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Abstract

The Segment Anything Model (SAM) is a powerful foundation model for image
segmentation, showing robust zero-shot generalization through prompt engineering.
However, relying on manual prompts is impractical for real-world applications,
particularly in scenarios where rapid prompt provision and resource efficiency are
crucial. In this paper, we propose the Automation of Prompts for SAM (AoP-SAM),
a novel approach that learns to generate essential prompts in optimal locations
automatically. AoP-SAM enhances SAM’s efficiency and usability by eliminating
manual input, making it better suited for real-world tasks. Our approach employs a
lightweight yet efficient Prompt Predictor model that detects key entities across
images and identifies the optimal regions for placing prompt candidates. This
method leverages SAM’s image embeddings, preserving its zero-shot generalization
capabilities without requiring fine-tuning. Additionally, we introduce a test-time
instance-level Adaptive Sampling and Filtering mechanism that generates prompts
in a coarse-to-fine manner. This notably enhances both prompt and mask generation
efficiency by reducing computational overhead and minimizing redundant mask
refinements. Evaluations of three datasets demonstrate that AoP-SAM substantially
improves both prompt generation efficiency and mask generation accuracy, making
SAM more effective for automated segmentation tasks.

1 Introduction
Image segmentation is essential in computer vision, supporting applications like autonomous vehicle
navigation [3] to medical diagnostics [7] and robotics perception [11]. The Segment Anything Model
(SAM) is a foundation model trained on an extensive dataset containing billions of mask annotations,
designed for tackling general image segmentation tasks [13]. SAM excels at segmenting a wide range
of visual elements across diverse environments, enabling its zero-shot generalization ability through
promptable features. Utilizing prompts, such as points and bounding boxes, SAM demonstrates
remarkable adaptability across various applications [13].

The manual provision of prompts required for segmenting entire images in SAM is highly labor-
intensive and time-consuming, making it impractical for applications requiring rapid prompt provision
in hardware-constrained scenarios, such as industrial automation. Consequently, automatic prompt
provision is essential, but current methods face two major challenges: 1) Unintelligent automation:
In Automatic Mask Generation (AMG) mode, SAM’s grid-based prompt generation can either miss
small objects when using sparse grids, leading to reduced accuracy, or generate redundant masks
with dense grids, resulting in inefficient mask generation that requires extensive refinement and slows
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Figure 1: In SAM, automating prompt provision eliminates the need for manual input, significantly
improving the efficiency of mask segmentation. However, current approaches, such as grid-based
prompt generation in vanilla SAM or methods that rely on extra object detection models, often
introduce excessive mask refinements or computational overhead, leading to increased latency and
reduced efficiency. In contrast, our proposed AoP-SAM efficiently generates essential prompts for
accurate mask generation within SAM, entirely without human intervention. In the illustrations above,
different colors represent various segmentation results, with orange labels (stars or boxes) indicating
valid prompts, green labels marking invalid prompts, and black stars in our results representing the
filtered prompts, processed in a coarse-to-fine manner by the test-time instance-wise ASF mechanism.

down overall performance. 2) Time and Resource Inefficiency: Object detection models used for
generating object-aware prompts [23] introduce considerable computational overhead and latency
due to the large sizes of deep-learning models employed. These two main limitations hinder the
broader applicability of SAM as a foundational segmentation model.

In this work, we introduce the Automation of Prompts for SAM (AoP-SAM), a novel approach
for automating prompt generation that is widely applicable across the SAM family of models,
e.g. [13, 22, 23]. This method enables the efficient generation of essential prompts for precise
segmentation, eliminating the need for human intervention. Our approach incorporates a learnable
Prompt Predictor that seamlessly integrates with SAM, utilizing the image embeddings produced
by SAM’s image encoder to generate a Prompt Confidence Map (PCM), which identifies regions
with potential candidates. Additionally, we propose a test-time instance-wise Adaptive Sampling
and Filtering (ASF) mechanism that initially samples prompts coarsely and then finely filters out
redundant ones based on the generated mask, significantly enhancing overall efficiency. Therefore,
AoP-SAM improves the efficiency of segmentation without limiting SAM’s accuracy or flexibility.

