Per Token Early Exiting In the Convolutional Transformer
Encoder

Anonymous ACL submission

Abstract 1 Introduction

Early exiting models within the
transformer architecture have shown to
increase efficiency within simultaneous
speech-to-text translation with mini-
mal reduction in accuracy. However,
current encoder based implementations
evaluate inputs on a sequence level ba-
sis, averaging the computational needs
of each token within the sequence. In
addition, models that exit on a per-
token basis are implemented in the de-
coder and use a limited amount of in-
formation to determine if exiting should
take place. We solve this issue by pur-
posing Per Token Early FExiting, which
creates one-layer neural networks be-
tween layers in the encoder that rec-
ognize when certain tokens should exit
and which tokens should be further pro-
cessed. Our experiments on the MUST-
C English-German and English-Spanish
data sets have shown to increase the
BLEU score and/or decrease FLOP’s
during evaluation across multiple wait-
k values. On the English-German lan-
guage pair at wait-k 7, the proposed
model increased the BLEU score by
1.74 compared to the baseline imple-
mentation. In addition, across all wait-
k values, the proposed model decreased
the average FLOPs by 13.28% from the
baseline.

Simultaneous Speech-To-Text translation,
SimulST, provides a real time bridge between
languages by simultaneously taking in speech
and producing a text translation. However,
Simultaneous Speech-To-Text translation is
very strenuous for humans to perform with the
task requiring a person to have an immense
knowledge of both the target and source
language, as well as be able to accurately
and efficiently listen to speech and produce
a text translation. Machine learning models
have shown the promising ability to perform
SimulST accurately and efficiently. With new
advancements in communication making the
distance between people smaller and smaller,
the need for seam-less, efficient, and accurate
SimulST models has never been needed more.

Earlier transformer-based SimulST mod-
els have a fixed amount of Feed Forward
Networks, FFN, within the encoder. In
these models, every token within the input
goes through every FFN layer in the model.
Models with early exiting attempt to create
a system within the encoder or decoder that
monitors input and stops the processing of
the input through the layers once a condition
is achieved. Use of early exiting, as recent
models have shown, decreases the computa-
tional strain while maintaining scores that are
similar to models without early exiting (Xin et
al.). Creating a mechanism that can recognize
when an input sentence will not benefit that
much, or at all, from further processing helps

reduce the computations needed to produce
an output. Most evaluation processes within
early exiting models involve looking at the
entropy of the input, creating additional linear
layers to learn when to exit, or a combination
of entropy and linear layers to hash into a
look-up table to predict what layer to exit.

Current models that wuse early exiting
provide great state-of-the-art performance.
However, we have found having the evaluation
and exiting of the input in the encoder on
a per sentence basis does not consider the
processing each token needs. When an input
is received in the encoder, it is looked at on
a sentence scale and evaluated and exited
as such. When doing this, the need of each
token to be further processed or exited is
overlooked. This creates a scenario where the
overall process could be more accurate and
efficient by processing some tokens more and
others less. This broad evaluation process
exists in many early exit SimulST models
such as Edgebert (Tambe et al.) and Deebert
(Xin et al.). In models that exit on a per
token basis, only the hidden states between
layers are used to see if a token should exit.
This creates the problem of having the model
learn when to exit on limited amounts of
information. In addition, these models do the
exiting process on the previously generated
tokens entering the decoder instead of in the
encoder where the input is a whole sequence
of words.

To address this issue, we purpose Per
Token Based Farly Fxiting. This technique
achieves a more granular approach to early
exiting in the transformers encoder by evalu-
ating the input on a per token basis. This is
achieved by feeding the difference between the
input and output of the FFN into a one layer
neural network between each encoder layer.
During training, the loss from early exiting
is calculated between the encoders early exit
results and the results generated from having

all tokens go through all layers of the encoder.
To keep track of which tokens should be
further processed, each token is given a ID
that is stored in a list. When a token should
exit, the tokens ID is removed from the list
and no longer processed by following layers.

The model is trained on the English-German,
and English-Spanish language pairs from the
MUST-C data set (Cattoni et al.). The model
is evaluated upon by the following metrics:

1. BLEU Score: A language accuracy met-
ric (Papineni et al.).

2. FLOP’s: Floating-Point Operations, the
amount of operations done by the encoder
to process a input to the output (Li). The
operations counted are division, subtrac-
tion, addition, and multiplication.

