
Optimistic Meta-Gradients

Anonymous Author(s)
Affiliation
Address
email

Abstract
We study the connection between gradient-based meta-learning and convex opti-1

misation. We observe that gradient descent with momentum is as a special case2

of meta-gradients, and building on recent results in optimisation, we prove con-3

vergence rates for meta-learning in the single task setting. While a meta-learned4

update rule can yield faster convergence up to constant factor,it is not sufficient5

for acceleration. Instead, some form of optimism is required. We show that opti-6

mism in meta-learning can be captured through the recently proposed Bootstrapped7

Meta-Gradient [9] method, providing deeper insight into its underlying mechanics.8

1 Introduction9
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Figure 1: ImageNet. We compare training a 50-
layer ResNet using SGD against variants that tune
an element-wise learning rate online using standard
meta-learning or optimistic meta-learning. Shad-
ing depicts 95% confidence intervals over 3 seeds.

In meta-learning, a learner is using a param-10

eterised algorithm to adapt to a given task.11

The parameters of the algorithm are then meta-12

learned by evaluating the learner’s resulting per-13

formance [24, 10, 2]. As such, meta-learning14

features a complex interaction between the15

learner and the meta-learner. The learner’s16

problem is to minimize the expected loss f of17

a stochastic objective by adapting its parameters18

x ∈ Rn. The learner has an update rule ϕ at19

its disposal that generates new parameters xt =20

xt−1 + ϕ(xt−1, wt); we suppress data depen-21

dence to simplify notation. A simple example is22

when ϕ represents gradient descent with wt = η23

its step size, that is ϕ(xt−1, η) = −η∇f(xt−1)24

[16, 25]; several works have explored meta-25

learning other aspects of a gradient-based up-26

date rule [6, 20, 7, 29, 30, 9, 14, 21]. ϕ need27

not be limited to a gradient-based update, it can28

represent some algorithm implemented within29

a Recurrent Neural Network [24, 11, 1, 28].30

The meta-learner’s problem is to optimise the31

meta-parameters wt to yield effective updates.32

In a typical (gradient-based) meta-learning setting, it does so by treating xt as a function of w. Let33

ht, defined by ht(w) = f(xt−1 + ϕ(xt−1, w)), denote the learner’s post-update performance as a34

function of w. The learner and the meta-learner co-evolve according to35

xt = xt−1 + ϕ(xt−1, wt), wt+1 = wt −∇ht(wt) = wt −Dϕ(xt−1, wt)
T∇f(xt),

where Dϕ(x,w) denotes the Jacobian of ϕ with respect to w. The nested structure between these36

two updates makes it challenging to analyse meta-learning, in particular it depends heavily on the37

properties of the Jacobian. In practice, ϕ is highly complex and so Dϕ is almost always intractable.38
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For this reason, the only theoretical results we are aware of specialise to the multi-task setting, where39

the learner must adapt to a new task ft. Acceleration in these guarantees are driven entirely by the40

task distribution. That is, if all tasks are sufficiently similar, a meta-learned update can accelerate41

convergence. However, they do not yield acceleration in the absence of a task distribution.42

This paper provides an alternative view. We study the classical convex optimisation setting of43

approximating the minimiser minx f(x). We observe that setting the update rule equal to the gradient,44

i.e. ϕ : (x,w) 7→ w∇f(x), recovers gradient descent. Similarly, we show in Section 3 that ϕ can be45

chosen to recover gradient descent with momentum. This offers another view of meta-learning as a46

non-linear transformation of classical optimisation. An implication thereof is that a task distribution is47

not necessary for meta-learning. While there is ample empirical evidence to that effect [29, 30, 9, 15],48

we are only aware of theoretical results in the special case of meta-learned step sizes [16, 25].49

Given f convex with Lipschitz smooth gradients, meta-learning affects the rate of convergence50

O(λ/T ) by a multiplicative factor λ that captures the smoothness of the update rule. To achieve51

accelerated convergence, O(1/T 2), some form of optimism is required, typically in the form of a52

prediction of the next gradient. We consider optimism with meta-learning in the convex setting and53

prove accelerated rates of convergence, O(λ/T 2). Again, meta-learning affects these bounds by a54

multiplicative factor. Our main contributions are as follows:55

1. We show that meta-learning contains gradient descent with momentum (Heavy Ball [22];56

Section 3) and Nesterov Acceleration [19] as special cases (Section 4).57

2. We show that gradient-based meta-learning can be understood as a non-linear transformation58

of an underlying optimisation method (Section 3).59

3. We establish rates of convergence for meta-learning in the convex setting (Section 3).60

4. We show that optimism can be expressed through the recently proposed Bootstrapped Meta-61

Gradient method [BMG; 9]. Our analysis provides a first proof of convergence for BMG62

and highlights the underlying mechanics that enable faster learning with BMG (Section 4).63

2 Meta-learning meets convex optimisation64

Problem definition. This section defines the problem studied in this paper and introduces our65

notation. Let f : X → R be a proper and convex function. The problem of interest is to approximate66

the global minimum minx∈X f(x). We assume a global minimiser exists and is unique, defined by67

x∗ = arg min
x∈X

f(x). (1)

We assume that X ⊆ Rn is a closed, convex and non-empty set. f is differentiable and has Lipschitz68

smooth gradients with respect to a norm ‖ · ‖, meaning that there exists L ∈ (0,∞) such that69

‖∇f(x)−∇f(y)‖∗ ≤ L‖x− y‖ for all x, y ∈ X , where ‖ · ‖∗ is the dual norm of ‖ · ‖. We consider70

the noiseless setting for simplicity; our results carry over to the stochastic setting by replacing the71

key online-to-batch bound used in our analysis by its stochastic counterpart [13].72

Algorithm. Let [T ] = {1, 2, . . . , T}. We are given weights {αt}Tt=1, each αt > 0, and an73

initialisation (x̄0, w1) ∈ X ×W . At each time t ∈ [T ], an update rule ϕ : X ×W → X generates74

the update xt = ϕ(x̄t−1, wt), where W ⊆ Rm is closed, convex, and non-empty. We discuss ϕ75

momentarily. The algorithm maintains the online average76

x̄t =
x1:t
α1:t

= (1− ρt)x̄t−1 + ρtxt, (2)

where x1:t =
∑t
s=1 αsxs, α1:t =

∑t
s=1 αs, and ρt = αt/α1:t. Our goal is to establish conditions77

under which {x̄t}Tt=1 converges to the minimiser x∗. While this moving average is not always used78

in practical applications, it is required for accelerated rates in online-to-batch conversion [26, 3, 13].79

Convergence depends on how meta-parameters wt are chosen. The meta-learner faces a sequence80

of losses ht :W → R defined by the composition ht(w) = f((1− ρt)x̄t−1 + ρtϕ(x̄t−1, w)). This81

makes meta-learning a form of online gradient descent [17], which we can model under Follow-The-82

Regularized-Leader (FTRL; reviewed in Appendix D): given w0, each wt is chosen according to83

wt+1 = arg min
w∈W

(
t∑

s=1

αs〈∇hs(ws), w〉+
1

2β
‖w‖2

)
. (3)
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Figure 2: Convex Quadratic. We generate convex quadratic loss functions with ill-conditioning and
compare gradient descent with momentum and AdaGrad to meta-learning variants. Meta-Momentum
uses ϕ : (x,w) 7→ w �∇f(x) while Meta-AdaGrad uses ϕ : (x,w) 7→ ∇f(x)/

√
w, where division

is element-wise. Top: loss per iteration for randomly sampled loss functions. Bottom: cumulative
loss (regret) at the end of learning as a function of learning rate; details in Appendix B.

