, implementing a multi-stage, multi-task training strategy, and leveraging a pretrained automatic
speech recognition models.
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G ADDITIONAL ABLATIONS

G.1 TRAINING FROM WHISPER FOR REDUCED TRAINING COMPLEXITY

Table 10: Effectiveness of pretrained Whisper weights in mitigating semantic-acoustic conflicts.
WER refers to word error rate on the ASR probing task(lower is better, detailed in Section 4.2).
WER is reported in the range [0, 1].

Semantic Acoustic

Model WER ↓ SIM ↑ STOI ↑ PESQ-NB ↑ PESQ-WB ↑
(1) With Whisper weights 0.13 0.77 0.92 2.92 2.45
(2) Without Whisper weights 0.27 0.82 0.93 3.15 2.60

To investigate the role of pre-trained whisper weights in mitigating semantic-acoustic conflicts, we
trained two models: (1) a model with an acoustic encoder initialized with whisper-small weights,
without a semantic encoder, and (2) the same model architecture as (1), but without loading whisper-
small weights. As shown in Table 10, model (1) outperforms model (2) in the ASR probing task.
This result highlights that whisper, pre-trained on extensive supervised data, is effective in alleviating
semantic-acoustic conflicts in speech codec.

G.2 IMPORTANCE OF LLM-BASED ASR TASK IN FINE-TUNING WHISPER

In the pre-training stage, we adopt a multi-task learning approach to jointly model semantic and
acoustic information. Specifically, we leverage a language model-based automatic speech recogni-
tion (ASR) task to align the codec’s quantized representations with text, while the codec’s decoder
preserves paralinguistic information. The encoder is initialized with pretrained Whisper weights and
fine-tuned during training. Given that Whisper is pretrained on ASR tasks and demonstrates strong
text alignment, we investigate whether the LLM-based ASR task further enhances the encoder’s
alignment with text. To this end, we conduct the following ablation study.

We train two models: (1) A modified version of our proposed XY-Tokenizer, where the encoder
includes only the acoustic channel and omits the semantic channel, with all other components un-
changed; (2) A variant of (1) that excludes the LLM-based ASR supervision, relying solely on
reconstruction loss and commitment loss. As shown in Table 11, both models exhibit strong audio
reconstruction capabilities. However, the word error rate (WER) on the ASR probing task reveals
that model (2) performs significantly worse in text alignment compared to model (1). These results
underscore the critical role of the LLM-based ASR task in enhancing text alignment, enabling XY-
Tokenizer to optimize both text alignment and audio reconstruction effectively when combined with
the reconstruction task.

G.3 CHOICE OF ACOUSTIC DECODER

We conducted an ablation study on the acoustic decoder. We trained a 12.5Hz RVQ-8 autoencoder
(consisting of only an acoustic encoder, quantizer, and acoustic decoder, with no semantic encoder
or decoder, and only the pre-training stage) for 180k steps. We used three models as the acoustic
decoder: Vocos (used in XY-Tokenizer), SEANet decoder (Tagliasacchi et al., 2020) (also used in
Mimi Codec), and HiFi-GAN vocoder (Kong et al., 2020).

Based on the results detailed in Table 12, Vocos demonstrated superior reconstruction performance
compared to both HiFi-GAN and SEANet. This finding validates the effectiveness of our method in
generating high-quality speech.

G.4 NECESSITY OF TWO-STAGE TRAINING STRATEGY

We adopt a two-stage training strategy. In the pre-training stage, the encoder and quantizer of the
XY-Tokenizer are optimized through an ASR task to align their representations with text, while a
reconstruction task is employed to capture coarse-grained acoustic features. In the post-training
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Table 11: Effectiveness of the LLM-based ASR task for fine-tuning Whisper. WER refers to word
error rate on the ASR probing task(lower is better, detailed in Section 4.2). WER is reported in the
range [0, 1].

Semantic Acoustic

Model WER ↓ SIM ↑ STOI ↑ PESQ-NB ↑ PESQ-WB ↑
(1) With ASR Supervision 0.13 0.77 0.92 2.92 2.45
(2) Without ASR Supervision 0.58 0.82 0.93 3.26 2.74

Table 12: Comparison of various acoustic decoders.

Model SIM↑ STOI↑ PESQ-NB↑ PESQ-WB↑
Vocos 0.82 0.93 3.23 2.69
HiFi-GAN 0.81 0.92 3.07 2.55
SEANet 0.82 0.93 3.11 2.58

Table 13: Comparison of training efficiency between the proposed two-stage training strategy
(pre-train + post-train) and the single-stage approach (e.g., SpeechTokenizer, DAC). Encoder
Trainable indicates whether the acoustic encoder is trainable. Decoder Trainable indicates whether
the acoustic decoder is trainable. With LLM denotes whether a semantic decoder (based on Qwen2.5
LLM) is included. Throughput is measured as the amount of audio (in seconds) processed per GPU
per second during training. The results show that the throughput of the single-stage approach is
significantly lower than that of the our proposed two-stage strategy.

