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ABSTRACT

The widespread adoption of Low-Rank Adaptation (LoRA) for efficient fine-
tuning of large language models has created demand for scalable parameter gen-
eration methods that can synthesize adaptation weights directly from task descrip-
tions, avoiding costly task-specific training. We present LoRAGen, a structure-
aware method for generating LoRA parameters from natural language descrip-
tions. Through empirical analysis of LoRA libraries, we identify two key struc-
tural properties of LoRA parameter spaces: non-uniqueness of low-rank decom-
position and heterogeneous weight distributions across network modules. These
properties necessitate specialized parameter generation methods rather than gen-
eral weight space learning approaches. LoRAGen employs a latent diffusion
model with two innovations: weight-space supervision on full adaptation matri-
ces to handle decomposition non-uniqueness, and a module-aware Mix-of-Experts
decoder that adapts to module-specific weight distributions. Experiments show
LoRAGen achieves 96.0% performance relative to task-specific LoRAs on FLAN-
T5-large and 72.7% on Gemma-2-2B-Instruct for in-distribution tasks, while ob-
taining 40.2% on zero-shot generation across unseen tasks—surpassing baselines
by nearly 5%. Our work establishes the first structure-aware approach to LoRA
generation with insights into adaptation weight space geometry.

1 INTRODUCTION

Exploring the weight space of neural networks, i.e., the high-dimensional parameter space spanned
by populations of trained networks, has emerged as a powerful paradigm for understanding model
mechanisms and enabling novel applications. Parameter generation, which trains models to produce
weights for target networks, represents a particularly promising direction that has gained significant
attention in recent years (Schürholt et al., 2021b; Schürholt et al., 2022; Schürholt et al., 2024a;
Wang et al., 2024). The rise of large language models (LLMs) has created opportunities to apply
parameter generation techniques in this domain, particularly through Low-Rank Adaptation (LoRA)
(Hu et al., 2022) generation, the direct synthesis of LoRA parameters for efficient fine-tuning. While
traditional LoRA workflows require task-specific training with custom datasets and hyperparame-
ters, creating engineering overhead and limiting reusability (He et al., 2022a; Lv et al., 2024), LoRA
generation enables direct parameter synthesis from natural language task descriptions, improving
scalability and unlocking adaptive model behavior without maintaining extensive adapter libraries.

Recent work generates LoRA parameters conditioned on task identifiers, datasets, or natural lan-
guage task descriptions. A common design involves learning a hypernetwork—a neural network
that generates parameters for another base network (Ha et al., 2016). With advances in deep gen-
erative models, one category of approaches learns a lower-dimensional representation directly from
the weight space and decodes this latent representation into LoRA parameters (Shao et al., 2025b).
However, the underlying encoder-decoder model must encode the entire LoRA parameters at once
into the learned latent representation, which limits the size of LoRA that can be embedded. Another
category learns a conditional diffusion prior over the latent space to generate LoRA parameters from
random noise based on specific task conditions at test time, but these approaches struggle to generate
well-performing LoRA parameters across diverse architectures and datasets (Jin et al., 2024; Liao
et al., 2024; Wu et al., 2024; Soro et al., 2025). A recent work, Text-to-LoRA (T2L) (Charakorn
et al., 2025c), employs a hypernetwork trained to construct LoRA parameters in a single inexpensive
forward pass, enabling zero-shot generation for entirely unseen tasks based on the hypothesis that
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Figure 1: Two empirical observations. Left: Task description embedding similarity versus LoRA
parameter similarity (measured by full adaptation matrix and low-rank decomposition matrix, re-
spectively). Right: Spectral-entropy distributions of LoRA parameters for FLAN-T5-large,
grouped by module type: encoder self-attention, decoder self-attention, and cross-attention.

different LoRAs share the same adaptation mechanism and can be optimized without explicit struc-
ture. However, these methods treat LoRA parameter generation as an instantiation of general weight
space learning approaches Schürholt et al. (2024a); Wang et al. (2024), while lacking a tailored
design specifically for LoRA characteristics.

In this work, we begin with an empirical analysis of a LoRA library built on the Transformer-based
model FLAN-T5-large(Chung et al., 2024) (Figure 1). Our analysis reveals the non-uniqueness
of low-rank decomposition as a key challenge. As shown in Figure 1 (left), we observe a clear
positive correlation between adapter similarity in the weight space and task description embedding
similarity, but we find no correlation between the cosine similarity of low-rank decomposition matri-
ces and task description embedding similarity. This suggests that supervision in the full adaptation
matrix space should generalize better than element-wise reconstruction. However, most LoRA gen-
erators reconstruct low-rank decomposition matrices directly (Ha et al., 2016; Jin et al., 2024; Liao
et al., 2024; Soro et al., 2025; Charakorn et al., 2025c; Lv et al., 2024), which can make training
sensitive to arbitrary rescalings or rotations of the low-rank decomposition matrices that produce the
same full adaptation matrix (Gabrielsson et al., 2024). Additionally, in Figure 1 (right), we identify
significant heterogeneity in LoRA weight distributions across different modules. The spectral-
entropy (Yunis et al., 2024; Roy & Vetterli, 2007) distributions differ systematically by module type
within FLAN-T5-large: encoder self-attention exhibits higher entropy, decoder self-attention
shows the lowest entropy, and cross-attention lies in between, indicating heterogeneous weight dis-
tributions across parts of the base model. However, existing methods typically use a single decoder
across modules (Lv et al., 2024; Charakorn et al., 2025c), which overlooks the module structure
(Ostapenko et al., 2024) and can mismatch the spectral-entropy distributions.

