LORAGEN: STRUCTURE-AWARE WEIGHT SPACE LEARNING FOR LORA GENERATION

Anonymous authors

Paper under double-blind review

ABSTRACT

The widespread adoption of Low-Rank Adaptation (LoRA) for efficient finetuning of large language models has created demand for scalable parameter generation methods that can synthesize adaptation weights directly from task descriptions, avoiding costly task-specific training. We present LoRAGen, a structureaware method for generating LoRA parameters from natural language descriptions. Through empirical analysis of LoRA libraries, we identify two key structural properties of LoRA parameter spaces: non-uniqueness of low-rank decomposition and heterogeneous weight distributions across network modules. These properties necessitate specialized parameter generation methods rather than general weight space learning approaches. LoRAGen employs a latent diffusion model with two innovations: weight-space supervision on full adaptation matrices to handle decomposition non-uniqueness, and a module-aware Mix-of-Experts decoder that adapts to module-specific weight distributions. Experiments show LoRAGen achieves 96.0% performance relative to task-specific LoRAs on FLAN-T5-large and 72.7% on Gemma-2-2B-Instruct for in-distribution tasks, while obtaining 40.2% on zero-shot generation across unseen tasks—surpassing baselines by nearly 5%. Our work establishes the first structure-aware approach to LoRA generation with insights into adaptation weight space geometry.

1 Introduction

Exploring the weight space of neural networks, i.e., the high-dimensional parameter space spanned by populations of trained networks, has emerged as a powerful paradigm for understanding model mechanisms and enabling novel applications. Parameter generation, which trains models to produce weights for target networks, represents a particularly promising direction that has gained significant attention in recent years (Schürholt et al., 2021b; Schürholt et al., 2022; Schürholt et al., 2024a; Wang et al., 2024). The rise of large language models (LLMs) has created opportunities to apply parameter generation techniques in this domain, particularly through Low-Rank Adaptation (LoRA) (Hu et al., 2022) generation, the direct synthesis of LoRA parameters for efficient fine-tuning. While traditional LoRA workflows require task-specific training with custom datasets and hyperparameters, creating engineering overhead and limiting reusability (He et al., 2022a; Lv et al., 2024), LoRA generation enables direct parameter synthesis from natural language task descriptions, improving scalability and unlocking adaptive model behavior without maintaining extensive adapter libraries.

Recent work generates LoRA parameters conditioned on task identifiers, datasets, or natural language task descriptions. A common design involves learning a hypernetwork—a neural network that generates parameters for another base network (Ha et al., 2016). With advances in deep generative models, one category of approaches learns a lower-dimensional representation directly from the weight space and decodes this latent representation into LoRA parameters (Shao et al., 2025b). However, the underlying encoder-decoder model must encode the entire LoRA parameters at once into the learned latent representation, which limits the size of LoRA that can be embedded. Another category learns a conditional diffusion prior over the latent space to generate LoRA parameters from random noise based on specific task conditions at test time, but these approaches struggle to generate well-performing LoRA parameters across diverse architectures and datasets (Jin et al., 2024; Liao et al., 2024; Wu et al., 2024; Soro et al., 2025). A recent work, Text-to-LoRA (T2L) (Charakorn et al., 2025c), employs a hypernetwork trained to construct LoRA parameters in a single inexpensive forward pass, enabling zero-shot generation for entirely unseen tasks based on the hypothesis that

056

058

060

061

062

063

064 065

066

067

068

069

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

087

880

089

090

091

092

094

096

098

099

100

101

102

103

104

105

106

107

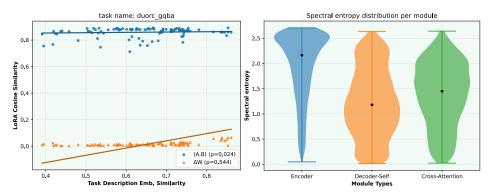


Figure 1: **Two empirical observations.** *Left:* Task description embedding similarity versus LoRA parameter similarity (measured by full adaptation matrix and low-rank decomposition matrix, respectively). *Right:* Spectral-entropy distributions of LoRA parameters for FLAN-T5-large, grouped by module type: encoder self-attention, decoder self-attention, and cross-attention.

different LoRAs share the same adaptation mechanism and can be optimized without explicit structure. However, these methods treat LoRA parameter generation as an instantiation of general weight space learning approaches Schürholt et al. (2024a); Wang et al. (2024), while lacking a tailored design specifically for LoRA characteristics.

In this work, we begin with an empirical analysis of a LoRA library built on the Transformer-based model FLAN-T5-large(Chung et al., 2024) (Figure 1). Our analysis reveals the non-uniqueness of low-rank decomposition as a key challenge. As shown in Figure 1 (left), we observe a clear positive correlation between adapter similarity in the weight space and task description embedding similarity, but we find no correlation between the cosine similarity of low-rank decomposition matrices and task description embedding similarity. This suggests that supervision in the full adaptation matrix space should generalize better than element-wise reconstruction. However, most LoRA generators reconstruct low-rank decomposition matrices directly (Ha et al., 2016; Jin et al., 2024; Liao et al., 2024; Soro et al., 2025; Charakorn et al., 2025c; Lv et al., 2024), which can make training sensitive to arbitrary rescalings or rotations of the low-rank decomposition matrices that produce the same full adaptation matrix (Gabrielsson et al., 2024). Additionally, in Figure 1 (right), we identify significant heterogeneity in LoRA weight distributions across different modules. The spectralentropy (Yunis et al., 2024; Roy & Vetterli, 2007) distributions differ systematically by module type within FLAN-T5-large: encoder self-attention exhibits higher entropy, decoder self-attention shows the lowest entropy, and cross-attention lies in between, indicating heterogeneous weight distributions across parts of the base model. However, existing methods typically use a single decoder across modules (Lv et al., 2024; Charakorn et al., 2025c), which overlooks the module structure (Ostapenko et al., 2024) and can mismatch the spectral-entropy distributions.

Motivated by the two empirical observations that reveal distinct properties of the LoRA weight space, we introduce LoRAGen, a method that generates LoRA parameters from natural-language task descriptions for structure-aware LoRA weight space learning. Specifically, we use a LoRA weight autoencoder (LAE) to learn a latent space over LoRA parameters and a conditional latent diffusion model conditioned on natural language task descriptions to generate latent representations from random noise, followed by a decoder that processes these generated representations to produce new LoRA parameters. To address the non-uniqueness issue, we supervise the full adaptation matrix directly rather than the low-rank decomposition matrices, proposing two weight space loss terms: a direction loss and a spectral loss on the full adaptation matrix. This avoids sensitivity to rescalings or rotations of low-rank decomposition matrices that yield the same full adaptation matrix, leading to more consistent and task-relevant weight space learning. To address the heterogeneity of weight distributions, we introduce a module-aware Mix-of-Experts (MoE) decoder with routing that uses a structural embedding combining a latent variable with learnable module and layer embeddings. This allows experts to specialize to the observed module-specific weight distribution patterns while ensuring a controlled sharing mechanism via the chosen expert pool configuration, facilitating generalization across different architectures of the base model.

Our key contributions are: (1) We propose the first structure-aware weight learning method tailored to the LoRA weight space, enabling effective LoRA parameter generation for diverse downstream

tasks. (2) LoRAGen introduces weight-space losses on the full adaptation matrix to address non-uniqueness of low-rank decomposition and employs a module-aware MoE decoder to model heterogeneous LoRA weight distributions. (3) LoRAGen achieves strong in-distribution LoRA generation performance close to task-specific LoRAs across architectures: 96.0% on FLAN-T5-large, 72.7% on Gemma-2-2B-Instruct and further achieves 40.2% in zero-shot LoRA generation on seven unseen tasks, surpassing competitive baselines by nearly 5%.

2 RELATED WORK

Weight Space Learning for Parameter Generation. Research on weight space learning has followed two main directions: predicting model properties from trained weights (Schürholt et al., 2021c; Unterthiner et al., 2020) and generating new parameters for neural networks (Eilertsen et al., 2020; Schürholt et al., 2022; 2024b). Here, we focus on parameter generation. With advances in deep generative models, one category of approaches learns a latent representation directly over populations of trained models and decodes this latent representation to generate parameters (Berardi et al., 2022). Another category employs conditional latent diffusion models to generate target parameters (Peebles et al., 2022; Soro et al., 2024). Recent studies introduce graph-based encoders that treat networks as graphs and enable parameter generation across architectures (Kofinas et al., 2024). These approaches have been applied in areas such as meta-learning, transfer learning, and model compression (Finn et al., 2017; Nava et al., 2022; Wang et al., 2023). Overall, these approaches exploring parameter generation in weight space (Peebles et al., 2022; Berardi et al., 2022; Schürholt et al., 2024b) demonstrate the feasibility of parameter generation across architectures and datasets.