2 Related work
2.1 Methods for automating prompts
Manually setting prompts in SAM for segmentation is labor-intensive, time-consuming, and often
requires domain-specific expertise [14], making it impractical for real-world applications. To alleviate
this, SAM’s AMG mode automates prompt provision by placing prompts in a grid to create masks [13].
However, sparse grids may miss small objects and result in low accuracy performance, while denser
grids, like 32× 32 points, lead to redundant masks and slow down processing due to the need for
extensive mask refinement. A specialized version of SAM has been developed to create the large
SA-1B dataset, but it sacrifices inference speed for accuracy, further hindering efficiency [13].

An alternative approach involves using bounding boxes as prompts for SAM, facilitated by exist-
ing object detection models. However, methods like Object-Aware Sampling (OAS) [23] employ
YOLOv8 [20] introduce considerable computational overhead as these models are not designed or
optimized for this purpose. This leads to inefficiencies, particularly in resource-constrained environ-
ments, diminishing SAM’s overall effectiveness. In contrast, AoP-SAM is designed for allocating
optimal locations of essential prompts, improving overall efficiency and segmentation accuracy.
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Figure 2: The architecture of our proposed AoP-SAM consists of two key components: the prompt
predictor and ASF Module. The prompt predictor operates by taking the image input and the
computed image embedding from SAM’s image encoder as inputs. Prompt predictor then generates a
PCM that highlights potential regions for prompt candidates. During test-time, these candidates are
adaptively sampled and filtered by ASF, predicting prompts that might lead to redundant masks based
on the generated mask references. This process eliminates unnecessary prompts, ensuring that only
the essential ones are used to generate the final mask resultes.

2.2 Test-time adaptation
Test-time domain adaptation improves model performance on test data with a domain gap using
either backward-based or backward-free approaches [19, 10]. Backward-based methods, like entropy
minimization, capture target domain features [19, 9], while backward-free methods, such as DUA’s
running average and DIGA’s distribution adaptation [16, 21], adjust batch normalization statistics.
Recently, test-time adaptation has been applied to camouflage object segmentation in SAM [8].
AoP-SAM follows this strategy and introduces an instance-level test-time ASF mechanism that
eliminates redundant prompt candidates and improves efficiency for generalized segmentation across
datasets, without requiring sample-level supervision.

3 Method
3.1 Prompt predictor for prompt confidence map
To streamline the process of prompt provision and reduce computational complexity, we introduce
a lightweight prompt predictor efficiently integrated with SAM. As shown in Figure 2, the image
segmentation process begins with SAM computing image embeddings. When new prompts are
provided, their prompt embeddings are derived and injected into the mask decoder, along with the
image embedding, to generate the corresponding masks. Following SAM’s methodologies, AoP-SAM
starts to generate and feed prompts into the prompt encoder after image embeddings are computed,
allowing the prompt predictor to reuse this data and also image inputs. The predictor then creates a
PCM, which highlights high-confidence regions to identify optimal locations of essential prompts for
precise and effective segmentation within SAM.

Prompt predictor architecture. The model incorporates two CNN-based encoders: one for process-
ing the original image and another for handling the ViT embedding. The image encoder consists of
three convolutional layers with ReLU activations to extract spatial features and introduce non-linearity.
The ViT embedding is reshaped to match the image’s spatial dimensions and passed through its own
encoder to produce a 32-channel feature map. This alignment enables the model to fuse spatial and
contextual information from both the image and ViT embedding, improving segmentation accuracy.
As illustrated in Figure 2, this resulting fused feature map is then processed through convolutional
layers in the prompt decoder, reducing its dimensionality while refining the representation. The
final step uses a sigmoid-activated layer to generate PCMs, highlighting regions containing essential
prompts. By normalizing the output to a [0, 1] range, the sigmoid activation enables the selection of
high-confidence prompt candidate regions for segmentation within the SAM framework.

Training of prompt predictor Unlike traditional object detection models trained on datasets like
COCO [15], our approach for AoP-SAM is data-efficient and aligned with SAM by utilizing the
SA-1B dataset, which contains over 1 billion masks and corresponding prompts [13]. This ensures
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AoP-SAM inherits SAM’s robustness and generalization ability, particularly in handling diverse and
unseen data. We use point prompts from SA-1B as ground truth, which align with the PCM generated
by our prompt predictor. A curated training set from SA-1B covers various semantic classes and
scenarios. The image encoder, embedding encoder, and prompt decoder are trained with PCM ground
truth refined by uniform and gaussian kernels for precision. Using MSELoss and adam optimization,
the model was trained for 1000 epochs with gradient accumulation to support larger batch sizes.

