
Per Token Early Exiting In the Convolutional Transformer
Encoder

Anonymous ACL submission

Abstract001

Early exiting models within the002
transformer architecture have shown to003
increase efficiency within simultaneous004
speech-to-text translation with mini-005
mal reduction in accuracy. However,006
current encoder based implementations007
evaluate inputs on a sequence level ba-008
sis, averaging the computational needs009
of each token within the sequence. In010
addition, models that exit on a per-011
token basis are implemented in the de-012
coder and use a limited amount of in-013
formation to determine if exiting should014
take place. We solve this issue by pur-015
posing Per Token Early Exiting, which016
creates one-layer neural networks be-017
tween layers in the encoder that rec-018
ognize when certain tokens should exit019
and which tokens should be further pro-020
cessed. Our experiments on the MUST-021
C English-German and English-Spanish022
data sets have shown to increase the023
BLEU score and/or decrease FLOP’s024
during evaluation across multiple wait-025
k values. On the English-German lan-026
guage pair at wait-k 7, the proposed027
model increased the BLEU score by028
1.74 compared to the baseline imple-029
mentation. In addition, across all wait-030
k values, the proposed model decreased031
the average FLOPs by 13.28% from the032
baseline.033

1 Introduction 034

Simultaneous Speech-To-Text translation, 035
SimulST, provides a real time bridge between 036
languages by simultaneously taking in speech 037
and producing a text translation. However, 038
Simultaneous Speech-To-Text translation is 039
very strenuous for humans to perform with the 040
task requiring a person to have an immense 041
knowledge of both the target and source 042
language, as well as be able to accurately 043
and efficiently listen to speech and produce 044
a text translation. Machine learning models 045
have shown the promising ability to perform 046
SimulST accurately and efficiently. With new 047
advancements in communication making the 048
distance between people smaller and smaller, 049
the need for seam-less, efficient, and accurate 050
SimulST models has never been needed more. 051

052
Earlier transformer-based SimulST mod- 053
els have a fixed amount of Feed Forward 054
Networks, FFN, within the encoder. In 055
these models, every token within the input 056
goes through every FFN layer in the model. 057
Models with early exiting attempt to create 058
a system within the encoder or decoder that 059
monitors input and stops the processing of 060
the input through the layers once a condition 061
is achieved. Use of early exiting, as recent 062
models have shown, decreases the computa- 063
tional strain while maintaining scores that are 064
similar to models without early exiting (Xin et 065
al.). Creating a mechanism that can recognize 066
when an input sentence will not benefit that 067
much, or at all, from further processing helps 068

1

reduce the computations needed to produce069
an output. Most evaluation processes within070
early exiting models involve looking at the071
entropy of the input, creating additional linear072
layers to learn when to exit, or a combination073
of entropy and linear layers to hash into a074
look-up table to predict what layer to exit.075

076
Current models that use early exiting077
provide great state-of-the-art performance.078
However, we have found having the evaluation079
and exiting of the input in the encoder on080
a per sentence basis does not consider the081
processing each token needs. When an input082
is received in the encoder, it is looked at on083
a sentence scale and evaluated and exited084
as such. When doing this, the need of each085
token to be further processed or exited is086
overlooked. This creates a scenario where the087
overall process could be more accurate and088
efficient by processing some tokens more and089
others less. This broad evaluation process090
exists in many early exit SimulST models091
such as Edgebert (Tambe et al.) and Deebert092
(Xin et al.). In models that exit on a per093
token basis, only the hidden states between094
layers are used to see if a token should exit.095
This creates the problem of having the model096
learn when to exit on limited amounts of097
information. In addition, these models do the098
exiting process on the previously generated099
tokens entering the decoder instead of in the100
encoder where the input is a whole sequence101
of words.102