Hypernetworks for LoRA Generation. A hypernetwork is a neural network designed to generate the parameters of another "base" network, providing an indirect encoding of the base model's weights (Ha et al., 2016; Zhang et al., 2018; Schug et al., 2025). With the development of deep generative models, one category of approaches (Shao et al., 2025a) learns conditional latent representations of pretrained LoRA parameters for new LoRA parameter generation. Another category employs conditional latent diffusion priors over latent space (Wu et al., 2024; Jin et al., 2024; Soro et al., 2024), enabling the generation of task-specific LoRA parameters. Recently, hyperLoRA Ly et al. (2024) employs instruction-tuned hypernetworks with constrained loss and demo selection to produce stable and generalizable adapters. While these approaches have advanced multi-task LLM adaptation, they typically rely on learned task identifiers, limiting their capacity for zero-shot LoRA parameter generation to unseen tasks Ivison & Peters (2022); Mahabadi et al. (2021); He et al. (2022b); Schürholt et al. (2021a); Ortiz-Barajas et al. (2024); Lv et al. (2024). Recent work explores natural language as conditioning signals for zero-shot generation Xiao et al. (2023); Ivison et al. (2023); Phang et al. (2023), with T2L (Charakorn et al., 2025a) utilizing hypernetworks to generate LoRA adapters from task descriptions. However, existing methods treat LoRA generation as a general weight space learning problem, overlooking the unique structural properties of LoRA parameter spaces. In contrast, LoRAGen is the first weight space learning approach that specifically accounts for the structural characteristics of LoRA spaces, leading to more effective parameter generation.

3 Preliminaries

Low-Rank Adaptation (Hu et al., 2022): Low-rank matrix ΔW serves as a adapter to a base model. For a pretrained weight matrix W_0 , the fine-tuned linear transformation is given by $h = W_0 + \Delta W = W_0 + BA$, where $A \in \mathbb{R}^{r \times d_{\text{in}}}$ and $B \in \mathbb{R}^{d_{\text{out}} \times r}$ are low-rank decomposition matrices with $r \ll \min\{d_{\text{in}}, d_{\text{out}}\}$. We ignore the module type and layer index of the LoRA parameters when referring to all LoRA parameters. Therefore we index them by a module type $m \in \mathcal{M}$ (e.g., query projection) and a layer index $\ell \in \{1, \dots, L_m\}$. A LoRA adapter at each location (m, ℓ) specifies a low-rank matrix $\Delta W_{m,\ell} = B_{m,\ell} A_{m,\ell}$. We denote the low-rank adapter by $\Delta W \coloneqq \left\{\Delta W_{m,\ell}\right\}_{m \in \mathcal{M}, \ 1 \le \ell \le L_m}$. Note that the low-rank decomposition is *not unique*: for any invertible matrix $R \in \mathbb{R}^{r_{m,\ell} \times r_{m,\ell}}$, $(B_{m,\ell} R)(R^{-1} A_{m,\ell})$ produces the same low-rank matrix $\Delta W_{m,\ell}$.

Problem setting. We assume an LoRA library of pairs $\mathcal{D} = \{(x^{(i)}, \Delta W^{(i)})\}_{i=1}^N$, where $x^{(i)}$ is a natural language description of task $t^{(i)}$ and $\Delta W^{(i)} = \{\Delta W_{m,\ell}^{(i)}\}$ represents the fine-tuned low-rank adapter for task $t^{(i)}$. Our goal is to train a LoRA generator using \mathcal{D} that produces new LoRA

parameters $\widehat{\Delta W}'$ given a natural language task description x', where x' may be either in-distribution (from \mathcal{D}) or out-of-distribution (unseen tasks).

4 THE PROPOSED METHOD: LORAGEN

4.1 DESIGN PRINCIPLES FROM EMPIRICAL OBSERVATIONS

We first summarize two obeservations (Obs) over a library of low-rank adapters (two panels in Figure 1), which motivates our tailored design in LoRAGen. The details of observations experiment implementation is reported at the Appendix A.1.

Obs-1: Non-uniqueness of the low-rank decomposition. Here we focus on the non-uniqueness property of low-rank decompositions in LORA. Specifically, we examine a LoRA library trained on FLAN-T5-large. While ΔW is uniquely defined as a full adaptation matrix, its low-rank decomposition matrices (A,B) is not unique, illustrated in Sec. 3. This property motivates the following hypothesis: if we supervise the low-rank decomposition matrices (A,B) directly, like element-wise reconstruction, training becomes sensitive to arbitrary rescalings and rotations that still yield the same full adaptation matrix ΔW . By supervising the full adaptation matrix itself, we avoid this ambiguity and directly align the generated adapters with the pretrained adapters in the full adaptation matrix space, which should lead to more consistent and task-relevant weight space learning.

Figure 1 (left) tests this hypothesis by showing the similarity between a representative task LoRA adapter and 112 adapters trained on a FLAN subset in the weight space against their similarity in the task embeddings space. To measure adapter similarity, we compute the cosine similarity of the concatenation of flattened low-rank A and B matrices of all layers and flattened ΔW respectively. We observe a clear positive correlation between the task embedding similarity and the adapter similarity similarity in the weight space but we find no correlation between the the cosine similarity of low-rank decomposition matrices and the task embedding similarity indicated by near-zero Spearman correlation coefficients. This phenomenon aligns with the non-uniqueness property of low-rank decompositions in LoRA and suggests that supervision in the full adaptation matrix space should generalize better than element-wise reconstruction.

Motivated by Obs-1, we therefore introduce *adapter-level supervision* (Sec. 4.3), where losses are defined directly in the weight space of ΔW . Concretely, we introduce two weight space loss terms, combining a *direction loss* \mathcal{L}_{ang} (Eq. 1) that aligns normalized LoRA directions, with a *spectral loss* \mathcal{L}_{spec} (Eq. 2) that matches leading singular values. These objectives enforce task-consistent LoRA generation while remaining robust to the inherent non-uniqueness of low-rank decompositions.

Obs-2: Heterogeneity of LoRA weight distributions. Here we focus on the heterogeneity of LoRA weight distributions across different module types in a transformer-based architecture, specifically the FLAN-T5-large model, which serves as the base model for LoRA adapters. For each adapter $\Delta W_{m,\ell}$ at a module-layer location (m,ℓ) , we analyze how its Frobenius energy is distributed across singular directions. Let $\{\sigma_i\}$ denote the singular values of $\Delta W_{m,\ell}$ and define the normalized spectrum $p_i = \sigma_i^2/\sum_j \sigma_j^2$. We then compute the *spectral entropy* $H_{\rm spec}(\Delta W_{m,\ell}) = -\sum_i p_i \log p_i$, which quantifies the uniformity of energy over directions: low entropy indicates that the energy concentrates in a few dominant directions, indicating effectively lower rank structure, whereas high entropy corresponds to a more even spread of energy (Yunis et al., 2024; Roy & Vetterli, 2007).

Figure 1 (right) reports the spectral-entropy distributions for three module types in FLAN-T5-large: Encoder self-attention, Decode self-attention, and *Cross-Attention*. We observe systematic differences across modules: encoder adapters exhibit higher spectral entropy which means energy spread over more directions, decoder self-attention shows the lowest entropy with more concentrated and effectively lower-rank structure, and cross-attention lies in between. This pattern implies that LoRA weight distributions are not homogeneous across the network which means the way energy is distributed over singular directions differs consistently by module type.

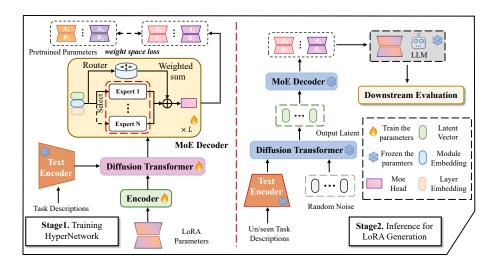


Figure 2: **Overall framework of LoRAGen.** Our approach consists of two stages: First, we train hypernetwork based on LoRA weight autoencoder to encode and reconstruct LoRA parameters, and diffusion process conditioned on natural language task descriptions to predict denoised latent. Second, random noise and un/seen natural language task descriptions are fed into LoRAGen to generate LoRA parameters, which can be incorporated with the LLM to evaluate downstream tasks.

Motivated by Obs-2, we employ a *module-aware MoE decoder* (Sec. 4.4)to match these module-specific patterns of energy distributions. Specifically, routing is conditioned on a structural embedding that combines a latent variable with learnable module and layer embeddings. The decoder can operate with either (i) a single shared expert pool for all locations or (ii) separate expert pools per module type (e.g., encoder attention). Per-module output heads \mathcal{H}_m map the gated expert outputs into LoRA parameters $\widehat{\Delta W}_{m,\ell}$. This architecture lets experts specialize to the observed module-specific energy distribution patterns (e.g., lower-entropy/low-rank tendencies in Decoder-Self versus higher-entropy Encoder), while the router and the chosen pool configuration ensures controlled sharing mechanism without losing module-specific specialization.

