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Abstract
Causal dynamics learning has recently emerged as
a promising approach to enhancing robustness in
reinforcement learning (RL). Typically, the goal
is to build a dynamics model that makes predic-
tions based on the causal relationships among
the entities. Despite the fact that causal connec-
tions often manifest only under certain contexts,
existing approaches overlook such fine-grained
relationships and lack a detailed understanding of
the dynamics. In this work, we propose a novel
dynamics model that infers fine-grained causal
structures and employs them for prediction, lead-
ing to improved robustness in RL. The key idea
is to jointly learn the dynamics model with a dis-
crete latent variable that quantizes the state-action
space into subgroups. This leads to recognizing
meaningful context that displays sparse dependen-
cies, where causal structures are learned for each
subgroup throughout the training. Experimental
results demonstrate the robustness of our method
to unseen states and locally spurious correlations
in downstream tasks where fine-grained causal
reasoning is crucial. We further illustrate the ef-
fectiveness of our subgroup-based approach with
quantization in discovering fine-grained causal
relationships compared to prior methods.

1. Introduction
Model-based reinforcement learning (MBRL) has show-
cased its capability of solving various sequential decision
making problems (Kaiser et al., 2020; Schrittwieser et al.,
2020). Since learning an accurate and robust dynamics
model is crucial in MBRL, recent works incorporate the
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Figure 1. (a) Previous causal dynamics models infer the global
causal structure of the transition dynamics. (b) Existing approaches
to discovering fine-grained relationships examine individual sam-
ples. (c) Our approach quantizes the state-action space into sub-
groups and infers causal relationships specific to each subgroup.

causal relationships between the environmental variables,
such as objects and the agent, into dynamics learning (Wang
et al., 2022; Ding et al., 2022). Unlike the traditional dense
models that employ the whole state and action variables
to predict the future state, causal dynamics models infer
the causal structure of the transition dynamics and make
predictions based on it. Consequently, they are more robust
to unseen states by discarding spurious dependencies.

Our motivation stems from the observation that causal con-
nections often manifest only under certain contexts in many
practical scenarios. Consider autonomous driving, where
recognizing the traffic signal is crucial for its safety (e.g.,
stops at red lights). However, in the presence of a pedestrian
on the road, it must stop, even with a green light, ignoring
the signal, i.e., the traffic signal becomes locally spurious.
Therefore, such fine-grained causal reasoning will be crucial
to the robustness of MBRL for its real-world deployment.

Fine-grained causal relationships can be understood with lo-
cal independence between the variables, which holds under
certain contexts but does not hold in general (Boutilier et al.,
2013). Our goal is to incorporate them into dynamics mod-
eling by capturing meaningful contexts that exhibit more
sparse dependencies than the entire domain. Unfortunately,
prior causal dynamics models examining global indepen-
dence (Fig. 1-(a)) cannot harness them. On the other hand,
existing methods for discovering fine-grained relationships
have focused on examining sample-specific dependencies
(Pitis et al., 2020; Hwang et al., 2023) (Fig. 1-(b)). However,
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it is unclear under which circumstances the inferred depen-
dencies hold, making them hard to interpret and challenging
to generalize to unseen states.

In this work, we propose a dynamics model that infers fine-
grained causal structures and employs them for prediction,
leading to improved robustness in MBRL. For this, we es-
tablish a principled way to examine fine-grained causal rela-
tionships based on the quantization of the state-action space.
Importantly, this provides a clear understanding of mean-
ingful contexts displaying sparse dependencies (Fig. 1-(c)).
However, this involves the optimization of the regularized
maximum likelihood score over the quantization which is
generally intractable. To this end, we present a practical dif-
ferentiable method that jointly learns the dynamics model
and a discrete latent variable that decomposes the state-
action space into subgroups by utilizing vector quantization
(Van Den Oord et al., 2017). Theoretically, we show that
joint optimization leads to identifying meaningful contexts
and fine-grained causal structures.

We evaluate our method on both discrete and continuous
control environments where fine-grained causal reasoning
is crucial. Experimental results demonstrate the superior
robustness of our approach to locally spurious correlations
and unseen states in downstream tasks compared to prior
causal/non-causal approaches. Finally, we illustrate that our
method infers fine-grained relationships in a more effective
and robust manner compared to sample-specific approaches.

Our contributions are summarized as follows.

• We establish a principled way to examine fine-grained
causal relationships based on the quantization of the
state-action space which offers an identifiability guar-
antee and better interpretability.

• We present a theoretically grounded and practical ap-
proach to dynamics learning that infers fine-grained
causal relationships by utilizing vector quantization.

• We empirically demonstrate that the agent capable of
fine-grained causal reasoning is more robust to locally
spurious correlations and generalizes well to unseen
states compared to past causal/non-causal approaches.

2. Preliminaries
We first introduce the notations and terminologies. Then,
we examine related works on causal dynamics learning for
RL and fine-grained causal relationships.

2.1. Background

Structural causal model. We adopt a framework of a struc-
tural causal model (SCM) (Pearl, 2009) to understand the
relationship among variables. An SCM M is defined as

a tuple
〈
V,U,F, P (U)

〉
, where V = {X1, · · · , Xd} is a

set of endogenous variables and U is a set of exogenous
variables. A set of functions F = {f1, · · · , fd} determine
how each variable is generated; Xj = fj(Pa(j),Uj) where
Pa(j) ⊆ V\{Xj} is parents of Xj and Uj ⊆ U. An SCM
M induces a directed acyclic graph (DAG) G = (V,E),
i.e., a causal graph (CG) (Peters et al., 2017), where
V = {1, · · · , d} and E ⊆ V × V are the set of nodes
and edges, respectively. Each edge denotes a direct causal
relationship from Xi to Xj . An SCM entails the condi-
tional independence relationship of each variable (namely,
local Markov property): Xi ⊥⊥ ND(Xi) | Pa(Xi), where
ND(Xi) is a non-descendant of Xi, which can be read off
from the corresponding causal graph.

Factored Markov Decision Process. A Markov Decision
Process (MDP) (Sutton & Barto, 2018) is defined as a tuple
⟨S,A, T, r, γ⟩ where S is a state space, A is an action space,
T : S ×A → P(S) is a transition dynamics, r is a reward
function, and γ is a discount factor. We consider a factored
MDP (Kearns & Koller, 1999) where the state and action
spaces are factorized as S = S1 × · · · × SN and A =
A1 × · · · × AM . A transition dynamics is factorized as
p(s′ | s, a) = ∏

j p(s
′
j | s, a) where s = (s1, · · · , sN ) and

a = (a1, · · · , aM ).

Assumptions and notations. We are concerned with an
SCM associated with the transition dynamics in a factored
MDP where the states are fully observable. To properly
identify the causal relationships, we make assumptions stan-
dard in the field, namely, Markov property (Pearl, 2009),
faithfulness (Peters et al., 2017), causal sufficiency (Spirtes
et al., 2000), and that causal connections only appear within
consecutive time steps. With these assumptions, we con-
sider a bipartite causal graph G = (V,E) which consists
of the set of nodes V = X ∪ Y and the set of edges
E ⊆ X × Y, where X = {S1, · · · , SN , A1, · · · , AM}
and Y = {S′

1, · · · , S′
N}. Pa(j) denotes parent variables

of S′
j . The conditional independence

S′
j ⊥⊥ X \ Pa(j) | Pa(j), (1)

entailed by the causal graph G represents the causal structure
of the transition dynamics p(s′ | s, a) = ∏

j p(s
′
j | Pa(j)).

Dynamics modeling. The traditional way is to use dense de-
pendencies for dynamics modeling:

∏
j p(s

′
j | s, a). Causal

dynamics models (Wang et al., 2021; 2022; Ding et al.,
2022) examine the causal structure G to employ only rel-
evant dependencies: p(s′ | s, a;G) =

∏
j p(s

′
j | Pa(j))

(Fig. 1-(a)). Consequently, they are more robust to spurious
correlations and unseen states.

2.2. Related Work

Causal dynamics models in RL. There is a growing
body of literature on the intersection of causality and RL
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(De Haan et al., 2019; Buesing et al., 2019; Zhang et al.,
2020a; Sontakke et al., 2021; Schölkopf et al., 2021; Zholus
et al., 2022; Zhang et al., 2020b). One focus is dynamics
learning, which involves the causal structure of the transi-
tion dynamics (Li et al., 2020; Yao et al., 2022; Bongers
et al., 2018; Wang et al., 2022; Ding et al., 2022; Feng et al.,
2022; Huang et al., 2022) (more broad literature on causal
reasoning in RL is discussed in Appendix A.1). Recent
works proposed causal dynamics models that make robust
predictions based on the causal dependencies (Fig. 1-(a)),
utilizing conditional independence tests (Ding et al., 2022)
or conditional mutual information (Wang et al., 2022) to
infer the causal graph in a factored MDP. However, prior
methods cannot harness fine-grained causal relationships
that provide a more detailed understanding of the dynamics.
In contrast, our work aims to discover and incorporate them
into dynamics modeling, demonstrating that fine-grained
causal reasoning leads to improved robustness in MBRL.

Discovering fine-grained causal relationships. In the con-
text of RL, a fine-grained structure of the environment dy-
namics has been leveraged in various ways, e.g., with data
augmentation (Pitis et al., 2022), efficient planning (Hoey
et al., 1999; Chitnis et al., 2021), or exploration (Seitzer
et al., 2021). For this, previous works often exploited do-
main knowledge (Pitis et al., 2022) or true dynamics model
(Chitnis et al., 2021). However, such prior knowledge is of-
ten unavailable in the context of dynamics learning. Existing
methods for discovering fine-grained relationships examine
the gradient (Wang et al., 2023) or attention score (Pitis
et al., 2020) of each sample (Fig. 1-(b)). However, such
sample-specific approaches lack an understanding of under
which circumstances the inferred dependencies hold, and it
is unclear whether they can generalize to unseen states.

In the field of causality, fine-grained causal relationships
have been widely studied, e.g., context-specific indepen-
dence (Boutilier et al., 2013; Zhang & Poole, 1999; Poole,
1998; Dal et al., 2018; Tikka et al., 2019; Jamshidi et al.,
2023) (see Appendix A.2 for the background). Recently,
Hwang et al. (2023) proposed an auxiliary network that ex-
amines local independence for each sample. However, it
also does not explicitly capture the context where the local
independence holds. In contrast to existing approaches re-
lying on sample-specific inference (Löwe et al., 2022; Pitis
et al., 2020; Hwang et al., 2023), we propose to examine
causal dependencies at a subgroup level through quantiza-
tion (Fig. 1-(c)), providing a more robust and principled
way of discovering fine-grained causal relationships with a
theoretical guarantee.

3. Fine-Grained Causal Dynamics Learning
In this section, we first describe a brief background on
local independence and intuition of our approach (Sec. 3.1).

We then provide a principled way to examine fine-grained
causal relationships (Sec. 3.2). Based on this, we propose a
theoretically grounded and practical method for fine-grained
causal dynamics modeling (Sec. 3.3). Finally, we provide a
theoretical analysis with discussions (Sec. 3.4). All omitted
proofs are provided in Appendix B.