Motivated by the two empirical observations that reveal distinct properties of the LoRA weight
space, we introduce LoRAGen, a method that generates LoRA parameters from natural-language
task descriptions for structure-aware LoRA weight space learning. Specifically, we use a LoRA
weight autoencoder (LAE) to learn a latent space over LoRA parameters and a conditional latent
diffusion model conditioned on natural language task descriptions to generate latent representations
from random noise, followed by a decoder that processes these generated representations to produce
new LoRA parameters. To address the non-uniqueness issue, we supervise the full adaptation matrix
directly rather than the low-rank decomposition matrices, proposing two weight space loss terms: a
direction loss and a spectral loss on the full adaptation matrix. This avoids sensitivity to rescalings
or rotations of low-rank decomposition matrices that yield the same full adaptation matrix, leading
to more consistent and task-relevant weight space learning. To address the heterogeneity of weight
distributions, we introduce a module-aware Mix-of-Experts (MoE) decoder with routing that uses
a structural embedding combining a latent variable with learnable module and layer embeddings.
This allows experts to specialize to the observed module-specific weight distribution patterns while
ensuring a controlled sharing mechanism via the chosen expert pool configuration, facilitating gen-
eralization across different architectures of the base model.

Our key contributions are: (1) We propose the first structure-aware weight learning method tailored
to the LoRA weight space, enabling effective LoRA parameter generation for diverse downstream
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tasks. (2) LoRAGen introduces weight-space losses on the full adaptation matrix to address non-
uniqueness of low-rank decomposition and employs a module-aware MoE decoder to model het-
erogeneous LoRA weight distributions. (3) LoRAGen achieves strong in-distribution LoRA gener-
ation performance close to task-specific LoRAs across architectures: 96.0% on FLAN-T5-large,
72.7% on Gemma-2-2B-Instruct and further achieves 40.2% in zero-shot LoRA generation on
seven unseen tasks, surpassing competitive baselines by nearly 5%.

2 RELATED WORK

Weight Space Learning for Parameter Generation. Research on weight space learning has fol-
lowed two main directions: predicting model properties from trained weights (Schürholt et al.,
2021c; Unterthiner et al., 2020) and generating new parameters for neural networks (Eilertsen et al.,
2020; Schürholt et al., 2022; 2024b). Here, we focus on parameter generation. With advances in
deep generative models, one category of approaches learns a latent representation directly over pop-
ulations of trained models and decodes this latent representation to generate parameters (Berardi
et al., 2022). Another category employs conditional latent diffusion models to generate target pa-
rameters (Peebles et al., 2022; Soro et al., 2024). Recent studies introduce graph-based encoders that
treat networks as graphs and enable parameter generation across architectures (Kofinas et al., 2024).
These approaches have been applied in areas such as meta-learning, transfer learning, and model
compression (Finn et al., 2017; Nava et al., 2022; Wang et al., 2023). Overall, these approaches
exploring parameter generation in weight space (Peebles et al., 2022; Berardi et al., 2022; Schürholt
et al., 2024b) demonstrate the feasibility of parameter generation across architectures and datasets.

Hypernetworks for LoRA Generation. A hypernetwork is a neural network designed to gener-
ate the parameters of another “base” network, providing an indirect encoding of the base model’s
weights (Ha et al., 2016; Zhang et al., 2018; Schug et al., 2025). With the development of deep
generative models, one category of approaches (Shao et al., 2025a) learns conditional latent repre-
sentations of pretrained LoRA parameters for new LoRA parameter generation. Another category
employs conditional latent diffusion priors over latent space (Wu et al., 2024; Jin et al., 2024; Soro
et al., 2024), enabling the generation of task-specific LoRA parameters. Recently, hyperLoRA Lv
et al. (2024) employs instruction-tuned hypernetworks with constrained loss and demo selection to
produce stable and generalizable adapters. While these approaches have advanced multi-task LLM
adaptation, they typically rely on learned task identifiers, limiting their capacity for zero-shot LoRA
parameter generation to unseen tasks Ivison & Peters (2022); Mahabadi et al. (2021); He et al.
(2022b); Schürholt et al. (2021a); Ortiz-Barajas et al. (2024); Lv et al. (2024). Recent work explores
natural language as conditioning signals for zero-shot generation Xiao et al. (2023); Ivison et al.
(2023); Phang et al. (2023), with T2L (Charakorn et al., 2025a) utilizing hypernetworks to generate
LoRA adapters from task descriptions. However, existing methods treat LoRA generation as a gen-
eral weight space learning problem, overlooking the unique structural properties of LoRA parameter
spaces. In contrast, LoRAGen is the first weight space learning approach that specifically accounts
for the structural characteristics of LoRA spaces, leading to more effective parameter generation.

3 PRELIMINARIES

Low-Rank Adaptation (Hu et al., 2022): Low-rank matrix ∆W serves as a adapter to a base
model. For a pretrained weight matrix W0, the fine-tuned linear transformation is given by h =
W0 +∆W = W0 +BA, where A∈Rr×din and B∈Rdout×r are low-rank decomposition matrices
with r ≪ min{din, dout}. We ignore the module type and layer index of the LoRA parameters
when referring to all LoRA parameters. Therefore we index them by a module type m ∈ M
(e.g., query projection) and a layer index ℓ ∈ {1, . . . , Lm}. A LoRA adapter at each location
(m, ℓ) specifies a low–rank matrix ∆Wm,ℓ = Bm,ℓ Am,ℓ. We denote the low-rank adapter by
∆W :=

{
∆Wm,ℓ

}
m∈M, 1≤ℓ≤Lm

. Note that the low–rank decomposition is not unique: for any
invertible matrix R∈Rrm,ℓ×rm,ℓ , (Bm,ℓR)(R−1Am,ℓ) produces the same low-rank matrix ∆Wm,ℓ.

