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Abstract

Multi-hop question answering (MHQA) re-001
quires a model to retrieve and integrate informa-002
tion from multiple passages to answer a com-003
plex question. Recent systems leverage the004
power of large language models and integrate005
evidence retrieval with reasoning prompts (e.g.,006
chain-of-thought reasoning) for the MHQA007
task. However, the complexities in the ques-008
tion types (bridge v.s. comparison questions)009
and the reasoning types (sequential v.s. par-010
allel reasonings) require more novel and fine-011
grained prompting methods to enhance the per-012
formance of MHQA under the zero-shot set-013
ting. In this paper, we propose STOC-TOT, a014
stochastic tree-of-thought reasoning prompting015
method with constrained decoding for MHQA016
and conduct a detailed comparison with other017
reasoning prompts on different question types018
and reasoning types. Specifically, we construct019
a tree-like reasoning structure by prompting the020
model to break down the original question into021
smaller sub-questions to form different reason-022
ing paths. In addition, we prompt the model to023
provide a probability estimation for each rea-024
soning path at each reasoning step. At answer025
time, we conduct constrained decoding on the026
model to generate more grounded answers and027
reduce hallucination. Experiments comparing028
STOC-TOT with on two MHQA datasets and029
five large language models showed that STOC-030
TOT outperforms other reasoning prompts by031
a significant margin.032

1 Introduction033

Question answering (QA) is a fundamental task in034

natural language processing (NLP) that involves035

designing systems capable of understanding human036

language questions and providing accurate and rel-037

evant answers. With the recent advancement of038

large language models (LLMs) that demonstrated039

superior reasoning ability (Brown et al., 2020), re-040

searchers have been focusing more on complex041

QA tasks, such as multi-hop question answering042

Figure 1: An example of the MHQA question. This
question has two hops that require the model to reason
about before answering the final question.

(MHQA). MHQA is more challenging as it requires 043

models to understand complicated questions, per- 044

form multiple reasoning steps, and gather evidence 045

across documents. Figure 1 shows an example of a 046

two-hop MHQA question. To answer that question 047

in Figure 1, the QA model needs to first figure out 048

who is the actor that received the 2016 Academy 049

Honorary Award. Then based on the answer to the 050

previous question, the QA model needs to further 051

answer a second question about which movie the 052

actor co-starred with Chris Tucker. 053

State-of-the-art methods for MHQA are fully- 054

supervised methods that often follow a retrieve- 055

and-read framework, including a passage retrieving 056

module that gathers relative evidence from docu- 057

ments and a reading comprehension module to rea- 058

son about the evidence (Zhu et al., 2021; Li et al., 059

2022). Other methods include beam-search (Zhang 060

et al., 2023) and label-smoothing (Yin et al., 2023). 061

However, these methods often require extensive 062

pre-training or fine-tuning and do not generalize 063

well to other datasets. 064
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Large language models (LLMs), on the other065