3.2 ASF for essential prompts
To efficiently extract essential prompts from the PCM, a gaussian filter is applied to smooth the PCM,
enhancing key regions while minimizing noise. Local maxima are then coarsely sampled as potential
prompt candidates and mapped back to the original image coordinates, ensuring they represent
significant features for prompt generation. However, this approach may still produce redundant
prompts representing the same entity. To address this, we apply a finer filtering process, using the
generated masks as references to identify and remove redundant prompts. A Prompt Elimination
Map (PEM) is then constructed by comparing the spatial and semantic information of the generated
masks. Each pixel in the map is assigned an elimination score, indicating the likelihood of redundant
prompt generation at that location.

We utilize the image feature from image encoder and generated reference masks as inputs for adaptive
filtering. The normalized image feature, denoted as Fnorm ∈ Rh×w×c, contains the original image
information, where h and w are the dimensions and c is the feature dimension. The normalized
reference masks Mnorm ∈ Rh×w, with n predicted masks, are downsampled and performed a cosine
similarity with Fnorm to obtain n PEMs. On top of this, we adopt another average pooling to
aggregate all n local maps to obtain the overall PEM of the generated mask as

PEM =
1

n

n∑
i=1

(
Fnorm ×M i

norm

)
, Fnorm ∈ Rh×w×c, Mnorm ∈ Rn×h×w

Moreover, an elimination threshold is calculated based on the IoU scores of the generated masks and
their corresponding elimination scores. Prompts that exceed this threshold are considered redundant
and removed from the prompt candidates. This adaptive filtering ensures only essential prompts are
retained for further mask generation, improving overall efficiency while minimizing refinements.

4 Experiments

Table 1: Results on image segmentation with bounding box and point supervision. Best are in bold.

Automating SA-1B COCO LVIS
Prompts Methods mIoU ↑ InfLat ↓ PeakMem ↓ #P mIoU ↑ InfLat ↓ PeakMem ↓ #P mIoU ↑ InfLat ↓ PeakMem ↓ #P

MobileSAM Image Encoder
AMG-S [13] 29.8 - 4.5 38.6 56.0 - 1.9 33.5 56.2 - 1.9 33.4
AMG-D [13] 46.9 - 9.1 71.0 60.9 - 1.9 55.9 61.1 - 1.9 55.5
OAS(Box) [23] 50.7 0.191 7.3 100 55.5 0.187 4.2 44 55.7 0.188 4.0 38
OAS(Central Point) [23] 48.7 0.188 7.7 141.0 53.9 0.167 4.3 69.0 54.5 0.164 4.3 68.1
AoP-SAM 51.4 0.101 4.1 71.7 61.5 0.096 2.1 58.1 62.3 0.094 2.1 57.5

ViT-L Image Encoder
AMG-S [13] 40.0 - 5.7 55.5 61.4 - 4.4 48.8 63.2 - 4.3 49.5
AMG-D [13] 65.6 - 10.3 108.9 67.7 - 4.3 86.0 69.2 - 4.3 86.5
OAS(Box) [23] 65.8 0.150 9.1 100 63.3 0.152 5.4 44 62.9 0.151 5.3 38
OAS(Central Point) [23] 67.6 0.149 9.7 199.3 64.2 0.133 5.5 98.4 63.5 0.132 5.5 98.9
AoP-SAM 71.1 0.120 5.4 118.3 68.4 0.116 4.4 97.0 69.8 0.117 4.4 97.2

ViT-H Image Encoder
AMG-S [13] 40.8 - 7.1 56.3 63.3 - 5.7 49.8 64.9 - 5.6 50.5
AMG-D [13] 66.8 - 11.8 109.6 69.5 - 5.7 87.4 71.0 - 5.6 88.0
OAS(Box) [23] 66.9 0.160 10.4 100 64.1 0.152 6.8 44 63.3 0.153 6.6 38
OAS(Central Point) [23] 68.3 0.154 11.1 207.6 65.1 0.134 6.9 102.1 63.0 0.134 6.8 102.4
AoP-SAM 70.6 0.122 6.6 107.8 70.1 0.120 5.5 90.0 71.9 0.122 5.5 89.7

Table 2: Ablation study of variants with our AoP-SAM on image segmentation.