Problem setting. We assume an LoRA library of pairs D = {(x(i),∆W (i))}Ni=1, where x(i) is
a natural language description of task t(i) and ∆W (i) = {∆W

(i)
m,ℓ} represents the fine-tuned low-

rank adapter for task t(i). Our goal is to train a LoRA generator using D that produces new LoRA
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parameters ∆̂W
′
given a natural language task description x′, where x′ may be either in-distribution

(from D) or out-of-distribution (unseen tasks).

4 THE PROPOSED METHOD: LORAGEN

4.1 DESIGN PRINCIPLES FROM EMPIRICAL OBSERVATIONS

We first summarize two obeservations (Obs) over a library of low-rank adapters (two panels in
Figure 1), which motivates our tailored design in LoRAGen. The details of observations experiment
implementation is reported at the Appendix A.1.

Obs-1: Non-uniqueness of the low-rank decomposition. Here we focus on the non-uniqueness
property of low-rank decompositions in LORA. Specifically, we examine a LoRA library trained
on FLAN-T5-large. While ∆W is uniquely defined as a full adaptation matrix, its low-rank
decomposition matrices (A,B) is not unique, illustrated in Sec. 3. This property motivates the
following hypothesis: if we supervise the low-rank decomposition matrices (A,B) directly, like
element-wise reconstruction, training becomes sensitive to arbitrary rescalings and rotations that
still yield the same full adaptation matrix ∆W . By supervising the full adaptation matrix itself, we
avoid this ambiguity and directly align the generated adapters with the pretrained adapters in the
full adaptation matrix space, which should lead to more consistent and task-relevant weight space
learning.

Figure 1 (left) tests this hypothesis by showing the similarity between a representative task LoRA
adapter and 112 adapters trained on a FLAN subset in the weight space against their similarity in
the task embeddings space. To measure adapter similarity, we compute the cosine similarity of the
concatenation of flattened low-rank A and B matrices of all layers and flattened ∆W respectively.
We observe a clear positive correlation between the task embedding similarity and the adapter sim-
ilarity similarity in the weight space but we find no correlation between the the cosine similarity of
low-rank decomposition matrices and the task embedding similarity indicated by near-zero Spear-
man correlation coefficients. This phenomenon aligns with the non-uniqueness property of low-rank
decompositions in LoRA and suggests that supervision in the full adaptation matrix space should
generalize better than element-wise reconstruction.

Motivated by Obs-1, we therefore introduce adapter-level supervision (Sec. 4.3), where losses are
defined directly in the weight space of ∆W . Concretely, we introduce two weight space loss terms,
combining a direction loss Lang (Eq. 1) that aligns normalized LoRA directions, with a spectral loss
Lspec (Eq. 2) that matches leading singular values. These objectives enforce task-consistent LoRA
generation while remaining robust to the inherent non-uniqueness of low-rank decompositions.

Obs-2: Heterogeneity of LoRA weight distributions. Here we focus on the heterogeneity
of LORA weight distributions across different module types in a transformer-based architecture,
specifically the FLAN-T5-large model, which serves as the base model for LoRA adapters.
For each adapter ∆Wm,ℓ at a module–layer location (m, ℓ), we analyze how its Frobenius en-
ergy is distributed across singular directions. Let {σi} denote the singular values of ∆Wm,ℓ

and define the normalized spectrum pi = σ2
i /

∑
j σ

2
j . We then compute the spectral entropy

Hspec(∆Wm,ℓ) = −
∑

i pi log pi, which quantifies the uniformity of energy over directions: low
entropy indicates that the energy concentrates in a few dominant directions, indicating effectively
lower rank structure, whereas high entropy corresponds to a more even spread of energy (Yunis
et al., 2024; Roy & Vetterli, 2007).

Figure 1 (right) reports the spectral-entropy distributions for three module types in
FLAN-T5-large: Encoder self-attention, Decode self-attention, and Cross-Attention. We ob-
serve systematic differences across modules: encoder adapters exhibit higher spectral entropy which
means energy spread over more directions, decoder self-attention shows the lowest entropy with
more concentrated and effectively lower-rank structure, and cross-attention lies in between. This pat-
tern implies that LoRA weight distributions are not homogeneous across the network which means
the way energy is distributed over singular directions differs consistently by module type.

4
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Figure 2: Overall framework of LoRAGen. Our approach consists of two stages: First, we train
hypernetwork based on LoRA weight autoencoder to encode and reconstruct LoRA parameters,
and diffusion process conditioned on natural language task descriptions to predict denoised latent.
Second, random noise and un/seen natural language task descriptions are fed into LoRAGen to
generate LoRA parameters, which can be incorporated with the LLM to evaluate downstream tasks.

Motivated by Obs-2, we employ a module-aware MoE decoder (Sec. 4.4)to match these module-
specific patterns of energy distributions. Specifically, routing is conditioned on a structural embed-
ding that combines a latent variable with learnable module and layer embeddings. The decoder can
operate with either (i) a single shared expert pool for all locations or (ii) separate expert pools per
module type (e.g., encoder attention). Per-module output heads Hm map the gated expert outputs
into LoRA parameters ∆̂Wm,ℓ. This architecture lets experts specialize to the observed module-
specific energy distribution patterns (e.g., lower-entropy/low-rank tendencies in Decoder-Self ver-
sus higher-entropy Encoder), while the router and the chosen pool configuration ensures controlled
sharing mechanism without losing module-specific specialization.