hand, show remarkable reasoning ability and rich066

knowledge of general-domain questions. Many067

LLMs can answer simple and straightforward ques-068

tions that do not require complex reasoning without069

any supervision involved but often fail to deal with070

complex questions requiring multiple reasoning071

steps. To tackle the problem, researchers have de-072

veloped many prompting techniques to improve073

LLM’s reasoning ability, such as chain-of-thought074

(CoT) (Wei et al., 2022), self-consistency CoT (Sc-075

CoT) (Wang et al., 2023), and tree-of-thought (ToT)076

prompting (Yao et al., 2023a).077

CoT has been shown effective across tasks re-078

quiring extensive, step-by-step reasoning, such as079

math calculation and reading comprehension. How-080

ever, there could be various possible reasoning081

paths for many complex multi-hop questions, and082

CoT models cannot "turn back" when they have083

made a mistake along their reasoning paths. Sc-084

CoT further improves on CoT by proposing differ-085

ent chains of thought, thus expanding the reasoning086

space. However, there is no local reasoning expan-087

sion within each chain, and the "majority voting"088

strategy often fails in open-domain tasks where the089

output space is unlimited. ToT, designed to main-090

tain different reasoning paths along its reasoning091

process, is more suitable for dealing with complex092

question types. However, the intermediate reason-093

ing steps in NLP generation tasks are much less094

constrained and require more than a simple rule-095

based evaluation. The complexities in the question096

types (bridge v.s. comparison questions in Table097

1), as well as the reasoning types (sequential v.s.098

parallel reasonings in Table 2), require more novel099

and fine-grained prompting methods to enhance the100

reasoning ability of LLMs.101

To tackle the challenges and design a more reli-102

able reasoning method for open-domain NLP tasks,103

we propose STOC-TOT, a stochastic ToT-based104

framework that instructs the model to generate dif-105

ferent reasoning paths from the same question and106

assign probability scores to reasoning paths to ef-107

fectively avoid reasoning dead-ends. To the best of108

our knowledge, our work is the first to adapt the109

tree-of-thought reasoning prompting to natural lan-110

guage tasks that require complex reasoning, such111

as MHQA. We provide an example overview of112

our framework in Figure 2. Specifically, we con-113

struct a tree-like reasoning structure by prompting114

the model to break down the original question into115

smaller sub-questions to form different reasoning 116

paths. We evaluate the validity of each reason- 117

ing path on three levels of aspects and arrive at a 118

model-given probability score. At answer time, we 119

innovatively propose to use constrained decoding 120

in the answering process to reduce hallucination by 121

forcing the model to generate grounded answers 122

from evidence and letting models give concise and 123

exact answers. Ultimately, we arrive at the best 124

answer by choosing the path with the highest ag- 125

gregated probability score. Experiments on two 126

benchmarking MHQA datasets demonstrate that 127

STOC-TOT significantly improves the reasoning 128

ability of LLMs in complex reasoning scenarios, 129

especially with GPT-4, improving Exact Match ac- 130

curacy by 7%, and F1 score by 7.8 points on the 131

HotpotQA dataset over the original tree-of-thought 132

prompting. Our contributions are as follows: 133

• We propose STOC-TOT, which constructs a 134

stochastic reasoning tree in complex reasoning 135

scenarios. We introduce stochastic estimations 136

on different reasoning paths, which helps the 137

model have a more reliable reasoning process 138

than previous reasoning prompting methods. 139

• We innovatively propose to use constrained de- 140

coding in the answering process. This step re- 141

duces model hallucination by forcing the model 142

to generate grounded answers from evidence and 143

letting models give concise and exact answers. 144

• We evaluate the effectiveness of STOC-TOT by 145

conducting experiments on two MHQA datasets. 146

We observe substantial improvements over other 147

reasoning prompting methods, with STOC-TOT 148

surpassing all other selected reasoning prompting 149

baselines on 5 tested models. 150

2 Related Work 151

Multi-Hop Question Answering Multi-hop 152

Question Answering (MHQA) is a challenging 153

task requiring models to reason over different ev- 154

idence across documents to answer a complex 155

multi-hop question. Many high-quality MHQA 156

datasets have been developed, including HotpotQA 157

(Yang et al., 2018), WikiHop (Welbl et al., 2018), 158

MuSiQue (Trivedi et al., 2022), and others. Among 159

these, HotpotQA is the task’s most representative 160

and widely used dataset. Previous state-of-the-art 161

MHQA models often follow a two-stage pipeline: 162

a retriever that extracts evidence from the docu- 163

ments, and a reader that reasons about the evidence 164
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Figure 2: Overview of our framework, with the example in Figure 1. The top-right Corner shows the overall
structure of the constructed tree, with each node’s label on the left. Darker green in the nodes means a higher
evaluated probability of the reasoning path. The original Question is colored in blue. We chose the first round of
our tree-building process as an example in the purple block.

to arrive at an answer (Zhu et al., 2021; Li et al.,165

2022). Other methods include beam-search (Zhang166

et al., 2023) and label-smoothing (Yin et al., 2023).167

Some LLM-based frameworks (Yao et al., 2023b;168

Gou et al., 2024) were also evaluated on the task of169

MHQA, but their performance fell short compared170

with supervised methods.171

Reasoning Prompting of LLMs Various prompt172

engineering methods have been developed (Wei173

et al., 2022; Wang et al., 2023; Yao et al., 2023a;174

Besta et al., 2024; Sel et al., 2024; Chen et al.,175

2023), aiming to improve large language models’176

reasoning ability across various tasks and domains.177

Chain-of-thought (CoT) prompting (Wei et al.,178

2022) prompts the large language models (LLMs)179

to divide their reasoning process into smaller180

steps when solving a question, forming a chain181

of thoughts. Chain-of-thought self-consistency182

prompting (Wang et al., 2023) improves on the CoT183

method by proposing different reasoning chains184

and ensembles on the final result. Tree-of-thought185

(ToT) prompting method (Yao et al., 2023a) ac-186

tively maintains a tree of thoughts, where each187

thought is a coherent language sequence that serves188

as an intermediate step toward problem-solving.189

Graph-of-thought (Besta et al., 2024) further im-190

proves ToT by constructing a Directed Graph in-191

stead of a tree. LLMs can loop over a thought to 192

refine it and aggregate thoughts or chains. 193

Constrained Decoding Constrained decoding is 194

the technique that asks the models to generate out- 195

puts following a given set of rules. The most 196

common way of conducting constrained generation 197

uses beam search (Och and Ney, 2004) in decoding 198

time. Before the LLM era, works on constrained 199

decoding focused on task-specific sequence-to- 200

sequence models that span across many fields, such 201

as machine translation (Hokamp and Liu, 2017; 202

Post and Vilar, 2018), named entity recognition 203

(Lester et al., 2020), and dialogue generation (Bal- 204

akrishnan et al., 2019). Recently, Microsoft intro- 205

duced Guidance 1, which allows users of various 206

large language models to control their outputs given 207

a human-defined vocabulary or rules. 208

3 Method 209

3.1 Task Formation 210

Given a multi-hop question Q and background cor- 211

pus of evidence P , the goal of our framework is 212

to output the answer A to question Q, drawing its 213

reasoning with the support of multiple evidence 214

passages p1, p2, ... retrieved from corpus P . 215

1https://github.com/guidance-ai/guidance
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3.2 STOC-TOT Framework216