Note that this subsumes the standard meta-gradient; if ‖ · ‖ is the Euclidean norm, an interior solution84

to Eq. 3 yields wt+1 = wt − αtβ∇ht(wt). It is straightforward to extend Eq. 3 to account for85

meta-updates that use AdaGrad-like [5] acceleration by altering the norms [12].86

Update rule. It is not possible to prove convergence outside of the convex setting, since ϕ may87

reach a local minimum where it cannot yield better updates, but the updates are not sufficient to88

converge. Convexity means that each ht must be convex, which requires that ϕ is affine in w (but89

may vary non-linearly in x). We also assume that ϕ is smooth with respect to ‖ · ‖, in the sense that it90

has bounded norm; for all x ∈ X and all w ∈ W we assume that there exists λ ∈ (0,∞) for which91

‖Dϕ(x,w)T∇f(x)‖2∗ ≤ λ‖∇f(x)‖2∗.

These assumptions hold for any update rule up to first-order Taylor approximation error.92

3 Meta-Gradients without Optimism93

The main difference between classical optimisation and meta-learning is the introduction of the94

update rule ϕ. To see how this acts on optimisation, consider two special cases. If the update rule just95

return the gradient, ϕ = ∇f , Eq. 3 reduces to gradient descent (with averaging). This inductive bias96

is fixed and does not change with experience, so acceleration is not possible: the rate of convergence97

is O(1/
√
T ) [27]. The other extreme is an update rule that only depends on the meta-parameters,98

ϕ(x,w) = w. Here, the meta-learner has ultimate control and selects the next update without99

constraints. The only relevant inductive bias is contained in w. To see how this inductive bias is100

formed, suppose ‖ · ‖ = ‖ · ‖2 so that Eq. 3 yields wt+1 = wt − αtρtβ∇f(x̄t) (assuming an interior101

solution). Combining this with the moving average in Eq. 2, we may write the learner’s iterates as102

x̄t = x̄t−1 + ρ̃t (x̄t−1 − x̄t−2)− β̃t∇f(x̄t−1),

where each ρ̃t = ρt
1−ρt−1

ρt−1
and β̃t = αtρtβ; setting β = 1/(2L) and each αt = t yields ρ̃t = t−2

t+1103

and β̃t = t/(4(t+ 1)L). Hence, the canonical momentum algorithm, Polyak’s Heavy-Ball method104

[22], is obtained as the special case of meta-learning under the update rule ϕ : (x,w) 7→ w. Because105

Heavy Ball carries momentum from past updates, it can encode a model of the learning dynamics that106

leads to faster convergence, on the orderO(1/T ). The implication of this is that the dynamics of meta-107

learning are fundamentally momentum-based and thus learns an inductive bias in the same cumulative108

manner. This similarity is clear from our theoretical analysis, summarised in the following result.109

Theorem 1 (Informal). Set αt = 1 and β = 1
λL . Then f(x̄T )− f(x∗) ≤ λL diam(W)

T .110

Details: Appendix E. Compared to Heavy Ball, meta-learning introduces a constant λ that captures111

the smoothness of the update rule. Hence, while meta-learning does not achieve better scaling in T112

through ϕ, it can improve upon classical optimisation by a constant factor if λ < 1.113

That meta-learning can improve upon momentum is borne out experimentally. In Figure 2, we114

consider the problem of minimizing a convex quadratic f : x 7→ 〈x,Qx〉, where Q ∈ Rn×n is PSD115

but ill-conditioned. We compare momentum to a meta-learned step-size, i.e. ϕ : (x,w) 7→ w�∇f(x),116

where � is the Hadamard product. Across randomly sampled Q matrices (details: Appendix B), we117
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find that introducing a non-linearity ϕ leads to a sizeable improvement in the rate of convergence.118

We also compare AdaGrad to a meta-learned version, ϕ : (x,w) 7→ ∇f(x)/
√
w, where division is119

element-wise. While AdaGrad is a stronger baseline on account of being parameter-free, we find120

that meta-learning the scale vector consistently leads to faster convergence.121

4 Meta-Gradients with Optimism122

It is well known that minimizing a smooth convex function admits convergence rates of O(1/T 2).123

Our analysis of meta-learning does not achieve these rates. Previous work indicate that we should124

not expect it to either; to achieve the theoretical lower-limit of O(1/T 2), some form of optimism125

(reviewed in Appendix D) is required. A typical form of optimism is to predict the next gradient. This126

is how Nesterov Acceleration operates [19], and is the reason for its O(1/T 2) convergence guarantee.127

From our perspective, meta-learning is a non-linear transformation of the iterate x. Hence, we should128

expect optimism to play a similarly crucial role. Formally, optimism comes in the form of hint129

functions {g̃t}Tt=1, each g̃t ∈ Rm, that are revealed to the meta-learner prior to selecting wt+1. These130

hints give rise to Optimistic Meta-Learning (OML) via meta-updates131

wt+1 = arg min
w∈W

(
αt+1g̃t+1 +

t∑
s=1

αs〈∇hs(ws), w〉+
1

2βt
‖w‖2

)
. (4)

If the hints are accurate, meta-learning with optimism can achieve an accelerated rate of O(λ̃/T 2),132

where λ̃ is a constant that characterises the smoothness of ϕ, akin to λ. Again, we find that meta-133

learning behaves as a non-linear transformation of classical optimism and its rate of convergence is134

governed by the geometry it induces. We summarise this result in the following result.135

Theorem 2 (Informal). Let each hint be given by g̃t+1 = Dϕ(x̄t−1, wt)
T∇f(x̄t). Assume that ϕ is136

sufficiently smooth. Set αt = t and βt = t−1
2tλ̃L

, then f(x̄T )− f(x∗) ≤ 4λ̃L diam(W)
T 2−1 .137

Details: Appendix E. These predictions hold empirically in a non-convex setting. We train a 50-layer138

ResNet using either SGD with a fixed learning rate, or an update rule that adapts a per-parameter139

learning rate online, ϕ : (x,w) 7→ w �∇f(x). We compare the standard meta-learning approach140

without optimism to optimistic meta-learning. Figure 1 shows that optimism is critical for meta-141

learning to achieve acceleration, as predicted by theory (experiment details in Appendix C).142

5 Bootstrapped Meta-Gradients as a form of Optimism143

Given Theorem 2, it is of interest to study practical ways of implementing optimism in meta-learning.144