3.1. Preliminary

Analogous to the conditional independence explaining the
causal relationship between the variables (i.e., Eq. (1)), their
fine-grained relationships can be understood with local in-
dependence (Hwang et al., 2023). This is written as:

S′
j ⊥⊥ X \ Pa(j;D) | Pa(j;D),D, (2)

where D ⊆ X = S × A is a local subset of the joint state-
action space, which we say context, and Pa(j;D) ⊆ X
is a set of state and action variables locally relevant for
predicting S′

j under D. We provide a formal definition and
detailed background of local independence in Appendix A.3.

For example, consider a mobile home robot interacting with
various objects (Pa(j)). Under the context of the door
closed (D), only objects within the same room (Pa(j;D))
become relevant. On the other hand, all objects remain rel-
evant under the context of the door opened. We say that
a context is meaningful if it displays sparse dependencies:
Pa(j;D) ⊊ Pa(j), e.g., door closed. We are concerned
with the subgraph of the (global) causal graph G as a graph-
ical representation of such local dependencies.

Definition 1. Local subgraph of the causal graph1 (LCG)
on D ⊆ X is GD = (V,ED) where ED = {(i, j) | i ∈
Pa(j;D)}.

LCG GD represents a causal structure of the transition dy-
namics specific to a certain context D. It is useful for our
approach to fine-grained dynamics modeling, e.g., it is suf-
ficient to consider only objects in the same room when the
door is closed. In contrast, prior causal dynamics models
consider all objects under any circumstances (Fig. 1-(a)).

Importantly, such information (e.g., D and GD) is not known
in advance, and it is our goal to discover them. For this, ex-
isting sample-specific approaches have focused on inferring
LCG directly from individual samples (Pitis et al., 2020;
Hwang et al., 2023) (Fig. 1-(b)). However, it is unclear
under which context the inferred dependencies hold.

Our approach is to quantize the state-action space into sub-
groups and examine causal structures on each subgroup
(Fig. 1-(c)). This now makes it clear that each inferred LCG
will represent fine-grained causal relationships under the
corresponding subgroup. We now proceed to describe a
principled way to discover LCGs based on quantization.

1For brevity, we will henceforth denote it as local causal graph.
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Figure 2. Overall framework. (a) For each sample (s, a), our method determines the subgroup to which the sample belongs through
quantization and infers the local causal graph (LCG) that represents fine-grained causal relationships specific to the corresponding
subgroup. (b) The dynamics model predicts the future state based on the inferred LCG. All components (e.g., dynamics model and
codebook) are jointly learned throughout the training in an end-to-end manner.

3.2. Score for Decomposition and Graphs

Let us consider arbitrary decomposition {Ez}Kz=1 of the
state-action space X , where K is the degree of the quantiza-
tion. The transition dynamics can be decomposed as:

p(s′j | s, a) =
∑
z

p(s′j | s, a, z)p(z | s, a)

=
∑
z

p(s′j | Pa(j; Ez), z)p(z | s, a), (3)

where p(z | s, a) = 1 if (s, a) ∈ Ez . This illustrates our
approach to fine-grained dynamics modeling, employing
only locally relevant dependencies according to GEz

on each
subgroup Ez . We now aim to learn each LCG GEz

based on
Eq. (3). Specifically, we consider the regularized maximum
likelihood score S({Gz, Ez}Kz=1) of the graphs {Gz}Kz=1 and
decomposition {Ez}Kz=1 which is defined as:

sup
ϕ

Ep(s,a,s′)

[
log p̂(s′ | s, a; {Gz, Ez}, ϕ)− λ|Gz|

]
, (4)

where ϕ is the parameters of the dynamics model p̂ which
employs the graph Gz for prediction on corresponding sub-
group Ez . We now show that graphs that maximize the score
faithfully represent causal dependencies on each subgroup.

Theorem 1 (Identifiability of LCGs). With Assumptions 1
to 4, let {Ĝz} ∈ argmaxS({Gz, Ez}Kz=1) for λ > 0 small
enough. Then, each Ĝz is true LCG on Ez , i.e., Ĝz = GEz

.

Given the subgroups, corresponding LCGs can be recovered
by score maximization. Therefore, it provides a principled
way to discover LCGs, which is valid for any quantization.

Unfortunately, not all quantization is useful for fine-grained
dynamics modeling, e.g., by dividing into lights on and
lights off, it still needs to consider all objects under both
circumstances. Thus, it is crucial for quantization to cap-
ture meaningful contexts displaying sparse dependencies.
Such useful quantization will allow more sparse dynamics
modeling, i.e., the higher score of Eq. (4). Therefore, the

decomposition is now also a learning objective towards max-
imizing Eq. (4), i.e., {G∗

z , E∗
z } ∈ argmaxS({Gz, Ez}Kz=1).

However, a naive optimization with respect to decomposi-
tion is generally intractable. Thus, we devise a practical
method allowing joint training with the dynamics model.

3.3. Fine-Grained Causal Dynamics Learning with
Quantization

We propose a practical differentiable method that allows
joint optimization of Eq. (4) over dynamics model p̂, decom-
position {Ez}, and graphs {Gz}, in an end-to-end manner.
The key component is a discrete latent codebook C = {ez}
where each code ez represents the pair of a subgroup Ez and
a graph Gz . The codebook learning is differentiable, and
these pairs will be learned throughout the training with the
dynamics model. The overall framework is shown in Fig. 2.

Quantization. The encoder genc maps each sample (s, a)
into a latent embedding h, which is then quantized to the
nearest prototype vector e (i.e., code) in the codebook C =
{e1, · · · , eK}, following Van Den Oord et al. (2017):

e = ez, where z = argmin
j∈[K]

∥h− ej∥2. (5)

This entails the subgroups since each sample corresponds
to exactly one of the codes, i.e., each code ez represents the
subgroup Ez = {(s, a) | e = ez}. Thus, this corresponds to
the term p(z | s, a) in Eq. (3). In other words, the codebook
C serves as a proxy for decomposition {Ez}Kz=1.

Local causal graphs. Quantized embedding e is then de-
coded to an adjacency matrix A ∈ {0, 1}(N+M)×N . The
output of the decoder gdec is the parameters of Bernoulli dis-
tributions from which the matrix is sampled: A ∼ gdec(e).
In other words, each code ez corresponds to the matrix Az

that represents the graph Gz . To properly backpropagate gra-
dients, we adopt Gumbel-Softmax reparametrization trick
(Jang et al., 2017; Maddison et al., 2017).

Dynamics learning. The dynamics model p̂ employs the
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matrix A for prediction:
∑

j log p̂(s
′
j | s, a;A(j)), where

A(j) ∈ {0, 1}(N+M) is the j-th column of A. Each entry
of A(j) indicates whether the corresponding state or action
variable will be used to predict the next state s′j . This cor-
responds to the term p(s′j | Pa(j; Ez), z) in Eq. (3). For
the implementation, we mask out the features of unused
variables according to A. We found that this is more stable
compared to the input masking (Brouillard et al., 2020).

Training objective. We employ a regularization loss λ ·
∥A∥1 to induce a sparse LCG, where λ is a hyperparameter.
To update the codebook, we use a quantization loss (Van
Den Oord et al., 2017). The training objective is as follows:

Ltotal = − log p̂(s′ | s, a;A) + λ · ∥A∥1︸ ︷︷ ︸
Lpred

+ ∥sg [h]− e∥22 + β · ∥h− sg [e] ∥22︸ ︷︷ ︸
Lquant

. (6)

Here, Lpred is the masked prediction loss with regulariza-
tion. Lquant is the quantization loss where sg [·] is a stop-
gradient operator and β is a hyperparameter. Specifically,
∥sg [h]− e∥22 moves each code toward the center of the em-
beddings assigned to it and β · ∥h − sg [e] ∥22 encourages
the encoder to output the embeddings close to the codes.
This allows us to jointly train the dynamics model and the
codebook in an end-to-end manner. Intuitively, vector quan-
tization clusters the samples under a similar context and
reconstructs the LCGs for each clustering. The rationale is
that any error in the graph Gz or clustering Ez would lead to
the prediction error of the dynamics model. We provide the
details of our model in Appendix C.4.

We note that prior works on learning a discrete latent code-
book have mostly focused on the reconstruction of the ob-
servation (Van Den Oord et al., 2017; Ozair et al., 2021).
To the best of our knowledge, our work is the first to utilize
vector quantization for discovering diverse causal structures.

Discussion on the codebook collapsing. It is well known
that training a discrete latent codebook with vector quanti-
zation often suffers from the codebook collapsing, where
many codes learn the same output and converge to a trivial
solution. For this, we employ exponential moving averages
(EMA) to update the codebook, following Van Den Oord
et al. (2017). In practice, we found that the training was
relatively stable for any choice of the codebook size K > 2.
In our experiments, we simply fixed it to 16 across all envi-
ronments since they all performed comparably well, which
we will demonstrate in Sec. 4.2.

3.4. Theoretical Analysis and Discussions

So far, we have described how our method learns the de-
composition and LCGs through the discrete latent codebook
C as a proxy. Our method can be viewed as a practical ap-

proach towards the maximization of S({Gz, Ez}Kz=1) since
Lpred corresponds to Eq. (4) and Lquant is a mean squared
error in the latent space which can be minimized to 0. In
this section, we provide its implications and discussions.
Proposition 1. Let {G∗

z , E∗
z } ∈ argmaxS({Gz, Ez}Kz=1)

for λ > 0 small enough, with Assumptions 1 to 5. Then,
(i) each G∗

z is true LCG on E∗
z , and (ii) E

[
|G∗

z |
]
≤ E

[
|Gz|

]
where {Gz} are LCGs on arbitrary decomposition {Ez}Kz=1.

In other words, the decomposition that maximizes the score
is optimal in terms of E

[
|Gz|

]
=
∑

z p(Ez)|Gz|. This is an
important property involving the contexts which are more
likely (i.e., large p(E)) and more meaningful (i.e., sparse
GE ). Therefore, Prop. 1 implies that score maximization
would lead to the fine-grained understanding of the dynam-
ics at best it can achieve given the quantization degree K.

We now illustrate how the optimal decomposition {E∗
z }Kz=1

in Prop. 1 with sufficient quantization degree identifies
important context D (e.g., door closed) that displays fine-
grained causal relationships. We say the context D is canon-
ical if GF = GD for any F ⊂ D.
Theorem 2 (Identifiability of contexts). Let {G∗

z , E∗
z } ∈

argmaxS({Gz, Ez}Kz=1) for λ > 0 small enough, with As-
sumptions 1 to 5. Suppose X = ∪m∈[H]Dm where GDm

is
distinct for all m ∈ [H], and D1, · · · ,DH are disjoint and
canonical. Suppose K ≥ H . Then, for all m ∈ [H], there
exists Im ⊂ [K] such that Dm =

⋃
z∈Im

E∗
z almost surely.

In other words, the joint optimization of Eq. (4) over the
quantization and dynamics model with sufficient quantiza-
tion degree perfectly captures meaningful contexts that exist
in the system (Thm. 2) and recovers corresponding LCGs
(Prop. 1-(i)), thereby leading to a fine-grained understand-
ing of the dynamics. Our method described in the previous
section serves as a practical approach toward this goal.

Discussion on the codebook size. Thm. 2 also implies
that the identification of the meaningful contexts is agnos-
tic to the quantization degree K, as long as K ≥ H . In
Sec. 4.2, we demonstrate that our method works reason-
ably well for various quantization degrees in practice. We
note that determining a minimal and sufficient number of
quantization H is not our primary focus. This is because
over-parametrization of quantization incurs only a small
memory cost for additional codebook vectors in practice.
Note that even if K < H , Prop. 1-(ii) guarantees that it
would still discover meaningful fine-grained causal relation-
ships, optimal in terms of E

[
|Gz|

]
.