For each of the questions Q, multiple reasoning217

lines and, thus, multiple ways of breaking down the218

question could exist. However, not every reasoning219

line would lead us to the right answer, and they220

take us to dead ends. To avoid such reasoning221

dead-ends, we build a stochastic reasoning tree222

to represent the possible reasoning lines and the223

probability of each reasoning line taking us to the224

right answer. We achieve this by proposing a self-225

interactive framework that automatically builds the226

reasoning tree given a multi-hop question. Figure227

2 shows our framework with an example question.228

In our reasoning process, we first prompt the229

model to propose different possible sub-questions230

to solve at each reasoning step. Each sub-question231

corresponds to one possible reasoning path and is232

presented as a node in the tree. We then ask the233

model to answer the generated sub-questions. To234

prevent hallucination and make the model more fo-235

cused on the given question and evidence, we build236

a vocabulary bank using words from the evidence237

list and the original question and instruct the model238

to do constrained decoding from the vocabulary239

bank when generating its answers. After answering240

every sub-question generated from the same ques-241

tion in the previous reasoning level, we prompt242

the model to evaluate each reasoning path and es-243

timate how likely the reasoning path would lead244

us to the right answer. This probability estimation245

would be assigned to the corresponding node in the246

tree. After the reasoning process finishes, each rea-247

soning path would have an aggregated probability248

calculated from nodes along the path.249

Formally, given a question Q, we instruct the250

model to generate sub-questions q1, q2, ..., qn, and251

build a tree structure with the original question Q252

as the root node and each question qi as subsequent253

nodes. The tree would expand as each sub-question254

qi has its sub-question qj , and the reasoning paths255

are thus represented as branches in the tree struc-256

ture. From the original question Q and the evi-257

dence list E = e1, e2, ..., en, we build a vocabulary258

bank V = [w1, w2, ..., wn], wi ∈ Q,wj ∈ E. We259

then prompt the model to generate their answer260

a1, a2, ..., an using only wi ∈ V . We describe the261

details of our framework below.262

Example-Based Sub-Question Generation Our263

framework starts with the sub-question gener-264

ation module, which generates sub-questions265

q1, q2, ..., qn using the question Qg from the pre-266

vious reasoning level. The sub-questions are gen- 267

erated based on both the model’s reasoning abil- 268

ity and the model’s semantic understanding of the 269

question Qg. An example is given in Figure 2, 270

where the sub-questions from nodes 2 and 3 were 271

generated using the question from node 1. How- 272

ever, we cannot guarantee that each sub-question 273

asked is a good sub-question, and sometimes, the 274

generated sub-question merely repeats the previous 275

question. We introduce the paraphrase detection 276

module and pass on the generated sub-questions to 277

reduce redundancy and improve question quality. 278

Paraphrase Detection Answering repetitive 279

questions often leads to low-quality answers and 280

time-consuming steps. Following the sub-question 281

generation module, we introduce the paraphrase de- 282

tection module to reduce redundancy and improve 283

question quality. In this module, we prompt the 284

model and ask it to distinguish informative ques- 285

tions from questions that merely repeat what is 286

already stated at the previous reasoning level. If a 287

sub-question is a paraphrase, we instruct the model 288

to stop generating sub-questions from the current 289

question. In other words, we prune the low-quality 290

sub-branch of the tree that could otherwise be gen- 291

erated. By pruning these branches, we effectively 292

improve the efficiency of our framework. 293

Evidence Retrieval and Answering We then 294

move on to answering the question after our para- 295

phrase detection module. Our evidence retrieval 296

and answering module focuses on retrieving ev- 297

idence and generating answers to the given sub- 298

question. We also pass in the full evidence list pro- 299

vided and prompt the model to give out an answer 300

to the given sub-question. The evidence retrieval 301

and answering module selects relative evidence 302

from an evidence pool for each sub-question and 303

uses words only from the vocabulary bank to gen- 304

erate its final answer. We will discuss details of 305

constrained decoding in Section 3.3. The generated 306

sub-answer and the answered sub-question are then 307

passed on to the sub-question generation module 308

at the next level to continue the reasoning process. 309

Validity Estimation Not each sub-question 310

asked is a good sub-question, and not each rea- 311

soning path is reasonable. After every sub-question 312

qi generated from the same question Qg has been 313

answered, we prompt the model to provide a proba- 314

bility estimation pi for each (qi, ai) pair. This prob- 315

ability is the model’s evaluation of going down the 316
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correct reasoning path. Specifically, this probabil-317

ity is obtained by prompting the model to consider318

the following three aspects:319

• Question Level: Is the question semantically320

clear and answerable?321

• Reasoning Level: Is the reasoning line coherent322

when considering previous levels?323

• Answer Level: Does the evidence fully support324

the answer to the question?325

As shown in Figure 2, we conduct validity estima-326

tion for sub-questions and sub-answers in nodes 2327

and 3 since the sub-questions were generated from328

the same question in node 1.329

At the leaf node of our tree, we would have a330

final question qf . along with a final answer A to331

the original question Q, and also an aggregated332

probability pfinal =
∏

i pi, with each pi being the333

probability of the nodes along the reasoning path.334

We assign pfinal to the leaf node, representing the335

aggregated probability of answer A being the cor-336

rect answer to Q.337

3.3 Constrained Decoding338

One challenge for generative LLMs in the task of339

question answering is hallucination. LLMs often340

fail to pay attention to the golden evidence and341

hallucinate their own reference even when large342

amounts of evidence exist. To alleviate the problem343

of LLM halluscination during evidence selection344

and answer generation, we innovatively propose to345

use constrained decoding in the answering process346

to reduce hallucination by forcing the model to347

generate grounded answers from evidence and let348

models give concise and exact answers. As shown349

in Figure 2, we conduct constrained decoding by350

asking the model to generate words from the vo-351

cabulary bank, consisting of words taken only from352

the original question and the evidence list provided.353

More formally, we construct a vocabulary bank354

V = w1, w2, ..., wi from all words in the provided355

evidence sentences. We conduct a simple filtering356

by removing common English stop words. We then357

instruct the model’s evidence retrieval and answer-358

ing module to construct its answers using words359

only from the given vocabulary V .360

Code-based Constrained Decoding For open-361

source LLMs (e.g., Llama), we build our logit pro-362

cessor at the decoding time. Specifically, for every363

word wj /∈ V , we manually set the score to nega- 364

tive infinity to prevent the model from generating 365

them. Thus, every answer generated will only use 366

words from the evidence list. 367

Prompt-based Constrained Decoding For 368

closed-source LLMs (e.g., GPT models), since we 369

do not have access to their decoding function, we 370

had to instruct the GPT models using prompts to 371

do constrained decoding. We provide our prompt 372

template used in Appendix A. 373

4 Experimental Setup 374

Dataset We compare STOC-TOT with baseline 375

methods on the HotpotQA dataset (Yang et al., 376

2018) and the MuSiQue dataset (Trivedi et al., 377

2022), both of which are widely used MHQA 378

datasets across state-of-the-art MHQA baselines. 379

The experiments are conducted under the distrac- 380

tor setting, where we provide the model with an 381

evidence pool containing both golden and irrele- 382

vant evidence. The model needs to find the golden 383

evidence to answer the question correctly. We ran- 384

domly selected 200 examples from each dataset as 385

our evaluation set. 386

Baselines We included three baselines: 387

• Vanilla Prompting with no examples provided. 388

We only provide the model with questions and 389

evidence and instruct it to output the answer. 390

• Chain-of-Thought (CoT) prompting (Wei et al., 391

2022) with a standard input-output (IO) prompt. 392

We design the prompt with one in-context exam- 393

ple, which presents the whole reasoning chain, 394

including all intermediate steps. 395

• Tree-of-Thought prompting (Yao et al., 2023a) 396

with slight modifications to adapt to the MHQA 397

task. We largely followed the original framework 398

and used majority voting on the reasoning lines 399

to decide the final answer. 400

We recognize that there are LLM-based retrieval 401

augmented generation frameworks (Yao et al., 402

2023b; Gou et al., 2024) that were also evaluated 403

on HotpotQA. However, we excluded them from 404

our baselines as they used outside knowledge bases, 405

which are under a different testing scenario. 406

4.1 Implementation 407

We experiment with the baselines and our model 408

utilizing five LLMs: GPT-3.5-turbo (Brown et al., 409
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Table 1: Performance comparison of STOC-TOT and baseline methods on the HotpotQA dataset.