4.2 METHOD OVERVIEW

As shown in Figure 2, the overall framework of LoRAGen can be divided into two stages: First,
we train a hypernetwork, which consists of LoRA weight autoencoder (LAE) and diffusion pro-
cess, to learn the inner structure of LoRA parameters in the LoRA weight space. For LAE(Eϕ,Dθ)
trained on given LoRA parameters ∆W , the encoder Eϕ produces per-location latents with a diago-
nal–Gaussian posterior and the MoE decoder Dθ (Sec. 4.4) decodes latent z to full LoRA paramters
∆̂W . Note that at training LAE stage, we add two weight space losses terms defined on ∆Wm,ℓ

(Sec. 4.3). In the diffusion process, the noised latent is processed by a diffusion transformer condi-
tioned on embeddings of natural language task descriptions to predict denoised latent. The details
of diffusion process is reported in the Appendix A.6.

Second, we feed task descriptions and random noise into the diffusion transformer to produce the
output denoised latents followed by passing by the frozen MoE Decoder from stage-1 to generate
the full LoRA parameters, which can be applied to the LLM to perform the intended task.

4.3 ADAPTER-LEVEL SUPERVISION IN LORA WEIGHT SPACE

Distinct pairs of low-rank decomposition matrices (A,B) produce the same low-rank adapter
∆W . If we choose to generate A and B separately, the LoRA generator must to commit to
a specific decomposition of ∆W , even though many different low-rank decomposition matrices
produce the identical adapter. To avoid this ambiguity induced by non-uniqueness property of
the low-rank decomposition, we directly add supervision signal at the level of low-rank adapter
∆̂Wm,ℓ = Dθ(z)m,ℓ, and introduce two weight space loss terms: (i) a direction loss based on co-
sine similarity that depends on the low-rank adapters after normalizing their Frobenius norm. (ii)
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a spectral loss that matches the leading singular values of the predicted and pretrained low-rank
adapters.

Direction loss. Because many pairs of low-rank decomposition matrices (A,B) produce the same
low-rank adapter ∆W , supervising A and B individually can introduce arbitrary differences in the
Frobenius norm of ∆W . To make supervision insensitive to it, we normalize both the predicted and
target low-rank adapters to unit Frobenius norm and compare their directions directly to capture the
per-task direction. Thus we introduce a direction loss that measures the angular mismatch between
the predicted and target low-rank adapters:

Lang(m, ℓ) = 1− ⟨∆̂Wm,ℓ,∆Wm,ℓ⟩F
∥∆̂Wm,ℓ∥F ∥∆Wm,ℓ∥F

. (1)

where ⟨·, ·⟩F denotes the Frobenius inner product and ∥ · ∥F is the Frobenius norm.

Spectral loss. Direction supervision does not capture how the squared Frobenius norm is dis-
tributed across the singular spectrum. Two low-rank adapters can have similar cosine similarity
yet differ in their leading singular values, i.e., in the proportion of the squared Frobenius norm ex-
plained by the top singular directions. To account for this, we introduce a spectral loss that matches
the leading singular values of the two low-rank adapters:

Lspec(m, ℓ) =
∥∥∥σ1:km,ℓ

(
∆̂Wm,ℓ

)
− σ1:km,ℓ

(
∆Wm,ℓ

)∥∥∥
p,ωm,ℓ

(2)

where (i) σi(X) denotes the i-th singular value of X , and σ1:k(X) := (σ1(X), . . . , σk(X)) lists
the top-k values in nonincreasing order; (ii) rm,ℓ is the LoRA rank at location (m, ℓ), and km,ℓ ∈
{1, . . . , rm,ℓ} is the smallest integer such that the top-k singular values of the target low-rank adapter
explain at least a fraction ρ ∈ (0, 1) of its squared Frobenius norm. (iii) ∥u∥p,ω is a weighted ℓp
norm with p ∈ {1, 2}; (iv) ωm,ℓ = (ωm,ℓ,1, . . . , ωm,ℓ,km,ℓ

) are nonnegative normalized singular-
value weights.

Thus, we aggregate these two terms together as follows:

Ladapter(θ, ϕ) = Ez∼qϕ(z|∆W )

[ ∑
m∈M

Lm∑
ℓ=1

λm,ℓ

(
αangLang(m, ℓ) + αspecLspec(m, ℓ)

)]
, (3)

where qϕ(z | ∆W ) is the encoder posterior; αang, αspec > 0 are hyperparameters balancing the two
loss terms; and λm,ℓ≥0 are location weights. Note that Lang aligns direction, while Lspec aligns the
leading spectrum (i.e., the proportion of the squared Frobenius norm explained by the top singular
directions). Thus Ladapter aligns the performance of the specific-task low-rank adapter yet remains
robust to low-rank decompositions.

The overall objective of training LAE is
LVAE(θ, ϕ) = αadapter Ladapter(θ, ϕ) + β DKL

(
qϕ(z | ∆W ) ∥N (0, I)

)
+ λmoe Lmoe(θ), (4)

where αadapter, β, λmoe > 0 are scalar coefficients; Lmoe is the MoE load-balancing auxiliary
loss(Sec. 4.4).

4.4 MODULE-AWARE MOE DECODER

To capture structural heterogeneity across the module types and layers, we further introduce a
module-aware MoE decoder Dθ that can use either a single shared expert pool for all locations
or separate pools per module type (e.g., encoder attention). The notation below treats E as the
number of experts in the active pool used by the current location.