Relationship to past approaches. To better understand our
approach, we draw connections to (i) prior causal dynamics
models and (ii) sample-specific approaches to discovering
fine-grained dependencies. First, our method with the quan-
tization degree K = 1 degenerates to prior causal dynamics
models (Wang et al., 2022; Ding et al., 2022): it would
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discover (global) causal dependencies (i.e., special case
of Thm. 1) but cannot harness fine-grained relationships.
Second, our method without quantization reverts to sample-
specific approaches (K → ∞), e.g., the auxiliary network
that infers local independence directly from each sample
(Hwang et al., 2023). As described earlier, it is unclear under
which context the inferred dependencies hold. In Sec. 4.2,
we demonstrate that this makes their inferences often in-
consistent within the same context and prone to overfitting,
while our approach with quantization infers fine-grained
causal relationships in a more effective and robust manner.

4. Experiments
In this section, we evaluate our method, coined Fine-Grained
Causal Dynamics Learning (FCDL), to investigate the fol-
lowing questions: (1) Does our method improve robustness
in MBRL (Tables 1 and 2)? (2) Does our method discover
fine-grained causal relationships and capture meaningful
contexts (Figs. 5 to 7)? (3) Is our method more effective
and robust compared to sample-specific approaches (Figs. 6
and 7)? (4) How does the degree of quantization affect
performance (Fig. 7 and Table 3)?

4.1. Experimental Setup

The environments are designed to exhibit fine-grained causal
relationships under a particular context D. The state vari-
ables (e.g., position, velocity) are fully observable, follow-
ing prior works (Ding et al., 2022; Wang et al., 2022; Seitzer
et al., 2021; Pitis et al., 2020; 2022). Experimental details
are provided in Appendix C.2

4.1.1. ENVIRONMENTS

Chemical (Ke et al., 2021). It is a widely used benchmark
for systematic evaluation of causal reasoning in RL. There
are 10 nodes, each colored with one of 5 colors. According
to the underlying causal graph, an action changes the colors
of the intervened node’s descendants as depicted in Fig. 3(a).
The task is to match the colors of each node to the given
target. We designed two settings, named full-fork and full-
chain. In both settings, the underlying CG is both full. When
the color of the root node is red (D), the colors change
according to fork or chain, respectively (GD). For example,
in full-fork, all other parent nodes except the root become
irrelevant under this context. Otherwise (Dc), the transition
respects the graph full (i.e., GDc = G). During the test, the
root color is set to red, and LCG (fork or chain) is activated.
Here, the agent receives a noisy observation for some nodes,
and the task is to match the colors of other clean nodes, as
depicted in Appendix C.1 (Fig. 8). The agent capable of

2Our code is publicly available at https://github.com/
iwhwang/Fine-Grained-Causal-RL.

Full Chain Fork

(a) Chemical

(b) Magnetic

Figure 3. Illustrations for each environment. (a) In Chemical, col-
ors change by the action according to the underlying causal graph.
(b) In Magnetic, the red object exhibits magnetism.

fine-grained causal reasoning would generalize well since
corrupted nodes are locally spurious to predict other nodes.

Magnetic. We designed a robot arm manipulation environ-
ment based on the Robosuite framework (Zhu et al., 2020).
There is a moving ball and a box on the table, colored red
or black (Fig. 3(b)). Red color indicates that the object is
magnetic, and attracts the other magnetic object. For exam-
ple, when both are red, magnetic force will be applied, and
the ball will move toward the box. Otherwise, i.e., under the
non-magnetic context, the box would have no influence on
the ball. The color and position of the objects are randomly
initialized for each episode, i.e., each episode is under the
magnetic or non-magnetic context during training. The task
is to reach the ball, predicting its trajectory. In this environ-
ment, non-magnetic context D displays sparse dependencies
(GD ⊊ G) because the box no longer influences the ball un-
der this context. In contrast, all causal dependencies remain
the same under the magnetic context Dc, i.e., GDc = G. CG
and LCGs are shown in Appendix C.1 (Fig. 9). During the
test, one of the objects is black, and the box is located at
an unseen position. Under this non-magnetic context, the
box becomes locally spurious, and thus, the agent aware of
fine-grained causal relationships would generalize well to
unseen out-of-distribution (OOD) states.

4.1.2. EXPERIMENTAL DETAILS

Baselines. We first consider dense models, i.e., a monolithic
network implemented as MLP which learns p(s′ | s, a),
and a modular network having a separate network for each
variable:

∏
j p(s

′
j | s, a). We also include a graph neural
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Table 1. Average episode reward on training and downstream tasks in each environment. In Chemical, n denotes the number of noisy
nodes in downstream tasks.

Chemical (full-fork) Chemical (full-chain) Magnetic

Methods
Train

(n = 0)
Test

(n = 2)
Test

(n = 4)
Test

(n = 6)
Train

(n = 0)
Test

(n = 2)
Test

(n = 4)
Test

(n = 6) Train Test

MLP 19.00±0.83 6.49±0.48 5.93±0.71 6.84±1.17 17.91±0.87 7.39±0.65 6.63±0.58 6.78±0.93 8.37±0.74 0.86±0.45

Modular 18.55±1.00 6.05±0.70 5.65±0.50 6.43±1.00 17.37±1.63 6.61±0.63 7.01±0.55 7.04±1.07 8.45±0.80 0.88±0.52

GNN (Kipf et al., 2020) 18.60±1.19 6.61±0.92 6.15±0.74 6.95±0.78 16.97±1.85 6.89±0.28 6.38±0.28 6.56±0.53 8.53±0.83 0.92±0.51

NPS (Goyal et al., 2021a) 7.71±1.22 5.82±0.83 5.75±0.57 5.54±0.80 8.20±0.54 6.92±1.03 6.88±0.79 6.80±0.39 3.13±1.00 0.91±0.69

CDL (Wang et al., 2022) 18.95±1.40 9.37±1.33 8.23±0.40 9.50±1.18 17.95±0.83 8.71±0.55 8.65±0.38 10.23±0.50 8.75±0.69 1.10±0.67

GRADER (Ding et al., 2022) 18.65±0.98 9.27±1.31 8.79±0.65 10.61±1.31 17.71±0.54 8.69±0.56 8.75±0.80 10.14±0.33 - -
Oracle 19.64±1.18 7.83±0.87 8.04±0.62 9.66±0.21 17.79±0.76 8.47±0.69 8.85±0.78 10.29±0.37 8.42±0.86 0.95±0.55

NCD (Hwang et al., 2023) 19.30±0.95 10.95±1.63 9.11±0.63 10.32±0.93 18.27±0.27 9.60±1.52 8.86±0.23 10.32±0.37 8.48±0.70 1.31±0.77

FCDL (Ours) 19.28±0.87 15.27±2.53 14.73±1.68 13.62±2.56 17.22±0.61 13.36±3.60 12.35±3.23 12.00±1.21 8.52±0.74 4.81±3.01

MLP
Modular

GNN
NPS

GRADER
Oracle

NCD
Ours
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Figure 4. Learning curves on downstream tasks as measured on
the average episode reward. Lines and shaded areas represent the
mean and standard deviation, respectively.

network (GNN) (Kipf et al., 2020), which learns the rela-
tional information, and NPS (Goyal et al., 2021a), which
learns sparse and modular dynamics. Causal models, in-
cluding CDL (Wang et al., 2022) and GRADER (Ding
et al., 2022), infer causal structure for dynamics learning:∏

j p(s
′
j | Pa(j)). We also consider an oracle model, which

leverages the ground truth (global) causal graph. Finally,
we compare to NCD (Hwang et al., 2023), a sample-specific
approach that examines local independence for each sample.

Planning algorithm. For all baselines and our method, we
use a model predictive control (Camacho & Alba, 2013)
which selects the actions based on the prediction of the
learned dynamics model. Specifically, we use the cross-
entropy method (CEM) (Rubinstein & Kroese, 2004), which
iteratively generates and optimizes action sequences.

Implementation. For our method, we set the hyperparame-
ters K = 16, λ = 0.001, and β = 0.25 in all experiments.
All methods have a similar model capacity for a fair compar-
ison. For the evaluation, we ran 10 test episodes for every
40 training episodes. The results are averaged over eight dif-
ferent runs. All learning curves are shown in Appendix C.5.

4.2. Results

Downstream task performance (Table 1, Fig. 4). All
methods show similar performance on in-distribution (ID)
states in training. However, dense models suffer from OOD

(a) ID (all) (b) ID (fork) (c) OOD (fork)

(d) True LCG (fork) (e) Learned LCG (fork)

Figure 5. (Top) Codebook histogram of the sample allocations to
each of the codes on (a) all ID states, (b) ID states under fork, and
(c) OOD states under fork. (Bottom) (d) True LCG (fork). (e)
Learned LCG corresponding to the most frequently allocated code
in (b) and (c).

states in the downstream tasks. Causal models are generally
more robust compared to dense models, as they infer the
causal graph and discard spurious dependencies. NCD, a
sample-specific approach to infer fine-grained dependencies,
performs better than causal models on a few downstream
tasks, but not always. In contrast, our method consistently
outperforms the baselines across all downstream tasks. This
empirically validates our hypothesis that fine-grained causal
reasoning leads to improved robustness in MBRL.

Prediction accuracy (Table 2). To better understand the
robustness of our method in downstream tasks, we inves-
tigate the prediction accuracy on ID and OOD states over
the clean nodes in Chemical. As described earlier, noisy
nodes are irrelevant for predicting the clean nodes under the
LCG (i.e., fork or chain); thus, they are locally spurious
on OOD states in downstream tasks. While all methods
perform reasonably well on ID states, dense models show
a significant performance drop under the presence of noisy
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Table 2. Prediction accuracy on ID (n = 0) and OOD (n = 2, 4, 6) states in Chemical environment.
Setting / n MLP Modular GNN NPS CDL GRADER Oracle NCD FCDL (Ours)

full-fork

(n = 0) 88.31±1.58 89.24±1.52 88.81±1.44 58.34±2.08 89.22±1.67 87.75±1.64 89.63±1.62 90.07±1.22 89.46±1.40

(n = 2) 31.11±1.69 26.53±3.45 36.29±3.45 40.56±4.61 35.59±1.85 37.93±1.06 33.87±1.34 41.60±5.08 66.44±12.22

(n = 4) 30.44±2.28 24.73±5.61 25.80±3.48 26.81±4.37 35.82±1.40 38.94±1.63 36.48±1.80 37.47±2.13 58.49±10.20

(n = 6) 32.39±1.76 26.73±8.31 21.58±3.44 23.02±4.27 42.22±1.39 45.74±2.25 42.47±0.75 42.27±1.82 49.09±4.77

full-chain

(n = 0) 84.38±1.31 85.92±1.15 85.41±1.84 58.48±2.81 86.85±1.47 84.24±1.22 85.76±1.56 85.63±1.01 86.07±1.62

(n = 2) 28.66±3.65 25.24±4.68 29.22±3.39 38.73±2.63 34.90±1.59 36.82±3.12 34.63±1.78 40.04±6.21 60.34±12.10

(n = 4) 26.52±4.26 24.94±4.81 23.28±4.98 27.69±4.28 36.52±1.72 37.41±2.84 38.31±2.48 37.47±2.98 56.64±9.40

(n = 6) 24.15±4.17 25.09±5.91 20.53±6.96 24.45±3.84 42.06±1.29 43.48±4.14 42.87±2.08 41.19±1.66 53.29±6.63

(a) FCDL (CG) (b) FCDL (LCG) (c) NCD (LCG, ID) (d) NCD (LCG, OOD)

Figure 6. Red boxes indicate edges included in global CG, but not in LCG under the non-magnetic context. (a) CG inferred by our
method. (b-d) LCG under the non-magnetic context inferred by (b) our method, and NCD on (c) ID and (d) OOD state.

variables, merely above 20% which is an expected accuracy
of random guessing. As expected, causal dynamics mod-
els tend to be more robust compared to dense models, but
they still suffer from OOD states. NCD is more robust than
causal models when n = 2, but eventually becomes similar
to them as the number of noisy nodes increases. In contrast,
our method outperforms baselines by a large margin across
all downstream tasks, which demonstrates its effectiveness
and robustness in fine-grained causal reasoning.