The evaluation process was done using
SimulEval(Ma et al.).

The purpose of this paper is to:

1. Identify limitations within current trans-
former based early exiting schemes.

2. Purpose a solution for limitations within
early exiting that is applicable to the
transformer architecture.

3. Demonstrate the benefits from the pur-
posed scheme by performing experiments
on various language pairs, data sets, and
wait-k values.

The model showed promising results increas-
ing the BLEU score on the English-German
language pair for wait-k 7 by 1.74 compared
to the baseline model. In addition, on the
English-Spanish language pair the average
amount of FLOPs was decreased by 13.28%
across all wait-k values when compared to the
baseline implementation.

2 Background and Related Work

2.1 Simultaneous Translation

Transformer Architecture and Muti-
Head Attention: Most state of the art
SimulST models take advantage of the trans-
former architecture outlined in the paper
Attention Is All You Need (Vaswani et al.).
The transformer is composed of the encoder
and decoder. The purpose of the encoder is
to take in the whole sequence of information
and produce a condensed output of the
information. The decoder uses the previously
translated word and the encoders output to
produce a word by word translation. The
benefit of using the condensed source sequence
and the previously generated words is it takes
into consideration how the previously gener-
ated word interacts in the sentence, giving
insight into what the next word might be.

To make the architecture better equipped
to deal with longer sequences the paper also
introduces multi-head attention. Multi-head
attention serves the purpose of generating
attention scores for each word in the sentence.
The attention scores allow the model to
quantify the importance of a word in the
sentence. Each score is generated through
concatenation of the scaled dot-product from
multiple attention heads.

Wait-k Policy: The wait-k policy involves
the decoder in the transformer model waiting &
words to be outputted from the encoder before
staring translation. This policy was first seen
in SimulST models (Ma et al.) and is used as
a way for the model to switch between reading
in k words and translating k& words.

2.2 Computation Reduction Methods

Pruning: Pruning tries to reduce the compu-
tations needed for natural language processing
by removing layers or nodes in the neural
network within the architecture. Layer wise

pruning (Peer et al.) reduces the computa-
tional cost of NLP models by determining
what layers contribute little to the accuracy of
a output. If a layer is determined to contribute
little to the accuracy of a output the layer
is removed, thus reducing the computational
cost needed to generate a output. Node-wise
pruning determines which node connections
contribute little to the accuracy of a result
(Blalock et al.). Nodes during training are
assigned a score that indicates how much
they contribute to the overall accuracy of the
model, and based off this score the node is
kept or cut out of the model by having its
weight set to zero. After the network has
been pruned the model goes through a fine
tuning stage where the weights before pruning
are go through further training. While this
architecture has shown to provide reduction
in the computational cost within models, the
trade off comes with the accuracy achieved by
pruned models. In addition, this approach is
static during inference, with the amount of
layers, or neurons, that the input go through
being fixed.

Distillation: Distillation was presented in
the paper Distilbert, a Distilled Version of
Bert: Smaller, Faster, Cheaper, and Lighter
(Sanh et al.). The architecture presented in
the paper uses a teacher model to aid in the
training of a student model. The student
model is a smaller un-trained model, that
takes in the same input as the teacher model.
The teacher model is a larger pre-trained
model that takes in a input and produce a dis-
tribution of what it thinks the output should
be. The teacher model aids in training of the
student model by producing a distribution
the students distribution can be compared to.
In addition, to being trained on the teacher
model the student model is also trained using
the labels for the data set. The benefit of
this is that a smaller model can come close to
the same accuracy as a larger model through

being trained on a more robust data set. The
limitations within this system is that the
processing of sequences is static. Each token
within the sequence is processed the same
and the individual needs of each token is not
taken into consideration during inference.

Early Exiting: Early exiting tries to re-
duce the computational cost associated with
a model by ceasing processing of a input se-
quence or part of a input sequence once the
models feels confident in the result. Early ex-
iting is commonly implemented within the en-
coder section of the transformer, due to the
demanding amount of computations that take
place in that section. The methodology for de-
termine when to early exit varies from model
to model, but two common ways of doing so
are:

1. Using the results from the first layer to
predict at what layer to exit.

2. Continuously measuring the input to see
if it meets a certain criteria.

The advantages of early exiting is that the
model is dynamically changing how it pro-
cesses the input by adjusting how much each
input is processed. In addition, this architec-
ture allows for the continual monitoring of how
the sequencing is being processed to determine
if it should exit.