We study a recently proposed variant of meta-gradients, Bootstrapped Meta-Gradients (BMG) [8].145

Here, we present an informal comparison, see Appendix G for a complete derivation. Instead of146

directly minimising the loss f , the meta-objective in BMG is the distance between the meta-learner’s147

output xt and a desired target zt. The target is computed by unrolling the meta-learner for a further148

number of steps, thus implicitly embodying a form of optimism, before a gradient step is taken:149

zt = xt + ϕ(xt, wt)−∇f(xt + ϕ(xt, wt)). This encodes optimism via ϕ because it encourages the150

meta-learner to build up momentum (i.e. to accumulate past updates). To see how BMG arises as a151

form of optimism, we turn to AO-FTRL (Eq. 4). Choose hints g̃t+1 = Dϕ(x̄t−1, wt)
T ỹt+1 for some152

ỹt+1 ∈ Rn and set ‖ · ‖ = ‖ · ‖2; assuming an interior solution, Eq. 4 yields153

wt+1 = wt −Dϕ(x̄t−1, wt)
T (αt+1ỹt+1 + αt∇f(x̄t))︸ ︷︷ ︸

BMG update

+αtDϕ(x̄t−2, wt−1)T ỹt︸ ︷︷ ︸
FTRL error correction

. (5)

Hence, BMG encodes very similar dynamics to those of AO-FTRL in Eq. 4. An immediate implication154

of this is that the hints in Corollary 1 can be expressed as targets in BMG, and hence if BMG satisfies155

the assumptions involved, it converges at a rate O(λ̃/T 2).156

6 Conclusion157

This paper explores a connection between convex optimisation and meta-learning. We find that a158

meta-learned update rule cannot generate a better dependence on the horizon T , it can improve upon159

classical optimisation up to a constant factor. An implication of our analysis is that some form of160

optimism is required for acceleration. The recently proposed BMG method provides one way of161

incorporating optimism in practical applications.162
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Appendix268

A Notation269

Table 1: Notation
Indices
t Iteration index: t ∈ {1, ..., T}.
T Total number of iterations.
[T ] The set {1, 2, . . . , T}.
i Component index: xi is the ith component of x = (x1, . . . , xn).
αa:b Sum of weights: αa:b =

∑b
s=a αs

xa:b Weighted sum: xa:b =
∑b
s=a αsxs

x̄a:b Weighted average: x̄a:b = xa:b/αa:b

Parameters
x∗ ∈ X Minimiser of f .
xt ∈ X Parameter at time t
x̄t ∈ X Moving average of {xs}ts=1 under weights {αs}ts=1.
ρt ∈ (0,∞) Moving average coefficient αt/α1:t.
wt ∈ W Meta parameters
w∗ ∈ X w ∈ W that retains regret with smallest norm ‖w‖.
αt ∈ (0,∞) Weight coefficients
βt ∈ (0,∞) Meta-learning rate

Maps
f : X → R Objective function
‖ · ‖ : X → R Norm on X .
‖ · ‖∗ : X ∗ → R Dual norm of ‖ · ‖.
ht :W → R Online loss faced by the meta learner
Rx(T ) Regret of {xt}Tt=1 against x∗: Rx(T ) :=

∑T
t=1 αt〈∇f(x̄t), xt−x∗〉.

Rw(T ) Rw(T ) :=
∑T
t=1 αt〈∇f(x̄t), ϕ(x̄t−1, wt)− ϕ(x̄t−1, w

∗)〉.
ϕ : Rn×Rm → Rn Generic update rule used in practice
Dϕ(x, ·) : Rm→Rn×m Jacobian of ϕ w.r.t. its second argument, evaluated at x ∈ Rn.
ϕ : X ×W → X Update rule in convex setting
Dϕ(x, ·) :W → Rn×m Jacobian of ϕ w.r.t. its second argument, evaluated at x ∈ X .
Bµ : Rn×Rn→ [0,∞) Bregman divergence under µ : Rn → R.
µ : Rn → R Convex distance generating function.
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Table 2: Hyper-parameter sweep on Convex Quadratics. All algorithms are tuned for learning rate
and initialisation of w. Baselines are tuned for decay rate; meta-learned variant are tuned for the
meta-learning rate.

Learning rate [.1, .3, .7, .9, 3., 5.]
w init scale [0., 0.3, 1., 3., 10., 30.]

Decay rate / Meta-learning rate [0.001, 0.003, 0.01, .03, .1, .3, 1., 3., 10., 30.]

B Convex Quadratic Experiments270

Loss function. We consider the problem of minimising a convex quadratic loss functions f :271

R2 → R of the form f(x) = xTQx, where Q is randomly sampled as follows. We sample a272

random orthogonal matrix U from the Haar distribution scipy.stats.ortho_group. We con-273

struct a diagonal matrix of eigenvalues, ranked smallest to largest, with λi = i2. Hence, the first274

dimension has an eigenvalue 1 and the second dimension has eigenvalue 4. The matrix Q is given275

by UT diag(λ1, . . . , λn)U .276

Protocol. Given that the solution is always (0, 0), this experiment revolves around understanding277

how different algorithms deal with curvature. Given symmetry in the solution and ill-conditioning,278

we fix the initialisation to x0 = (4, 4) for all sampled Qs and all algorithms and train for 100279

iterations. For each Q and each algorithm, we sweep over the learning rate, decay rate, and the280

initialization of w see Table 2. For each method, we then report the results for the combination281

of hyper parameters that performed the best.282

Results. We report the learning curves for the best hyper-parameter choice for 5 randomly sampled283

problems in the top row of Figure 2 (columns correspond to different Q). We also study the sensitivity284

of each algorithm to the learning rate in the bottom row Figure 2. For each learning rate, we report285

the cumulative loss during training. While baselines are relatively insensitive to hyper-parameter286

choice, meta-learned improve for certain choices, but are never worse than baselines.287

C Imagenet Experiments288

Protocol. We train a 50-layer ResNet following the Haiku example, available at https://github.289

com/deepmind/dm-haiku/blob/main/examples/imagenet. We modify the default setting to290

run with SGD. We compare default SGD to variants that meta-learn an element-wise learning rate291

online, i.e. (x,w) 7→ w �∇f(x). For each variant, we sweep over the learning rate (for SGD) or292

meta-learning rate. We report results for the best hyper-parameter over three independent runs.293

Standard meta-learning. In the standard meta-learning setting, we apply the update rule once294

before differentiating w.r.t. the meta-parameters. That is, the meta-update takes the form wt+1 =295

wt − β∇ht(wt), where ht = f(xt + wt � ∇f(xt)). Because the update rule is linear in w, we296

can compute the meta-gradient analytically:297

∇ht(wt) = ∇wf(x+ ϕ(x,w)) = Dϕ(x,w)T∇f(x′) = ∇f(x)�∇f(x′),

where x′ = x + ϕ(x,w). Hence, we can compute the meta-updates in Algorithm 1 manually as298

wt+1 = max{wt−β∇f(xt)�∇f(xt+1), 0.}, where we introduce the max operator on an element-299

wise basis to avoid negative learning rates. Empirically, this was important to stabilize training.300

Optimistic meta-learning. For optimistic meta-learning, we proceed much in the same way, but301

include a gradient prediction g̃t+1. For our prediction, we use the previous gradient,∇f(xt+1), as302

our prediction. Following Eq. 5, this yields meta-updates of the form303

wt+1 = max
{
wt − β∇f(xt+1)� (∇f(xt+1) +∇f(xt))−∇f(xt)�∇f(xt), 0.