Stage Encoder
Trainable

Decoder
Trainable

With
LLM

With
Discriminator Throughput

Single Stage Yes Yes Yes Yes 40.8

Pre-train Stage Yes Yes Yes No 136.7
Post-train Stage No Yes No Yes 46.6

stage, we freeze the encoder and quantizer to preserve the text-token alignment ability of the XY-
Tokenizer, and introduce a discriminator to model fine-grained acoustic information. This design
choice is motivated by the following considerations:

(1) Training stability From our empirical experiments, we found that the RVQGAN structure
becomes unstable at low bitrates (approximately ≤ 1.5 kbps). Removing the discriminator during
pre-training significantly improved stability.

(2) Training efficiency As shown in Section 4 and Table 13, during the pre-training stage we use a
batch size of 4, with each audio padded to 30 seconds (same as Whisper), resulting in 120 seconds
of audio per GPU. In the post-training stage, we use a batch size of 16, with each audio clipped to
5 seconds, resulting in 80 seconds of audio per GPU. In both stages, GPU memory utilization is
already close to its maximum capacity. We further observe that incorporating the discriminator
in the post-training stage substantially increases computational cost and reduces throughput
during training. If the two stages were merged, the batch size would need to be reduced even
further, resulting in much lower training efficiency.

Therefore, we employ the two-stage training strategy to balance stability, efficiency, and modeling
capability.
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H RELATED WORK

H.1 SPEECH LANGUAGE MODELS

Recent research on speech large language models has attracted considerable interest (Latif
et al., 2023; Wu et al., 2024; Ji et al., 2024). AudioLM (Borsos et al., 2023) achieves high-
quality audio generation with coherent long-term structure through coarse-to-fine token modeling.
SpeechGPT (Zhang et al., 2023a), the first end-to-end speech large language model, features strong
instruction-following capabilities and effective spoken dialogue interaction, employing a three-
stage training methodology to facilitate cross-modal transfer and efficient training. SpeechGPT-
Gen (Zhang et al., 2024a) proposes Chain-of-Information Generation, a modeling approach that dis-
entangles semantic and perceptual aspects for large-scale speech generation. IntrinsicVoice (Zhang
et al., 2024b) implements GroupFormer to diminish the modality gap between text and speech,
thereby enabling the transfer of capabilities from pre-trained large language models to the speech
domain, facilitating low-latency and high-quality speech interaction in multi-turn dialogue contexts.
Moshi (Défossez et al., 2024) employs a multi-stream architecture that concurrently processes audio
streams from both the user and the system (Moshi itself), supporting dynamic conversations with
overlaps and interruptions, thereby achieving full-duplex dialogue.

H.2 SPEECH CODECS

Speech codecs play a vital role in speech large language models by converting continuous speech
signals into discrete tokens, enabling LLMs to process speech as a form of ”foreign language.” Neu-
ral network-based speech codecs predominantly utilize the RVQGAN paradigm, which can com-
press audio signals into low-bitrate representations through end-to-end training (Zeghidour et al.,
2021; Défossez et al., 2022; Kumar et al., 2023), making them ideal for real-time communication ap-
plications. BigCodec (Xin et al., 2024) achieves excellent reconstruction quality even at low bitrates
by scaling the encoder and decoder parameters. To align speech codec tokens with large text models,
recent efforts have explored modeling both semantic and acoustic features simultaneously (Zhang
et al., 2023b; Défossez et al., 2024; Ye et al., 2025a). SpeechTokenizer (Zhang et al., 2023b) en-
hances the RVQGAN paradigm with semantic distillation to guide the first layer of RVQ to align
with a teacher SSL model (Hsu et al., 2021). X-Codec (Ye et al., 2025a) proposes an X-shaped struc-
ture where each layer of RVQ contains both semantic and acoustic information. Baichuan Audio
Tokenizer (Li et al., 2025) first obtains a coarse Mel-spectrogram through multi-task learning and
text alignment, then generates an enhanced Mel-spectrogram via conditional flow matching (Lip-
man et al., 2022), which is finally converted into waveforms using a pretrained vocoder (Kong et al.,
2020).
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I USE OF LLMS

In this work, we used a large language model (LLM) to assist with language polishing and improving
the clarity of writing.
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J LIMITATIONS

In this paper, we propose XY-Tokenizer, a codec designed to model both semantic and acoustic infor-
mation while effectively mitigating conflicts between these tasks. Experimental results demonstrate
that XY-Tokenizer achieves strong performance in audio reconstruction quality and text alignment.
However, several limitations remain. First, achieving lower bitrates without compromising perfor-
mance remains a challenge. Additionally, the scaling law for training speech codecs, particularly
with respect to parameter count and dataset size, requires further investigation to optimize training
efficiency and generalization.
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