103
To address this issue, we purpose Per104
Token Based Early Exiting. This technique105
achieves a more granular approach to early106
exiting in the transformers encoder by evalu-107
ating the input on a per token basis. This is108
achieved by feeding the difference between the109
input and output of the FFN into a one layer110
neural network between each encoder layer.111
During training, the loss from early exiting112
is calculated between the encoders early exit113
results and the results generated from having114

all tokens go through all layers of the encoder. 115
To keep track of which tokens should be 116
further processed, each token is given a ID 117
that is stored in a list. When a token should 118
exit, the tokens ID is removed from the list 119
and no longer processed by following layers. 120

121
The model is trained on the English-German, 122
and English-Spanish language pairs from the 123
MUST-C data set (Cattoni et al.). The model 124
is evaluated upon by the following metrics: 125

1. BLEU Score: A language accuracy met- 126
ric (Papineni et al.). 127

2. FLOP’s: Floating-Point Operations, the 128
amount of operations done by the encoder 129
to process a input to the output (Li). The 130
operations counted are division, subtrac- 131
tion, addition, and multiplication. 132

The evaluation process was done using 133
SimulEval(Ma et al.). 134

135
The purpose of this paper is to: 136

1. Identify limitations within current trans- 137
former based early exiting schemes. 138

2. Purpose a solution for limitations within 139
early exiting that is applicable to the 140
transformer architecture. 141

3. Demonstrate the benefits from the pur- 142
posed scheme by performing experiments 143
on various language pairs, data sets, and 144
wait-k values. 145

The model showed promising results increas- 146
ing the BLEU score on the English-German 147
language pair for wait-k 7 by 1.74 compared 148
to the baseline model. In addition, on the 149
English-Spanish language pair the average 150
amount of FLOPs was decreased by 13.28% 151
across all wait-k values when compared to the 152
baseline implementation. 153

2

2 Background and Related Work154

2.1 Simultaneous Translation155

Transformer Architecture and Muti-156
Head Attention: Most state of the art157
SimulST models take advantage of the trans-158
former architecture outlined in the paper159
Attention Is All You Need (Vaswani et al.).160
The transformer is composed of the encoder161
and decoder. The purpose of the encoder is162
to take in the whole sequence of information163
and produce a condensed output of the164
information. The decoder uses the previously165
translated word and the encoders output to166
produce a word by word translation. The167
benefit of using the condensed source sequence168
and the previously generated words is it takes169
into consideration how the previously gener-170
ated word interacts in the sentence, giving171
insight into what the next word might be.172

173
To make the architecture better equipped174
to deal with longer sequences the paper also175
introduces multi-head attention. Multi-head176
attention serves the purpose of generating177
attention scores for each word in the sentence.178
The attention scores allow the model to179
quantify the importance of a word in the180
sentence. Each score is generated through181
concatenation of the scaled dot-product from182
multiple attention heads.183

184
185

Wait-k Policy: The wait-k policy involves186
the decoder in the transformer model waiting k187
words to be outputted from the encoder before188
staring translation. This policy was first seen189
in SimulST models (Ma et al.) and is used as190
a way for the model to switch between reading191
in k words and translating k words.192

2.2 Computation Reduction Methods193

Pruning: Pruning tries to reduce the compu-194
tations needed for natural language processing195
by removing layers or nodes in the neural196
network within the architecture. Layer wise197

pruning (Peer et al.) reduces the computa- 198
tional cost of NLP models by determining 199
what layers contribute little to the accuracy of 200
a output. If a layer is determined to contribute 201
little to the accuracy of a output the layer 202
is removed, thus reducing the computational 203
cost needed to generate a output. Node-wise 204
pruning determines which node connections 205
contribute little to the accuracy of a result 206
(Blalock et al.). Nodes during training are 207
assigned a score that indicates how much 208
they contribute to the overall accuracy of the 209
model, and based off this score the node is 210
kept or cut out of the model by having its 211
weight set to zero. After the network has 212
been pruned the model goes through a fine 213
tuning stage where the weights before pruning 214
are go through further training. While this 215
architecture has shown to provide reduction 216
in the computational cost within models, the 217
trade off comes with the accuracy achieved by 218
pruned models. In addition, this approach is 219
static during inference, with the amount of 220
layers, or neurons, that the input go through 221
being fixed. 222