4.2 METHOD OVERVIEW

As shown in Figure 2, the overall framework of LoRAGen can be divided into two stages: First, we train a hypernetwork, which consists of LoRA weight autoencoder (LAE) and diffusion process, to learn the inner structure of LoRA parameters in the LoRA weight space. For LAE($\mathcal{E}_{\phi}, \mathcal{D}_{\theta}$) trained on given LoRA parameters ΔW , the encoder \mathcal{E}_{ϕ} produces per-location latents with a diagonal–Gaussian posterior and the MoE decoder \mathcal{D}_{θ} (Sec. 4.4) decodes latent z to full LoRA parameters ΔW . Note that at training LAE stage, we add two weight space losses terms defined on $\Delta W_{m,\ell}$ (Sec. 4.3). In the diffusion process, the noised latent is processed by a diffusion transformer conditioned on embeddings of natural language task descriptions to predict denoised latent. The details of diffusion process is reported in the Appendix A.6.

Second, we feed task descriptions and random noise into the diffusion transformer to produce the output denoised latents followed by passing by the frozen MoE Decoder from stage-1 to generate the full LoRA parameters, which can be applied to the LLM to perform the intended task.

4.3 ADAPTER-LEVEL SUPERVISION IN LORA WEIGHT SPACE

Distinct pairs of low-rank decomposition matrices (A,B) produce the same low-rank adapter ΔW . If we choose to generate A and B separately, the LoRA generator must to commit to a specific decomposition of ΔW , even though many different low-rank decomposition matrices produce the identical adapter. To avoid this ambiguity induced by non-uniqueness property of the low-rank decomposition, we directly add supervision signal at the level of low-rank adapter $\widehat{\Delta W}_{m,\ell} = \mathcal{D}_{\theta}(z)_{m,\ell}$, and introduce two weight space loss terms: (i) a direction loss based on cosine similarity that depends on the low-rank adapters after normalizing their Frobenius norm. (ii)

a *spectral* loss that matches the leading singular values of the predicted and pretrained low-rank adapters.

Direction loss. Because many pairs of low-rank decomposition matrices (A,B) produce the same low-rank adapter ΔW , supervising A and B individually can introduce arbitrary differences in the Frobenius norm of ΔW . To make supervision insensitive to it, we normalize both the predicted and target low-rank adapters to unit Frobenius norm and compare their directions directly to capture the per-task direction. Thus we introduce a *direction* loss that measures the angular mismatch between the predicted and target low-rank adapters:

$$\mathcal{L}_{\text{ang}}(m,\ell) = 1 - \frac{\langle \widehat{\Delta W}_{m,\ell}, \Delta W_{m,\ell} \rangle_F}{\|\widehat{\Delta W}_{m,\ell}\|_F \|\Delta W_{m,\ell}\|_F}.$$
 (1)

where $\langle \cdot, \cdot \rangle_F$ denotes the Frobenius inner product and $\| \cdot \|_F$ is the Frobenius norm.

Spectral loss. Direction supervision does not capture how the squared Frobenius norm is distributed across the *singular spectrum*. Two low-rank adapters can have similar cosine similarity yet differ in their *leading singular values*, i.e., in the proportion of the squared Frobenius norm explained by the top singular directions. To account for this, we introduce a *spectral* loss that matches the leading singular values of the two low-rank adapters:

$$\mathcal{L}_{\text{spec}}(m,\ell) = \left\| \boldsymbol{\sigma}_{1:k_{m,\ell}} (\widehat{\Delta W}_{m,\ell}) - \boldsymbol{\sigma}_{1:k_{m,\ell}} (\Delta W_{m,\ell}) \right\|_{p,\boldsymbol{\omega}_{m,\ell}}$$
(2)

where (i) $\sigma_i(X)$ denotes the i-th singular value of X, and $\sigma_{1:k}(X) := (\sigma_1(X), \dots, \sigma_k(X))$ lists the top-k values in nonincreasing order; (ii) $r_{m,\ell}$ is the LoRA rank at location (m,ℓ) , and $k_{m,\ell} \in \{1,\dots,r_{m,\ell}\}$ is the smallest integer such that the top-k singular values of the target low-rank adapter explain at least a fraction $\rho \in (0,1)$ of its squared Frobenius norm. (iii) $\|u\|_{p,\omega}$ is a weighted ℓ_p norm with $p \in \{1,2\}$; (iv) $\omega_{m,\ell} = (\omega_{m,\ell,1},\dots,\omega_{m,\ell,k_{m,\ell}})$ are nonnegative normalized singular-value weights.

Thus, we aggregate these two terms together as follows:

$$\mathcal{L}_{\text{adapter}}(\theta, \phi) = \mathbb{E}_{z \sim q_{\phi}(z|\Delta W)} \left[\sum_{m \in \mathcal{M}} \sum_{\ell=1}^{L_m} \lambda_{m,\ell} \left(\alpha_{\text{ang}} \mathcal{L}_{\text{ang}}(m,\ell) + \alpha_{\text{spec}} \mathcal{L}_{\text{spec}}(m,\ell) \right) \right], \quad (3)$$

where $q_{\phi}(z \mid \Delta W)$ is the encoder posterior; $\alpha_{\rm ang}, \alpha_{\rm spec} > 0$ are hyperparameters balancing the two loss terms; and $\lambda_{m,\ell} \geq 0$ are location weights. Note that $\mathcal{L}_{\rm ang}$ aligns direction, while $\mathcal{L}_{\rm spec}$ aligns the leading spectrum (i.e., the proportion of the squared Frobenius norm explained by the top singular directions). Thus $\mathcal{L}_{\rm adapter}$ aligns the performance of the specific-task low-rank adapter yet remains robust to low-rank decompositions.

The overall objective of training LAE is

$$\mathcal{L}_{\text{VAE}}(\theta, \phi) = \alpha_{\text{adapter}} \mathcal{L}_{\text{adapter}}(\theta, \phi) + \beta D_{\text{KL}}(q_{\phi}(z \mid \Delta W) \parallel \mathcal{N}(0, I)) + \lambda_{\text{moe}} \mathcal{L}_{\text{moe}}(\theta),$$
 (4) where $\alpha_{\text{adapter}}, \beta, \lambda_{\text{moe}} > 0$ are scalar coefficients; \mathcal{L}_{moe} is the MoE load-balancing auxiliary loss(Sec. 4.4).

4.4 MODULE-AWARE MOE DECODER

To capture structural heterogeneity across the module types and layers, we further introduce a module-aware MoE decoder \mathcal{D}_{θ} that can use either a single shared expert pool for all locations or separate pools per module type (e.g., encoder attention). The notation below treats E as the number of experts in the active pool used by the current location.

Inputs and routing. For each location (m,ℓ) , we form a structural embedding $h_{m,\ell} = [z_{m,\ell}; e_m; e_\ell] \in \mathbb{R}^{d_h}$, where $z_{m,\ell} \in \mathbb{R}^{d_z}$ is the latent variable, $e_m \in \mathbb{R}^{d_m}$ and $e_\ell \in \mathbb{R}^{d_\ell}$ are learnable module and layer embeddings. A router with parameters $W_r \in \mathbb{R}^{E \times d_h}$ outputs logits $\ell_{m,\ell} = W_r h_{m,\ell} \in \mathbb{R}^E$ and applies top-K gating:

$$g_{(m,\ell),e} = \frac{\exp(\ell_{m,\ell,e}/\tau)}{\sum_{e' \in S_{m,\ell}} \exp(\ell_{m,\ell,e'}/\tau)} \mathbb{I}[e \in S_{m,\ell}],$$
 (5)

where $\tau > 0$ is the temperature, $S_{m,\ell} \subset \{1, \dots, E\}$ is the index set of the top-K experts by logit value, and $\mathbb{I}[\cdot]$ is the indicator function (equal to 1 if its argument is true and 0 otherwise).

Experts and per-module heads. Each expert \mathcal{E}_e is a small MLP. The gated output feeds a per-module head \mathcal{H}_m :

$$\widehat{\Delta W}_{m,\ell} = \mathcal{H}_m(\sum_{e \in S_{m,\ell}} g_{(m,\ell),e} \, \mathcal{E}_e(h_{m,\ell})),\tag{6}$$

Note that \mathcal{H}_m is a linear map into a vector followed by a reshape to the full LoRA parameters $\widehat{\Delta W}_{m,\ell} \in \mathbb{R}^{d_{\mathrm{out}}(m,\ell) \times d_{\mathrm{in}}(m,\ell)}$. And its parameters are shared across all layers ℓ for the same module m.

Load-balancing auxiliary loss. To discourage expert collapse we introduce a load-balancing auxiliary loss:

$$\mathcal{L}_{\text{moe}} = \max \Big(E \sum_{e=1}^{E} \bar{p}_e \, \bar{f}_e - 1, \, 0 \Big), \tag{7}$$

where \bar{p}_e is the average gating probability, and \bar{f}_e is the expected fractional load under top-K routing. The details implementation of \mathcal{L}_{moe} is reported at the Appendix A.6.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Dataset. In our main experiments, we consider two settings. First, we employ FLAN-T5-large (Chung et al., 2024), as the base model. We utilize a subset of FLAN following (Lv et al., 2024) for training and evaluation. Second, we use Gemma-2-2b-Instruct (Team et al., 2024) as the base model and evaluate on 8 widely used benchmark tasks, including Arc-challenge (ArcC) and Arc-easy (ArcE) (Clark et al., 2018), BoolQ (Clark et al., 2019), GSM8K (Cobbe et al., 2021), Hellaswag (HS) (Zellers et al., 2019), OpenBookQA (OQA) (Mihaylov et al., 2018), PIQA (Bisk et al., 2020), and Winogrande (WG) (Sakaguchi et al., 2021). More details about the datasets are reported in the Appendix. For both settings, we extract task embeddings from natural language task descriptions using the FLAN-T5-large encoder. Task descriptions for each dataset are fully generated by LLM, as described in the Appendix A.5. For each dataset, We sample and report the average performance of 3 set of LoRA weights sampled with LoRAGen.