Inputs and routing. For each location (m, ℓ), we form a structural embedding hm,ℓ =
[ zm,ℓ; em; eℓ ] ∈ Rdh , where zm,ℓ ∈ Rdz is the latent variable, em ∈ Rdm and eℓ ∈ Rdℓ are
learnable module and layer embeddings. A router with parameters Wr ∈ RE×dh outputs logits
ℓm,ℓ = Wrhm,ℓ ∈ RE and applies top-K gating:

g(m,ℓ),e =
exp(ℓm,ℓ,e/τ)∑

e′∈Sm,ℓ
exp(ℓm,ℓ,e′/τ)

I[ e ∈ Sm,ℓ ], (5)

6
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where τ > 0 is the temperature, Sm,ℓ ⊂ {1, . . . , E} is the index set of the top-K experts by logit
value, and I[·] is the indicator function (equal to 1 if its argument is true and 0 otherwise).

Experts and per-module heads. Each expert Ee is a small MLP. The gated output feeds a per-
module head Hm:

∆̂Wm,ℓ = Hm(
∑

e∈Sm,ℓ

g(m,ℓ),e Ee(hm,ℓ)), (6)

Note that Hm is a linear map into a vector followed by a reshape to the full LoRA parameters
∆̂Wm,ℓ ∈ Rdout(m,ℓ)×din(m,ℓ). And its parameters are shared across all layers ℓ for the same
module m.

Load-balancing auxiliary loss. To discourage expert collapse we introduce a load-balancing aux-
iliary loss:

Lmoe = max
(
E
∑E

e=1 p̄e f̄e − 1, 0
)
, (7)

where p̄e is the average gating probability, and f̄e is the expected fractional load under top-K rout-
ing. The details implementation of Lmoe is reported at the Appendix A.6.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Dataset. In our main experiments, we consider two settings. First, we employ FLAN-T5-large
(Chung et al., 2024), as the base model. We utilize a subset of FLAN following (Lv et al., 2024)
for training and evaluation. Second, we use Gemma-2-2b-Instruct (Team et al., 2024) as the
base model and evaluate on 8 widely used benchmark tasks, including Arc-challenge (ArcC) and
Arc-easy (ArcE) (Clark et al., 2018), BoolQ (Clark et al., 2019), GSM8K (Cobbe et al., 2021),
Hellaswag (HS) (Zellers et al., 2019), OpenBookQA (OQA) (Mihaylov et al., 2018), PIQA (Bisk
et al., 2020), and Winogrande (WG) (Sakaguchi et al., 2021). More details about the datasets are
reported in the Appendix. For both settings, we extract task embeddings from natural language
task descriptions using the FLAN-T5-large encoder. Task descriptions for each dataset are fully
generated by LLM, as described in the Appendix A.5. For each dataset, We sample and report the
average performance of 3 set of LoRA weights sampled with LoRAGen.

Baseline Setup. As baselines, we consider task-specific LoRAs, element-wise averaged LoRA.
We compare D2NWG (Soro et al., 2024), which is a latent diffusion conditioned on datasets for
LoRAs generation. We also implement T2L (Charakorn et al., 2025b), which is a hypernetwork
that generates LoRAs based on natural language task embedding. Reproduction details are provided
in the Appendix ??.

5.2 PERFORMANCE COMPARISON

In-distribution LoRA Generation Performance. First we focus on whether LoRAGen can re-
cover the performance of trained LoRAs Charakorn et al. (2025c); Brüel-Gabrielsson et al. (2024),
which enables low-rank adaptation with minimal compute requirements. Table 1 reports results on
seven FLAN tasks using natural–language task embeddings from the FLAN-T5-Large encoder.
LoRAGen closely matches the oracle adapters and outperforms D2NWG and T2L on average perfor-
mance . We think that the gain comes from the design of MoE decoder to capture the heterogeneity
of weight distributions across different module types and layers within the structure-aware LoRA
weight space.

Moreover, to assess cross-architecture generalization, we move from an encoder–decoder base
model FLAN-T5-Large to a decoder-only base model Gemma-2-2B-Instruct. As shown in
Table 2, LoRAGen remains competitive or superior to several baselines and is close to task-specific
LoRAs on average performance, indicating that our approach scales from T5-based adapters to
decoder-only adapters. In several tasks, such as ArcE, GSM8K and OQA, our method even matches
or surpasses task-specific adapters, suggesting that adapter-level supervision captures task-relevant
structure rather than memorizing particular LoRA parameters.
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Method AP-Neg AP-Rec AP-Pos QASC-1 QASC-2 WQA-T WQA-A Avg. (acc)

FLAN-T5-Large 49.4 70.7 34.8 23.3 8.9 8.5 62.0 36.8

Average LoRA 96.8 96.5 96.9 99.4 87.3 96.7 97.0 95.8
D2NWG 59.5 87.3 65.9 47.0 31.1 33.4 84.8 58.4
T2L 90.5 94.1 92.7 87.9 76.8 85.5 93.3 88.7

Ours 96.8 96.6 97.1 99.5 87.3 97.1 97.3 96.0

Task-specific LoRAs 97.2 97.0 97.8 99.7 87.3 97.0 97.3 96.2

Table 1: Benchmark performance of LoRAGen on FLAN subset (FLAN-T5-Large backbone).
Bold numbers are used when the performance is higher than the task-specific LoRAs.