223
224

Distillation: Distillation was presented in 225
the paper Distilbert, a Distilled Version of 226
Bert: Smaller, Faster, Cheaper, and Lighter 227
(Sanh et al.). The architecture presented in 228
the paper uses a teacher model to aid in the 229
training of a student model. The student 230
model is a smaller un-trained model, that 231
takes in the same input as the teacher model. 232
The teacher model is a larger pre-trained 233
model that takes in a input and produce a dis- 234
tribution of what it thinks the output should 235
be. The teacher model aids in training of the 236
student model by producing a distribution 237
the students distribution can be compared to. 238
In addition, to being trained on the teacher 239
model the student model is also trained using 240
the labels for the data set. The benefit of 241
this is that a smaller model can come close to 242
the same accuracy as a larger model through 243

3

being trained on a more robust data set. The244
limitations within this system is that the245
processing of sequences is static. Each token246
within the sequence is processed the same247
and the individual needs of each token is not248
taken into consideration during inference.249

250
251

Early Exiting: Early exiting tries to re-252
duce the computational cost associated with253
a model by ceasing processing of a input se-254
quence or part of a input sequence once the255
models feels confident in the result. Early ex-256
iting is commonly implemented within the en-257
coder section of the transformer, due to the258
demanding amount of computations that take259
place in that section. The methodology for de-260
termine when to early exit varies from model261
to model, but two common ways of doing so262
are:263

1. Using the results from the first layer to264
predict at what layer to exit.265

2. Continuously measuring the input to see266
if it meets a certain criteria.267

The advantages of early exiting is that the268
model is dynamically changing how it pro-269
cesses the input by adjusting how much each270
input is processed. In addition, this architec-271
ture allows for the continual monitoring of how272
the sequencing is being processed to determine273
if it should exit.274

3 Limitations Within Current275

Models276

Early exiting has gained popularity within277
NLP models because of its ability to trade ac-278
curacy for efficiency. However, the implemen-279
tation has limitations within it and can benefit280
from alterations to the granularity of exiting281
and the methodology of exit determination.282

3.1 Granularity of Early Exiting283

Most early exiting schemes within the encoder284
exit on a per-sequence level basis. The dis-285

advantage of this is that the processing needs 286
of each token is not taken it consideration. In- 287
stead, the computation each token needs is av- 288
eraged to one point within the encoder to exit. 289
Generalization of exiting can have a negative 290
effect on finding at what point the best trade 291
off between accuracy and efficiency takes place. 292

3.2 Static Exiting Inference 293

Algorithm 1: DeeBert Implementation (In- 294
put: X) 295
for i = 0 to n do 296

zi = fi(x; θ) 297
if entropy(zi) < S then 298

exit inferenc 299
end if 300

end for 301
exit inferenc 302

Most early exiting schemes determine if a se- 303
quence should exit based off the entropy of 304
the input after being processed by a layer. A 305
common metric for determining if a sequence 306
should exit is continuously measuring the en- 307
tropy of a encoder layers output, and compar- 308
ing the value to a hyper parameter s. Once 309
the entropy is less then s the sequence ex- 310
its and is sent to the decoder. This method 311
of exiting was introduced in DeeBERT and is 312
shown in Algorithm 1. The problems within 313
this method of exit determination is that it is 314
static and does not learn to recognize patterns 315
for determining when to exit the encoder. 316