Recognizing important contexts and fine-grained causal
relationships (Fig. 5). To illustrate the fine-grained causal
reasoning of our method, we closely examine the behavior of
our model with the quantization degree K = 4 in Chemical
(full-fork, n = 2). Recall each code corresponds to the pair
of a subgroup and LCG, Fig. 5(a) shows how ID samples in
the batch are allocated to one of the four codes. Interestingly,
ID samples corresponding to LCG fork are all allocated to
the last code (Fig. 5(b)), i.e., the subgroup corresponding
to the last code identifies this context. Furthermore, LCG
decoded from this code (Fig. 5(e)) accurately captures the
true fork structure (Fig. 5(d)). This demonstrates that our
method successfully recognizes meaningful context and fine-
grained causal relationships. Notably, Fig. 5(c) shows that
most of the OOD samples under fork are correctly allocated
to the last code. This illustrates the robustness of our method,
i.e., its inference is consistent between ID and OOD states.
Additional examples, including the visualization of all the
learned LCGs from all codes, are provided in Appendix C.5.

Inferred LCGs compared to sample-specific approach
(Fig. 6). We investigated the effectiveness and robustness of

our method in fine-grained causal reasoning compared to the
sample-specific approach. For this, we examine the inferred
LCGs in Magnetic, where true LCGs and CG are shown in
Appendix C.1 (Fig. 9). First, our method accurately learns
LCG under the non-magnetic context (Fig. 6(b)). On the
other hand, the LCG inferred by NCD is rather inaccurate
(Fig. 6(c)), including some locally spurious dependencies (3
among 6 red boxes). Furthermore, its inference is inconsis-
tent between ID and OOD states in the same non-magnetic
context and completely fails on OOD states (Fig. 6(d)). This
demonstrates that our approach is more effective and robust
in discovering fine-grained causal relationships.

Evaluation of local causal discovery (Fig. 7). We evaluate
our method and NCD using structural hamming distance
(SHD) in Magnetic. For each sample, we compare the
inferred LCG with the true LCG based on the magnetic/non-
magnetic context, and the SHD scores are averaged over
the data samples in the evaluation batch. As expected, our
method infers fine-grained relationships more accurately
and maintains better performance on OOD states across var-
ious quantization degrees, which validates its effectiveness
and robustness compared to NCD. Lastly, we note that our
method with the quantization degree K = 1 would learn
only a single CG over the entire data domain, as shown in
Fig. 6(a). This explains its mean SHD score of 6 in non-
magnetic samples in Fig. 7, since CG includes six redundant
edges in non-magnetic context (i.e., red boxes in Fig. 9).

Ablation on the quantization degree (Table 3). Finally,
we observe that our method works reasonably well across
various quantization degrees on all downstream tasks in
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Figure 7. Evaluation of local causal discovery in Magnetic environment.

Table 3. Ablation on the quantization degree.
Chemical (full-fork)

Methods (n = 2) (n = 4) (n = 6)

CDL 9.37±1.33 8.23±0.40 9.50±1.18

NCD 10.95±1.63 9.11±0.63 10.32±0.93

FCDL (K = 2) 13.44±5.41 12.86±5.58 12.99±5.27

FCDL (K = 4) 15.73±4.13 16.50±3.40 12.40±2.81

FCDL (K = 8) 14.95±1.16 15.03±2.61 13.42±2.67

FCDL (K = 16) 15.27±2.53 14.73±1.68 13.62±2.56

FCDL (K = 32) 16.12±1.43 14.35±1.37 14.79±2.13

Chemical (full-fork). Our method consistently outperforms
the prior causal dynamics model (CDL) and sample-specific
approach (NCD), which corroborates the results in Fig. 7.
During our experiments, we found that the training was
relatively stable for any quantization degree of K > 2.
We also found that instability often occurs under K = 2,
where the samples frequently fluctuate between two proto-
type vectors and result in the codebook collapsing. This is
also shown in Table 3 where the performance of K = 2 is
worse compared to other choices of K. We speculate that
over-parametrization of quantization could alleviate such
fluctuation in general.

5. Discussions and Future Works
High-dimensional observation. The factorization of the
state space is natural in many real-world domains (e.g.,
healthcare, recommender system, social science, economics)
where discovering causal relationships is an important prob-
lem. Extending our framework to the image would require
extracting causal factors from pixels (Schölkopf et al., 2021),
which is orthogonal to ours and could be combined with.

Scalability and stability in training. Vector quantization
(VQ) is a well-established component in generative models
where the quantization degree is usually very high (e.g.,
K = 512, 1024), yet effectively captures diverse visual fea-
tures. Its scalability is further showcased in complex large-
scale datasets (Razavi et al., 2019). In this sense, we believe
our framework could extend to complex real-world environ-
ments. For training stability, techniques have been recently
proposed to prevent codebook collapsing, such as codebook
reset (Williams et al., 2020) and stochastic quantization
(Takida et al., 2022). We consider that such techniques and
tricks could be incorporated into our framework.

Conditional independence test (CIT). A CIT is an effec-
tive tool for understanding causal relationships, although
often computation-costly. Our method may utilize it to fur-
ther calibrate the learned LCGs, e.g., applying CIT on each
subgroup after the training, which we defer to future work.

Domain knowledge. Our method could leverage prior infor-
mation on important contexts displaying sparse dependen-
cies, if available. While our method does not rely on such

domain knowledge, it would still be useful for discovering
fine-grained relationships more efficiently (e.g., Thm. 1).

Implications to real-world scenarios. We believe our work
has potential implications in many practical applications
since context-dependent causal relationships are prevalent
in real-world scenarios. For example, in healthcare, a dy-
namic treatment regime is a task of determining a sequence
of decision rules (e.g., treatment type, drug dosage) based
on the patient’s health status where it is known that many
pathological factors involve fine-grained causal relation-
ships (Barash & Friedman, 2001; Edwards & Toma, 1985).
Our experiments illustrate that existing causal/non-causal
RL approaches could suffer from locally spurious correla-
tions and fail to generalize in downstream tasks. We believe
our work serves as a stepping stone for further investigation
into fine-grained causal reasoning of RL systems and their
robustness in real-world deployment.

6. Conclusion
We present a novel approach to dynamics learning that in-
fers fine-grained causal relationships, leading to improved
robustness of MBRL. We provide a principled way to exam-
ine fine-grained dependencies under certain contexts. As a
practical approach, our method learns a discrete latent vari-
able that represents the pairs of a subgroup and local causal
graphs (LCGs), allowing joint optimization with the dynam-
ics model. Consequently, our method infers fine-grained
causal structures in a more effective and robust manner com-
pared to prior approaches. As one of the first steps towards
fine-grained causal reasoning in sequential decision-making
systems, we hope our work stimulates future research to-
ward this goal.

Impact Statement
In real-world applications, model-based RL requires a large
amount of data. As a large-scale dataset may contain sensi-
tive information, it would be advisable to discreetly evaluate
the models within simulated environments before their real-
world deployment.
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A. Appendix for Preliminary
A.1. Extended Related Work

Recently, incorporating causal reasoning into RL has gained much attention in the community in various aspects. For
example, causality has been shown to improve off-policy evaluation (Buesing et al., 2019; Oberst & Sontag, 2019), goal-
directed tasks (Nair et al., 2019), credit assignment (Mesnard et al., 2021), robustness (Lyle et al., 2021; Volodin et al., 2020),
policy transfer (Killian et al., 2022), explainability (Madumal et al., 2020), and policy learning with counterfactual data
augmentation (Lu et al., 2020; Pitis et al., 2020; 2022). Causality has also been integrated with bandits (Bareinboim et al.,
2015; Lee & Bareinboim, 2018; 2020), curriculum learning (Li et al., 2024) or imitation learning (Bica et al., 2021; De Haan
et al., 2019; Zhang et al., 2020b; Kumor et al., 2021; Jamshidi et al., 2023) to handle the unobserved confounders and learn
generalizable policies. Another line of work focused on causal reasoning over the high-dimensional visual observation (Lu
et al., 2018; Rezende et al., 2020; Feng et al., 2022; Feng & Magliacane, 2023), e.g., learning sparse and modular dynamics
(Goyal et al., 2021c;b;a), where the representation learning is crucial (Zhang et al., 2019; Sontakke et al., 2021; Tomar et al.,
2021; Schölkopf et al., 2021; Zadaianchuk et al., 2021; Yoon et al., 2023).

Our work falls into the category of incorporating causality into dynamics learning in RL (Mutti et al., 2023), where recent
works have focused on conditional independences between the variables and their global causal relationships (Wang et al.,
2021; 2022; Ding et al., 2022). On the contrary, our work incorporates fine-grained causal relationships into dynamics
learning, which is underexplored in prior works.

A.2. Background on Local Independence Relationship

In this subsection, we provide the background on the local independence relationship. We first describe context-specific
independence (CSI) (Boutilier et al., 2013), which denotes a variable being conditionally independent of others given a
particular context, not the full set of parents in the graph.
Definition 2 (Context-Specific Independence (CSI) (Boutilier et al., 2013), reproduced from Hwang et al. (2023)). Y is said
to be contextually independent of XB given the context XA = xA if P

(
y | xA,xB

)
= P

(
y | xA

)
, holds for all y ∈ Y

and xB ∈ XB whenever P (xA,xB) > 0. This will be denoted by Y ⊥⊥ XB | XA = xA.

CSI has been widely studied especially for discrete variables with low cardinality, e.g., binary variables. Context-set specific
independence (CSSI) generalizes the notion of CSI allowing continuous variables.
Definition 3 (Context-Set Specific Independence (CSSI) (Hwang et al., 2023)). Let X = {X1, · · · , Xd} be a non-empty set
of the parents of Y in a causal graph, and E ⊆ X be an event with a positive probability. E is said to be a context set which
induces context-set specific independence (CSSI) of XAc from Y if p

(
y | xAc ,xA

)
= p

(
y | x′

Ac ,xA

)
holds for every

(xAc ,xA) ,
(
x′
Ac ,xA

)
∈ E . This will be denoted by Y ⊥⊥ XAc | XA, E .

Intuitively, it denotes that the conditional distribution p(y | x) = p(y | xAc , xA) is the same for different values of xAc , for
all x = (xAc ,xA) ∈ E . In other words, only a subset of the parent variables is sufficient for modeling p(y | x) on E .