}
.

Results. We report Top-1 accuracy on the held-out test set as a function of training steps in Figure 1.304

Tuning the learning rate does not yield any statistically significant improvements under standard305

meta-learning. However, with optimistic meta-learning, we obtain a significant acceleration as well306

as improved final performance, increasing the mean final top-1 accuracy from 72% to 75%.307
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Table 3: Hyper-parameter sweep on Imagenet.
(Meta-)learning rate [0.001, 0.01, 0.02, 0.05, 0.1]

D Background308

In this section, we present analytical tools from the optimisation literature that we build upon. In a309

standard optimisation setting, there is no update rule ϕ; instead, the iterates xt are generated by a310

gradient-based algorithm, akin to Eq. 3. In particular, our setting reduces to standard optimisation if311

ϕ is defined by ϕ : (x,w) 7→ w, in which case xt = wt. A common approach to analysis is to treat312

the iterates x1, x2, . . . as generated by an online learning algorithm over online losses, obtain a regret313

guarantee for the sequence, and use online-to-batch conversion to obtain a rate of convergence.314

Online Optimisation. In online convex optimisation [31], a learner is given a convex decision315

set U and faces a sequence of convex loss functions {αtft}Tt=1. At each time t ∈ [T ], it must316

make a prediction ut prior to observing αtft, after which it incurs a loss αtft(ut) and receives a317

signal—either αtft itself or a (sub-)gradient of αtft(ut). The learner’s goal is to minimise regret,318

R(T ) :=
∑T
t=1 αt(ft(ut)− ft(u)), against a comparator u ∈ U . An important property of a convex319

function f is f(u′) − f(u) ≤ 〈∇f(u′), u′ − u〉. Hence, the regret is largest under linear losses:320 ∑T
t=1 αt(ft(ut)− ft(u)) ≤

∑T
t=1 αt〈∇ft(ut), ut − u〉. For this reason, it is sufficient to consider321

regret under linear loss functions. An algorithm has sublinear regret if limT→∞R(T )/T = 0.322

FTRL & AO-FTRL. The meta-update in Eq. 3 is an instance of Follow-The-Regularised-Leader323

(FTRL) under linear losses. In Appendix G, we show that BMG is an instance of the Adaptive-324

Optimistic FTRL (AO-FTRL), which is an extension due to [23, 18, 13, 27]. In AO-FTRL, we325

have a strongly convex regulariser ‖ · ‖2. FTRL and AO-FTRL sets the first prediction u1 to326

minimise ‖ · ‖2. Given linear losses {gs}t−1s=1 and learning rates {βt}Tt=1, each βt > 0, the algorithm327

proceeds according to328

ut = arg min
u∈U

(
αt〈g̃t, u〉+

t−1∑
s=1

αs〈gs, u〉+
1

2βt
‖u‖2

)
, (6)

where each g̃t is a “hint” that enables optimistic learning [23, 18]; setting g̃t = 0 recovers the original329

FTRL algorithm. The goal of a hint is to predict the next loss vector gt; if the predictions are accurate330

AO-FTRL can achieve lower regret than its non-optimistic counter-part. Since ‖ · ‖2 is strongly331

convex, FTRL is well defined in the sense that the minimiser exists, is unique and finite [17]. The332

regret of FTRL and AO-FTRL against any comparator u ∈ U can be upper-bounded by333

R(T ) =

T∑
t=1

αt〈gt, ut − u〉 ≤
‖u‖2

2βT
+

1

2

T∑
t=1

α2
tβt ‖gt − g̃t‖

2
∗ . (7)

Hence, hints that predict gt well can reduce the regret substantially. Without hints, FTRL can334

guarantee O(
√
T ) regret (for non strongly convex loss functions). However, [4] show that under335

linear losses, if hints are weakly positively correlated—defined as 〈gt, g̃t〉 ≥ ε‖gt‖2 for some ε > 0—336

then the regret guarantee improves to O(log T ), even for non strongly-convex loss functions. We337

believe optimism provides an exciting opportunity for novel forms of meta-learning. Finally, we note338

that these regret bounds (and hence our analysis) can be extended to stochastic optimisation [18, 12].339

Online-to-batch conversion. The main idea behind online to batch conversion is that, for f340

convex, Jensen’s inequality gives f(x̄T )− f(x∗) ≤
∑T
t=1 αt〈∇f(xt), xt − x∗〉/α1:T . Hence, one341

can provide a convergence rate by first establishing the regret of the algorithm that generates xt,342

from which one obtains the convergence rate of the moving average of iterates. Applying this343

naively yields O(1/T ) rate of convergence. In recent work, [3] shows that one can upper-bound the344

sub-optimality gap by instead querying the gradient gradient at the average iterate, f(x̄T )− f(x∗) ≤345 ∑T
t=1 αt〈∇f(x̄t), xt − x∗〉/α1:T , which can yield faster rates of convergence. Recently, [13]346

tightened the analysis and proved that the sub-optimality gap can be bounded by347

f(x̄T )− f(x∗) ≤
1

α1:T

(
Rx(T )− αt

2L
‖∇f(x̄t)−∇f(x∗)‖2∗ −

α1:t−1

2L
‖∇f(x̄t−1)−∇f(x̄t)‖2∗

)
,

(8)
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were we define Rx(T ) :=
∑T
t=1 αt〈∇f(x̄t), xt − x∗〉 as the regret of the sequence {xt}Tt=1 against348

the comparator x∗. With this machinery in place, we now turn to deriving our main results.349

Algorithm 1: Meta-learning in practice.

input :Weights {βt}Tt=1
input :Update rule ϕ
input :Initialisation (x0, w1)
for t = 1, 2, . . . , T :

xt = xt−1 + ϕ(xt−1, wt)
ht(·) = f(xt−1 + ρtϕ(xt−1, ·))
wt+1 = wt − βt∇ht(wt)

return xT

Algorithm 2: Meta-learning in the convex setting.

input :Weights {αt}Tt=1, {βt}Tt=1
input :Update rule ϕ
input :Initialisation (x̄0, w1)
for t = 1, 2, . . . , T :

xt = ϕ(x̄t−1, wt)
x̄t = (1− αt/α1:t)x̄t−1 + (αt/α1:t)xt
gt = Dϕ(x̄t−1, wt)

T∇f(x̄t)

wt+1=arg minw∈W
∑t
s=1αs〈gs, w〉+

1
2βt
‖w‖2

return x̄T

350

E Analysis351

The central challenge in applying Eq. 8 to Algorithm 2 is that the iterates xt are generated under the352

update rule ϕ. Hence, we cannot apply standard regret bounds directly. Instead, observe that353

Rx(T ) =

T∑
t=1

αt〈∇f(x̄t), xt − x∗〉 =

T∑
t=1

αt〈∇f(x̄t), ϕ(x̄t−1, wt)− x∗〉

=

T∑
t=1

αt〈∇f(x̄t), ϕ(x̄t−1, wt)− ϕ(x̄t−1, w
∗)〉+

T∑
t=1

αt〈∇f(x̄t), ϕ(x̄t−1, w
∗)− x∗〉.