Prompting Method
GPT3.5 GPT4 LLaMa2(13B) LLaMa2(70B) LLaMa3(8B)

EM F1 EM F1 EM F1 EM F1 EM F1
Zero-Shot Vanilla 34.0 45.0 51.0 65.0 25.5 36.5 30.5 41.0 27.5 40.7
Chain-of-Thought 35.5 47.3 52.0 66.8 30.5 42.5 33.5 45.0 32.5 44.6
Tree-of-Thought 36.5 49.5 55.0 68.5 29.5 41.3 35.5 47.3 30.5 37.5

STOC-TOT 45.5 56.2 62.0 76.3 31.0 43.0 43.0 56.3 33.0 44.5
w/o constrained decoding 40.5 53.5 59.5 73.0 31.0 43.0 40.5 53.5 32.0 44.3

Table 2: Performance comparison of STOC-TOT and baseline methods on the MusiQue dataset.

Prompting Method
GPT3.5 GPT4 LLaMa2(13B) LLaMa3(8B)

EM F1 EM F1 EM F1 EM F1
Zero-Shot Vanilla 17.0 28.8 31.5 41.2 9.5 16.0 12.0 19.2
Chain-of-Thought 18.0 29.7 32.5 44.2 11.0 17.5 12.5 21.6
Tree-of-Thought 20.5 32.0 35.0 47.3 11.0 17.2 12.0 20.6

STOC-TOT 26.5 38.0 42.0 55.3 11.5 18.0 14.5 22.0
w/o constrained decoding 24.0 35.5 38.5 51.0 11.5 18.0 14.0 22.0

2020) and GPT-4(OpenAI et al., 2024) from Ope-410

nAI, LLaMa 2-13B (Touvron et al., 2023), LLaMa411

2-70B, and LLaMa 3-8B from MetaAI. Due to the412

lengthy running time, LLaMa 2-70B was not tested413

on the MusiQue dataset. For all models, We set414

the temperature to 0.5, topk to 1.0, and maximum415

number of iterations to 5.416

4.2 Evaluation Metric417

Following the metrics in (Yang et al., 2018), we use418

Exact Match and F1 score as two evaluation metric.419

For an answer a given by our framework, the Exact420

Match score equals 1 if the answer span matches421

the golden answer exactly and 0 otherwise. The F1422

metric measures the average overlap between the423

prediction and ground truth answers.424

5 Results425

5.1 Overall Results426

We compare STOC-TOT with LLM baselines on427

the HotpotQA dataset and the MusiQue dataset and428

present our results in Tables 1 and 2. The backbone429

LLMs in our experiments include GPT3.5, GPT4,430

Llama2-13B, Llama2-70B, and Llama3-8B. Due431

to time constraints, we only tested with Llama2-432

70B on the HotpotQA dataset. On the HotpotQA433

dataset, STOC-TOT attains an on-average increase434

in performance of over 6 % compared with vanilla435

prompting on GPT models, and the improvement436

goes up to 11% when we further implement STOC-437

TOT with constrained decoding. On the more chal-438

lenging MusiQue dataset, we still see an increase439

in performance of STOC-TOT compared with the 440

other baselines, most notably on GPT4, where we 441

observe an 11.5% EM improvement (from 31.50 to 442

42.0). 443

Comparison with Tree-of-Thought STOC-TOT 444

surpasses the original Tree-of-Thought prompting 445

by 7% with the GPT4 model on both tested datasets. 446

For LLMs with inferior reasoning ability, such as 447

LLaMa2-8B, we still observe a performance im- 448

provement, even on the harder MusiQue dataset. 449

These results suggest that STOC-TOT is more ef- 450

fective at forming and selecting reliable reasoning 451

paths under complex reasoning scenarios. 452

Constrained Decoding Even though the LLM’s 453

reasoning ability can be improved by reasoning 454

prompting, such techniques have little help in pre- 455

venting hallucination. However, STOC-TOT im- 456

plements constrained decoding, which makes the 457

model much more grounded to evidence when an- 458

swering the question, effectively addressing hallu- 459

cination issues and improving the overall perfor- 460

mance of our framework. 461

5.2 Ablation Study 462

Sensitivity to Demonstration Question Type 463

We study the effect on STOC-TOT performance 464

when different types of demonstration questions 465

are provided in the prompt template. The Hot- 466

PotQA dataset specified two types of questions. 467

The "Bridge" question contains a "bridge entity” 468

that connects the question and the final answer. In 469

6



Table 3: Performance of STOC-TOT with different prompt types on the HotpotQA dataset in terms of EM score.
“Com" represents comparison questions, and “Bri" represents bridge questions.

Model Variant GPT3.5 GPT4 LLaMa2(13B) LLaMa2(70B) LLaMa3(8B)
Prompt/Question Type Com Bri Com Bri Com Bri Com Bri Com Bri

Prompt: Comparison 58.8 41.0 76.5 57.2 38.2 31.9 58.8 41.0 44.1 33.7
Prompt: Bridge 55.9 43.4 73.5 59.0 35.3 32.5 55.9 42.2 41.2 34.9

Table 4: Question Type Examples. On the left side,
the bridging entity is highlighted in red, and the final
question is highlighted in orange. On the right side,
entities that are being compared are highlighted in blue.

Bridge Question Comparison Question
What distinction is held
by the former NBA player
who was a member of
the Charlotte Hornets dur-
ing their 1992-93 season
and was head coach for
the WNBA team Charlotte
Sting?

Were Scott Derrickson
and Ed Wood of the same
nationality?

contrast, the "Comparison" question requires the470

model to compare two entities of the same type. Of471

the 200 questions in our evaluation set, 34 are com-472

parison questions, and 166 are bridge questions.473

Examples of bridge and comparison questions are474

in Table 4.475

We examined STOC-TOT performance under476

the two different question types, each with a differ-477

ent prompt template: one containing only a com-478

parison question as an example and the other con-479

taining only a bridge question as an example. We480

provide the content of our templates in Appendix A.481

Results are shown in Table 3. We observe that the482

difference in prompt templates influences the per-483

formance of our framework under different ques-484

tion types by a small margin. The comparison ques-485

tions are generally easier to solve, and STOC-TOT486

performs better on comparison questions than on487

bridge questions. STOC-TOT will handle compari-488

son questions better if the prompt template contains489

comparison questions and vice versa.490

Question and Reasoning Types We examine491

STOC-TOT, Tree-of-Thought prompting, and492

Chain-of-Thought prompting by comparing their493

performance under different question-type settings.494

Detailed results are shown in Figure 3(a). STOC-495

TOT performs better at both Bridge Questions and496

Sequential Questions, suggesting that STOC-TOT497

can avoid reasoning dead-ends and is better at form-498

Table 5: Reasoning Type Examples. On the left side,
the entity in red needs to be found before solving the
question in orange. On the right side, questions with
parallel reasoning contain parts (highlighted in blue)
that can be solved in arbitrary order.