A.3. Fine-Grained Causal Relationships in Factored MDP

As mentioned in Sec. 2, we consider factored MDP where the causal graph is directed bipartite and make standard
assumptions in the field to properly identify the causal relationships in MBRL (Ding et al., 2022; Wang et al., 2021; 2022;
Seitzer et al., 2021; Pitis et al., 2020; 2022).
Assumption 1. We assume Markov property (Pearl, 2009), faithfulness (Peters et al., 2017), and causal sufficiency (Spirtes
et al., 2000).

Recall that X = {S1, · · · , SN , A1, · · · , AM}, Y = {S′
1, · · · , S′

N}, and Pa(j) is parent variables of S′
j . Now, we formally

define local independence by adapting CSSI to our setting.
Definition 4 (Local Independence). Let T ⊆ Pa(j) and E ⊆ X with p(E) > 0. We say the local independence
S′
j ⊥⊥ X \T | T, E holds on E if p(s′j | xT c ,xT ) = p(s′j | x′

T c ,xT ) holds for every (xT c ,xT ) ,
(
x′
T c ,xT

)
∈ E .3

It implies that only a subset of the parent variables (xT ) is locally relevant on E , and any other remaining variables (xT c)
are locally irrelevant, i.e., p(s′j | x) is a function of xT on E . Local independence generalizes conditional independence

3T denotes an index set of T.
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in the sense that if S′
j ⊥⊥ X \T | T holds, then S′

j ⊥⊥ X \T | T, E holds for any E ⊆ X . Throughout the paper, we are
concerned with the events with the positive probability, i.e., p(E) > 0.
Definition 5. Pa(j; E) is a subset of Pa(j) such that S′

j ⊥⊥ X \ Pa(j; E) | Pa(j; E), E holds and S′
j ̸⊥⊥ X \T | T, E for

any T ⊊ Pa(j; E).

In other words, Pa(j; E) is a minimal subset of Pa(j) in which the local independence on E holds. Clearly, Pa(j;X ) =
Pa(j), i.e., local independence on X is equivalent to the (global) conditional independence.

LCG (Def. 1) describes fine-grained causal relationships specific to E . LCG is always a subgraph of the (global) causal
graph, i.e., GD ⊆ G, because if a dependency (i.e., edge) does not exist under the whole domain, it cannot exist under any
context. Note that GX = G, i.e., local independence and LCG under X are equivalent to conditional independence and CG,
respectively.

Analogous to the faithfulness assumption (Peters et al., 2017) that no conditional independences other than ones entailed by
CG are present, we introduce a similar assumption for LCG and local independence.
Assumption 2 (E-Faithfulness). For any E , no local independences on E other than the ones entailed by GE are present, i.e.,
for any j, there does not exists any T such that Pa(j; E) \T ̸= ∅ and S′

j ⊥⊥ X \T | T, E .

Regardless of E-faithfulness assumption, LCG always exists because Pa(j; E) always exists. However, such LCG may not
be unique without this (see Hwang et al. (2023, Example. 2) for this example). Assumption 2 implies the uniqueness of
Pa(j; E) and GE , and thus it is required to properly identify fine-grained causal relationships between the variables.

Such fine-grained causal relationships are prevalent in the real world. Physical law; To move a static object, a force
exceeding frictional resistance must be exerted. Otherwise, the object would not move. Logic; Consider A ∨B ∨ C. When
A is true, any changes of B or C no longer affect the outcome. Biology; In general, smoking has a causal effect on blood
pressure. However, one’s blood pressure becomes independent of smoking if a ratio of alpha and beta lipoproteins is larger
than a certain threshold (Edwards & Toma, 1985).

B. Appendix for Method and Theoretical Analysis
B.1. Fine-Grained Dynamics Modeling

With the arbitrary decomposition {Ez}Kz=1, true transition dynamics p(s′ | s, a) can be written as:

p(s′ | s, a) =
∑
z

p(s′ | s, a, z)p(z | s, a) =
∑
z

∏
j

p(s′j | Pa(j; Ez), z)1{(s,a)∈Ez}, (7)

where p(z | s, a) = 1 if (s, a) ∈ Ez . This illustrates our approach to dynamics modeling based on fine-grained causal
dependencies: p(s′j | s, a) is a function of Pa(j, Ez) on Ez , and our dynamics model employs locally relevant dependencies
Pa(j, Ez) for predicting S′

j . Our dynamics modeling with some graphs {Gz}Kz=1 is:

p̂(s′ | s, a; {Gz, Ez}, ϕ) =
∑
z

p̂(s′ | s, a;Gz, ϕz)1{(s,a)∈Ez} =
∑
z

∏
j

p̂j(s
′
j | PaGz (j);ϕ(j)

z )1{(s,a)∈Ez}, (8)

where ϕ
(j)
z takes PaGz (j) as an input and outputs the parameters of the density function p̂j and ϕ := {ϕ(j)

z }. We denote
p̂{Gz,Ez},ϕ := p̂(s′ | s, a; {Gz, Ez}, ϕ) and p̂Gz,ϕz

:= p̂(s′ | s, a;Gz, ϕz). In other words, p̂{Gz,Ez},ϕ(s
′ | s, a) = p̂Gz,ϕz (s

′ |
s, a) if (s, a) ∈ Ez .

Now, we revisit the score function in Eq. (4):

S({Gz, Ez}Kz=1) := sup
ϕ

Ep(s,a,s′)

[
log p̂(s′ | s, a; {Gz, Ez}, ϕ)− λ|Gz|

]
, (9)

= sup
ϕ

Ep(s,a)Ep(s′|s,a)
[
log p̂(s′ | s, a; {Gz, Ez}, ϕ)− λ|Gz|

]
, (10)

= sup
ϕ

∑
z

∫
(s,a)∈Ez

p(s, a)
(
Ep(s′|s,a) log p̂(s

′ | s, a;Gz, ϕz)− λ|Gz|
)
, (11)

= sup
ϕ

∑
z

[∫
(s,a)∈Ez

p(s, a)
(
Ep(s′|s,a) log p̂(s

′ | s, a;Gz, ϕz)
)
− λ · p(Ez) · |Gz|

]
, (12)
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where p̂(s′ | s, a;Gz, ϕz) =
∏

j p̂j(s
′
j | PaGz (j);ϕ

(j)
z ).

B.2. Proof of Thm. 1

Due to the nature of factored MDP where the causal graph is directed bipartite, each Markov equivalence class (MEC)
constrained under temporal precedence contains a unique causal graph (i.e., a skeleton determines a unique causal graph
since temporal precedence fully orients the edges). Given this background, it is known that the causal graph is uniquely
identifiable with oracle conditional independence test (Ding et al., 2022) or score-based method (Brouillard et al., 2020).

We will now show that LCG is also uniquely identifiable via score maximization. Our proof techniques are built upon
Brouillard et al. (2020). It is worth noting that they provide the identifiability of (global) CG up to I-MEC (Yang et al., 2018)
by utilizing observational and interventional data. In contrast, our analysis is on the identifiability of LCGs by utilizing only
observational data. We start by adopting some assumptions from Brouillard et al. (2020).

Assumption 3. The ground truth density p(s′ | s, a) ∈ H({G∗
z , Ez}) for any decomposition {Ez} with corresponding true

LCGs {G∗
z}, where H({G∗

z , Ez}) := {p | ∃ϕ, p = p̂{G∗
z ,Ez},ϕ}. We assume the density p̂{G∗

z ,Ez},ϕ is strictly positive for all ϕ.

Definition 6. For a graph G and E ⊂ X , let FE(G) be a set of conditional densities f such that f(s′ | s, a) = ∏
j fj(s

′
j |

PaG(j)) for all (s, a) ∈ E where each fj is a conditional density.

Assumption 4. |Ep(s,a,s′) log p(s
′ | s, a)| < ∞.

Assumption 3 states that the model parametrized by neural network has sufficient capacity to represent the ground truth
density. Assumption 4 is a technical tool for handling the score differences as we will see later.

Lemma 1. Let G∗
z be a true LCG on Ez for all z. Then, S({G∗

z , Ez}Kz=1) = Ep(s,a,s′) log p(s
′ | s, a)− λ · E

[
|G∗

z |
]
.

Proof. First,

0 ≤ DKL(p ∥ p̂{G∗
z ,Ez},ϕ) = Ep(s,a,s′) log p(s

′ | s, a)− Ep(s,a,s′) log p̂(s
′ | s, a; {G∗

z , Ez}, ϕ), (13)

where the equality holds because Ep(s,a,s′) log p(s
′ | s, a) < ∞ by Assumption 4. Therefore,

sup
ϕ

Ep(s,a,s′) log p̂(s
′ | s, a; {G∗

z , Ez}, ϕ) ≤ Ep(s,a,s′) log p(s
′ | s, a). (14)

On the other hand, by Assumption 3, there exists ϕ∗ such that p = p̂{G∗
z ,Ez},ϕ∗ . Hence,

sup
ϕ

Ep(s,a,s′) log p̂(s
′ | s, a; {G∗

z , Ez}, ϕ) ≥ Ep(s,a,s′) log p̂(s
′ | s, a; {G∗

z , Ez}, ϕ∗) = Ep(s,a,s′) log p(s
′ | s, a). (15)

By Eqs. (14) and (15), we have supϕ Ep(s,a,s′) log p̂(s
′ | s, a; {G∗

z , Ez}, ϕ) = Ep(s,a,s′) log p(s
′ | s, a). Therefore, we have

S({G∗
z , Ez}Kz=1) = Ep(s,a,s′) log p(s

′ | s, a)− λ · E
[
|G∗

z |
]
.

Corollary 1. Let G∗
z be a true LCG on Ez for all z. Then, |S({G∗

z , Ez}Kz=1)| < ∞.

Proof. By Lemma 1, S({G∗
z , Ez}Kz=1) = Ep(s,a,s′) log p(s

′ | s, a)− λ · E
[
|G∗

z |
]
. Since |Ep(s,a,s′) log p(s

′ | s, a)| < ∞ by
Assumption 4 and |G∗

z | ≤ N(N +M), this concludes that |S({G∗
z , Ez}Kz=1)| < ∞.

Lemma 2. Let G∗
z be a true LCG on Ez for all z. Then,

S({G∗
z , Ez}Kz=1)− S({Gz, Ez}Kz=1) = inf

ϕ
DKL(p ∥ p̂{Gz,Ez},ϕ) + λ

∑
z

p(Ez)(|Gz| − |G∗
z |). (16)

Proof. First, we can rewrite the score S({Gz, Ez}Kz=1) as:

S({Gz, Ez}Kz=1) = sup
ϕ

Ep(s,a,s′) log p̂(s
′ | s, a; {Gz, Ez}, ϕ)− λ · E

[
|Gz|

]
(17)

= − inf
ϕ

−Ep(s,a,s′) log p̂(s
′ | s, a; {Gz, Ez}, ϕ)− λ · E

[
|Gz|

]
(18)

= − inf
ϕ

DKL(p ∥ p̂{Gz,Ez},ϕ) + Ep(s,a,s′) log p(s
′ | s, a)− λ · E

[
|Gz|

]
(19)
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The last equality holds by Assumption 4. Subtracting Eq. (19) from Lemma 1, we obtain:

S({G∗
z , Ez}Kz=1)− S({Gz, Ez}Kz=1) = inf

ϕ
DKL(p ∥ p̂{Gz,Ez},ϕ) + λ

∑
z

p(Ez)(|Gz| − |G∗
z |).