The first term in the final inequality can be understood as the regret under convex losses `t(·) =354

αt〈∇f(x̄t), ϕ(x̄t−1, ·)〉. Since ϕ is affine, `t is convex and thus this regret can be upper-bounded355

by linearising the losses. The linearisation reads 〈Dϕ(x̄t−1, wt)
T∇f(x̄t), ·〉, which is identical356

the linear losses 〈∇ht(wt), ·〉 faced by the meta-learner in Eq. 3. Hence, we can upper-bound this357

term by the of the meta-learner:358

Rw(T ) :=

T∑
t=1

αt〈∇ht(wt), wt − w∗〉 ≥
T∑
t=1

αt〈∇f(x̄t), ϕ(x̄t−1, wt)− ϕ(x̄t−1, w
∗)〉.

Hence, we have that359

Rx(T ) ≤ Rw(T ) +

T∑
t=1

αt〈∇f(x̄t), ϕ(x̄t−1, w
∗)− x∗〉. (9)

For the last term to be negative we need the relative power of the comparator w∗ to be greater than360

that the comparator x∗. Intuitively, the comparator x∗ is non-adaptive. It must make one choice x∗361

and suffer the average loss. In contrast, the comparator w∗ becomes adaptive under the update rule;362

it can only choose one w∗, but on each round it plays ϕ(x̄t−1, w
∗). If ϕ is sufficiently flexible, this363

gives the comparator w∗ more power than x∗, and hence it can force the meta-learner to suffer greater364

regret. When this is the case, we say that regret is retained when moving from x∗ to w∗. As long365

as ϕ is not degenerate, this is typically easy to satisfy by makingW sufficiently large.366

Definition 1. Given f , {αt}Tt=1, and {xt}Tt=1, an update rule ϕ : X ×W → X preserves regret if367

there exists a comparator w ∈ W that satisfies368

T∑
t=1

αt〈ϕ(x̄t−1, w),∇f(x̄t)〉 ≤
T∑
t=1

αt〈x∗,∇f(x̄t)〉. (10)

If such w exists, let w∗ denote the comparator with smallest norm ‖w‖.369

Lemma 1. Given f , {αt}Tt=1, and {xt}Tt=1, if ϕ preserves regret, then370

Rx(T ) =

T∑
t=1

αt〈∇f(x̄t), xt − x∗〉 ≤
T∑
t=1

αt〈∇f(x̄t), ϕ(x̄t−1, wt)− ϕ(x̄t−1, w
∗)〉 = Rw(T ).
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Proof: Appendix F. From Eq. 10, it is clear that for ϕ to retain regret, it must admit a parameterisation371

that correlates negatively with the gradient. In other words, ϕ must be able to behave as a gradient372

descent algorithm. However, this must not hold on every step, only sufficiently often. For instance,373

ϕ(x, ·) affine can be made to satisfy this condition if X andW are chosen appropriately.374

Theorem 3. Let ϕ preserve regret and satisfies the assumptions in Section 2. Then375

f(x̄T )− f(x∗) ≤ 1

α1:T

(
‖w∗‖2

β
+

T∑
t=1

λβα2
t

2
‖∇f(x̄t)‖2∗

− αt
2L
‖∇f(x̄t)−∇f(x∗)‖2∗ −

α1:t−1

2L
‖∇f(x̄t−1)−∇f(x̄t)‖2∗

)
.

If x∗ is a global minimiser of f , setting αt = 1 and β = 1
λL yields f(x̄T )− f(x∗) ≤ λL diam(W)

T .376

The proof formalises the example given above and is deferred to Appendix F.377

Algorithm 3: BMG in practice.

input :Weights {βt}Tt=1
input :Update rule ϕ
input :Target oracle
input :Initialisation (x0, w1)
for t = 1, 2, . . . , T :

xt = xt−1 + ϕ(xt−1, wt)
Query zt from target oracle
dt(·) = ‖zt − xt + ϕ(xt, ·)‖2
wt+1 = wt − βt∇dt(wt)

return xT

Algorithm 4: Convex optimistic meta-learning.

input :Weights {αt}Tt=1, {βt}Tt=1
input :Update rule ϕ
input :Hints {g̃t}Tt=1
input :Initialisation (x̄0, w1)
for t = 1, 2, . . . , T :

xt = ϕ(x̄t−1, wt)
x̄t = (1− αt/α1:t)x̄t−1 + (αt/α1:t)xt
gt = Dϕ(x̄t−1, wt)

T∇f(x̄t)

vt = αt+1g̃t+1 +
∑t
s=1 αsgs

wt+1 = arg minw∈W〈vt, w〉+ 1
2βt
‖w‖2

return x̄T

378

In Theorem 3, that the reason we cannot achieve acceleration is because the negative terms379

−‖∇f(x̄t−1) − ∇f(x̄t)‖2∗ do not come into play. This is because the positive term in the sum-380

mation involves ‖∇f(x̄t)‖2∗, which is typically a larger quantity. To obtain acceleration, we need381

some form of optimism. In this section, we consider an alteration to Algorithm 2 that uses AO-FTRL382

for the meta-updates. Given some sequence of hints {g̃t}Tt=1, each g̃t ∈ Rm, each wt+1 is given by383

wt+1 = arg min
w∈W

(
αt+1g̃t+1 +

t∑
s=1

αs〈∇hs(ws), w〉+
1

2βt
‖w‖2

)
. (11)

For a complete description, see Algorithm 4. These updates do not correspond to the typical meta-384

update in Algorithm 1; however, we show momentarily that they can be interpreted as the targets in385

the BMG method, summarised in Algorithm 3. Before turning to BMG, we establish that optimistic386

meta-learning in the convex setting does indeed yield acceleration.387

Theorem 4. Let ϕ preserve regret and assume Algorithm 4 satisfy the assumptions in Section 2. Then388

f(x̄T )− f(x∗) ≤ 1

α1:T

(
‖w∗‖2

βT
+

T∑
t=1

α2
tβt
2
‖Dϕ(x̄t−1, wt)

T∇f(x̄t)− g̃t‖2∗

− αt
2L
‖∇f(x̄t)−∇f(x∗)‖2∗ −

α1:t−1

2L
‖∇f(x̄t−1)−∇f(x̄t)‖2∗

)
.