3.3 Learning Exiting on Limited 317
Information 318
Algorithm 2: EdgeBert Implementation (In- 319
put: X) 320

for input sentences i = 1 to n do 321
for encoder layers l = 1 do 322

zl = fl(i; θ) 323
if entropy(zl ≥ ET then 324

exit inference 325
else 326

Lpredict = LUT (entropy(zl), ET) 327
end if 328

end for 329
for encoderlayerl = 2toLpredict do 330

4

zl = fl(i, θ)331
if entropy(zl ≥ ET then332

exit inference333
end if334

end for335
exit inferenc336

end for337

Some early exiting schemes, such as Edge-338
BERT, do implement neural networks to learn339
when to exit the encoder. EdgeBERT in addi-340
tion to continuous entropy monitoring utilizes341
a single layer neural network after the first342
layer of the encoder. Once processed by the343
first layer the entropy of the results is taken344
and compared to a hyper parameter ET . If345
the entropy is less then ET the results exit at346
that layer. However, if they aren’t the results347
are fed into a single layer neural network that348
is used to hash into a Look Up Table, LUT,349
and predict at what layer the sequence should350
exit, this layer is called Lpredict. From layer351
2 to Lpredict the entropy of the results of each352
layer is measured and compared to ET , if the353
entropy is less then ET and the current layer is354
before Lpredict the results exit. This scheme is355
similar to DeeBERT’s but with the addition of356
setting the max amount of layers the sequence357
can go through after the first layer. The al-358
gorithm used by EdgeBERT is shown in algo-359
rithm 2. The benefit of this scheme is that it360
creates a point where the model can learn to361
recognize when a sequence should exit, how-362
ever how it does so based of limited amount of363
information. The implementation only learns364
when to exit the encoder from one state of the365
results.366

3.4 Architecture Placement367

Some models, such as The Depth Adaptive368
Transformer model (Elbayad et al.), do im-369
plement early exiting on a per token level.370
However the implementation within the trans-371
former architecture limits the effectiveness of372
the model. For determing what layer to exit373
the model uses two methods:374

1. Mutinomial: The fist hidden state in the375

decoder is used to create a probability dis- 376
tribution, qt, and estimate at what layer 377
each token should exit. 378

2. Geometric-like: At each layer in the 379
decoder the hidden state is ran through 380
a neural network and sigmoid activation 381
function. The resulting parameter is Xn

t , 382
where t denotes the time stamp and n de- 383
notes the layer, is compared to a threshold 384
τ . If Xn

t is greater then τ the token exits. 385
Every value for the parameter Xn

t is used 386
to create the distribution qt 387

While this implementation does base exiting 388
of tokens off information from multiple states 389
of the input its implementation within the de- 390
coder limits the effectiveness. This is due to 391
the computational demand of the decoder is 392
less then that of the encoder. Since the focus 393
of The Depth Adaptive Transformer is com- 394
putational reduction in the decoder and the 395
focus of this paper is computational reduction 396
in the encoder comparisons to the The Depth 397
Adaptive Transformer will not be taken into 398
consideration. 399

4 Approach 400

The model we are proposing looks at adding 401
single neural network layers in between each 402
layer of the encoder. The neural networks are 403
trained to recognize if a token should exit. The 404
advantage of implementing a neural network 405
between each layer is that each layer is able to 406
learn how much of a effect each encoder layer 407
has on changing the output. 408

4.1 How Exiting is Determined 409

Algorithm 3: Implemented Scheme (Input: 410
X) 411
X = [x0, x1, x3, ..., xm] 412
Key = [0, 1, 2, ...,m] 413
for encoder layers i = 0 to N do 414

Yi = [xk for k in Key] 415
Zi = fi(θ; Yi) 416
Xi = [xk in Xi or zp in Zi if p = k] 417
Ki = hi(θ; (Zi − Yi)) 418

5

Key = [m for km in ki ≥ 0.5]419
if len(key) = 0 then420

exit inference421
end if422

end for423

The approach outlined in algorithm 3 takes424
a more granular approach to early exiting425
within the encoder. The benefit of looking at426
each token individually is that each token is427
allowed to exit at the layer that provides the428
best trade off between accuracy and efficiency.429

430
431

To keep track of which tokens should exit432
and which should be further processed each433
token is given a ID. The ID of each token is434
stored in a list that is passed from layer to435
layer. Each layer uses the list to filter out436
exited tokens from the multi-head attentions437
results. Once the results are filtered the to-438
kens enter the encoders FFN section. The re-439
sults from the FFN are subtracted from the440
tokens pre-FFN processing. The difference is441
then fed into a single layer neural network and442
using a softmax function the resulting prob-443
abilities are used to dictate which tokens no444
longer need be processed and which need to445
go to the next layer. Tokens that can exit at446
this layer have their ID removed from the pro-447
cessing list. The model continues through the448
encoder layers until their are no more IDs’ on449
the processing list or at the last layer of the450
encoder.451