3 Limitations Within Current
Models

Early exiting has gained popularity within
NLP models because of its ability to trade ac-
curacy for efficiency. However, the implemen-
tation has limitations within it and can benefit
from alterations to the granularity of exiting
and the methodology of exit determination.

3.1 Granularity of Early Exiting

Most early exiting schemes within the encoder
exit on a per-sequence level basis. The dis-

advantage of this is that the processing needs
of each token is not taken it consideration. In-
stead, the computation each token needs is av-
eraged to one point within the encoder to exit.
Generalization of exiting can have a negative
effect on finding at what point the best trade
off between accuracy and efficiency takes place.

3.2 Static Exiting Inference

Algorithm 1: DeeBert Implementation (In-

put: X)
fori=0tondo
zi = fi(z;0)

if entropy(z;) < S then
exit inferenc
end if
end for
exit inferenc

Most early exiting schemes determine if a se-
quence should exit based off the entropy of
the input after being processed by a layer. A
common metric for determining if a sequence
should exit is continuously measuring the en-
tropy of a encoder layers output, and compar-
ing the value to a hyper parameter s. Once
the entropy is less then s the sequence ex-
its and is sent to the decoder. This method
of exiting was introduced in DeeBERT and is
shown in Algorithm 1. The problems within
this method of exit determination is that it is
static and does not learn to recognize patterns
for determining when to exit the encoder.

3.3 Learning Exiting on Limited
Information
Algorithm 2: EdgeBert Implementation (In-
put: X)
for input sentences i = 1 to n do
for encoder layers I = 1 do
2 = fi(i;0)
if entropy(z; > Er then
exit inference
else
Lpredict = LUT(entropy(zl), ET)
end if
end for
for encoderlayerl = 2toLyredict do

2= fi(4,0)
if entropy(z; > Er then
exit inference
end if
end for
exit inferenc
end for

Some early exiting schemes, such as Edge-
BERT, do implement neural networks to learn
when to exit the encoder. EdgeBERT in addi-
tion to continuous entropy monitoring utilizes
a single layer neural network after the first
layer of the encoder. Once processed by the
first layer the entropy of the results is taken
and compared to a hyper parameter Ep. If
the entropy is less then Ep the results exit at
that layer. However, if they aren’t the results
are fed into a single layer neural network that
is used to hash into a Look Up Table, LUT,
and predict at what layer the sequence should
exit, this layer is called Lpregict. From layer
2 t0 Lpredict the entropy of the results of each
layer is measured and compared to Er, if the
entropy is less then Fp and the current layer is
before Lyyedict the results exit. This scheme is
similar to DeeBERT’s but with the addition of
setting the max amount of layers the sequence
can go through after the first layer. The al-
gorithm used by EdgeBERT is shown in algo-
rithm 2. The benefit of this scheme is that it
creates a point where the model can learn to
recognize when a sequence should exit, how-
ever how it does so based of limited amount of
information. The implementation only learns
when to exit the encoder from one state of the
results.

3.4 Architecture Placement

Some models, such as The Depth Adaptive
Transformer model (Elbayad et al.), do im-
plement early exiting on a per token level.
However the implementation within the trans-
former architecture limits the effectiveness of
the model. For determing what layer to exit
the model uses two methods:

1. Mutinomial: The fist hidden state in the

decoder is used to create a probability dis-
tribution, ¢;, and estimate at what layer
each token should exit.

2. Geometric-like: At each layer in the
decoder the hidden state is ran through
a neural network and sigmoid activation
function. The resulting parameter is X7,
where t denotes the time stamp and n de-
notes the layer, is compared to a threshold
7. If X7' is greater then 7 the token exits.
Every value for the parameter X}* is used
to create the distribution g

While this implementation does base exiting
of tokens off information from multiple states
of the input its implementation within the de-
coder limits the effectiveness. This is due to
the computational demand of the decoder is
less then that of the encoder. Since the focus
of The Depth Adaptive Transformer is com-
putational reduction in the decoder and the
focus of this paper is computational reduction
in the encoder comparisons to the The Depth
Adaptive Transformer will not be taken into
consideration.