Proof. The proof follows the same lines as that of Theorem 3. The only difference is that the regret389

of the {wt}Tt=1 sequence can be upper bounded by ‖w
∗‖2
βT

+ 1
2

∑T
t=1 α

2
tβt‖∇ht(wt)− g̃t‖2∗ instead390

of ‖w
∗‖2
βT

+ 1
2

∑T
t=1 α

2
tβt‖∇ht(wt)‖2∗, as per the AO-FTRL regret bound in Eq. 7. �391

From Theorem 4, it is clear that if g̃t is a good predictor of Dϕ(x̄t−1, wt)
T∇f(x̄t), then the392

positive term in the summation can be cancelled by the negative term. In a classical optimisation393
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setting, Dϕ = In, and hence it is easy to see that simply choosing g̃t to be the previous gradient394

is sufficient to achieve the cancellation [13]. Indeed, this choice gives us Nesterov’s Accelerated395

rate [27]. The upshot of this is that we can specialise Algorithm 4 to capture Nesterov’s Accelerated396

method by choosing ϕ : (x,w) 7→ w—as in the reduction to Heavy Ball—and setting the hints to397

g̃t = ∇f(x̄t−1). Hence, while the standard meta-update without optimism contains Heavy Ball as a398

special case, the optimistic meta-update contains Nesterov Acceleration as a special case.399

In the meta-learning setting, Dϕ is not an identity matrix, and hence the best targets for meta-learning400

are different. Naively, choosing g̃t = Dϕ(x̄t−1, wt)
T∇f(x̄t−1) would lead to a similar cancellation,401

but this is not allowed. At iteration t, we have not computed wt when g̃t is chosen, and hence402

Dϕ(x̄t−1, wt) is not available. The nearest term that is accessible is Dϕ(x̄t−2, wt−1).403

Corollary 1. Let each g̃t+1 = Dϕ(x̄t−1, wt)
T∇f(x̄t). Assume that ϕ satisfies404 ∥∥Dϕ(x′, w)T∇f(x)−Dϕ(x′′, w′)T∇f(x′)

∥∥2
∗ ≤ λ̃ ‖∇f(x′)−∇f(x)‖2∗

for all x′′, x′, x ∈ X and w,w′ ∈ W , for some λ̃ > 0. If each αt = t and βt = t−1
2tλ̃L

, then405

f(x̄T )− f(x∗) ≤ 4λ̃L diam(W)
T 2−1 .406

Proof: Appendix F.407

F Proofs408

This section provides complete proofs. We restate the results for convenience.409

Lemma 1. Given f , {αt}Tt=1, and {xt}Tt=1, if ϕ preserves regret, then410

Rx(T ) =

T∑
t=1

αt〈∇f(x̄t), xt − x∗〉 ≤
T∑
t=1

αt〈∇f(x̄t), ϕ(x̄t−1, wt)− ϕ(x̄t−1, w
∗)〉 = Rw(T ).

Proof. Starting from Rx in Eq. 9, if the update rule preserves regret, there exists w∗ ∈ W for which411

Rx(T ) =

T∑
t=1

αt〈∇f(x̄T ), ϕ(x̄t−1, wt)− x∗〉

=

T∑
t=1

αt〈∇f(x̄T ), ϕ(x̄t−1, wt)− ϕ(x̄t−1, w
∗)〉+

T∑
t=1

αt〈∇f(x̄T ), ϕ(x̄t−1, w
∗)− x∗〉

≤
T∑
t=1

αt〈∇f(x̄T ), ϕ(x̄t−1, wt)− ϕ(x̄t−1, w
∗)〉 = Rw(T ),

since w∗ is such that
∑T
t=1 αt〈∇f(x̄T ), ϕ(x̄t−1, w

∗)− x∗〉 ≤ 0. �412

Theorem 3. Let ϕ preserve regret and assume Algorithm 2 satisfy the assumptions in Section 2. Then413

f(x̄T )− f(x∗) ≤ 1

α1:T

(
‖w∗‖2

β
+

T∑
t=1

λβα2
t

2
‖∇f(x̄t)‖2∗

− αt
2L
‖∇f(x̄t)−∇f(x∗)‖2∗ −

α1:t−1

2L
‖∇f(x̄t−1)−∇f(x̄t)‖2∗

)
.

If x∗ is a global minimiser of f , setting αt = 1 and β = 1
λL yields f(x̄T )− f(x∗) ≤ λL diam(W)

T .414

Proof. Since ϕ preserves regret, by Lemma 1, the regret term Rx(T ) in Eq. 8 is upper bounded by415

Rw(T ). We therefore have416

f(x̄T )− f(x∗) ≤
1

α1:T

(
Rw(T )− αt

2L
‖∇f(x̄t)−∇f(x∗)‖2∗ −

α1:t−1

2L
‖∇f(x̄t−1)−∇f(x̄t)‖2∗

)
.

(12)
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Next, we need to upper-bound Rw(T ). Since, Rw(T ) =
∑T
t=1 αt〈∇f(x̄T ), ϕ(x̄t−1, wt) −417

ϕ(x̄t−1, w
∗)〉, the regret of {wt}Tt=1 is defined under loss functions ht : W → R given by418

ht = αt〈∇f(x̄T ), ϕ(x̄t−1, w))〉. By assumption of convexity in ϕ, each ht is convex in w.419

Hence, the regret under {αtht}Tt=1 can be upper bounded by the regret under the linear losses420

{αt〈∇ht(wt), ·〉}Tt=1. These linear losses correspond to the losses used in the meta-update in Eq. 3.421

Since the meta-update is an instance of FTRL, we may upper-bound Rw(T ) by Eq. 7 with each422

g̃t = 0. Putting this together along with smoothness of ϕ,423

Rx(T ) ≤ Rw(T )

=

T∑
t=1

αt〈∇f(x̄T ), ϕ(x̄t−1, wt)− ϕ(x̄t−1, w
∗)〉

≤
T∑
t=1

αt〈∇ht(wt), wt − w∗〉

≤ ‖w
∗‖2

β
+
β

2

T∑
t=1

α2
t ‖∇ht(wt)‖2∗

=
‖w∗‖2

β
+
β

2

T∑
t=1

α2
t ‖Dϕ(x̄t−1, wt)

T∇f(x̄t)‖2∗

≤ ‖w
∗‖2

β
+
λβ

2

T∑
t=1

α2
t ‖∇f(x̄t)‖2∗. (13)

Putting Eq. 12 and Eq. 13 together gives the stated bound. Next, if x∗ is the global optimiser,424

∇f(x∗) = 0 by first-order condition. Setting β = 1/(Lλ) and αt = 1 means the first two norm425

terms in the summation cancel. The final norm term in the summation is negative and can be ignored.426

We are left with f(x̄T )− f(x∗) ≤ λL‖w∗‖2
T ≤ λL diam(W)