Method’s variants SA-1B COCO LVIS
mIoU ↑ InfLat ↓ PeakMem ↓ #P mIoU ↑ InfLat ↓ PeakMem ↓ #P mIoU ↑ InfLat ↓ PeakMem ↓ #P

AoP-SAM w/o AS, AF 57.2 0.059 7.2 106.4 67.9 0.078 5.7 70.4 60.9 0.075 5.7 60.6
AoP-SAM w/o AF 72.8 0.130 10.1 120.1 70.5 0.122 5.7 97.9 71.7 0.121 5.7 97.5
AoP-SAM 71.3 0.122 6.6 107.8 70.1 0.112 5.7 91.1 71.9 0.122 5.7 89.7

4.1 Experiments setup
In our experiments, we evaluate prompt provision for SAM using three datasets: SA-1B, COCO, and
LVIS [13, 15, 4]. We compare two types of supervision—bounding box and point prompts—and
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Table 3: Ablation study on hyper-parameters employed in AoP-SAM. Best are in bold
(a) Sampling Smoothing Factor

Factor mIoU ↑ InfLat ↓ PeakMem ↓ #P
1 72.4 0.124 51.5 114.4
2 70.4 0.122 42.2 107.8
3 67.3 0.118 32.7 100.3
4 63.4 0.122 24.6 91.2

(b) Confidence Intensity Threshold
Thr. mIoU ↑ InfLat ↓ PeakMem ↓ #P
0.1 70.9 0.121 10.1 109.2
0.2 70.4 0.122 9.75 107.8
0.3 68.7 0.116 9.52 103.9
0.4 66.4 0.117 9.60 99.5

(c) Prompt Spacing Factor
Factor mIoU ↑ InfLat ↓ PeakMem ↓ #P

4 72.7 0.123 10.0 114.8
5 71.6 0.123 9.88 111.4
6 70.4 0.122 9.75 107.8
7 68.9 0.117 9.82 104.2

(d) Prompt Elimination Threshold
Thr. mIoU ↑ MaskLat ↓ Ratioelim. ↑ #P
1.25 68.4 0.671 51.5 100.9
1.3 70.4 0.799 42.3 107.8
1.35 71.6 0.930 32.7 113.2
1.4 72.2 1.041 24.6 116.4

baseline methods, including AMG-S (Sparse grid), AMG-D (Dense grid), and OAS [23], which
employs YOLOv8 for generating bounding boxes or using central points of boxes as prompts. For
evaluation, we use the greedy IoU algorithm [13, 24] to calculate the mean IoU (mIoU) and measure
efficiency through Prompt Inference Latency (InfLat) and Peak Memory (PeakMem). Experiments
are conducted on a Nvidia Titan RTX GPU, using PyTorch, with point prompts allowing multiple
masks and box prompts restricted to single masks. For more details, see Appendix Section 6.3.

4.2 Experiment results and analysis
Performance and efficiency analysis. Table 1 compares various automated prompt methods across
models from SAM family with different image encoders on three datasets. AoP-SAM consistently
achieves the highest mIoU scores across all datasets and encoders, outperforming methods that use
bounding box prompts, which typically provide more spatial information. This highlights AoP-SAM’s
superior ability to leverage prompts for accurate segmentation, surpassing both traditional methods
and those relying on advanced object detection models. In addition to its accuracy, AoP-SAM also
demonstrates competitive latency and memory efficiency. For instance, on the SA-1B dataset with the
ViT-H encoder, AoP-SAM records a latency of 0.122s and peak memory usage of 6.6MB, both within
acceptable limits while delivering top-tier segmentation performance. Overall, the OAS methods
generally outperform the baseline AMG-S and AMG-D methods but still fall short of AoP-SAM.
This suggests that while OAS enhances performance, the adaptive sampling and filtering techniques
in AoP-SAM further improve both segmentation accuracy and prompt generation efficiency.