Method ArcC ArcE BQ GSM8K HS OQA PIQA WG Avg. (acc)

Gemma-2-2B-Instruct 74.0 89.9 81.0 55.9 55.1 71.2 71.2 51.8 68.8

Average LoRA 96.8 96.5 96.9 99.4 87.3 96.7 97.0 95.8
D2NWG 74.1 90.0 81.2 56.0 55.1 71.3 71.3 52.0 68.9
T2L 74.3 90.2 81.2 55.9 55.2 71.4 71.5 53.8 69.2

Ours 76.6 90.7 84.1 56.4 64.1 80.2 75.0 54.2 72.7

Task-specific LoRAs 76.7 90.6 84.7 55.9 75.4 80.2 78.0 54.6 74.5

Table 2: Benchmark performance of LoRAGen on 8 benchmark tasks (Gemma-2-2B-Instruct
backbone). Bold numbers are used when the performance is higher than the task-specific LoRAs.

LoRA Generation for unseen tasks. Furthermore, we explore whether LoRAGen can generate
LoRA parameters for unseen tasks. We train LoRAGen on 136 tasks of FLAN subset, each with
20 task descriptions. For each task we sample three sets of LoRA weights and report the average
accuracy. As shown in Table 3, LoRAGen achieves the best average accuracy 40.2, outperforming
D2NWG and T2L by +5.2 and +5.0 points, respectively. We observe that D2NWG and T2L recon-
structs pre-trained adapters and struggles to generalize to unseen tasks. This phenomenon is align
with non-uniqueness of the low-rank decomposition, which indicates that if we supervise the low-
rank decomposition matrices directly, training becomes sensitive to arbitrary rescalings and rotations
that still yield the same full adaptation matrix, trending to memorize task-specific LoRA parameters.
Instead of this, our method supervise the full adaptation matrix directly to avoid this ambiguity and
focus on learn task-relevant weight space learning, resulting in better performance to unseen tasks.
Details on computational cost and efficiency are reported in the Appendix A.3.

5.3 ABLATION STUDY

In this section, we ablate the adapter-level supervision and the module-aware MoE decoder on the
seven FLAN tasks (Table 4). Training with the two adapter-level losses Lang and Lspec but with-
out the decoder Dθ achieves an average accuracy of 58.4. In contrast, enabling the decoder while
removing both adapter-level losses and using only the reconstruction loss results in a significant
improvement to an average accuracy of 95.2. This improvement is consistent with Obs. 2: the
module-aware routing and per-module heads in Dθ effectively capture the heterogeneity in weight
distributions across modules and layers, which substantially improves downstream performance.

A counter-intuitive result occurs when Dθ is combined with the spectral loss but the direction loss
is omitted: the average accuracy drops to 36.9. In this case, Lspec only enforces alignment of the
magnitudes of the top-k singular values, without constraining the corresponding directions of the
left and right singular vectors. As a result, the decoder can match the singular-value magnitudes
correctly, but assign them to the wrong directions, which leads to an incorrect weight-space learning
and consequently poor task performance.

The full model, Dθ together with Lang and Lspec, addresses both aspects: Lang ensures the generated
adapters align with the target directions, while Lspec maintains the relative magnitudes of the top-
k singular values. This combination achieves the best performance, with an average accuracy of
96.0, slightly surpassing the performance of the model with only the MoE decoder and consistently
improving results on tasks that require fine alignment, such as QASC-1 and WQA-T.
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Method AP-Rec AP-Pos QASC-1 QASC-2 WQA-T WQA-A Avg. (acc)

FLAN-T5-Large 70.7 34.8 23.3 8.9 8.5 62.0 34.7

D2NWG 71.8 34.4 23.7 9.1 8.3 62.4 35.0
T2L 71.6 34.6 23.3 11.1 8.5 62.0 35.2
Ours 75.1 42.2 28.1 14.5 14.3 67.2 40.2

Table 3: Zero-shot generation performance of LoRAGen trained on the FLAN subset with
FLAN-T5-Large as the base model. Bold numbers are used to represent the best performance.

Lang Lspec Dθ AP-Neg AP-Rec AP-Pos QASC-1 QASC-2 WQA-T WQA-A Avg. (acc)

✓ ✓ ✗ 59.5 87.3 65.9 47.1 31.2 33.4 84.9 58.4
✗ ✗ ✓ 96.8 95.5 97.0 98.2 86.3 95.6 96.7 95.2
✗ ✓ ✓ 49.5 70.9 34.4 23.3 9.1 8.4 62.7 36.9
✓ ✓ ✓ 96.8 96.6 97.1 99.5 87.3 97.1 97.3 96.0

Table 4: Ablation study on FLAN subset. Checkmarks indicate enabled components: direction loss
Lang, spectral loss Lspec, and module-aware MoE decoder Dθ. Bold numbers are used to represent
the best performance.

5.4 DETAILED ANALYSIS

Hyperparameter Analysis. We first analyze the effect of the spectral–energy threshold ρ in the
spectral loss (Figure 4(a) in Appendix A.2). We conduct this experiment under the same setting as
Table 1 Across all tasks, accuracies remain stable as ρ varies from 0.80 to 1.00, with only minor
fluctuations. This shows that the adapter-level supervision is robust to the choice of ρ, since the
leading singular values already capture sufficient spectral information. In practice, we set ρ = 0.85
as it provides a better performance while maintaining stability.

We then examine the hyperparameters of the MoE decoder (Figure 4(b)in Appendix A.2). Here we
compare shared vs. unshared expert pools, different top-K routing choices, and the number of ex-
perts. The results indicate that unshared pools consistently outperform shared ones, and increasing
the number of active experts (top-2 vs. top-1) further improves performance, especially on challeng-
ing multi-choice and QA tasks. The best configuration is unshared, top-1, E = 4, which strikes a
balance between accuracy and computational efficiency.