T . �427

Corollary 1. Let each g̃t+1 = Dϕ(x̄t−1, wt)
T∇f(x̄t). Assume that ϕ satisfies428 ∥∥Dϕ(x′, w)T∇f(x)−Dϕ(x′′, w′)T∇f(x′)

∥∥2
∗ ≤ λ̃ ‖∇f(x′)−∇f(x)‖2∗

for all x′′, x′, x ∈ X and w,w′ ∈ W , for some λ̃ > 0. If each αt = t and βt = t−1
2tλ̃L

, then429

f(x̄T ) − f(x∗) ≤ 4λ̃L diam(W)
T 2−1 .430

Proof. Plugging in the choice of g̃t and using that431 ∥∥Dϕ(x̄t−1, wt)
T∇f(x̄t)−Dϕ(xt−2, wt−1)T∇f(x̄t−1)

∥∥2
∗ ≤ λ̃ ‖∇f(x̄t−1)−∇f(x̄t)‖2∗ ,

the bound in Theorem 4 becomes432

f(x̄T )− f(x∗) ≤ 1

α1:T

(
‖w∗‖2

βT
+

1

2

T∑
t=1

(
λ̃α2

tβt −
α1:t−1

L

)
‖∇f(x̄t)−∇f(x̄t−1)‖2∗

)
,

where we drop the negative terms ‖∇f(x̄t) − ∇f(x∗)‖2∗. Setting αt = t yields α1:t−1 = (t−1)t
2 ,433

while setting βt = t−1
2tλ̃L

means λ̃α2
tβt = (t−1)t

2L . Hence, λ̃α2
tβt − α1:t−1/L cancels and we get434

f(x̄T )− f(x∗) ≤ ‖w
∗‖2

βTα1:T
=

4‖w∗‖2λ̃L
(T − 1)(T + 1)

≤ 4λ̃Ldiam(W)

(T − 1)(T + 1)
=

4λ̃Ldiam(W)

T 2 − 1
.

�435

Corollary 3. Let each g̃t+1 = Dϕ(x̄t−1, wt)
T ỹt+1, for some ỹt+1 ∈ Rn. If each ỹt+1 is a better436

predictor of the next gradient than ∇f(x̄t−1), in the sense that437

‖Dϕ(x̄t−2, wt−1)T ỹt −Dϕ(x̄t−1, wt)
T∇f(x̄t)‖∗ ≤ λ̃‖∇f(x̄t)−∇f(x̄t−1)‖∗,

then Algorithm 4 guarantees convergence at a rate O(λ̃/T 2).438

Proof. The proof follows the same argument as Corollary 1. �439
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Algorithm 5: BMG in practice (general version).

input :Weights {ρt}Tt=1, {βt}Tt=1
input :Update rule ϕ
input :Matching function Bµ
input :Target oracle
input :Initialisation (x0, w1)
for t = 1, 2, . . . , T :

xt = xt−1 + ϕ(xt−1, wt)
Query zt from target oracle
dt : w 7→ Bµzt(xt−1 + ϕ(xt−1, w))
wt+1 = wt − βt∇dt(wt)

return xT

G BMG as an instance of Optimism440

In this section, we provide a more comprehensive reduction of BMG to AO-FTRL. First, we provide441

a more general definition of BMG. Let µ : X → R be a convex distance generating function and442

define the Bregman Divergence Bµ : Rn×Rn → R by443

Bµz (x) = µ(x)− µ(z)− 〈∇µ(z), x− z〉.

Given initial condition (x0, w1), the BMG updates proceed according to444

xt = xt−1 + ϕ(xt−1, wt)

wt+1 = wt − βt∇dt(wt), (14)

where dt : Rn → R is defined by dt(w) = Bµzt(xt−1 + ϕ(xt−1, wt)), where each zt ∈ Rn is445

referred to as a target. See Algorithm 5 for an algorithmic summary. A bootstrapped target uses446

the meta-learner’s most recent update, xt, to compute the target, zt = xt + yt for some tangent447

vector yt ∈ Rn. This tangent vector represents a form of optimism, and provides a signal to the448

meta-learner as to what would have been a more efficient update. In particular, the author’s consider449

using the meta-learned update rule to construct yt; yt = ϕ(xt, wt) − ∇f(xtϕ(xt, w − t)). Note450

that xt = xt−1 + ϕ(xt−1, wt), and hence this tangent vector is obtained by applying the update rule451

again, but now to xt. For this tangent to represent an improvement, it must be assumed that wt is452

a good parameterisation. Hence, bootstrapping represents a form of optimism. To see how BMG453

relates to Algorithm 4, and in particular, Eq. 11, expand Eq. 14 to get454

wt+1 = wt − βtDϕ(xt−1, wt)
T (∇µ(xt)−∇µ(zt)) . (15)

In contrast, AO-FTRL reduces to a slightly different type of update.455

Lemma 2. Consider Algorithm 4. Given online losses ht : W → R defined by456

{〈Dϕ(x̄t−1, wt)
T∇f(x̄t), ·〉}Tt=1 and hint functions {〈g̃t, ·, }〉Tt=1, with each g̃t ∈ Rm. If ‖ · ‖ =457

(1/2)‖ · ‖2, an interior solution to Eq. 11 is given by458

wt+1 =
βt
βt−1

wt − βt
(
αt+1g̃t+1 + αt(Dϕ(x̄t−1, wt)

T∇f(x̄t)− g̃t)
)
.
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Proof. By direct computation:459

wt+1 = arg min
w∈W

(
αt+1〈g̃t+1, w〉+

t∑
s=1

αs〈Dϕ(x̄s−1, ws)
T∇f(x̄s), w〉+

1

2βt
‖w‖22

)

= −βt

(
αt+1g̃t+1 +

t∑
s=1

αtDϕ(x̄s−1, ws)
T∇f(x̄s))

)

= −βt

(
αt+1g̃t+1 + αtDϕ(x̄t−1, wt)

T∇f(x̄t) +

(
t−1∑
s=1

αtDϕ(x̄s−1, ws)
T∇f(x̄s))

))
= −βt

(
αt+1g̃t+1 + αt(Dϕ(x̄t−1, wt)

T∇f(x̄t)− g̃t)
)

− βt

(
αtg̃t +

t−1∑
s=1

αtDϕ(x̄s−1, ws)
T∇f(x̄s))

)

=
βt
βt−1

wt − βt
(
αt+1g̃t+1 + αt(Dϕ(x̄t−1, wt)

T∇f(x̄t)− g̃t)
)
.

�460

AO-FTRL includes a decay rate βt/βt−1; this decay rate can be removed by instead using optimistic461

online mirror descent [23, 12]—to simplify the exposition we consider only FTRL-based algorithms462

in this paper. An immediate implication of Lemma 2 is the error-corrected version of BMG.463

Corollary 2. Setting g̃t+1 = Dϕ(x̄t−1, wt)
T g̃t+1 for some ỹt+1 ∈ Rn yields an error-corrected464

version of the BMG meta-update in Eq. 14. Specifically, the meta-updates in Lemma 2 becomes465

wt+1 =
βt
βt−1

wt − βtDϕ(x̄t−1, wt)
T (αt+1ỹt+1 + αt∇f(x̄t))︸ ︷︷ ︸
BML update

+βtαtDϕ(x̄t−2, wt−1)T ỹt︸ ︷︷ ︸
FTRL error correction

.