Note that |S({G∗
z , Ez}Kz=1)| < ∞ by Corollary 1, and thus, this score difference is well defined.

Lemma 3 (Modified from Brouillard et al. (2020), Lemma 16). If p /∈ FEz (Gz), then

inf
ϕz

∫
pz(s, a)DKL(p(· | s, a) ∥ p̂Gz,ϕz

(· | s, a)) > 0, (20)

where pz(s, a) := p(s, a | z) = p(s, a)/p(Ez) for all (s, a) ∈ Ez , i.e., density function of the distribution PS×A|Ez
.

Proof. First, since p̂Gz,ϕz ∈ FEz (Gz) for all ϕz ,

inf
ϕz

∫
pz(s, a)DKL(p(· | s, a) ∥ p̂Gz,ϕz (· | s, a)) ≥ inf

f∈FEz (Gz)

∫
pz(s, a)DKL(p(· | s, a) ∥ f(· | s, a)). (21)

Now, let f̂(s′ | s, a) := ∏
j pz(s

′
j | PaGz (j)) for all (s, a) ∈ Ez . Then, for any f ∈ FEz (Gz),∫

pz(s, a)

∫
p(s′ | s, a) log f̂(s′ | s, a)

f(s′ | s, a) =

∫
pz(s, a, s

′)
∑
j

log
pz(s

′
j | PaGz (j))

fj(s′j | PaGz (j))

=
∑
j

∫
pz(s, a, s

′) log
pz(s

′
j | PaGz (j))

fj(s′j | PaGz (j))

=
∑
j

∫
pz(PaGz (j))

∫
pz(s

′
j | PaGz (j)) log

pz(s
′
j | PaGz (j))

fj(s′j | PaGz (j))
≥ 0. (22)

Therefore, for any f ∈ FEz (Gz),∫
pz(s, a)DKL(p(· | s, a) ∥ f(· | s, a)) =

∫
pz(s, a)

∫
p(s′ | s, a) log p(s′ | s, a)

f̂(s′ | s, a)
f̂(s′ | s, a)
f(s′ | s, a)

=

∫
pz(s, a)DKL(p ∥ f̂) +

∫
pz(s, a)

∫
p(s′ | s, a) log f̂(s′ | s, a)

f(s′ | s, a)

≥
∫

pz(s, a)DKL(p ∥ f̂).

Here, the last inequality holds by Eq. (22). Therefore,

inf
f∈FEz (Gz)

∫
pz(s, a)DKL(p(· | s, a) ∥ f(· | s, a)) =

∫
pz(s, a)DKL(p(· | s, a) ∥ f̂(· | s, a)) > 0. (23)

Here, the last inequality holds because f̂ ∈ FEz
(Gz) and p /∈ FEz

(Gz) and thus p ̸= f̂ . By Eqs. (21) and (23), the proof is
complete.

Theorem 1 (Identifiability of LCGs). With Assumptions 1 to 4, let {Ĝz} ∈ argmaxS({Gz, Ez}Kz=1) for λ > 0 small enough.
Then, each Ĝz is true LCG on Ez , i.e., Ĝz = GEz

.

Proof. To simplify the notation, let G∗
z be a true LCG on Ez for all z, i.e., G∗

z := GEz for brevity. It is enough to show that
S({G∗

z , Ez}Kz=1) > S({Gz, Ez}Kz=1) if G∗
z ̸= Gz for some z.
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Now, by Lemma 2,

S({G∗
z , Ez}Kz=1)− S({Gz, Ez}Kz=1) (24)

= inf
ϕ

DKL(p ∥ p̂{Gz,Ez},ϕ) + λ
∑
z

p(Ez)(|Gz| − |G∗
z |) (25)

= inf
ϕ

∫
p(s, a)DKL(p(· | s, a) ∥ p̂{Gz,Ez},ϕ(· | s, a)) + λ

∑
z

p(Ez)(|Gz| − |G∗
z |) (26)

= inf
ϕ

∑
z

∫
(s,a)∈Ez

p(s, a)DKL(p(· | s, a) ∥ p̂Gz,ϕz (· | s, a)) + λ
∑
z

p(Ez)(|Gz| − |G∗
z |) (27)

=
∑
z

inf
ϕz

p(Ez)
∫

pz(s, a)DKL(p(· | s, a) ∥ p̂Gz,ϕz (· | s, a)) + λ
∑
z

p(Ez)(|Gz| − |G∗
z |) (28)

=
∑
z

p(Ez) inf
ϕz

DKL(pz ∥ p̂Gz,ϕz
) + λ

∑
z

p(Ez)(|Gz| − |G∗
z |) (29)

=
∑
z

p(Ez)
[
inf
ϕz

DKL(pz ∥ p̂Gz,ϕz
) + λ(|Gz| − |G∗

z |)
]
=

∑
z

p(Ez) ·Az. (30)

For brevity, we denote DKL(pz ∥ p̂Gz,ϕz
) :=

∫
pz(s, a)DKL(p(· | s, a) ∥ p̂Gz,ϕz

(· | s, a)) and Az := infϕz
DKL(pz ∥

p̂Gz,ϕz
) + λ(|Gz| − |G∗

z |). Now, we will show that for all z ∈ [K], Az > 0 if and only if G∗
z ̸= Gz .

Case 0: G∗
z = Gz . Clearly, Az = 0 in this case.

Case 1: G∗
z ⊊ Gz . Then, |Gz| > |G∗

z | and thus Az > 0 since λ(|Gz| − |G∗
z |) > 0.

Case 2: G∗
z ̸⊆ Gz . In this case, there exists (i → j) ∈ G∗

z such that (i → j) /∈ Gz . Thus, S′
j ⊥⊥GzXi | X \ {Xi}

and S′
j ̸⊥⊥G∗

z
Xi | X \ {Xi}. Therefore, S′

j ̸⊥⊥pXi | X \ {Xi}, Ez by Assumption 2. Thus, p /∈ FEz
(Gz) and we have

infϕz
DKL(pz ∥ p̂Gz,ϕz

) > 0 by Lemma 3.

Now, we consider two subcases: (i) Gz ∈ G+
z := {G′ | G∗

z ̸⊆ G′, |G′| ≥ |G∗
z |}, and (ii) Gz ∈ G−

z := {G′ | G∗
z ̸⊆ G′, |G′| <

|G∗
z |}. Clearly, if Gz ∈ G+

z then Az > 0. Suppose Gz ∈ G−
z . Then,

λ ≤ ηz :=
1

N(N +M) + 1
min

G′∈G−
z

inf
ϕz

DKL(pz ∥ p̂G′,ϕz
) (31)

=⇒ λ ≤ infϕz DKL(pz ∥ p̂G′,ϕz )

N(N +M) + 1
<

infϕz DKL(pz ∥ p̂G′,ϕz )

|G∗
z | − |G′| for ∀G′ ∈ G−

z (32)

=⇒ inf
ϕz

DKL(pz ∥ p̂G′,ϕz ) + λ(|Gz| − |G∗
z |) > 0 for ∀G′ ∈ G−

z . (33)

Here, we use the fact that |G∗
z | − |G′| ≤ |G∗

z | < N(N +M) + 1. Therefore, for 0 < ∀λ ≤ ηz , we have Az > 0 if G∗
z ̸= Gz .

Here, we note that ηz > 0 for all z, since G−
z is finite and infϕz DKL(pz ∥ p̂G′,ϕz ) > 0 for any G′ ∈ G−

z by Lemma 3.

Consequently, for 0 < λ ≤ η({Ez}) := minz ηz , we have S({G∗
z , Ez}Kz=1)− S({Gz, Ez}Kz=1) > 0 if G∗

z ̸= Gz for some z.
We also note that η({Ez}) > 0 since ηz > 0 for all z.

B.3. Proof of Prop. 1

Definition 7. Let T := {{Ez}Kz=1}, i.e., a set of all decompositions of size K.
Definition 8. Let Tλ := {{Ez}Kz=1 | η({Ez}) ≥ λ}.
Remark 1. Tλ → T (= T0) as λ → 0.

Recall that Thm. 1 holds for 0 < λ ≤ η({Ez}). Here, η({Ez}) is the value corresponding to the specific decomposition
{Ez}. For the arguments henceforth, we consider the arbitrary decomposition and thus introduce the following assumption.
Assumption 5. inf{Ez}∈T η({Ez}) > 0.

Note that η({Ez}) > 0 for any {Ez}, and thus inf{Ez}∈T η({Ez}) ≥ 0. We now take 0 < λ ≤ inf{Ez}∈T η({Ez}) with
Assumption 5, which allows Thm. 1 to hold on any arbitrary decomposition. It is worth noting that this assumption is purely
technical because for a small fixed λ > 0, the arguments henceforth hold for all {Ez} ∈ Tλ, where Tλ → T as λ → 0.
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Proposition 1. Let {G∗
z , E∗

z } ∈ argmaxS({Gz, Ez}Kz=1) for λ > 0 small enough, with Assumptions 1 to 5. Then, (i) each
G∗
z is true LCG on E∗

z , and (ii) E
[
|G∗

z |
]
≤ E

[
|Gz|

]
where {Gz} are LCGs on arbitrary decomposition {Ez}Kz=1.

Proof. Let 0 < λ ≤ inf{Ez}∈T η({Ez}). (i) First, {G∗
z , E∗

z }Kz=1 ∈ argmax{Gz,Ez} S({Gz, Ez}Kz=1) implies that {G∗
z}Kz=1

also maximizes the score on the fixed {E∗
z }Kz=1, i.e., {G∗

z}Kz=1 ∈ argmax{Gz} S({Gz, E∗
z }Kz=1). Thus, each G∗

z is true LCG
on E∗

z by Thm. 1, i.e., G∗
z = GE∗

z
.

(ii) Also, since {Ez}Kz=1 is the arbitrary decomposition, S({G∗
z , E∗

z }) ≥ S({Gz, Ez}) holds. Since {Gz} is the true LCGs on
each Ez , i.e., Gz = GEz , by Lemma 1,

S({Gz, Ez}Kz=1) = Ep(s,a,s′) log p(s
′ | s, a)− λ

∑
z

p(Ez) · |Gz|. (34)

Similarly, since {G∗
z} is the true LCGs on each E∗

z ,

S({G∗
z , E∗

z }Kz=1) = Ep(s,a,s′) log p(s
′ | s, a)− λ

∑
z

p(E∗
z ) · |G∗

z |. (35)

Therefore, 0 ≤ S({G∗
z , E∗

z })− S({Gz, Ez}) = E
[
|Gz|

]
− E

[
|G∗

z |
]

holds, and thus E
[
|G∗

z |
]
≤ E

[
|Gz|

]
.

B.4. Proof of Thm. 2

We first provide some useful lemma.

Lemma 4 (Hwang et al. (2023), Prop. 4). S′
j ⊥⊥ X \ Pa(j; E) | Pa(j; E),F holds for any F ⊆ E .

Lemma 5 (Monotonicity). Let F ⊆ E . Then, GF ⊆ GE .

Proof. Since S′
j ⊥⊥ X \ Pa(j; E) | Pa(j; E),F holds by Lemma 4, Pa(j;F) ⊆ Pa(j; E) holds by definition; otherwise,

Pa(j;F) \ Pa(j; E) ̸= ∅ which leads to contradiction. Therefore, Pa(j;F) ⊆ Pa(j; E) for all j and thus GF ⊆ GE .