Structural Embedding Analysis. In this section, we assess the contribution of the structural em-
bedding in the MoE decoder (Figure 4(c) in Appendix A.2). We compare three variants: (i) without
structural embedding (routing only on latent variables), (ii) with structural embedding, and (iii)
an oracle trained with task-specific adapters. The results show that removing structural embeddings
substantially reduces accuracy, particularly on tasks requiring fine-grained reasoning such as QASC-
1/2. Adding structural embeddings closes most of the gap to the oracle, confirming that encoding
module-specific latent is critical for capturing the heterogeneous LoRA weight distributions.

6 CONCLUSION

We presented LoRAGen, a structure-aware approach to LoRA parameter generation grounded in
two empirical observations of the LoRA weight space: non-uniqueness of low-rank decompositions
and module-wise heterogeneity of weight distributions. Motivated by these observations, we su-
pervise the full adaptation matrix using adapter-level direction and spectral losses, and decode with
a module-aware MoE whose routing leverages structural embeddings with shared or per-module
expert pools. Empirically, LoRAGen produces strong in-distribution adapters across architectures,
closely matching task-specific adapters on FLAN-T5-large and Gemma-2-2B-Instruct and
attains competitive zero-shot performance on unseen tasks from a large LoRA library. Ablation
studies show both adapter-level supervision and module-aware decoding are necessary, and sensitiv-
ity studies indicate robustness to the spectral-energy threshold and gains from unshared pools with
top-K routing.
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paper focuses on the generation of LoRA parameters, with primary applications in LLM domains .
All data used for training and evaluation is from publicly available, non-personal scientific datasets,
ensuring no privacy concerns. This work does not involve human subjects, and we do not foresee
any direct negative societal impacts or risks of perpetuating social biases. Our aim is to advance the
development of domain-specific LLM applications.

REPRODUCIBILITY STATEMENT

The code associated with this paper is available at: https://anonymous.4open.science/
r/LoRAGen-02C0. It includes the necessary environment configurations and execution scripts.
All datasets utilized in this work are publicly accessible. The task descriptions generated from LLM
is provided in the Appendix.
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patiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al. Gemma
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A APPENDIX

A.1 DETAILS FOR OBS-1

As shown in Figure 3, we provide more 9 representative tasks to compare with other 112 tasks on
FLAN subset. We found that the full adaptation matrix similarity shows a consistent positive corre-
lation with task description embedding similarity. This suggests that tasks with more semantically
similar descriptions tend to produce more similar LoRAs, highlighting the presence of structure
in the LoRA weight space. This observation also emphasizes the utility of the full full adaptation
space, as it allows us to capture and exploit underlying similarities between tasks that may not be
immediately apparent from the low-rank decomposition matrices. By designing weight space loss
based on this similarity, we can better adapt models to generate new LoRA parameters.

Figure 3: Relation between LoRA similarity and task description embedding similarity. Each
panel shows the similarity between a representative task adapter and 112 adapters trained on a FLAN
subset y-axis in the weight space against their similarity in the task embeddings space x-axis. LoRA
cosine similarity measured in two ways: (i) computing cosine on the low-rank decomposition matri-
ces A and B separately (blue dots); (ii) computing cosine on the full adaptation matrix ∆W = AB
(orange triangles). Solid lines are trend line but not least-squares fits; legends report Spearman ρ.

A.2 ADDITIONAL RESULTS ON HYPERPARAMETERS AND STRUCTURAL EMBEDDING

The results on hyperparameters and structural embedding analysis are shown in Figure 4.

A.3 EFFICIENCY OF ADAPTER-LEVEL SUPERVISION

A natural concern is that supervising adapters directly (i.e. losses defined on ∆W = AB⊤ ∈ Rd×d)
could be more expensive than reconstruction on A,B ∈ Rd×r. We clarify that our implementation
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Figure 4: Performance of LoRAGen with different hyperparameters and removing structural em-
bedding. Here, for the middle figure, s / uns denote shared or unshared MoE experts; t1 / t2 denote
top-1 or top-2 routing strategies; e4 / e8 denote using 4 or 8 experts.

Loss term Per-layer complexity

A,B reconstruction O(dr)
Direction (quadratic) O(dr2)
Spectral (QR+SVD core) O(dr2 + r3)

Table 5: Per-layer complexity of different adapter-level supervision terms. Both direction and spec-
tral losses avoid explicit O(d2) cost.

avoids any O(d2) complexity by using a quadratic form, and thus remains comparable in cost to
reconstruction loss.

Direction loss. The cosine similarity between two adapters can be computed efficiently as a
quadratic form:

⟨∆W1,∆W2⟩F = tr(A1B
⊤
1 B2A

⊤
2 ) = ⟨A1, (B

⊤
1 B2)A

⊤
2 ⟩F ,

with ∥∆W∥2F = tr(A⊤AB⊤B). This requires only d × r and r × r multiplications, yielding
complexity O(dr2) instead of O(d2). Hence the direction loss is no more expensive than element-
wise reconstruction.

Spectral loss. For the spectral loss, we never compute an SVD of the full d × d adapter. Instead,
we compute a reduced QR decomposition. This reduces the problem to an r × r core matrix K =
RAR

⊤
B , on which we perform SVD. The resulting complexity is O(dr2 + r3), avoiding any O(d2)

cost.