Baseline Setup. As baselines, we consider task-specific LoRAs, element-wise averaged LoRA. We compare D2NWG (Soro et al., 2024), which is a latent diffusion conditioned on datasets for LoRAs generation. We also implement T2L (Charakorn et al., 2025b), which is a hypernetwork that generates LoRAs based on natural language task embedding. Reproduction details are provided in the Appendix ??.

5.2 Performance Comparison

In-distribution LoRA Generation Performance. First we focus on whether LoRAGen can recover the performance of trained LoRAs Charakorn et al. (2025c); Brüel-Gabrielsson et al. (2024), which enables low-rank adaptation with minimal compute requirements. Table 1 reports results on seven FLAN tasks using natural—language task embeddings from the FLAN-T5-Large encoder. LoRAGen closely matches the oracle adapters and outperforms D2NWG and T2L on average performance. We think that the gain comes from the design of MoE decoder to capture the heterogeneity of weight distributions across different module types and layers within the structure-aware LoRA weight space.

Moreover, to assess cross-architecture generalization, we move from an encoder–decoder base model FLAN-T5-Large to a decoder-only base model Gemma-2-2B-Instruct. As shown in Table 2, LoRAGen remains competitive or superior to several baselines and is close to task-specific LoRAs on average performance, indicating that our approach scales from T5-based adapters to decoder-only adapters. In several tasks, such as ArcE, GSM8K and OQA, our method even matches or surpasses task-specific adapters, suggesting that adapter-level supervision captures task-relevant structure rather than memorizing particular LoRA parameters.

Method	AP-Neg	AP-Rec	AP-Pos	QASC-1	QASC-2	WQA-T	WQA-A Avg. (acc)
FLAN-T5-Large	49.4	70.7	34.8	23.3	8.9	8.5	62.0 36.8
Average LoRA D2NWG T2L	96.8 59.5 90.5	96.5 87.3 94.1	96.9 65.9 92.7	99.4 47.0 87.9	87.3 31.1 76.8	96.7 33.4 85.5	97.0 95.8 84.8 58.4 93.3 88.7
Ours	96.8	96.6	97.1	99.5	87.3	97.1	97.3 96.0
Task-specific LoRAs	97.2	97.0	97.8	99.7	87.3	97.0	97.3 96.2

Table 1: Benchmark performance of LoRAGen on FLAN subset (FLAN-T5-Large backbone). **Bold numbers** are used when the performance is higher than the task-specific LoRAs.

Method	ArcC	ArcE	BQ	GSM8K	HS	OQA	PIQA	WG	Avg. (acc)
Gemma-2-2B-Instruct	74.0	89.9	81.0	55.9	55.1	71.2	71.2	51.8	68.8
Average LoRA	96.8	96.5	96.9	99.4	87.3	96.7	97.0	95.8	
D2NWG	74.1	90.0	81.2	56.0	55.1	71.3	71.3	52.0	68.9
T2L	74.3	90.2	81.2	55.9	55.2	71.4	71.5	53.8	69.2
Ours	76.6	90.7	84.1	56.4	64.1	80.2	75.0	54.2	72.7
Task-specific LoRAs	76.7	90.6	84.7	55.9	75.4	80.2	78.0	54.6	74.5

Table 2: Benchmark performance of LoRAGen on 8 benchmark tasks (Gemma-2-2B-Instruct backbone). **Bold numbers** are used when the performance is higher than the task-specific LoRAs.

LoRA Generation for unseen tasks. Furthermore, we explore whether LoRAGen can generate LoRA parameters for unseen tasks. We train LoRAGen on 136 tasks of FLAN subset, each with 20 task descriptions. For each task we sample three sets of LoRA weights and report the average accuracy. As shown in Table 3, LoRAGen achieves the best average accuracy 40.2, outperforming D2NWG and T2L by **+5.2** and **+5.0** points, respectively. We observe that D2NWG and T2L reconstructs pre-trained adapters and struggles to generalize to unseen tasks. This phenomenon is align with non-uniqueness of the low-rank decomposition, which indicates that if we supervise the low-rank decomposition matrices directly, training becomes sensitive to arbitrary rescalings and rotations that still yield the same full adaptation matrix, trending to memorize task-specific LoRA parameters. Instead of this, our method supervise the full adaptation matrix directly to avoid this ambiguity and focus on learn task-relevant weight space learning, resulting in better performance to unseen tasks. Details on computational cost and efficiency are reported in the Appendix A.3.

5.3 ABLATION STUDY

In this section, we ablate the adapter-level supervision and the module-aware MoE decoder on the seven FLAN tasks (Table 4). Training with the two adapter-level losses $\mathcal{L}_{\rm ang}$ and $\mathcal{L}_{\rm spec}$ but without the decoder \mathcal{D}_{θ} achieves an average accuracy of 58.4. In contrast, enabling the decoder while removing both adapter-level losses and using only the reconstruction loss results in a significant improvement to an average accuracy of 95.2. This improvement is consistent with **Obs. 2**: the module-aware routing and per-module heads in \mathcal{D}_{θ} effectively capture the heterogeneity in weight distributions across modules and layers, which substantially improves downstream performance.

A counter-intuitive result occurs when \mathcal{D}_{θ} is combined with the *spectral* loss but the *direction* loss is omitted: the average accuracy drops to 36.9. In this case, $\mathcal{L}_{\rm spec}$ only enforces alignment of the *magnitudes* of the top-k singular values, without constraining the corresponding directions of the left and right singular vectors. As a result, the decoder can match the singular-value magnitudes correctly, but assign them to the wrong directions, which leads to an incorrect weight-space learning and consequently poor task performance.

The full model, \mathcal{D}_{θ} together with \mathcal{L}_{ang} and \mathcal{L}_{spec} , addresses both aspects: \mathcal{L}_{ang} ensures the generated adapters align with the target directions, while \mathcal{L}_{spec} maintains the relative magnitudes of the top-k singular values. This combination achieves the best performance, with an average accuracy of 96.0, slightly surpassing the performance of the model with only the MoE decoder and consistently improving results on tasks that require fine alignment, such as QASC-1 and WQA-T.

Method	AP-Rec	AP-Pos	QASC-1	QASC-2	WQA-T	WQA-A	Avg. (acc)
FLAN-T5-Large	70.7	34.8	23.3	8.9	8.5	62.0	34.7
D2NWG	71.8	34.4	23.7	9.1	8.3	62.4	35.0
T2L	71.6	34.6	23.3	11.1	8.5	62.0	35.2
Ours	75.1	42.2	28.1	14.5	14.3	67.2	40.2

Table 3: Zero-shot generation performance of LoRAGen trained on the **FLAN subset** with FLAN-T5-Large as the base model. **Bold numbers** are used to represent the best performance.

$\mathcal{L}_{ ext{ang}}$	$\mathcal{L}_{ ext{spec}}$	$\mathcal{D}_{ heta}$	AP-Neg	AP-Rec	AP-Pos	QASC-1	QASC-2	WQA-T	WQA-A	Avg. (acc)
1	✓	X	59.5	87.3	65.9	47.1	31.2	33.4	84.9	58.4
X	X	1	96.8	95.5	97.0	98.2	86.3	95.6	96.7	95.2
X	✓	1	49.5	70.9	34.4	23.3	9.1	8.4	62.7	36.9
✓	✓	✓	96.8	96.6	97.1	99.5	87.3	97.1	97.3	96.0

Table 4: Ablation study on FLAN subset. Checkmarks indicate enabled components: direction loss \mathcal{L}_{ang} , spectral loss \mathcal{L}_{spec} , and module-aware MoE decoder \mathcal{D}_{θ} . **Bold numbers** are used to represent the best performance.

5.4 DETAILED ANALYSIS

Hyperparameter Analysis. We first analyze the effect of the spectral–energy threshold ρ in the spectral loss (Figure 4(a) in Appendix A.2). We conduct this experiment under the same setting as Table 1 Across all tasks, accuracies remain stable as ρ varies from 0.80 to 1.00, with only minor fluctuations. This shows that the adapter-level supervision is robust to the choice of ρ , since the leading singular values already capture sufficient spectral information. In practice, we set $\rho=0.85$ as it provides a better performance while maintaining stability.

We then examine the hyperparameters of the MoE decoder (Figure 4(b)in Appendix A.2). Here we compare shared vs. unshared expert pools, different top-K routing choices, and the number of experts. The results indicate that unshared pools consistently outperform shared ones, and increasing the number of active experts (top-2 vs. top-1) further improves performance, especially on challenging multi-choice and QA tasks. The best configuration is *unshared*, *top-1*, E=4, which strikes a balance between accuracy and computational efficiency.