4.2 Loss Calculations452

During training when a token exits the encoder
the probability associated with exiting at that
point is recorded to create distribution d, of
length N where N is the amount of tokens in
that sequence. In addition, during training
a second set of the input tokens are created
called xreference. xreference is allowed to go
through all layers of the model, and is used to
create the labels used for calculating exit re-
lated loss. To generate the labels the cosine
similarity is calculated between the xreference

tokens and the tokens that were allowed to
early exit creating the similarity parameter C.
The results are then filtered using the param-
eters τupper and τlower. If τupper ≤ C ≤ τlower

the exit is considered valid. τupper and τlower

are hyper parameters that allows the user to
adjust how accurate or efficient they want the
model to be. Increasing τupper and τlower

makes the model more accurate, while decrease
τupper and τlower makes the model more effi-
cient. The generated labels and the probabil-
ities associated with each token when exited
are then calculated using binary cross entropy,

Lossexit(x, y) = L = l1, ..., lN

ln = −[yn log(xn) + (1− yn)log(1− xn)]

where N is the size of the batch. The resulting 453
exit loss is added to the label smoothed cross 454
entropy loss of the model. 455

5 Experiments 456

5.1 Setup 457

The model was evaluated using the HE and 458
COMMON MUST-C data sets. Language 459
pairs that were used are English-German and 460
English-Spanish. Evaluation was done us- 461
ing SimulEval, and the results from the im- 462
plementation was compared to the baseline, 463
and DeeBERT and EdgeBERT models that 464
have early exiting within the transformers en- 465
coder. While the proposed model is compared 466
to EdgeBERT and DeeBERT there are lim- 467
itations between the comparison, due to the 468
difference in metrics and baseline code Edge- 469
BERT and DeeBERT are built on. Both are 470
built on BERT, while the proposed implemen- 471
tation is built onto the Fairseq(Ott et al.) 472
transformer program. When DeeBERT and 473
EdgeBERT are referenced their proposed exit- 474
ing algorithm is what is being used and com- 475
pared to within the Fairseq model. 476

5.2 Training Parameters 477

The model was trained on a transformer with 478
12 encoder layers and 6 decoder layers. Model 479

6

Model wait-k 1 wait-k 3 wait-k 5 wait-k 7
Baseline 4.66 11.88 14.29 15.99
DeeBERT 1.9 4.55 5.89 6.47
EdgeBERT 4.63 10.84 13.19 14.71
Proposed 5.23 11.57 14.71 16.73

Table 1: Table 1: Highest BLEU Scores Achieved for Proposed, EdgeBERT, DeeBERT, and Base-
line Implementation at Various wait-k Values on the English German Language Pair COMMON
Data Sets

Parameter Proposed Baseline
Wait-k 1 5.26 w.88
Wait-k 3 14.69 14.22
Wait-k 5 18.04 17.12
Wait-k 3 20.19 18.10

Average FLOPs 2228763883.51 2570090650.61

Table 2: Table 2: Proposed and Baseline BLEU Scores at Various wait-k Values and Average
FLOPs on the English Spanish COMMON Data Set

training consisted of ASR pre-training and480
then SimulST training. During both training481
stages the overall loss of the system was calcu-482
lated using label-smoothed cross-entropy and483
the early exit loss was calculated using binary484
cross-entropy. In both stages the Adam opti-485
mizer (Kingma and Ba) was used. During ASR486
pre-training a learning rate of 0.0007 was used.487
During SimulST training a warm up learning488
rate 0f 0.0001 was used on on the first 4000 up-489
dates, after the first 4000 updataes a learning490
rate of 0.00035 was used. Both training stages491
used early stopping to evaluate when to cease492
training. Early stopping involves monitoring493
the model to see if it is still improving after494
a certain amount of epochs. Patience is the495
amount of epochs the model should compare496
to the dev set to see if the model is improving.497
ASR pre-training used a patience of 5 to de-498
termine when to stop, once ASR pre-training499
ends the top 5 checkpoints were averaged and500
used for SimulST training. For SimulST train-501
ing a patience of 10 was used, and the best 10502
checkpoints where averaged and used for eval-503

uation. In total an estimated 1000 GPU hours 504
went into experimentation and data collection. 505