4 Approach

The model we are proposing looks at adding
single neural network layers in between each
layer of the encoder. The neural networks are
trained to recognize if a token should exit. The
advantage of implementing a neural network
between each layer is that each layer is able to
learn how much of a effect each encoder layer
has on changing the output.

4.1 How Exiting is Determined
Algorithm 3: Tmplemented Scheme (Input:
X)
X = [.130, L1,T3, ..., Z‘m]
Key=1[0,1,2,...,m]
for encoder layers i = 0 to N do
Y, = [z for kin Key]
Zi = fi(0; Vi)
X, =lzpin X; or zpin Z; if p=k|
K; = hi(0; (Z; = Y3))

Key =[m for kp, in k; > 0.5]
if len(key) = 0 then
exit inference
end if
end for

The approach outlined in algorithm 3 takes
a more granular approach to early exiting
within the encoder. The benefit of looking at
each token individually is that each token is
allowed to exit at the layer that provides the
best trade off between accuracy and efficiency.

To keep track of which tokens should exit
and which should be further processed each
token is given a ID. The ID of each token is
stored in a list that is passed from layer to
layer. Each layer uses the list to filter out
exited tokens from the multi-head attentions
results. Once the results are filtered the to-
kens enter the encoders FFN section. The re-
sults from the FFN are subtracted from the
tokens pre-FFN processing. The difference is
then fed into a single layer neural network and
using a softmax function the resulting prob-
abilities are used to dictate which tokens no
longer need be processed and which need to
go to the next layer. Tokens that can exit at
this layer have their ID removed from the pro-
cessing list. The model continues through the
encoder layers until their are no more IDs’ on
the processing list or at the last layer of the
encoder.

4.2 Loss Calculations

During training when a token exits the encoder
the probability associated with exiting at that
point is recorded to create distribution d, of
length N where N is the amount of tokens in
that sequence. In addition, during training
a second set of the input tokens are created
called Zyeference: Treference is allowed to go
through all layers of the model, and is used to
create the labels used for calculating exit re-
lated loss. To generate the labels the cosine
similarity is calculated between the Z,cference

tokens and the tokens that were allowed to
early exit creating the similarity parameter C.
The results are then filtered using the param-
eters Tupper and Tower. If Tupper < C < Tiower
the exit is considered valid. Typper and Tiower
are hyper parameters that allows the user to
adjust how accurate or efficient they want the
model to be. Increasing Typper and Tiower
makes the model more accurate, while decrease
Tupper aNd Tiower Makes the model more effi-
cient. The generated labels and the probabil-
ities associated with each token when exited
are then calculated using binary cross entropy,

Lossezit(x,y) =L =11,...,ly

where N is the size of the batch. The resulting
exit loss is added to the label smoothed cross
entropy loss of the model.

5 Experiments

5.1 Setup

The model was evaluated using the HE and
COMMON MUST-C data sets. Language
pairs that were used are English-German and
English-Spanish. Evaluation was done us-
ing SimulEval, and the results from the im-
plementation was compared to the baseline,
and DeeBERT and EdgeBERT models that
have early exiting within the transformers en-
coder. While the proposed model is compared
to EdgeBERT and DeeBERT there are lim-
itations between the comparison, due to the
difference in metrics and baseline code Edge-
BERT and DeeBERT are built on. Both are
built on BERT, while the proposed implemen-
tation is built onto the Fairseq(Ott et al.)
transformer program. When DeeBERT and
EdgeBERT are referenced their proposed exit-
ing algorithm is what is being used and com-
pared to within the Fairseq model.