Structural Embedding Analysis. In this section, we assess the contribution of the structural embedding in the MoE decoder (Figure 4(c) in Appendix A.2). We compare three variants: (i) without structural embedding (routing only on latent variables), (ii) with structural embedding, and (iii) an oracle trained with task-specific adapters. The results show that removing structural embeddings substantially reduces accuracy, particularly on tasks requiring fine-grained reasoning such as QASC-1/2. Adding structural embeddings closes most of the gap to the oracle, confirming that encoding module-specific latent is critical for capturing the heterogeneous LoRA weight distributions.

6 Conclusion

We presented *LoRAGen*, a structure-aware approach to LoRA parameter generation grounded in two empirical observations of the LoRA weight space: non-uniqueness of low-rank decompositions and module-wise heterogeneity of weight distributions. Motivated by these observations, we supervise the full adaptation matrix using adapter-level direction and spectral losses, and decode with a module-aware MoE whose routing leverages structural embeddings with shared or per-module expert pools. Empirically, LoRAGen produces strong in-distribution adapters across architectures, closely matching task-specific adapters on FLAN-T5-large and Gemma-2-2B-Instruct and attains competitive zero-shot performance on unseen tasks from a large LoRA library. Ablation studies show both adapter-level supervision and module-aware decoding are necessary, and sensitivity studies indicate robustness to the spectral-energy threshold and gains from unshared pools with top-*K* routing.

ETHICS STATEMENT

The authors have read and adhered to the ICLR Code of Ethics. The research presented in this paper focuses on the generation of LoRA parameters, with primary applications in LLM domains. All data used for training and evaluation is from publicly available, non-personal scientific datasets, ensuring no privacy concerns. This work does not involve human subjects, and we do not foresee any direct negative societal impacts or risks of perpetuating social biases. Our aim is to advance the development of domain-specific LLM applications.

REPRODUCIBILITY STATEMENT

The code associated with this paper is available at: https://anonymous.4open.science/r/LoRAGen-02C0. It includes the necessary environment configurations and execution scripts. All datasets utilized in this work are publicly accessible. The task descriptions generated from LLM is provided in the Appendix.

REFERENCES

- Gabriele Berardi, Luca De Luigi, Samuele Salti, and Luigi Di Stefano. Learning the space of deep models. *arXiv preprint arXiv:2206.07680*, 2022.
- Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical commonsense in natural language. In *Proceedings of the AAAI conference on artificial intelligence*, volume 34, pp. 7432–7439, 2020.
- Rasmus Brüel-Gabrielsson, Jingzhao Zhu, Omkar Bhardwaj, Leshem Choshen, Kristjan Greenewald, Mikhail Yurochkin, and Justin Solomon. Compress then serve: Serving thousands of lora adapters with little overhead. *arXiv preprint arXiv:2407.00066*, 2024.
- Rujikorn Charakorn, Edoardo Cetin, Yujin Tang, and Robert T Lange. Text-to-lora: Instant transformer adaption. In *Proceedings of the 42nd International Conference on Machine Learning*. PMLR, 2025a.
- Rujikorn Charakorn, Edoardo Cetin, Yujin Tang, and Robert Tjarko Lange. Text-to-lora: Instant transformer adaption. *arXiv preprint arXiv:2506.06105*, 2025b.
- Rujikorn Charakorn, Edoardo Cetin, Yujin Tang, and Robert Tjarko Lange. Text-to-lora: Instant transformer adaption. In *Proceedings of the 42nd International Conference on Machine Learning (ICML 2025), Poster Track*, 2025c. URL https://openreview.net/forum?id=zWskCdu3QA. Poster.
- Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language models. *Journal of Machine Learning Research*, 25(70):1–53, 2024.
- Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. *arXiv* preprint *arXiv*:1905.10044, 2019.
- Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge. *arXiv preprint arXiv:1803.05457*, 2018.
- Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.
- Gabriel Eilertsen, Daniel Jönsson, Timo Ropinski, Jonas Unger, and Anders Ynnerman. Classifying the classifier: dissecting the weight space of neural networks. *arXiv preprint arXiv:2002.05688*, 2020.

- Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep networks. In *Proceedings of the 34th International Conference on Machine Learning*, 2017.
 - Rickard Brüel Gabrielsson, Jiacheng Zhu, Onkar Bhardwaj, Leshem Choshen, Kristjan Greenewald, Mikhail Yurochkin, and Justin Solomon. Compress then serve: Serving thousands of loRA adapters with little overhead, 2024. URL https://openreview.net/forum?id=hHNVn4hFPk.
 - David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106, 2016.
 - Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards a unified view of parameter-efficient transfer learning. In *International Conference on Learning Representations*, 2022a. URL https://openreview.net/forum?id=0RDcd5Axok.
 - Yelong He, Shuang Zheng, Yi Tay, Jatin Gupta, Yichong Du, Vamsi Aribandi, Zhen Zhao, Yichong Li, Zhiyu Chen, Donald Metzler, et al. Hyperprompt: Prompt-based task-conditioning of transformers. In *International Conference on Machine Learning*, pp. 8678–8690. PMLR, 2022b.
 - Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. In *ICLR 2022*, April 2022. URL https://www.microsoft.com/en-us/research/publication/lora-low-rank-adaptation-of-large-language-models/.
 - Hamish Ivison and Matthew E. Peters. Hyperdecoders: Instance-specific decoders for multi-task nlp. In *Findings of the Association for Computational Linguistics: EMNLP 2022*, pp. 1715–1730, 2022. URL https://aclanthology.org/2022.findings-emnlp.124.
 - Hamish Ivison, Akshita Bhagia, Yizhong Wang, Hannaneh Hajishirzi, and Matthew E Peters. Hint: Hypernetwork instruction tuning for efficient zero- and few-shot generalisation. In *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 11272–11288, 2023.
 - Zhihao Jin et al. Conditional lora parameter generation. arXiv preprint arXiv:2403.12345, 2024.
 - Marios Kofinas, Boris Knyazev, Yulun Zhang, Yiming Chen, Gertjan Burghouts, Efstratios Gavves, Cees GM Snoek, and Dingwen Zhang. Graph neural networks for learning equivariant representations of neural networks. In *International Conference on Learning Representations*, 2024.
 - Huanxuan Liao, Shizhu He, Yao Xu, Yuanzhe Zhang, Yanchao Hao, Shengping Liu, Kang Liu, and Jun Zhao. From instance training to instruction learning: Task adapters generation from instructions. *Advances in Neural Information Processing Systems*, 37:45552–45577, 2024.
 - Chuancheng Lv, Lei Li, Shitou Zhang, Gang Chen, Fanchao Qi, Ningyu Zhang, and Hai-Tao Zheng. Hyperlora: Efficient cross-task generalization via constrained low-rank adapters generation. In *Findings of the Association for Computational Linguistics: EMNLP 2024*, pp. 16376–16393, 2024.
 - Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa Dehghani, and James Henderson. Parameter-efficient multi-task fine-tuning for transformers via shared hypernetworks. *arXiv preprint arXiv:2106.04489*, 2021.
 - Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct electricity? a new dataset for open book question answering. *arXiv preprint arXiv:1809.02789*, 2018.
 - Elia Nava, Shogo Kobayashi, Yufei Yin, Raffaello K Katzschmann, and Benjamin F Grewe. Metalearning via classifier(-free) diffusion guidance. *arXiv preprint arXiv:2210.05639*, 2022.
 - Juan-Gilberto Ortiz-Barajas, Helena Gomez-Adorno, and Thamar Solorio. Hyperloader: Integrating hypernetwork-based lora and adapter layers into multi-task transformers for sequence labelling. *arXiv* preprint arXiv:2407.01411, 2024.

Oleksiy Ostapenko, Zhan Su, Edoardo Ponti, Laurent Charlin, Nicolas Le Roux, Lucas Caccia, and Alessandro Sordoni. Towards modular Ilms by building and reusing a library of loras. In *Proceedings of the 41st International Conference on Machine Learning (ICML)*, volume 235, pp. 38885–38904. PMLR, 2024.