5.3 BLEU Score 506

All models were first evaluated on BLEU 507
scores, allowing us to find at what parameters 508
each model best performed at. For EdgeBERT 509
and DeeBERT entropy values presented in 510
their respective papers were tested and looked 511
at. For the per-token early exiting scheme 512
multiple ranges and values for τupper and 513
τlower were used. The best results for the 514
English-German data set was τupper = 0.99 515
and τlower = 0.90. The best results for each 516
model on the English-German language pair 517
and COMMON data set is shown in table 1. 518
For the English-German language pair the 519
proposed implementation outperformed most 520
of the other model at various wait-k values. 521

522
For the English-Spanish language pair 523
we found that the implementation had a lower 524
BLEU score then the baseline model. The 525
results for this is shown in Table 2. 526

7

Model wait-k 1 wait-k 3 wait-k 5 wait-k 7
Baseline 4.66 11.88 14.29 15.99
Proposed 4.67 10.73 14.47 16.51

Table 3: Table 1: BLUE Scores for Proposed with τupper = 0.74 and τlower = 0.65 and Baseline
For Various wait-k Values Using COMMON Data Set and English-German Language Pair

5.4 FLOP527

For the English German language pair it was528
found that the addition of neural networks529
between each layer increased the FLOPs530
needed for inference. This was due to the531
amount of computations needed to determine532
if a token should exit was greater then the533
amount of computations saved by tokens early534
exiting. However this was with τupper = 0.99535
and τlower = 0.90 which sets priority on536
creating the best BLEU score and not the537
best efficiency possible. Even with accuracy538
prioritized the increase in FLOPs for all wait-k539
values using the English-German language540
pair was only 1.3% higher then the baseline541
implementation. If better efficiency is desired542
τupper and τlower can be changed to lower543
the FLOPs at the expense of a decrease in544
accuracy. At τupper = 0.74 and τlower = 0.65545
the average FLOP score across all wait-k was546
seen to decrease by 2.35% compared to the547
baseline. The BLEU score for τupper = 0.74548
and τlower = 0.65 for various wait-k values549
using the English-German language pair550
and COMMON data set is compared to the551
baseline in table 3.552

553
When looking at the English-Spanish lan-554
guage pair the average amount of FLOPs555
were reduced by 13.28% across all wait-k556
values and data sets in comparison to the557
baseline implementation. This measurement558
was with τupper = 0.94 and τlower = 0.85,559
and the average amount of FLOPS for each560
implementation is shown in table 2.561

6 Conclusion and Future Work 562

Per-token early exiting within the encoder 563
using single layer neural networks between 564
each layer for exit classification shows poten- 565
tial to increase the efficiency and accuracy 566
during inference. Through learning how to 567
recognize when a token can exit the encoder 568
the model is able to make a informed decision 569
on what point efficiency and accuracy are 570
best achieved. The model compared to the 571
baseline and other early exit models showed 572
an overall increase in BLEU score on the 573
English-German language pair for various 574
wait-k values. The model also showed an 575
increase in efficiency compared to the baseline 576
on the English-Spanish language pair, with 577
an average 13.35% FLOP reduction across all 578
wait-k values and data sets. This reduction 579
also had a minimal impact on BLEU score. 580

581
Further development of this model would 582
include exploration into how to better classify 583
exits as valid or invalid. Finding a better 584
classification method would better allow the 585
model to learn what peak efficiency and 586
accuracy looks like. In addition, it would give 587
the model a broader data set to learn exiting 588
off of. 589

6.1 Limitations 590

While our proposed implementation shows 591
promising results, the implementation is 592
strictly limited to being used on SimulST. In 593
addition, the model is currently limited to run- 594
ning on the Fairseq software and having ade- 595
quate amount of memory to train and run the 596
software. 597