5.2 Training Parameters

The model was trained on a transformer with
12 encoder layers and 6 decoder layers. Model

Model wait-k 1 | wait-k 3 | wait-k 5 | wait-k 7
Baseline 4.66 11.88 14.29 15.99
DeeBERT 1.9 4.55 5.89 6.47
EdgeBERT 4.63 10.84 13.19 14.71
Proposed 5.23 11.57 14.71 16.73

Table 1: Table 1: Highest BLEU Scores Achieved for Proposed, EdgeBERT, DeeBERT, and Base-
line Implementation at Various wait-k Values on the English German Language Pair COMMON

Data Sets
Parameter Proposed Baseline
Wait-k 1 5.26 w.88
Wait-k 3 14.69 14.22
Wait-k 5 18.04 17.12
Wait-k 3 20.19 18.10
Average FLOPs | 2228763883.51 | 2570090650.61

Table 2: Table 2: Proposed and Baseline BLEU Scores at Various wait-k Values and Average

FLOPs on the English Spanish COMMON Data Set

training consisted of ASR pre-training and
then SimulST training. During both training
stages the overall loss of the system was calcu-
lated using label-smoothed cross-entropy and
the early exit loss was calculated using binary
cross-entropy. In both stages the Adam opti-
mizer (Kingma and Ba) was used. During ASR
pre-training a learning rate of 0.0007 was used.
During SimulST training a warm up learning
rate 0f 0.0001 was used on on the first 4000 up-
dates, after the first 4000 updataes a learning
rate of 0.00035 was used. Both training stages
used early stopping to evaluate when to cease
training. Early stopping involves monitoring
the model to see if it is still improving after
a certain amount of epochs. Patience is the
amount of epochs the model should compare
to the dev set to see if the model is improving.
ASR pre-training used a patience of 5 to de-
termine when to stop, once ASR pre-training
ends the top 5 checkpoints were averaged and
used for SimulST training. For SimulST train-
ing a patience of 10 was used, and the best 10
checkpoints where averaged and used for eval-

uation. In total an estimated 1000 GPU hours
went into experimentation and data collection.

5.3 BLEU Score

All models were first evaluated on BLEU
scores, allowing us to find at what parameters
each model best performed at. For EdgeBERT
and DeeBERT entropy values presented in
their respective papers were tested and looked
at. For the per-token early exiting scheme
multiple ranges and values for 7,pper and
Tiower Were used. The best results for the
English-German data set was Typper = 0.99
and Tjower = 0.90. The best results for each
model on the English-German language pair
and COMMON data set is shown in table 1.
For the English-German language pair the
proposed implementation outperformed most
of the other model at various wait-k values.

For the English-Spanish language pair
we found that the implementation had a lower
BLEU score then the baseline model. The
results for this is shown in Table 2.

Model wait-k 1 | wait-k 3 | wait-k 5 | wait-k 7
Baseline 4.66 11.88 14.29 15.99
Proposed 4.67 10.73 14.47 16.51

Table 3: Table 1: BLUE Scores for Proposed with 7,pper = 0.74 and Tjower = 0.65 and Baseline
For Various wait-k Values Using COMMON Data Set and English-German Language Pair

5.4 FLOP

For the English German language pair it was
found that the addition of neural networks
between each layer increased the FLOPs
needed for inference. This was due to the
amount of computations needed to determine
if a token should exit was greater then the
amount of computations saved by tokens early
exiting. However this was with 7,pper = 0.99
and Tiower = 0.90 which sets priority on
creating the best BLEU score and not the
best efficiency possible. Even with accuracy
prioritized the increase in FLOPs for all wait-%
values using the English-German language
pair was only 1.3% higher then the baseline
implementation. If better efficiency is desired
Tupper ad Tiower can be changed to lower
the FLOPs at the expense of a decrease in
accuracy. At Typper = 0.74 and Tjoper = 0.65
the average FLOP score across all wait-k was
seen to decrease by 2.35% compared to the
baseline. The BLEU score for 7,pper = 0.74
and Tiower = 0.65 for various wait-£ values
using the FEnglish-German language pair
and COMMON data set is compared to the
baseline in table 3.

When looking at the English-Spanish lan-
guage pair the average amount of FLOPs
were reduced by 13.28% across all wait-k
values and data sets in comparison to the
baseline implementation. This measurement
was with Typper = 0.94 and Tjower = 0.85,
and the average amount of FLOPS for each
implementation is shown in table 2.

6 Conclusion and Future Work

Per-token early exiting within the encoder
using single layer neural networks between
each layer for exit classification shows poten-
tial to increase the efficiency and accuracy
during inference. Through learning how to
recognize when a token can exit the encoder
the model is able to make a informed decision
on what point efficiency and accuracy are
best achieved. The model compared to the
baseline and other early exit models showed
an overall increase in BLEU score on the
English-German language pair for various
wait-k values. The model also showed an
increase in efficiency compared to the baseline
on the English-Spanish language pair, with
an average 13.35% FLOP reduction across all
wait-k values and data sets. This reduction
also had a minimal impact on BLEU score.