- William Peebles, Ilija Radosavovic, Tim Brooks, Alexei A Efros, and Jitendra Malik. Learning to learn with generative models of neural network checkpoints. *arXiv preprint arXiv:2209.12892*, 2022.
- Jason Phang, Yuning Mao, Pengcheng He, and Weizhu Chen. Hypertuning: Toward adapting large language models without backpropagation. In *International Conference on Machine Learning*, pp. 27854–27875. PMLR, 2023.
- Olivier Roy and Martin Vetterli. The effective rank: A measure of effective dimensionality. In 2007 15th European signal processing conference, pp. 606–610. IEEE, 2007.
- Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adversarial winograd schema challenge at scale. *Communications of the ACM*, 64(9):99–106, 2021.
- Simon Schug, Seijin Kobayashi, Yassir Akram, Joao Sacramento, and Razvan Pascanu. Attention as a hypernetwork. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=V4K9h1qNxE.
- Konstantin Schürholt, Mostafa Dehghani, Neil Houlsby, and Damian Borth. Hyper-representations: Learning generative representations of neural network parameters. In *International Conference on Learning Representations (ICLR)*, 2021a. URL https://openreview.net/forum?id=HCSgyPUfeDj.
- Konstantin Schürholt, Dimche Kostadinov, and Damian Borth. Hyper-representations: Self-supervised representation learning on neural network weights for model characteristic prediction. 2021b. URL https://api.semanticscholar.org/CorpusID:240070334.
- Konstantin Schürholt, Dimche Kostadinov, and Damian Borth. Self-supervised representation learning on neural network weights for model characteristic prediction. *Advances in Neural Information Processing Systems*, 34:16481–16493, 2021c.
- Konstantin Schürholt, Boris Knyazev, Xavier Giró-i Nieto, and Damian Borth. Hyper-representations as generative models: sampling unseen neural network weights. In *Proceedings of the 36th International Conference on Neural Information Processing Systems*, NIPS '22, Red Hook, NY, USA, 2022. Curran Associates Inc. ISBN 9781713871088.
- Konstantin Schürholt, Boris Knyazev, Xavier Giró-i Nieto, and Damian Borth. Hyper-representations for pre-training and transfer learning. *arXiv preprint arXiv:2207.10951*, 2022.
- Konstantin Schürholt, Michael W. Mahoney, and Damian Borth. Towards scalable and versatile weight space learning. In *Proceedings of the 41st International Conference on Machine Learning*, pp. 43947–43966, 2024a. URL https://proceedings.mlr.press/v235/schurholt24a.html.
- Konstantin Schürholt, Michael W Mahoney, and Damian Borth. Towards scalable and versatile weight space learning. *arXiv preprint arXiv:2406.09997*, 2024b.
- Jing Shao et al. In-context meta lora generation. arXiv preprint arXiv:2502.08976, 2025a.
- Yihua Shao, Minxi Yan, Yang Liu, Siyu Chen, Wenjie Chen, Xinwei Long, Ziyang Yan, Lei Li, Chenyu Zhang, Nicu Sebe, et al. In-context meta lora generation. *arXiv preprint arXiv:2501.17635*, 2025b.
- Bedionita Soro, Bruno Andreis, Hayeon Lee, Wonyong Jeong, Song Chong, Frank Hutter, and Sung Ju Hwang. Diffusion-based neural network weights generation. *arXiv preprint arXiv:2402.18153*, 2024.

- Bedionita Soro, Bruno Andreis, Hayeon Lee, Wonyong Jeong, Song Chong, Frank Hutter, and Sung Ju Hwang. Diffusion-based neural network weights generation. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=j8WHjM9aMm.
- Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al. Gemma 2: Improving open language models at a practical size. *arXiv preprint arXiv:2408.00118*, 2024.
- Thomas Unterthiner, Daniel Keysers, Sylvain Gelly, Olivier Bousquet, and Ilya Tolstikhin. Predicting neural network accuracy from weights. *arXiv preprint arXiv:2002.11448*, 2020.
- Jun Wang, Yifan Chen, Stella X Yu, Brian Cheung, and Yann LeCun. Compact and optimal deep learning with recurrent parameter generators. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision*, 2023.
- Kaitian Wang, Zhaopan Xu, Yukun Zhou, Zelin Zang, Trevor Darrell, Zhuang Liu, and Yang You. Neural network diffusion, 2024. URL https://openreview.net/forum?id=8Q6UmFhhQS.
- Yujia Wu, Yiming Shi, Jiwei Wei, Chengwei Sun, Yang Yang, and Heng Tao Shen. Difflora: Generating personalized low-rank adaptation weights with diffusion. *arXiv preprint arXiv:2408.06740*, 2024.
- Zhaofeng Xiao, William Held, Yutong Liu, and Diyi Yang. Task-agnostic low-rank adapters for unseen english dialects. In *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pp. 7857–7870. Association for Computational Linguistics, 2023. doi: 10.18653/v1/2023.emnlp-main.487.
- David Yunis, Kumar Kshitij Patel, Samuel Wheeler, Pedro Savarese, Gal Vardi, Karen Livescu, Michael Maire, and Matthew R Walter. Approaching deep learning through the spectral dynamics of weights. *arXiv preprint arXiv:2408.11804*, 2024.
- Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine really finish your sentence? *arXiv preprint arXiv:1905.07830*, 2019.
- Chris Zhang, Mengye Ren, and Raquel Urtasun. Graph hypernetworks for neural architecture search. *arXiv preprint arXiv:1810.05749*, 2018.

A APPENDIX

A.1 DETAILS FOR OBS-1

As shown in Figure 3, we provide more 9 representative tasks to compare with other 112 tasks on FLAN subset. We found that the full adaptation matrix similarity shows a consistent positive correlation with task description embedding similarity. This suggests that tasks with more semantically similar descriptions tend to produce more similar LoRAs, highlighting the presence of structure in the LoRA weight space. This observation also emphasizes the utility of the full full adaptation space, as it allows us to capture and exploit underlying similarities between tasks that may not be immediately apparent from the low-rank decomposition matrices. By designing weight space loss based on this similarity, we can better adapt models to generate new LoRA parameters.

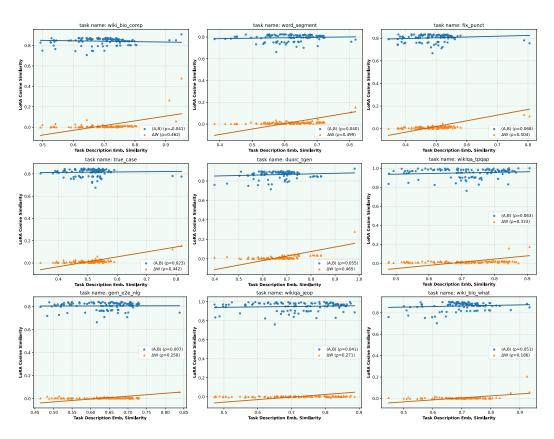


Figure 3: **Relation between LoRA similarity and task description embedding similarity.** Each panel shows the similarity between a representative task adapter and 112 adapters trained on a FLAN subset y-axis in the weight space against their similarity in the task embeddings space x-axis. LoRA cosine similarity measured in two ways: (i) computing cosine on the low-rank decomposition matrices A and B separately (blue dots); (ii) computing cosine on the full adaptation matrix $\Delta W = AB$ (orange triangles). Solid lines are trend line but not least-squares fits; legends report Spearman ρ .

A.2 ADDITIONAL RESULTS ON HYPERPARAMETERS AND STRUCTURAL EMBEDDING

The results on hyperparameters and structural embedding analysis are shown in Figure 4.

A.3 EFFICIENCY OF ADAPTER-LEVEL SUPERVISION

A natural concern is that supervising adapters directly (i.e. losses defined on $\Delta W = AB^{\top} \in \mathbb{R}^{d \times d}$) could be more expensive than reconstruction on $A, B \in \mathbb{R}^{d \times r}$. We clarify that our implementation

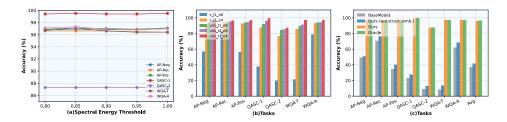


Figure 4: Performance of LoRAGen with different hyperparameters and removing structural embedding. Here, for the middle figure, s / uns denote shared or unshared MoE experts; t1 / t2 denote top-1 or top-2 routing strategies; e4 / e8 denote using 4 or 8 experts.

Loss term	Per-layer complexity
A, B reconstruction Direction (quadratic) Spectral (QR+SVD core)	$ \begin{array}{c} \mathcal{O}(dr) \\ \mathcal{O}(dr^2) \\ \mathcal{O}(dr^2 + r^3) \end{array} $

Table 5: Per-layer complexity of different adapter-level supervision terms. Both direction and spectral losses avoid explicit $\mathcal{O}(d^2)$ cost.

avoids any $\mathcal{O}(d^2)$ complexity by using a quadratic form, and thus remains comparable in cost to reconstruction loss.

Direction loss. The cosine similarity between two adapters can be computed efficiently as a quadratic form:

$$\langle \Delta W_1, \Delta W_2 \rangle_F = \text{tr}(A_1 B_1^\top B_2 A_2^\top) = \langle A_1, (B_1^\top B_2) A_2^\top \rangle_F,$$

with $\|\Delta W\|_F^2 = \operatorname{tr}(A^\top A B^\top B)$. This requires only $d \times r$ and $r \times r$ multiplications, yielding complexity $\mathcal{O}(dr^2)$ instead of $\mathcal{O}(d^2)$. Hence the direction loss is no more expensive than elementwise reconstruction.

Spectral loss. For the spectral loss, we never compute an SVD of the full $d \times d$ adapter. Instead, we compute a reduced QR decomposition. This reduces the problem to an $r \times r$ core matrix $K = R_A R_B^{\mathsf{T}}$, on which we perform SVD. The resulting complexity is $\mathcal{O}(dr^2 + r^3)$, avoiding any $\mathcal{O}(d^2)$ cost.