Proof. Follows immediately by substituting for each g̃t+1 in Lemma 2. �466

To illustrate this connection, Let µ = f . In this case, the BMG update reads wt+1 = wt −467

βtDϕ(xt−1, wt)
T (∇f(zt)−∇f(xt)). The equivalent update in the convex optimisation setting (i.e.468

Algorithm 4) is obtained by setting ỹt+1 = ∇f(zt), in which case Corollary 2 yields469

wt+1 =
βt+1

βt
wt − βtDϕ(x̄t−1, wt)

T (αt+1∇f(zt)− αt∇f(x̄t)) + ξt,

where ξt = βtαtDϕ(x̄t−2, wt−1)T∇f(x̄t − 1) denotes the error correction term we pick up through470

AO-FTRL. Since Algorithm 5 does not average its iterates—while Algorithm 4 does—we see that471

these updates (ignoring ξt) are identical up to scalar coefficients (that can be controlled for by scaling472

each βt and each g̃t+1 accordingly).473

More generally, the mapping from targets in BMG and hints in AO-FTRL takes on a more complicated474

pattern. Our next results show that we can always map one into the other. To show this, we need475

to assume a certain recursion. It is important to notice however that at each iteration introduces476

an unconstrained variable and hence the assumption on the recursion is without loss of generality477

(as the free variable can override it).478

Theorem 5. Targets in Algorithm 5 and hints in algorithm 4 commute in the following sense. BMG479

→ AO-FTRL. Let BMG targets {zt}Tt=1 by given. A sequence of hints {g̃}Tt=1 can be constructed480

recursively by481

αt+1g̃t+1 = Dϕ(x̄t−1, wt)
T (∇µ(x̄t)−∇µ(zt)− αt∇f(x̄t)) + αtg̃t, t ∈ [T ], (16)

so that interior updates for Algorithm 4 are given by482

wt+1 =
βt
βt−1

wt − βt (∇µ(zt)−∇µ(x̄t)) .
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AO-FTRL→ BMG. Conversely, assume a sequence {ỹt}Tt=1 are given, each ỹt ∈ Rn. If µ strictly483

convex, a sequence of BMG targets {zt}Tt=1 can be constructed recursively by484

zt = ∇µ−1 (∇µ(xt)− (αt+1ỹt+1 + αt∇f(xt))) t ∈ [T ],

so that BMG updates in Eq. 14 are given by485

wt+1 = wt − βt
(
αt+1g̃t+1 + αt(Dϕ(x̄t−1, wt)

T∇f(x̄t)− g̃t)
)
,

where each g̃t+1 is the BMG-induced hint function, given by486

αt+1g̃t+1 = αt+1Dϕ(xt−1, wt)
T ỹt+1 + αtg̃t.

Proof. First, consider BMG→ AO-FTRL. First note that g̃1 is never used and can thus be chosen487

arbitrarily—here, we set g̃1 = 0. For w2, Lemma 2 therefore gives the interior update488

w2 =
β2
β1
w1 − β1(α2g̃2 + α1Dϕ(x̄0, w1)T∇f(x̄1)).

Since the formulate for g̃2 in Eq. 16 only depends on quantities with iteration index t = 0, 1, we may489

set α2g̃t = Dϕ(x̄0, w1)T (∇µ(x̄1)−∇µ(zt)− αt∇f(x̄1)). This gives the update490

w2 =
β2
β1
w1 − β1Dϕ(x̄0, w1)T (∇µ(x̄1)−∇µ(z1)).

Now assume the recursion holds up to time t. As before, we may choose αt+1g̃t+1 according to491

the formula in Eq. 16 since all quantities on the right-hand side depend on quantities computed at492

iteration t or t− 1. Subtituting this into Lemma 2, we have493

wt+1 =
βt
βt−1

wt − βt
(
αt+1g̃t+1 + αt(Dϕ(x̄t−1, wt)

T∇f(x̄t)− g̃t)
)

=
βt
βt−1

wt − βt
(
Dϕ(x̄t−1, wt)

T (∇µ(x̄t)−∇µ(zt)− αt∇f(x̄t)) + αtg̃t

+αt(Dϕ(x̄t−1, wt)
T∇f(x̄t)− g̃t)

)
=

βt
βt−1

wt − βtDϕ(x̄t−1, wt)
T (∇µ(x̄t)−∇µ(zt)).

AO-FTRL→ BMG. The proof in the other direction follows similarly. First, note that for µ strictly494

convex, ∇µ is invertible. Then, z1 = ∇µ−1(∇µ(x1) − (α2ỹ2 + α1∇f(x1))). This target is495

permissible since x1 is already computed and {ỹt}Tt=1 is given. Substituting this into the BMG496

meta-update in Eq. 14, we find497

w2 = w1 − β1Dϕ(x0, w1)T (∇µ(x1)−∇µ(∇µ−1(∇µ(x1)− (α2ỹ2 + α1∇f(x1)))))

= w1 − β1Dϕ(x0, w1)T (α2ỹ2 + α1∇f(x1))

= w1 − β1
(
α2g̃2 + α1(Dϕ(x̄0, w1)T∇f(x̄1)− g̃1)

)
,

where the last line uses that g̃2 is defined by α2g̃2 − α1g̃1 = Dϕ(x̄0, w1)T ỹ2 and g̃1 is arbitrary.498

Again, assume the recursion holds to time t. We then have499

wt+1 = wt − βtDϕ(xt−1, wt)
T (∇µ(xt)−∇µ(zt))

= wt − βtDϕ(xt−1, wt)
T (∇µ(xt)

−∇µ(∇µ−1(∇µ(xt)− (αt+1ỹt+1 + αt∇f(xt)))))

= wt − βtDϕ(xt−1, wt)
T (αt+1ỹt+1 + αt∇f(xt))

= wt − βt(αt+1g̃t+1 + αt(Dϕ(xt−1, wt)
T∇f(xt)− g̃t)).

�500

More generally, Theorem 4 provides a sufficient condition for any target bootstrap in BMG to achieve501

acceleration. This is captured in the following corollary.502
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Corollary 3. Let each g̃t+1 = Dϕ(x̄t−1, wt)
T ỹt+1, for some ỹt+1 ∈ Rn. If each ỹt+1 is a better503

predictor of the next gradient than∇f(x̄t−1), in the sense that504

‖Dϕ(x̄t−2, wt−1)T ỹt −Dϕ(x̄t−1, wt)
T∇f(x̄t)‖∗ ≤ λ̃‖∇f(x̄t)−∇f(x̄t−1)‖∗,

then Algorithm 4 guarantees convergence at a rate O(λ̃/T 2).505

Proof. The proof follows the same argument as Corollary 1. �506
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