Now, we provide a proof of Thm. 2.

Definition 9. The context D ⊂ X is canonical if GF = GD for any F ⊂ D.

Theorem 2 (Identifiability of contexts). Let {G∗
z , E∗

z } ∈ argmaxS({Gz, Ez}Kz=1) for λ > 0 small enough, with Assump-
tions 1 to 5. Suppose X = ∪m∈[H]Dm where GDm is distinct for all m ∈ [H], and D1, · · · ,DH are disjoint and canonical.
Suppose K ≥ H . Then, for all m ∈ [H], there exists Im ⊂ [K] such that Dm =

⋃
z∈Im

E∗
z almost surely.

Proof. Let {Fz}Kz=1 be the decomposition such that for all m ∈ [H],
⋃

z∈Jm
Fz = Dm for some Jm ⊂ [K]. Note that such

decomposition exists since K ≥ H . Let {Gz}Kz=1 be the true LCGs corresponding to each Fz , i.e., Gz = GFz
. Recall that

E
[
|G∗

z |
]
≤ E

[
|Gz|

]
holds by Prop. 1, we have

0 ≤ E
[
|Gz|

]
− E

[
|G∗

z |
]
=

∑
i

p(Fi)|Gi| −
∑
j

p(E∗
j )|G∗

j |

=
∑
i,j

p(Fi ∩ E∗
j )(|Gi| − |G∗

j |). (36)

Suppose p(Fi ∩ E∗
j ) > 0 for some i, j. Let Cij := Fi ∩ E∗

j . Since Fi ⊂ Dm for some m and Dm is canonical, Fi is also
canonical. Therefore, Gi = GCij

since Cij ⊂ Fi. Since Cij ⊂ E∗
j , we have GCij

⊆ G∗
j by Lemma 5. Therefore, we have

Gi ⊆ G∗
j . Therefore, |Gi| − |G∗

j | ≤ 0 for any i, j such that p(Fi ∩E∗
j ) > 0. Thus, by Eq. (36), |Gi| = |G∗

j | if p(Fi ∩E∗
j ) > 0.

Since Gi ⊆ G∗
j if p(Fi ∩ E∗

j ) > 0, we conclude that

Gi = G∗
j if p(Fi ∩ E∗

j ) > 0. (37)

Now, for arbitrary E∗
j , suppose there exist s ̸= t such that p(Ds ∩ E∗

j ) > 0 and p(Dt ∩ E∗
j ) > 0. Then, there exist some

Fi ⊂ Ds and Fk ⊂ Dt such that p(Fi ∩ E∗
j ) > 0 and p(Fk ∩ E∗

j ) > 0. By Eq. (37), we have Gi = G∗
j = Gk. Also,

GDs = Gi and GDt = Gk since Ds,Dt are canonical. Therefore, we have GDs = GDt , which contradicts that GDm is distinct
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Figure 8. Illustration of CHEMICAL (full-fork) environment with 4 nodes. (Left) the color of the root node determines the activation of
local causal graph fork. (Right) the noisy nodes are redundant for predicting the colors of other nodes under the local causal graph.

for all m. Therefore, for any E∗
j , there exists a unique Dm such that p(Dm ∩ E∗

j ) > 0, which leads p(E∗
j \ Dm) = 0 since

{Dm}m∈[H] is a decomposition of X . Let Im = {j ∈ [K] | p(Dm ∩ E∗
j ) > 0}. Here, we have

p

 ⋃
z∈Im

E∗
z \ Dm

 =
∑
z∈Im

p
(
E∗
z \ Dm

)
= 0. (38)

Also, by the definition of Im and because {E∗
z }z∈[K] is a decomposition of X , we have

p

Dm \
⋃

z∈Im

E∗
z

 = 0. (39)

Therefore, by Eqs. (38) and (39), we have Dm =
⋃

z∈Im
E∗
z almost surely for all m ∈ [H].

C. Appendix for Experiments
C.1. Environment Details

Table 4. Environment configurations.
Chemical

Magnetic
Parameters full-fork full-chain

Training step 1.5× 105 1.5× 105 2× 105

Optimizer Adam Adam Adam
Learning rate 1e-4 1e-4 1e-4
Batch size 256 256 256
Initial step 1000 1000 2000
Max episode length 25 25 25
Action type Discrete Discrete Continuous

Table 5. CEM parameters.
Chemical

Magnetic
CEM parameters full-fork full-chain

Planning length 3 3 1
Number of candidates 64 64 64
Number of top candidates 32 32 32
Number of iterations 5 5 5
Exploration noise N/A N/A 1e-4
Exploration probability 0.05 0.05 N/A

C.1.1. CHEMICAL

Here, we describe two settings, namely full-fork and full-chain, modified from Ke et al. (2021). In both settings, there are 10
state variables representing the color of corresponding nodes, with each color represented as a one-hot encoding. The action
variable is a 50-dimensional categorical variable that changes the color of a specific node to a new color (e.g., changing
the color of the third node to blue). According to the underlying causal graph and pre-defined conditional probability
distributions, implemented with randomly initialized neural networks, an action changes the colors of the intervened object’s
descendants as depicted in Fig. 8. As shown in Fig. 3(a), the (global) causal graph is full in both settings, and the LCG is
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(a) (b) (c)

Figure 9. (a) Causal graph of Magnetic environment. Red boxes indicate redundant edges under the non-magnetic context. (b) LCG under
the magnetic context, which is the same as global CG. (c) LCG under the non-magnetic context.

fork and chain, respectively. For example in full-fork, the LCG fork is activated according to the particular color of the root
node, as shown in Fig. 8.

In both settings, the task is to match the colors of each node to the given target. The reward function is defined as:

r =
1

|O|
∑
i∈O

1 [si = gi] , (40)

where O is a set of the indices of observable nodes, si is the current color of the i-th node, and gi is the target color of the
i-th node in this episode. Success is determined if all colors of observable nodes are the same as the target. During training,
all 10 nodes are observable, i.e., O = {0, · · · , 9}. In downstream tasks, the root color is set to induce the LCG, and the
agent receives noisy observations for a subset of nodes, aiming to match the colors of the rest of the observable nodes. As
shown in Fig. 8, noisy nodes are spurious for predicting the colors of other nodes under the LCG. Thus, the agent capable of
reasoning the fine-grained causal relationships would generalize well in downstream tasks. Note that the transition dynamics
of the environment is the same in training and downstream tasks. To create noisy observations, we use a noise sampled from
N (0, σ2), similar to Wang et al. (2022), where the noise is multiplied to the one-hot encoding representing color during the
test. In our experiments, we use σ = 100.

As the root color determines the local causal graph in both settings, the root node is always observable to the agent during
the test. The root colors of the initial state and the goal state are the same, inducing the local causal graph. As the root color
can be changed by the action during the test, this may pose a challenge in evaluating the agent’s reasoning of local causal
relationships. This can be addressed by modifying the initial distribution of CEM to exclude the action on the root node and
only act on the other nodes during the test. Nevertheless, we observe that restricting the action on the root during the test
has little impact on the behavior of any model, and we find that this is because the agent rarely changes the root color as it
already matches the goal color in the initial state.

C.1.2. MAGNETIC

In this environment, there are two objects on a table, a moving ball and a box, colored either red or black, as shown in
Fig. 3(b). The red color indicates that the object is magnetic. In other words, when they are both colored red, magnetic force
will be applied and the ball will move toward the box. If one of the objects is colored black, the ball would not move since
the box has no influence on the ball.

The state consists of the color, x, y position of each object, and x, y, z position of the end-effector of the robot arm, where
the color is given as the 2-dimensional one-hot encoding. The action is a 3-dimensional vector that moves the robot arm.
The causal graph of the Magnetic environment is shown in Fig. 9(a). LCGs under magnetic and non-magnetic context are
shown in Figs. 9(b) and 9(c), respectively. The table in our setup has a width of 0.9 and a length of 0.6, with the y-axis
defined by the width and the x-axis defined by the length. For each episode, the initial positions of a moving ball and a box
are randomly sampled within the range of the table.

The task is to move the robot arm to reach the moving ball. Thus, accurately predicting the trajectory of the ball is crucial.
The reward function is defined as:

r = 1− tanh(5 · ∥eef − g∥1), (41)
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where the eef ∈ R3 is the current position of the end-effector, g = (bx, by, 0.8) ∈ R3, and (bx, by) is the current position of
the moving ball. Success is determined if the distance is smaller than 0.05. During the test, the color of one of the objects
is black and the box is located at the position unseen during the training. Specifically, the box position is sampled from
N (0, σ2) during the test. Note that the box can be located outside of the table, which never happens during the training. In
our experiments, we use σ = 100.

C.2. Experimental Details

To assess the performance of different dynamics models of the baselines and our method, we use a model predictive control
(MPC) (Camacho & Alba, 2013) which selects the actions based on the prediction of the learned dynamics model, following
prior works (Ding et al., 2022; Wang et al., 2022). Specifically, we use a cross-entropy method (CEM) (Rubinstein &
Kroese, 2004), which iteratively generates and refines action sequences through a process of sampling from a probability
distribution that is updated based on the performance of these sampled sequences, with a known reward function. We use a
random policy for the initial data collection. Environmental configurations and CEM parameters are shown in Tables 4
and 5, respectively. Most of the experiments were processed using a single NVIDIA RTX 3090. For Fig. 7, we use structural
hamming distance (SHD) for evaluation, which is a metric used to quantify the dissimilarity between two graphs based on
the number of edge additions or deletions needed to make the graphs identical (Acid & de Campos, 2003; Ramsey et al.,
2006).

C.3. Implementation of Baselines

For all methods, the dynamics model outputs the parameters of categorical distribution for discrete variables, and the
mean and standard deviation of normal distribution for continuous variables. All methods have a similar number of model
parameters for a fair comparison. Detailed parameters of each model are shown in Table 6.

MLP and Modular. MLP models the transition dynamics as p(s′ | s, a). Modular has a separate network for each state
variable, i.e.,

∏
j p(s

′
j | s, a), where each network is implemented as an MLP.

GNN, NPS, and CDL. We employ publicly available source codes.4 For NPS (Goyal et al., 2021a), we search the
number of rules N ∈ {4, 15, 20}. CDL (Wang et al., 2022) infers the causal structure by estimating conditional mutual
information (CMI) and models the dynamics as

∏
j p(s

′
j | Pa(j)). For CDL, we search the initial CMI threshold

ϵ ∈ {0.001, 0.002, 0.005, 0.01, 0.02} and exponential moving average (EMA) coefficient τ ∈ {0.9, 0.95, 0.99, 0.999}. As
CDL is a two-stage method, we only report their final performance.

GRADER. We implement GRADER (Ding et al., 2022) based on the code provided by the authors.5 GRADER relies on
the conditional independence test (CIT) to discover the causal structure. In Chemical, we ran the CIT for every 10 episodes,
following their default setting. We only report its performance in Chemical due to the poor scalability of the conditional
independence test in Magnetic environment, which took about 30 minutes for each test.

Oracle and NCD. For a fair comparison, we employ the same architecture for the dynamic models of Oracle, NCD, and
our method, as their main difference lies in the inference of local causal graphs (LCG). As illustrated in Fig. 10, the key
difference is that NCD (Hwang et al., 2023) performs direct inference of the LCG from each individual sample (referred
to as sample-specific inference), while our method decomposes the data domain and infers the LCGs for each subgroup
through quantization. We provide an implementation details of our method in the next subsection.