Complexity comparison. Table 5 reports the per-layer complexities. Both direction and spectral losses are implemented in quadratic or QR decomposition form, avoiding explicit $\mathcal{O}(d^2)$ cost. The overhead relative to element-wise reconstruction loss is bounded by a factor of r, which is small in practice.

A.4 TRAINING AND EVALUATION DATASETS FOR ZERO-SHOT GENERATION

As shown in Figure 5 and Figure 6, we conduct zero-shot generation experiment on 136 training tasks and 7 evaluating tasks from FLAN subset. These evaluated tasks are seperate from the training datasets.

A.5 TASK DESCRIPTIONS GENERATED BY A LARGE LANGUAGE MODEL

We automate task description generation for each task by leveraging Deepseek¹. We query its model with carefully constructed prompts that incentivize diversity to facilitate downstream generalization as shown in Figure 7. In particular, we generate 20 descriptions per task. Figure 8 presents representative examples of task descriptions employed in our experiments.

¹https://www.deepseek.com

```
810
                                                                                                                                                                               Training Tasks
811
                                                                                                                                                                                                   "lorahub, flan 15, large-adversarial, qa_dbidaf_based_on",
"lorahub, flan 15, large-adversarial, qa_dbert_question_context_answer",
"lorahub, flan 15, large-adversarial qa_droberta_based_on",
"lorahub flan 15 large-adversarial qa_droberta_based_on",
"lorahub flan 15 large-adversarial qa_dbidaf_question_context_answer",
"lorahub flan 15 large-adversarial qa_dbidaf_question_context_answer",
"lorahub flan 15 large-adversarial qa_dbert_tell_what It_ls",
"lorahub flan 15 large-adversarial qa_dbert_answer_the_following_q",
"lorahub, flan 15 large-adversarial qa_dbert_answer_the_following_q",
"lorahub, flan 15 large-adversarial qa_dboter_tanswer_the_following_q",
"lorahub, flan 15 large-adversarial qa_dboter_tanswer_two.")
"lorahub, flan 15 large-adversarial qa_droberta_question_context_answer_",
"lorahub, flan 15 large-adversarial qa_drober
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  "lorahub_flan_t5_large-wiki_hop_original_generate_object",
"lorahub_flan_t5_large-kilt_tasks_hotpota_complex_question",
"lorahub_flan_t5_large-kilt_tasks_hotpota_flan_el_exam",
"lorahub_flan_t5_large-wiqa_what_is_the_final_step_of_the_following_process",
"lorahub_flan_t5_large-ropes_prompt_bottom_hint_beginning",
"lorahub_flan_t5_large-acue_indide_Select_the_best_answer",
"lorahub_flan_t5_large-acue_indide_Select_the_best_answer",
"lorahub_flan_t5_large-spocial_ica_flower_flan_enswer_select",
"lorahub_flan_t5_large-spocial_ica_flower_flan_enswer_select",
"lorahub_flan_t5_large-spocial_ica_flower_flan_enswer_select",
"lorahub_flan_t5_large-spocial_ica_flower_flan_enswer_select",
"lorahub_flan_t5_large-spocial_ica_flower_flan_enswer_select",
"lorahub_flan_t5_large-spocial_ica_flower_flan_enswer_select",
"lorahub_flan_t5_large-spocial_ica_flower_flan_enswer_select_ica_flower_flan_enswer_select_ica_flower_flan_enswer_select_ica_flower_flan_enswer_select_ica_flower_flan_enswer_select_ica_flower_flan_enswer_select_ica_flower_flan_enswer_select_ica_flower_flan_enswer_select_ica_flower_flan_enswer_select_ica_flan_enswer_select_ica_flower_flan_enswer_select_ica_flan_enswer_select_ica_flower_flan_enswer_select_ica_flan_enswer_select_ica_flower_flan_enswer_select_ica_flower_flan_enswer_select_ica_flower_flan_enswer_select_ica_flan_enswer_select_ica_flower_flan_enswer_select_ica_flan_enswer_select_ica_flower_flan_enswer_select_ica_flower_flan_enswer_select_ica_flan_enswer_select_ica_flan_enswer_select_ica_flower_flan_enswer_select_ica_flower_flan_enswer_select_ica_flower_flan_enswer_select_ica_flower_flan_enswer_select_ica_flower_flan_enswer_select_ica_flower_flan_enswer_select_ica_flower_flan_enswer_select_ica_flower_flan_enswer_flan_enswer_flan_enswer_flan_enswer_flan_enswer_flan_enswer_flan_enswer_flan_enswer_flan_enswer_flan_enswer_flan_enswer_flan_enswer_flan_enswer_flan_enswer_flan_enswer_flan_enswer_flan_enswer_flan_enswer_flan_enswer_flan_enswer_flan_enswer_flan_enswer_flan_enswer_flan_enswer_flan_enswer_flan_enswe
813
814
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Torahub flan 15 large-social i ga Check if a random answer is valid or not", Torahub flan 15 large-soep prompt mix", "
Torahub flan 15 large-soep sprompt segion sprompt spr
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      "lorahub_flan_t5_large-social_i_qa_Check_if_a_random_answer_is_valid_or_not",
"lorahub_flan_t5_large-ropes_prompt_mix",
815
816
                                                                                                                                                                                                   "lorahub, flan, 15, large-adversarial qa, droberta, question, context_answer", 
"lorahub, flan, 15, large-amazon_polarity, user, satisfied", 
"lorahub, flan, 15, large-app_reviews_convert_to_rating_using_review", 
"lorahub, flan, 15, large-amazon_polarity_negative_or_positive_tone", 
"lorahub, flan, 15, large-amazon_polarity_negative_or_positive_sentiment", 
"lorahub, flan, 15, large-amazon_polarity_would_you_buy", 
"lorahub, flan, 15, large-amazon_polarity_ls, this_review", 
"lorahub, flan, 15, large-polarity_reviews", 
"lorahub, flan, 15, large-glue_wnili", 
"lorahub, flan, 15, large-glue_wnili", 
"lorahub, flan, 15, large-glue_wnili", 
"lorahub, flan, 15, large-glue_stbb", 
"lorahub, flan, 15, large-glue_stb
817
818
819
820
821
                                                                                                                                                                                         'lorahub flan 15 large-glue stsb",
lorahub flan 15 large-glue cola",
lorahub flan 15 large-glue mpro",
lorahub flan 15 large-glue mpro",
lorahub flan 15 large-glue mpro",
lorahub flan 15 large-glue sst2",
lorahub flan 15 large-super glue wio",
lorahub flan 15 large-super glue wio",
lorahub flan 15 large-dupe and in combined facts 1",
lorahub flan 15 large-dupedia 14 given a choice of categories ",
lorahub flan 15 large-dupedia 14 given a choice of categories ",
lorahub flan 15 large-dupedia 14 given la choice of category bees the paragraph belong to",
lorahub flan 15 large-dupedia 14 given list what category does the paragraph belong to",
lorahub flan 15 large-acs, qa with separated facts 4",
lorahub flan 15 large-acs, qa with separated facts 5",
lorahub flan 15 large-acs, qa with separated facts 5",
lorahub flan 15 large-acs, qa with separated facts 3",
lorahub flan 15 large-acs, qa with separated facts 3",
lorahub flan 15 large-acs, qa with separated facts 3",
lorahub flan 15 large-acs, qa with separated facts 3",
lorahub flan 15 large-acs, qa with separated facts 1",
lorahub flan 15 large-acs, da with separated facts 1",
lorahub flan 15 large-acs, da with separated facts 3",
lorahub flan 15 large-acs, da with separated facts 3",
lorahub flan 15 large-acs, da with separated facts 1",
lorahub flan 15 large-acs, da with separated facts 1",
lorahub flan 15 large-acs, da with separated facts 1",
lorahub flan 15 large-acs, da with separated facts 1",
lorahub flan 15 large-acs, da with separated facts 1",
lorahub flan 15 large-acs, da with separated facts 1",
lorahub flan 15 large-acs, da with separated facts 1",
lorahub flan 15 large-acs, da with separated facts 1",
lorahub flan 15 large-acs, da with separated facts 1",
lorahub flan 15 large-acs, pa with separated facts 1",
lorahub flan 15 large-acs, pa with separated facts, 3",
lorahub flan 15 large-acs, pa with separated facts, 3",
lorahub flan 15 large-acs, pa with separated facts, 3",
lorahub flan 15 large-acs, pa with separated facts, 3",
lorahub flan 15 larg
                                                                                                                                                                                                          "lorahub_flan_t5_large-glue_stsb"
"lorahub_flan_t5_large-glue_cola"
822
   823
824
   825
828
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               "lorahub, flan, 15, large-quoref, Read, And, Extract,",
'lorahub, flan, 15, large-race, liph), 1s, this, her right, answer',
'lorahub, flan, 15, large-qual, context, question, answer, description_id",
'lorahub, flan, 15, large-wale, effect, with, label, answer',
'lorahub, flan, 15, large-wale, effect, with, label, answer',
'lorahub, flan, 15, large-wale, which, of the following, is, the supposed_perturbation',
'lorahub, flan, 15, large-duore, SelfRC, movie, director',
'lorahub, flan, 15, large-wiqa, what, might, be, the last step, of the, process',
'lorahub, flan, 15, large-wiqa, what, is, the missing, first, step",
'lorahub, flan, 15, large-wiqa, what, is, the missing, first, step",
'lorahub, flan, 15, large-wiqa, what, is, the missing, first, step",
'lorahub, flan, 15, large-wiqa, ParaphraseRC, movie, director',
'lorahub, flan, 15, large-wiqa, ParaphraseRC, movie, director',
'lorahub, flan, 15, large-wiqa, ParaphraseRC, movie, director',
'lorahub, flan, 15, large-duore, ParaphraseRC, movie, director',
   829
830
831
832
   833
                                                                                                                                                                                                          "lorahub_flan_t5_large-wiki_hop_original_generate_subject_and_object",
"lorahub_flan_t5_large-duorc_ParaphraseRC_answer_question",
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  "lorahub_flan_t5_large-duorc_ParaphraseRC_movie_director 
"lorahub_flan_t5_large-duorc_SelfRC_answer_question",
834
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            "lorahub flan, IS large-wiki, hop, original generate subject",
"lorahub flan, IS large-udi description context question answer_id",
"lorahub flan_15 large-sciq, Multiple_Choice",
"lorahub flan_15 large-sciq, Multiple_Choice",
"lorahub flan, IS large-scid, I qa Show, choices and generate index
"lorahub flan, IS large-quoref Answer, Question Given, Context",
"lorahub flan, IS large-quoref Answer, Question, Given, Context",
"lorahub flan, IS large-area, legis, Select Lite, best_answer,
"lorahub flan, IS large-para, crawl, enes",
"lorahub flan, IS large-para, crawl, enes",
"lorahub flan, IS large-gem, web_nlg_en",
"lorahub flan, IS large-gem, web_nlg_en",
"lorahub flan, IS large-gem, wiki",
"lorahub flan, IS large-quarel [lasting_students",
"lorahub flan, IS large-quarel [lesting_students",
"lorahub flan, IS large-quarel [logic_lest",
                                                                                                                                                                                                   "lorahub, flan, 15, Jarge-quoi Lontext, description, question, answer, text",
"lorahub, flan, 15, Jarge-race, middle Select, the, best, answer, generate, span,",
"lorahub, flan, 15, Jarge-social, i. qa. Show, choices, and generate_answer",
"lorahub, flan, 15, Jarge-quoref_Context_Contains_Answer",
"lorahub, flan, 15, Jarge-quoref_Lorahub, flan, 15, Jarge-ropes, background, situation, middle",
"lorahub, flan, 15, Jarge-duore, felect, with, string, answer",
"lorahub, flan, 15, Jarge-duore, ParaphraseRC, decide, worth, it",
"lorahub, flan, 15, Jarge-wiki, qa. Topic, Prediction, Question, Only",
"lorahub, flan, 15, Jarge-wiki, qa. Topic, Prediction, Question, Only",
"lorahub, flan, 15, Jarge-quoi _SelfRC, tittle_generation",
"lorahub, flan, 15, Jarge-quoi _context, question, description_answer_text",
"lorahub, flan, 15, Jarge-quoi _context, question, description_answer_text",
"lorahub, flan, 15, Jarge-quoi _iph, Write, a. mutill, choice question, options given
                                                                                                                                                                                                          "lorahub_flan_t5_large-quail_context_description_question_answer_text"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  "lorahub flan t5 large-wiki hop original generate subject
835
836
837
838
839
   840
                                                                                                                                                                                                          "lorahub_flan_t5_large-race_high_Write_a_multi_choice_question_options_given_",
"lorahub_flan_t5_large-quoref_Given_Context_Answer_Question",
                                                                                                                                                                                                      "lorahub_flan_t5_large-quail_no_prompt_text",
"lorahub_flan_t5_large-wiki_qa_Jeopardy_style"
"lorahub_flan_t5_large-wiqa_does_the_suppose
841
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  "lorahub_flan_t5_large-quarel_logic_test",
"lorahub_flan_t5_large-quarel_choose_between",
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  ,
ed_perturbation_have_an_effect",
                                                                                                                                                                                                      "lorahub_flan_t5_large-ropes_plain_background_situation"
843
```