Sequential Reasoning Parallel Reasoning

The football manager who
recruited David Beckham
managed Manchester
United during what time-
frame?

What distinction is held
by the former NBA player
who was a member of
the Charlotte Hornets dur-
ing their 1992-93 season
and was head coach for
the WNBA team Charlotte
Sting?

ing intermediate reasoning lines. 499

We also conduct an in-depth analysis of the rea- 500

soning types in the existing MHQA datasets by 501

randomly selecting 100 questions from our testing 502

set. The questions are roughly divided into two cat- 503

egories: 1) tree-like parallel reasoning and 2) chain- 504

like sequential reasoning. Questions with parallel 505

reasoning contain two or more reasoning paths that 506

can be solved arbitrarily. Questions with sequential 507

reasoning follow a strict reasoning chain, and all 508

the sub-questions must be solved to form the cor- 509

rect reasoning process. All comparison questions 510

are parallel reasoning, but some bridge questions 511

contain parallel reasoning. Examples of sequential 512

and parallel reasoning questions are in Table 5. Out 513

of the selected 100 questions, 59 questions were 514

Sequential and 41 questions were Parallel. Results 515

are shown in Figure 3(b). STOC-TOT performs bet- 516

ter on both reasoning types, especially on questions 517

containing parallel reasoning. This suggests that 518

STOC-TOT’s stochastic way of forming the tree is 519

very effective when solving questions containing 520

multiple reasoning paths. 521

Performance and Hops As the number of hops 522

increases in a question, the reasoning line gets 523

more complex and varied. Figure 4 shows the 524

performances of different prompting techniques 525

on questions in the MusiQue dataset with differ- 526
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(a) Question Type (b) Reasoning Type

Figure 3: Performace comparison of Chain-of-Thought, Tree-of-Thought, and STOC-TOT on questions of different
question types (Left) and reasoning types (Right). Experiments were done on the HotpotQA dataset.

Figure 4: Performance comparison of CoT, ToT, and
STOC-TOT on different number of hops in the question.
Experiments done in the MusiQue dataset.

40%

37%

12%

11%
• Semantically Correct
• Wrong Answer
• Intermediate Answer
• No Answer

Figure 5: Ratio of different categories in error cases, on
the HotpotQA dataset.

ent numbers of hops. STOC-TOT performs best527

in all categories, demonstrating our framework’s528

superior ability to deal with complex reasoning sce-529

narios. This ablation study was conducted only on530

GPT4, as other models performed poorly on 3-hop531

and 4-hop scenarios, regardless of the reasoning532

prompting technique used.533

Error Analysis We conduct a detailed analysis534

of the errors made by our framework on GPT3 and535

GPT4, and present our results in Figure 5. We cate-536

gorize the errors into four types: (1) No Answer:537

our framework did not come up with an answer 538

for the question due to not finishing the reasoning 539

process; (2) Intermediate Answer: our framework 540

came up with an answer for one of the intermediate 541

hops instead of for the final question; (3) Wrong 542

Answer: our framework came up with an answer 543

that is neither the final answer nor one of the inter- 544

mediate answers; (4) Semantically Correct: our 545

framework came up with the right answer, but did 546

not have an exact match with the final answer. Ap- 547

pendix B shows examples of each error category. 548

Large amounts of error cases were correct answers 549

with extra wording or hallucination errors, signal- 550

ing potential improvements over our constrained 551

decoding scheme. Reasoning process errors, in- 552

cluding no answer and intermediate answer, make 553

up only 25% of the total error cases. This result 554

shows that our framework is capable of building a 555

robust reasoning process for complex questions. 556

6 Conclusion 557

This paper proposes STOC-TOT, a stochastic 558

tree-of-thought reasoning framework with con- 559

strained generation for multi-hop question answer- 560

ing. STOC-TOT is specialized in dealing with 561

complex reasoning scenarios in natural language 562

tasks. Experiments on two benchmark datasets 563

show that our framework outperforms previous rea- 564

soning prompting techniques with multiple Large 565

Language Models. Detailed analysis shows that our 566

framework is capable of building a robust reasoning 567

process given different types of questions. Further 568

research can aim to enhance the reliability of our 569

framework by proposing better validity evaluation 570

schemes and more effective methods for improving 571

groundedness and preventing hallucination. 572
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Limitations573

Our framework relies on initiating multiple model574

instances and requires multiple prompts per round.575

The repetitive callings impose heavy time costs for576

our framework, even after implementing our para-577

phrase module. Another limitation comes from578

how we generated sub-questions. Currently, we di-579

rectly prompt the model to generate sub-questions.580

A more complex standard can be used to increase581

the quality of the sub-questions generated. Also,582

more extensive experiments should be provided,583

including experimenting on other different datasets584

and case studies.585

Ethics Statement586

This research adhered to the ethical standards and587

best practices outlined in the ACL Code of Ethics.588

Language Models can sometimes produce illogi-589

cal or inaccurate reasoning paths, so their outputs590

should be cautiously used. The outputs are only591

examined to understand how a model arrives at592

its answers and investigate why it makes certain593

errors. All experiments used publicly available594

datasets from previously published works and did595

not involve ethical or privacy issues.596

References597

Anusha Balakrishnan, Jinfeng Rao, Kartikeya Upasani,598
Michael White, and Rajen Subba. 2019. Constrained599
decoding for neural NLG from compositional repre-600
sentations in task-oriented dialogue. In Proceedings601
of the 57th Conference of the Association for Compu-602
tational Linguistics, ACL 2019, Florence, Italy, July603
28- August 2, 2019, Volume 1: Long Papers, pages604
831–844. Association for Computational Linguistics.605