C.4. Implementation of FCDL

For our method, we use MLPs for the implementation of genc, gdec, and p̂, with configurations provided in Table 6. The
quantization encoder genc of our method or the auxiliary network of NCD shares the initial feature extraction layer with the
dynamics model p̂ as we found that it yields better performance compared to full decoupling of them.

4https://github.com/wangzizhao/CausalDynamicsLearning
5https://github.com/GilgameshD/GRADER
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Figure 10. Comparison of the sample-specific inference of NCD (top) and quantization-based inference of our method (bottom).

C.4.1. DYNAMICS MODEL

Recall our dynamics modeling in Eq. (8) that p̂(s′j | PaGz (j);ϕ
(j)
z ) if (s, a) ∈ Ez , which corresponds to p(s′j | s, a) =

p(s′j | Pa(j; Ez), z) in Eq. (3). Here, each ϕ
(j)
z is a neural network that takes PaGz (j) as an input and predicts s′j under

Ez . In general, this separate network for each subgroup would allow it to effectively adapt to environments with complex
dynamics and learn transition functions separately for each subgroup. However, this requires a total of K ×N separate
networks, which could incur a computational burden. Instead, we employ an efficient parameter-sharing mechanism to
simplify the model implementation: we let the dynamics model consist of separate networks for each state variable, i.e.,
ϕ = {ϕ(j)} and each ϕ(j) takes (PaGz (j), z) as an input, instead of using separate networks ϕ(j)

z for each Ez , which is
analogous to p(s′j | Pa(j; Ez), z). This requires a total of N separate networks, one for each state variable. There are
different implementation design choices for z in (PaGz (j), z). We consider two cases: (i) concatenation of PaGz (j) and ez
(i.e., code), and (ii) concatenation of PaGz (j) and one-hot encoding of z (dimension of K). We opt for a simpler choice of
the latter. This allows us to model (possibly) different transition functions for each subgroup with a single dynamics model
for each state variable. Note that if the subgroups having the same LCG share the same transition function, such labeling of
z could be further omitted.

For the implementation of taking PaGz (j) as input for p̂(s′j | PaGz (j);ϕ
(j)
z ), we simply mask out the features of unused

variables, but other design choices such as Gated Recurrent Unit (Chung et al., 2014; Ding et al., 2022) are also possible. As
architectural design is not the primary focus of this work, we leave the exploration of different architectures to future work.
Note that all baselines except MLP (e.g., GNN and causal dynamics models) use separate networks for each state variable,
and we made sure that all methods have a similar number of model parameters for a fair comparison.

C.4.2. BACKPROPAGATION

We now describe how each component of our method is updated by the training objective in Eq. (6). First, Lpred updates
the encoder genc(s, a), decoder gdec(e), and the dynamics model p̂. Recall that A ∼ gdec(e), backpropagation from A in
Lpred updates the quantization decoder gdec through e. During the backward path in Eq. (5), gradients are copied from e (=
input of gdec) to h (= output of genc), following VQ-VAE (Van Den Oord et al., 2017). By doing so, Lpred also updates the
quantization encoder genc and h. Second, Lquant updates genc and the codebook C. We note that Lpred also affects the
learning of the codebook C since h is updated with Lpred. The rationale behind this trick of VQ-VAE is that the gradient
∇eLpred could guide the encoder genc to change its output h = genc(s, a) to lower the prediction loss Lpred, altering the
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(a) (b) (c) (d)

Figure 11. (a,b) Codebook histogram on (a) ID states during training and (b) OOD states during the test in Chemical (full-fork). (c) True
causal graph of the fork structure. (d) Learned LCG corresponding to the most used code in (b).

(a) (b) (c)

(d) (e) (f) (g)

Figure 12. Analysis of LCGs learned by our method with quantization degree of 4 in Chemical (full-fork) environment. (a-c) Codebook
histogram on (a) ID states, (b) ID states on local structure fork, and (c) OOD states on local structure. (d-g) Learned LCGs. The
descriptions of the histograms are also applied to Figs. 13 to 15, 17 and 18.

quantization (i.e., assignment of the cluster) in the next forward pass. A larger prediction loss (which implies that this
sample (s, a) is assigned to the wrong cluster) induces a bigger change on h, and consequently, it would be more likely to
cause a re-assignment of the cluster.

C.4.3. HYPERPARAMETERS

For all experiments, we fix the codebook size K = 16, regularization coefficient λ = 0.001, and commitment coefficient
β = 0.25, as we found that the performance did not vary much for any K > 2, λ ∈ {10−4, 10−3, 10−2} and β ∈ {0.1, 0.25}.

C.5. Additional Experimental Results

C.5.1. DETAILED ANALYSIS OF LEARNED LCGS

LCGs learned by our method with a quantization degree of 4 in Chemical are shown in Figs. 12 and 13. Among the 4 codes,
one (Fig. 12(b)) or two (Fig. 13(b)) represent the local causal structure fork. Our method successfully infers the proper
code for most of the OOD samples (Figs. 12(c) and 13(c)). Two sample runs of our method with a quantization degree of 4
in Magnetic are shown in Figs. 14 and 15. Our method successfully learns LCGs correspond to a non-magnetic context
(Figs. 14(d), 14(g), 15(d) and 15(f)) and magnetic context (Figs. 14(e), 14(f), 15(e) and 15(g)).

We also observe that our method discovers more fine-grained relationships. Recall that the non-magnetic context is
determined when one of the objects is black, the box would have no influence on the ball regardless of the color of the
box when the ball is black, and vice versa. As shown in Fig. 16, our method discovers the context where the ball is black
(Fig. 16(b)), and the context where the box is black (Fig. 16(a)).

24



Fine-Grained Causal Dynamics Learning

(a) (b) (c)

(d) (e) (f) (g)

Figure 13. Another sample run of our method with quantization degree of 4 in Chemical (full-fork).

(a) (b) (c)

(d) (e) (f) (g)

Figure 14. Analysis of LCGs learned by our method with quantization degree of 4 in Magnetic.

We observe that the training of latent codebook with vector quantization is often unstable when K = 2. We demonstrate the
success (Fig. 17) and failure (Fig. 18) cases of our method with a quantization degree of 2. In a failure case, we observe that
the embeddings frequently fluctuate between the two codes, resulting in both codes corresponding to the global causal graph
and failing to capture the LCG, as shown in Fig. 18.

C.5.2. LEARNING CURVES ON ALL DOWNSTREAM TASKS

Fig. 19 shows the learning curves on training in all environments. Figs. 4, 20 and 21 shows the learning curves on all
downstream tasks.6

6As CDL is a two-stage method that requires searching the best threshold after the first stage training, we only report their final
performance.
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(a) (b) (c)

(d) (e) (f) (g)

Figure 15. Another sample run of our method with quantization degree of 4 in Magnetic.

(a) (b)

Figure 16. More fine-grained LCGs learned by our method with quantization degree of 16 in Magnetic.

(a) (b) (c) (d) (e)

Figure 17. Analysis of LCGs learned by our method with quantization degree of 2 in Chemical (full-fork).

D. Additional Discussions
D.1. Difference from Sample-based Inference

Sample-based inference methods, e.g., NCD (Hwang et al., 2023) for LCG or ACD (Löwe et al., 2022) for CG, can be seen
as learning causal graphs with gated edges. They learn a function that maps each sample to the adjacency matrix where
each entry is the binary variable indicating whether the corresponding edge is on or off under the current state. The critical
difference from ours is that LCGs learned from sample-based inference methods are unbounded and blackbox.

Specifically, it is hard to understand which local structures and contexts are identified since they can only be examined by
observing the inference outcome from all samples (i.e., blackbox). Also, there is no (practical or theoretical) guarantee that
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(a) (b) (c) (d) (e)

Figure 18. Failure case of our method with quantization degree of 2 in Chemical (full-fork).

it outputs the same graph from the states within the same context, since the output of the function is unbounded. In contrast,
our method learns a finite set of LCGs where the contexts are explicitly identified by latent clustering. In other words, the
outcome is bounded (infers one of the K graphs) and the contexts are more interpretable.

For the robustness of the model and principled understanding of the fine-grained structures, the practical or theoretical
guarantee and interpretability are crucial, and we demonstrate the improved robustness of our method compared to prior
sample-based inference methods. On the other hand, sample-based inference or local edge switch methods have strength in
their simple design and efficiency, and it is known that the signals from such local edge switch enhance exploration in RL
(Seitzer et al., 2021; Wang et al., 2023). For the practitioners, the choice would depend on their purpose, e.g., whether their
primary interest is on the robustness and principled understanding of the fine-grained structures.

D.2. Limitations and Future Works

Insufficient or biased data may lead to inaccurate learning of causal relationships, including both CG and LCG. Our work
explored the potential of utilizing LCGs to deal with (locally) spurious correlations arising from insufficient or biased
data in the context of MBRL. While we assumed causal sufficiency, unobserved variables may also influence the causal
relationships. These assumptions are commonly adopted in the field, yet we consider that relaxing these assumptions would
be a promising future direction. Another promising future direction is to explore an inherent structure to the quantization
that can efficiently handle a large number of contexts.
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Table 6. Parameters of each model.
Chemical

Magnetic
Models Parameters full-fork full-chain

MLP Hidden dim 1024 1024 512
Hidden layers 3 3 4

Modular Hidden dim 128 128 128
Hidden layers 4 4 4

GNN

Node attribute dim 256 256 256
Node network hidden dim 512 512 512

Node network hidden layers 3 3 3
Edge attribute dim 256 256 256

Edge network hidden dim 512 512 512
Edge network hidden layers 3 3 3

NPS

Number of rules 20 20 15
Cond selector dim 128 128 128

Rule embedding dim 128 128 128
Rule selector dim 128 128 128

Feature encoder hidden dim 128 128 128
Feature encoder hidden layers 2 2 2

Rule network hidden dim 128 128 128
Rule network hidden layers 3 3 3

CDL

Hidden dim 128 128 128
Hidden layers 4 4 4
CMI threshold 0.001 0.001 0.001

CMI optimization frequency 10 10 10
CMI evaluation frequency 10 10 10
CMI evaluation step size 1 1 1

CMI evaluation batch size 256 256 256
EMA discount 0.9 0.9 0.99

Grader
Feature embedding dim 128 128 N/A

GRU hidden dim 128 128 N/A
Causal discovery frequency 10 10 N/A

Oracle Hidden dim 128 128 128
Hidden layers 4 4 5

NCD

Hidden dim 128 128 128
Hidden layers 4 4 5

Auxiliary network hidden dim 128 128 128
Auxiliary network hidden layers 2 2 2

Ours

Hidden dim 128 128 128
Hidden layers 4 4 5
VQ encoder [128, 64] [128, 64] [128, 64]
VQ decoder [32] [32] [32]

Codebook size 16 16 16
Code dimension 16 16 16
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Figure 19. Learning curves during training as measured by the episode reward.
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Figure 20. Learning curves on downstream tasks in Chemical (full-fork) as measured on the episode reward (top) and success rate
(bottom).
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Figure 21. Learning curves on downstream tasks in Chemical (full-chain) as measured on the episode reward (top) and success rate
(bottom).
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