Figure 5: Training tasks from FLAN dataset used for training the LoRAGen model

A.6 DETAILS OF EXPERIMENT SETUP

More details about the diffusion architecture, baseline settings hyperparameter settings, training details and implementation of weight space loss and module-aware MoE decoder can be found in the anonymous repository https://anonymous.4open.science/r/LoRAGen-02C0.

A.7 LLM USAGE

 We utilized ChatGPT-40 ² to refine the content based on our original writing. All revised text was subsequently reviewed and verified by us. The natural language task descriptions we used are generated by DeepSeek ³. All code has undergone comprehensive testing to ensure its reliability.

²https://chatgpt.com

³https://www.deepseek.com

Validation Tasks

```
"lorahub_flan_t5_large-amazon_polarity_User_recommend_this_product",
"lorahub_flan_t5_large-amazon_polarity_Is_this_product_review_positive",
"lorahub_flan_t5_large-qasc_is_correct_1",
"lorahub_flan_t5_large-qasc_is_correct_2",
"lorahub_flan_t5_large-wiki_qa_Is_This_True_",
"lorahub_flan_t5_large-wiki_qa_automatic_system"
```

Figure 6: Validation tasks used during the training the LoRAGen model

964

```
920
921
922
923
924
925
926
             Prompt
927
928
             ## Objective
             For every LoRA adapter directory, construct a clean list of task descriptions and turn them into a single sentence-level
929
             embedding.
930
             The generator reads curated descriptions from YAML, applies light normalization, matches them by name, and averages T5
931
             sentence embeddings.
932
             ## Inputs
933
             - **--yaml_root**: directory with one subfolder per task; each contains `metadata.yaml` with a descriptions list.
934
              - **--logs_root**: Stage-1 checkpoint tree (used to load the VAE encoder for latents; text generation is file-driven).
935
              - **--strip_generic**: remove leading boilerplate like "The task is / involves / requires ...
936
              - **--text_pooling {mean, first}**: sentence pooling for T5 (mean is mask-aware and default).
937
             ## Procedure
938
             1. **Scan YAML repository**
939
              For each subfolder under 'yaml_root', load 'metadata.yaml' and read descriptions. Skip if missing.
940
             2. **Optional light normalization**
941
              If `--strip_generic`, strip only the leading boilerplate using a regex and keep the substantive remainder.
             3. **Build multi-key alias map*
942
              Register the cleaned descriptions under:
943
               - `<entry>
944
               - `lorahub_flan_t5_large-<entry>`
              - `lorahub_flan_t5_large_<entry>`
945
             4. **Iterate LoRA adapters**
946
              For each `.../flan_t5_large_lora/<task_key>/adapter_model.bin`, resolve descriptions by probing name variants (prefix
947
              removal and `-`/`_` swaps).
               - **Fallback**: if no hit, use `[task_key]` as the only description and log the miss.
948
             5. **Encode with T5**
949
              - Tokenize each description, run `T5EncoderModel`.
950
               - Pool to a sentence vector via:
951
               - mean pooling (default), or
                - first token pooling.
952
               - Average across all descriptions → one 1024-d text embedding per task.
953
             6. **Normalize save key*
954
               Drop `lorahub_flan_t5_large-/_` prefix to form the canonical task name and save:
                ```json
955
956
 "task_name": "<canonical_name>",
957
 "text_embedding": "<1024-d tensor>",
 "latent": "<288 x latent_dim tensor>"
958
959
 ## Output
960
 One PyTorch file per experiment, e.g.:
 e_000996_with_task_name_vae_task_172_latent_288_64_embed 1024.pt
961
 Mapping canonical task names to averaged text embeddings (plus latents produced in the same pass).
962
963
```

Figure 7: The prompt template used by our pipeline for task descriptions.

# Task descriptions

#### adversarial\_qa\_dbert\_answer\_the\_followi

- · The task involves reading a passage and answering a question based on the information provided in the text.
- · The task requires identifying specific details from a given passage to answer a question.
- The task is about locating exact information within a text to respond to a direct question.

#### adversarial\_qa\_dbidaf\_answer\_the\_following\_q

- · The task is to locate the answer to a question within a provided passage.
- The task requires finding the exact words or phrases in a passage that answer a question.
- The task is about answering questions by referring to specific details in a text.

# $adversarial\_qa\_droberta\_question\_context\_answer$

- The task requires matching questions with relevant facts from the given context.
- The task is about locating key details in a text to answer a direct question.
- The task involves reasoning about a passage to derive the correct answer.

# adversarial\_qa\_dbert\_based\_on

- The task involves finding specific information in a given text to answer a direct question.
- The task requires identifying key details from a passage that directly respond to a question.
- The task is about locating exact answers within a provided context based on a question.

Figure 8: Examples of task descriptions generated by our pipeline.