Maciej Besta, Nils Blach, Ales Kubicek, Robert Ger-606
stenberger, Michal Podstawski, Lukas Gianinazzi,607
Joanna Gajda, Tomasz Lehmann, Hubert Niewiadom-608
ski, Piotr Nyczyk, and Torsten Hoefler. 2024. Graph609
of thoughts: Solving elaborate problems with large610
language models. In Thirty-Eighth AAAI Conference611
on Artificial Intelligence, AAAI 2024, Thirty-Sixth612
Conference on Innovative Applications of Artificial613
Intelligence, IAAI 2024, Fourteenth Symposium on614
Educational Advances in Artificial Intelligence, EAAI615
2014, February 20-27, 2024, Vancouver, Canada,616
pages 17682–17690. AAAI Press.617

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie618
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind619
Neelakantan, Pranav Shyam, Girish Sastry, Amanda620
Askell, Sandhini Agarwal, Ariel Herbert-Voss,621
Gretchen Krueger, Tom Henighan, Rewon Child,622
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,623

Clemens Winter, Christopher Hesse, Mark Chen, Eric 624
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, 625
Jack Clark, Christopher Berner, Sam McCandlish, 626
Alec Radford, Ilya Sutskever, and Dario Amodei. 627
2020. Language models are few-shot learners. CoRR, 628
abs/2005.14165. 629

Wenhu Chen, Xueguang Ma, Xinyi Wang, and 630
William W. Cohen. 2023. Program of thoughts 631
prompting: Disentangling computation from reason- 632
ing for numerical reasoning tasks. Transactions on 633
Machine Learning Research. 634

Zhibin Gou, Zhihong Shao, Yeyun Gong, yelong shen, 635
Yujiu Yang, Nan Duan, and Weizhu Chen. 2024. 636
CRITIC: Large language models can self-correct 637
with tool-interactive critiquing. In The Twelfth Inter- 638
national Conference on Learning Representations. 639

Chris Hokamp and Qun Liu. 2017. Lexically con- 640
strained decoding for sequence generation using grid 641
beam search. In Proceedings of the 55th Annual 642
Meeting of the Association for Computational Lin- 643
guistics, ACL 2017, Vancouver, Canada, July 30 - 644
August 4, Volume 1: Long Papers, pages 1535–1546. 645
Association for Computational Linguistics. 646

Brian Lester, Daniel Pressel, Amy Hemmeter, Sag- 647
nik Ray Choudhury, and Srinivas Bangalore. 2020. 648
Constrained decoding for computationally efficient 649
named entity recognition taggers. In Findings of the 650
Association for Computational Linguistics: EMNLP 651
2020, Online Event, 16-20 November 2020, volume 652
EMNLP 2020 of Findings of ACL, pages 1841–1848. 653
Association for Computational Linguistics. 654

Xin-Yi Li, Weixian Lei, and Yubin Yang. 2022. From 655
easy to hard: Two-stage selector and reader for multi- 656
hop question answering. ICASSP 2023 - 2023 IEEE 657
International Conference on Acoustics, Speech and 658
Signal Processing (ICASSP), pages 1–5. 659

Franz Josef Och and Hermann Ney. 2004. The align- 660
ment template approach to statistical machine trans- 661
lation. Comput. Linguistics, 30(4):417–449. 662

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, 663
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale- 664
man, Diogo Almeida, Janko Altenschmidt, Sam Alt- 665
man, Shyamal Anadkat, Red Avila, Igor Babuschkin, 666
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim- 667
ing Bao, Mohammad Bavarian, Jeff Belgum, Ir- 668
wan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, 669
Christopher Berner, Lenny Bogdonoff, Oleg Boiko, 670
Madelaine Boyd, Anna-Luisa Brakman, Greg Brock- 671
man, Tim Brooks, Miles Brundage, Kevin Button, 672
Trevor Cai, Rosie Campbell, Andrew Cann, Brittany 673
Carey, Chelsea Carlson, Rory Carmichael, Brooke 674
Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully 675
Chen, Ruby Chen, Jason Chen, Mark Chen, Ben 676
Chess, Chester Cho, Casey Chu, Hyung Won Chung, 677
Dave Cummings, Jeremiah Currier, Yunxing Dai, 678
Cory Decareaux, Thomas Degry, Noah Deutsch, 679
Damien Deville, Arka Dhar, David Dohan, Steve 680
Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti, 681

9

https://doi.org/10.18653/V1/P19-1080
https://doi.org/10.18653/V1/P19-1080
https://doi.org/10.18653/V1/P19-1080
https://doi.org/10.18653/V1/P19-1080
https://doi.org/10.18653/V1/P19-1080
https://doi.org/10.1609/AAAI.V38I16.29720
https://doi.org/10.1609/AAAI.V38I16.29720
https://doi.org/10.1609/AAAI.V38I16.29720
https://doi.org/10.1609/AAAI.V38I16.29720
https://doi.org/10.1609/AAAI.V38I16.29720
http://arxiv.org/abs/2005.14165
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=Sx038qxjek
https://openreview.net/forum?id=Sx038qxjek
https://openreview.net/forum?id=Sx038qxjek
https://doi.org/10.18653/V1/P17-1141
https://doi.org/10.18653/V1/P17-1141
https://doi.org/10.18653/V1/P17-1141
https://doi.org/10.18653/V1/P17-1141
https://doi.org/10.18653/V1/P17-1141
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.166
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.166
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.166
https://api.semanticscholar.org/CorpusID:249017531
https://api.semanticscholar.org/CorpusID:249017531
https://api.semanticscholar.org/CorpusID:249017531
https://api.semanticscholar.org/CorpusID:249017531
https://api.semanticscholar.org/CorpusID:249017531
https://doi.org/10.1162/0891201042544884
https://doi.org/10.1162/0891201042544884
https://doi.org/10.1162/0891201042544884
https://doi.org/10.1162/0891201042544884
https://doi.org/10.1162/0891201042544884


Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,682
Simón Posada Fishman, Juston Forte, Isabella Ful-683
ford, Leo Gao, Elie Georges, Christian Gibson, Vik684
Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-685
Lopes, Jonathan Gordon, Morgan Grafstein, Scott686
Gray, Ryan Greene, Joshua Gross, Shixiang Shane687
Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris,688
Yuchen He, Mike Heaton, Johannes Heidecke, Chris689
Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele,690
Brandon Houghton, Kenny Hsu, Shengli Hu, Xin691
Hu, Joost Huizinga, Shantanu Jain, Shawn Jain,692
Joanne Jang, Angela Jiang, Roger Jiang, Haozhun693
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Hee-694
woo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-695
mali, Ingmar Kanitscheider, Nitish Shirish Keskar,696
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim,697
Christina Kim, Yongjik Kim, Jan Hendrik Kirch-698
ner, Jamie Kiros, Matt Knight, Daniel Kokotajlo,699
Łukasz Kondraciuk, Andrew Kondrich, Aris Kon-700
stantinidis, Kyle Kosic, Gretchen Krueger, Vishal701
Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan702
Leike, Jade Leung, Daniel Levy, Chak Ming Li,703
Rachel Lim, Molly Lin, Stephanie Lin, Mateusz704
Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue,705
Anna Makanju, Kim Malfacini, Sam Manning, Todor706
Markov, Yaniv Markovski, Bianca Martin, Katie707
Mayer, Andrew Mayne, Bob McGrew, Scott Mayer708
McKinney, Christine McLeavey, Paul McMillan,709
Jake McNeil, David Medina, Aalok Mehta, Jacob710
Menick, Luke Metz, Andrey Mishchenko, Pamela711
Mishkin, Vinnie Monaco, Evan Morikawa, Daniel712
Mossing, Tong Mu, Mira Murati, Oleg Murk, David713
Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak,714
Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh,715
Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex716
Paino, Joe Palermo, Ashley Pantuliano, Giambat-717
tista Parascandolo, Joel Parish, Emy Parparita, Alex718
Passos, Mikhail Pavlov, Andrew Peng, Adam Perel-719
man, Filipe de Avila Belbute Peres, Michael Petrov,720
Henrique Ponde de Oliveira Pinto, Michael, Poko-721
rny, Michelle Pokrass, Vitchyr H. Pong, Tolly Pow-722
ell, Alethea Power, Boris Power, Elizabeth Proehl,723
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh,724
Cameron Raymond, Francis Real, Kendra Rimbach,725
Carl Ross, Bob Rotsted, Henri Roussez, Nick Ry-726
der, Mario Saltarelli, Ted Sanders, Shibani Santurkar,727
Girish Sastry, Heather Schmidt, David Schnurr, John728
Schulman, Daniel Selsam, Kyla Sheppard, Toki729
Sherbakov, Jessica Shieh, Sarah Shoker, Pranav730
Shyam, Szymon Sidor, Eric Sigler, Maddie Simens,731
Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin732
Sokolowsky, Yang Song, Natalie Staudacher, Fe-733
lipe Petroski Such, Natalie Summers, Ilya Sutskever,734
Jie Tang, Nikolas Tezak, Madeleine B. Thompson,735
Phil Tillet, Amin Tootoonchian, Elizabeth Tseng,736
Preston Tuggle, Nick Turley, Jerry Tworek, Juan Fe-737
lipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya,738
Chelsea Voss, Carroll Wainwright, Justin Jay Wang,739
Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei,740
CJ Weinmann, Akila Welihinda, Peter Welinder, Ji-741
ayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner,742
Clemens Winter, Samuel Wolrich, Hannah Wong,743
Lauren Workman, Sherwin Wu, Jeff Wu, Michael744

Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qim- 745
ing Yuan, Wojciech Zaremba, Rowan Zellers, Chong 746
Zhang, Marvin Zhang, Shengjia Zhao, Tianhao 747
Zheng, Juntang Zhuang, William Zhuk, and Barret 748
Zoph. 2024. Gpt-4 technical report. 749

Matt Post and David Vilar. 2018. Fast lexically con- 750
strained decoding with dynamic beam allocation for 751
neural machine translation. In Proceedings of the 752
2018 Conference of the North American Chapter 753
of the Association for Computational Linguistics: 754
Human Language Technologies, NAACL-HLT 2018, 755
New Orleans, Louisiana, USA, June 1-6, 2018, Vol- 756
ume 1 (Long Papers), pages 1314–1324. Association 757
for Computational Linguistics. 758

Bilgehan Sel, Ahmad Tawaha, Vanshaj Khattar, Ruoxi 759
Jia, and Ming Jin. 2024. Algorithm of thoughts: 760
Enhancing exploration of ideas in large language 761
models. In Forty-first International Conference on 762
Machine Learning. 763

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 764
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 765
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 766
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton 767
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, 768
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, 769
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An- 770
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan 771
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, 772
Isabel Kloumann, Artem Korenev, Punit Singh Koura, 773
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di- 774
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar- 775
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly- 776
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen- 777
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten, 778
Ruan Silva, Eric Michael Smith, Ranjan Subrama- 779
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay- 780
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu, 781
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, 782
Melanie Kambadur, Sharan Narang, Aurelien Ro- 783
driguez, Robert Stojnic, Sergey Edunov, and Thomas 784
Scialom. 2023. Llama 2: Open foundation and fine- 785
tuned chat models. 786

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, 787
and Ashish Sabharwal. 2022. 9835 musique: Multi- 788
hop questions via single-hop question composition. 789
Trans. Assoc. Comput. Linguistics, 10:539–554. 790

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. 791
Le, Ed H. Chi, Sharan Narang, Aakanksha Chowd- 792
hery, and Denny Zhou. 2023. Self-consistency 793
improves chain of thought reasoning in language 794
models. In The Eleventh International Conference 795
on Learning Representations, ICLR 2023, Kigali, 796
Rwanda, May 1-5, 2023. OpenReview.net. 797

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 798
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le, 799
and Denny Zhou. 2022. Chain-of-thought prompting 800
elicits reasoning in large language models. In Ad- 801
vances in Neural Information Processing Systems 35: 802