Complexity comparison. Table 5 reports the per-layer complexities. Both direction and spectral
losses are implemented in quadratic or QR decomposition form, avoiding explicit O(d2) cost. The
overhead relative to element-wise reconstruction loss is bounded by a factor of r, which is small in
practice.

A.4 TRAINING AND EVALUATION DATASETS FOR ZERO-SHOT GENERATION

As shown in Figure 5 and Figure 6, we conduct zero-shot generation experiment on 136 training
tasks and 7 evaluating tasks from FLAN subset. These evaluated tasks are seperate from the training
datasets.

A.5 TASK DESCRIPTIONS GENERATED BY A LARGE LANGUAGE MODEL

We automate task description generation for each task by leveraging Deepseek1. We query its model
with carefully constructed prompts that incentivize diversity to facilitate downstream generalization
as shown in Figure 7. In particular, we generate 20 descriptions per task. Figure 8 presents repre-
sentative examples of task descriptions employed in our experiments.

1https://www.deepseek.com
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  "lorahub_flan_t5_large-wiki_hop_original_choose_best_object_affirmative_2",
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Training Tasks

Figure 5: Training tasks from FLAN dataset used for training the LoRAGen model

A.6 DETAILS OF EXPERIMENT SETUP

More details about the diffusion architecture, baseline settings hyperparameter settings, training
details and implementation of weight space loss and module-aware MoE decoder can be found in
the anonymous repository https://anonymous.4open.science/r/LoRAGen-02C0.

A.7 LLM USAGE

We utilized ChatGPT-4o 2 to refine the content based on our original writing. All revised text
was subsequently reviewed and verified by us. The natural language task descriptions we used are
generated by DeepSeek 3. All code has undergone comprehensive testing to ensure its reliability.

2https://chatgpt.com
3https://www.deepseek.com
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Validation Tasks

    "lorahub_flan_t5_large-amazon_polarity_User_recommend_this_product",

  "lorahub_flan_t5_large-amazon_polarity_Is_this_product_review_positive",

  "lorahub_flan_t5_large-qasc_is_correct_1",

  "lorahub_flan_t5_large-qasc_is_correct_2",

  "lorahub_flan_t5_large-wiki_qa_Is_This_True_",

  "lorahub_flan_t5_large-wiki_qa_automatic_system"

Figure 6: Validation tasks used during the training the LoRAGen model
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Prompt
## Objective
For every LoRA adapter directory, construct a clean list of task descriptions and turn them into a single sentence-level 
embedding.  
The generator reads curated descriptions from YAML, applies light normalization, matches them by name, and averages T5 
sentence embeddings.

## Inputs
- **--yaml_root**: directory with one subfolder per task; each contains `metadata.yaml` with a descriptions list.  
- **--logs_root**: Stage-1 checkpoint tree (used to load the VAE encoder for latents; text generation is file-driven).
## Options
- **--strip_generic**: remove leading boilerplate like “The task is / involves / requires …”.  
- **--text_pooling {mean, first}**: sentence pooling for T5 (mean is mask-aware and default).

## Procedure
1. **Scan YAML repository**  
   For each subfolder under `yaml_root`, load `metadata.yaml` and read descriptions. Skip if missing.
2. **Optional light normalization**  
   If `--strip_generic`, strip only the leading boilerplate using a regex and keep the substantive remainder.
3. **Build multi-key alias map**  
   Register the cleaned descriptions under:  
   - `<entry>`  
   - `lorahub_flan_t5_large-<entry>`  
   - `lorahub_flan_t5_large_<entry>`
4. **Iterate LoRA adapters**  
   For each `…/flan_t5_large_lora/<task_key>/adapter_model.bin`, resolve descriptions by probing name variants (prefix 
removal and `-`/`_` swaps).  
   - **Fallback**: if no hit, use `[task_key]` as the only description and log the miss.
5. **Encode with T5**  
   - Tokenize each description, run `T5EncoderModel`.  
   - Pool to a sentence vector via:  
     - mean pooling (default), or  
     - first token pooling.  
   - Average across all descriptions → one 1024-d text embedding per task.
6. **Normalize save key**  
   Drop `lorahub_flan_t5_large-/_` prefix to form the canonical task name and save:  
   ```json
   {
     "task_name": "<canonical_name>",
     "text_embedding": "<1024-d tensor>",
     "latent": "<288 x latent_dim tensor>"
   }
## Output
One PyTorch file per experiment, e.g.:  
 e_000996_with_task_name_vae_task_172_latent_288_64_embed_1024.pt
Mapping canonical task names to averaged text embeddings (plus latents produced in the same pass).

Figure 7: The prompt template used by our pipeline for task descriptions.
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Task descriptions

adversarial_qa_dbert_answer_the_followi

• The task involves reading a passage and answering a question based on the information provided in the text.

• The task requires identifying specific details from a given passage to answer a question.

• The task is about locating exact information within a text to respond to a direct question.

adversarial_qa_dbidaf_answer_the_following_q

• The task is to locate the answer to a question within a provided passage.

• The task requires finding the exact words or phrases in a passage that answer a question.

• The task is about answering questions by referring to specific details in a text.

adversarial_qa_droberta_question_context_answer

• The task requires matching questions with relevant facts from the given context.

• The task is about locating key details in a text to answer a direct question.

• The task involves reasoning about a passage to derive the correct answer.

adversarial_qa_dbert_based_on

• The task involves finding specific information in a given text to answer a direct question.

• The task requires identifying key details from a passage that directly respond to a question.

• The task is about locating exact answers within a provided context based on a question.

Figure 8: Examples of task descriptions generated by our pipeline.
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