8

7 References598

Blalock, Davis, et al. “What Is the State of599
Neural Network Pruning?” arXiv.Org, 6 Mar.600
2020, arxiv.org/abs/2003.03033.601

602
Cattoni, Roldano, et al. “Must-C: A603
Multilingual Corpus for End-to-End Speech604
Translation.” Computer Speech &605
Language, Academic Press, 7 Oct. 2020,606
www.sciencedirect.com/science/article/abs/607
pii/S0885230820300887.608

609
Devlin, Jacob, et al. “Bert: Pre-Training of610
Deep Bidirectional Transformers for Language611
Understanding.” arXiv.Org, 24 May 2019,612
arxiv.org/abs/1810.04805.613

614
Elbayad, Maha, et al. “Depth-Adaptive615
Transformer.” arXiv.Org, 14 Feb. 2020,616
arxiv.org/abs/1910.10073.617

618
Kingma, Diederik P., and Jimmy Ba.619
“Adam: A Method for Stochastic Op-620
timization.” arXiv.Org, 30 Jan. 2017,621
arxiv.org/abs/1412.6980.622

623
Li, Danni. “Calculate Computational624
Efficiency of Deep Learning Models625
with Flops and Macs.” KDnuggets,626
www.kdnuggets.com/2023/06/calculate-627
computational-efficiency-deep-learning-628
models-flops-macs.html. Accessed 2 Oct.629
2023.630

631
Ma, Mingbo, et al. “STACL: Simultane-632
ous Translation with Implicit Anticipation633
and Controllable Latency Using Prefix-to-634
Prefix Framework.” arXiv.Org, 24 June 2019,635
arxiv.org/abs/1810.08398.636

637
Ma, Xutai, et al. “Simuleval: An Evaluation638
Toolkit for Simultaneous Translation.” ACL639
Anthology, aclanthology.org/2020.emnlp-640
demos.19/. Accessed 4 Oct. 2023.641

642
Ott, Myle, et al. “Fairseq: A Fast, Extensible643

Toolkit for Sequence Modeling.” arXiv.Org, 1 644
Apr. 2019, arxiv.org/abs/1904.01038. 645

646
Papineni, Kishore, et al. “Bleu: A Method 647
for Automatic Evaluation of Machine Transla- 648
tion.” ACL Anthology, aclanthology.org/P02- 649
1040/. Accessed 4 Oct. 2023. 650

651
Peer, David, et al. “Greedy-Layer Prun- 652
ing: Speeding up Transformer Models for 653
Natural Language Processing.” arXiv.Org, 29 654
Mar. 2022, arxiv.org/abs/2105.14839. 655

656
Sanh, Victor, et al. “Distilbert, a Dis- 657
tilled Version of Bert: Smaller, Faster, 658
Cheaper and Lighter.” arXiv.Org, 1 Mar. 659
2020, arxiv.org/abs/1910.01108. 660

661
Tambe, Thierry, et al. “Edgebert: Sentence- 662
Level Energy Optimizations for Latency- 663
Aware Multi-Task NLP Inference.” arXiv.Org, 664
6 Sept. 2021, arxiv.org/abs/2011.14203. 665

666
Vaswani, Ashish, et al. “Attention Is 667
All You Need.” arXiv.Org, 2 Aug. 2023, 668
arxiv.org/abs/1706.03762. 669

670
Xin, Ji, et al. “Berxit: Early Exiting 671
for Bert with Better Fine-Tuning and Ex- 672
tension to Regression.” ACL Anthology, 673
aclanthology.org/2021.eacl-main.8. Accessed 674
2 Oct. 2023. 675

676
Xin, Ji, et al. “Deebert: Dynamic 677
Early Exiting for Accelerating Bert In- 678
ference.” arXiv.Org, 27 Apr. 2020, 679
arxiv.org/abs/2004.12993. 680

Appendix 681

Fairseq is licensed under MIT 682
683

MUST-C is licensed under a Creative 684
Commons License 685

9