10

http://arxiv.org/abs/2303.08774
https://doi.org/10.18653/V1/N18-1119
https://doi.org/10.18653/V1/N18-1119
https://doi.org/10.18653/V1/N18-1119
https://doi.org/10.18653/V1/N18-1119
https://doi.org/10.18653/V1/N18-1119
https://openreview.net/forum?id=KJL2b6BthC
https://openreview.net/forum?id=KJL2b6BthC
https://openreview.net/forum?id=KJL2b6BthC
https://openreview.net/forum?id=KJL2b6BthC
https://openreview.net/forum?id=KJL2b6BthC
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
https://doi.org/10.1162/TACL_A_00475
https://doi.org/10.1162/TACL_A_00475
https://doi.org/10.1162/TACL_A_00475
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html


Annual Conference on Neural Information Process-803
ing Systems 2022, NeurIPS 2022, New Orleans, LA,804
USA, November 28 - December 9, 2022.805

Johannes Welbl, Pontus Stenetorp, and Sebastian Riedel.806
2018. Constructing datasets for multi-hop reading807
comprehension across documents. Trans. Assoc.808
Comput. Linguistics, 6:287–302.809

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-810
gio, William W. Cohen, Ruslan Salakhutdinov, and811
Christopher D. Manning. 2018. HotpotQA: A dataset812
for diverse, explainable multi-hop question answer-813
ing. In Conference on Empirical Methods in Natural814
Language Processing (EMNLP).815

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,816
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.817
2023a. Tree of thoughts: Deliberate problem solving818
with large language models. In Advances in Neural819
Information Processing Systems 36: Annual Confer-820
ence on Neural Information Processing Systems 2023,821
NeurIPS 2023, New Orleans, LA, USA, December 10822
- 16, 2023.823

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak824
Shafran, Karthik R. Narasimhan, and Yuan Cao.825
2023b. React: Synergizing reasoning and acting826
in language models. In The Eleventh International827
Conference on Learning Representations, ICLR 2023,828
Kigali, Rwanda, May 1-5, 2023. OpenReview.net.829

Zhangyue Yin, Yuxin Wang, Xiannian Hu, Yiguang Wu,830
Hang Yan, Xinyu Zhang, Zhao Cao, Xuanjing Huang,831
and Xipeng Qiu. 2023. Rethinking label smooth-832
ing on multi-hop question answering. In Chinese833
Computational Linguistics - 22nd China National834
Conference, CCL 2023, Harbin, China, August 3-5,835
2023, Proceedings, volume 14232 of Lecture Notes836
in Computer Science, pages 72–87. Springer.837

Jiahao Zhang, Haiyang Zhang, Dongmei Zhang, Yong838
Liu, and Shen Huang. 2023. Beam retrieval: General839
end-to-end retrieval for multi-hop question answer-840
ing. CoRR, abs/2308.08973.841

Fengbin Zhu, Wenqiang Lei, Chao Wang, Jianming842
Zheng, Soujanya Poria, and Tat-Seng Chua. 2021.843
Retrieving and reading: A comprehensive sur-844
vey on open-domain question answering. CoRR,845
abs/2101.00774.846

11

https://doi.org/10.1162/TACL_A_00021
https://doi.org/10.1162/TACL_A_00021
https://doi.org/10.1162/TACL_A_00021
http://papers.nips.cc/paper_files/paper/2023/hash/271db9922b8d1f4dd7aaef84ed5ac703-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/271db9922b8d1f4dd7aaef84ed5ac703-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/271db9922b8d1f4dd7aaef84ed5ac703-Abstract-Conference.html
https://openreview.net/pdf?id=WE_vluYUL-X
https://openreview.net/pdf?id=WE_vluYUL-X
https://openreview.net/pdf?id=WE_vluYUL-X
https://doi.org/10.1007/978-981-99-6207-5_5
https://doi.org/10.1007/978-981-99-6207-5_5
https://doi.org/10.1007/978-981-99-6207-5_5
https://doi.org/10.48550/ARXIV.2308.08973
https://doi.org/10.48550/ARXIV.2308.08973
https://doi.org/10.48550/ARXIV.2308.08973
https://doi.org/10.48550/ARXIV.2308.08973
https://doi.org/10.48550/ARXIV.2308.08973
http://arxiv.org/abs/2101.00774
http://arxiv.org/abs/2101.00774
http://arxiv.org/abs/2101.00774


A Prompt Templates847

Sub Question Generation Template The848

prompt template containing one comparison849

question and one bridge question is given below:850

prompt: Break a question into high-quality sub-851

questions that are easier to answer. Here are two852

examples as guidelines:853

"Question: Are Tokyo and Busan in the same coun-854

try? Thought 1: I could either find which country855

Tokyo is located in, or which country Busan is856

located in. Sub Question 1-1: Which country is857

Tokyo located in? Sub Question 1-2: Which coun-858

try is Busan located in?"859

"Question: Tokyo is located in the country that has860

what colors present on its national flag? Thought861

1: I need to first find out which country Tokyo is862

located in. Sub Question 1-1: Which country is863

Tokyo located in?"864

Only give out your thought process and current-865

level sub-questions. Do not give out answers866

to your questions. Question: Given Question.867

Thought 1:868

Prompt-based Constrained Generation Tem-869

plate The prompt template at answering time is870

given below:871

prompt: Given a question and a list of evidence872

that may of help, give your answer directly, using873

words only from the vocabulary bank, without any874

explanations.875

Question: Given Question. Evidence as reference:876

Given Evidence. Vocabulary Bank: Given Vocabu-877

lary. Answer:878

B Examples of the Error Cases879

•Type-2: Intermediate Answer880

881

Question:882

Where does the hotel and casino located in which883

Bill Cosby’s third album was recorded?884

Answer given by STOC-TOT on GPT4:885

Las Vegas.886

Golden Answer:887

Las Vegas Strip in Paradise.888

889

•Type-3: Wrong Answer890

891

Question:892

Aside from the Apple Remote, what other device893

can control the program Apple Remote was894

originally designed to interact with?895

Answer given by STOC-TOT on GPT4: 896

siri remote and devices with netsupport manager 897

software 898

Golden Answer: 899

keyboard function keys 900

901

•Type-4: Semantically Correct 902

903

Question: 904

Roger O. Egeberg was Assistant Secretary for 905

Health and Scientific Affairs during the administra- 906

tion of a president that served during what years? 907

Answer given by STOC-TOT on GPT4: 908

1969 to 1974 909

Golden Answer: 910

1969 until 1974 911

912

12