Further development of this model would
include exploration into how to better classify
exits as valid or invalid. Finding a better
classification method would better allow the
model to learn what peak efficiency and
accuracy looks like. In addition, it would give
the model a broader data set to learn exiting
off of.

6.1 Limitations

While our proposed implementation shows
promising results, the implementation is
strictly limited to being used on SimulST. In
addition, the model is currently limited to run-
ning on the Fairseq software and having ade-
quate amount of memory to train and run the
software.

7 References

Blalock, Davis, et al. “What Is the State of
Neural Network Pruning?” arXiv.Org, 6 Mar.
2020, arxiv.org/abs/2003.03033.

Cattoni, Roldano, et al. “Must-C: A
Multilingual Corpus for End-to-End Speech
Translation.” Computer Speech &
Language, Academic Press, 7 Oct. 2020,
www.sciencedirect.com/science/article/abs/
pii/S0885230820300887.

Devlin, Jacob, et al. “Bert: Pre-Training of
Deep Bidirectional Transformers for Language
Understanding.” arXiv.Org, 24 May 2019,
arxiv.org/abs/1810.04805.

Elbayad, Maha, et al. “Depth-Adaptive
Transformer.” arXiv.Org, 14 Feb. 2020,
arxiv.org/abs/1910.10073.

Kingma, Diederik P., and Jimmy Ba.
“Adam: A Method for Stochastic Op-
timization.” arXiv.Org, 30 Jan. 2017,
arxiv.org/abs/1412.6980.

“Calculate Computational
Efficiency of Deep Learning Models
with Flops and Macs.” KDnuggets,
www.kdnuggets.com/2023/06 /calculate-
computational-efficiency-deep-learning-
models-flops-macs.html. Accessed 2 Oct.
2023.

Li, Danni.

Ma, Mingbo, et al. “STACL: Simultane-
ous Translation with Implicit Anticipation
and Controllable Latency Using Prefix-to-
Prefix Framework.” arXiv.Org, 24 June 2019,
arxiv.org/abs/1810.08398.

Ma, Xutai, et al. “Simuleval: An Evaluation
Toolkit for Simultaneous Translation.” ACL
Anthology, aclanthology.org/2020.emnlp-
demos.19/. Accessed 4 Oct. 2023.

Ott, Myle, et al. “Fairseq: A Fast, Extensible

Toolkit for Sequence Modeling.” arXiv.Org, 1
Apr. 2019, arxiv.org/abs/1904.01038.

Papineni, Kishore, et al. “Bleu: A Method
for Automatic Evaluation of Machine Transla-
tion.” ACL Anthology, aclanthology.org/P02-
1040/. Accessed 4 Oct. 2023.

Peer, David, et al. “Greedy-Layer Prun-
ing: Speeding up Transformer Models for
Natural Language Processing.” arXiv.Org, 29
Mar. 2022, arxiv.org/abs/2105.14839.

Sanh, Victor, et al. “Distilbert, a Dis-
tilled Version of Bert: Smaller, Faster,
Cheaper and Lighter.” arXiv.Org, 1 Mar.
2020, arxiv.org/abs/1910.01108.

Tambe, Thierry, et al. “Edgebert: Sentence-
Level Energy Optimizations for Latency-
Aware Multi-Task NLP Inference.” arXiv.Org,
6 Sept. 2021, arxiv.org/abs/2011.14203.

Vaswani, Ashish, et al “Attention Is
All You Need.” arXiv.Org, 2 Aug. 2023,
arxiv.org/abs/1706.03762.

Xin, Ji, et al. “Berxit: Early Exiting
for Bert with Better Fine-Tuning and Ex-
tension to Regression.” ACL Anthology,
aclanthology.org/2021.eacl-main.8. Accessed
2 Oct. 2023.

Xin, Ji, et al. “Deebert: Dynamic
Early Exiting for Accelerating Bert In-
ference.” arXiv.Org, 27 Apr. 2020,
arxiv.org/abs/2004.12993.

Appendix

Fairseq is licensed under MIT

MUST-C is licensed under a Creative
Commons License