Component analysis We further analyze the impact of key components, including the prompt
predictor, Adaptive Sampling (AS), and Adaptive Filtering (AF), in Table 2 across the same datasets.
Enabling AS without AF results in a significant improvement in mIoU compared to using only
the prompt predictor. However, the most balanced performance is achieved when both AS and
AF are combined, emphasizing the importance of removing redundant prompts to enhance overall
segmentation efficiency. This trade-off is important to consider in scenarios where processing speed
or hardware resource efficiency is a key priority.

4.3 Hyperparameters analysis
Sampling Smoothing Factor In Table 3(a), we apply gaussian filtering to the heatmap using the
sampling smoothing factor. A larger smoothing factor allows the model to cover a broader area,
providing stronger smoothing, which helps reduce memory usage during preparation and processing.

From heatmap to point prompt In Table 3(b-c), we explore various parameter settings for converting
the confidence map into optimized point prompts. By adjusting the confidence intensity threshold and
prompt spacing factor, we aim to identify the most representative points for critical areas in the PCM.
These adjustments refine the sensitivity of the point selection process, ensuring that the resulting
point prompts are both accurate and reliable.

Prompt Elimination Threshold In Table 3(d), we assess the impact of the prompt elimination thresh-
old on the prompt removal ratio. As the threshold decreases, the Ratio of Elimination (Ratioelim)
increases, leading to faster mask generation, though it may slightly affect accuracy.

5 Conclusion

We propose AoP-SAM, a novel approach designed to efficiently generate essential prompts for
accurate mask generation in SAM. Our method features a lightweight Prompt Predictor, trained to
predict optimal prompt locations, and a test-time ASF mechanism for automatic prompt generation.
Evaluated on three segmentation datasets with three SAM family models, AoP-SAM improves both
accuracy and efficiency, making it ideal for automated prompt-based segmentation tasks with SAM.
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6 Appendix

6.1 Prompting technique in zero-shot foundation models

Foundation models originated in NLP with large language models like GPT, which excel at zero-shot
generalization to unseen tasks [1]. Instead of fine-tuning, prompt-based learning helps these models
adapt to downstream tasks by interpreting prompts as task instructions, which improves transfer
learning. The leading hypothesis regarding the effectiveness of prompts suggests that models interpret
these prompts as specific task instructions, enabling them to generalize to tasks not encountered during
training [17]. These demonstrations are examples provided to the model to guide its understanding of
a new task, and this learning ability is crucial as it underscores the models’ flexibility in adapting to
new information, mirroring human learning processes and soon prompting has been wildly used in
NLP [2]. The success of prompt engineering in NLP has influenced computer vision, leading to the
development of SAM, a model that leverages spatial prompts for precise zero-shot segmentation.

6.2 Introduction of SAM and its architecture

SAM is a versatile image segmentation framework consisting of three key components: (1) Image
Encoder, which extracts essential features from the input image, producing a 64×64 spatial resolution
embedding that represents the image’s critical characteristics; (2) Prompt Encoder, which processes
interactive inputs (points, boxes, masks), converting them into embeddings that guide the segmentation
process; and (3) Mask Decoder, a two-layer transformer-based module that combines image and
prompt embeddings to generate precise segmentation masks. SAM’s design optimizes efficiency
by embedding image and prompt inputs once and allowing prompt embeddings to be processed in
batches, generating multiple masks without overwhelming system resources. SAM is trained on
the massive SA-1B dataset, which includes over 1 billion masks and 11 million images, enabling
exceptional zero-shot generalization. However, training SAM is computationally intensive, requiring
significant GPU resources. This high computational cost motivates the reuse of the image encoder’s
outputs in later computations to maximize efficiency. For more details, refer to [13].

6.3 Experiments setup

Datasets. Generalized image segmentation focuses on segmenting every meaningful entity in an
image. In this study, we use three key datasets: SA-1B, COCO, and LVIS. The SA-1B dataset,
used for training SAM, contains over 1 million images and 1 billion masks [13]. The COCO
dataset includes 41,000 images and 200,000 masks, covering a wide range of common objects [15].
LVIS, designed for long-tail distributions, provides 5,000 images and 25,000 masks, emphasizing
fine-grained categories [4]. These datasets allow us to thoroughly evaluate the effectiveness of our
Automating Prompts method across diverse and challenging scenarios.

Baseline. In our comparison of current methods for automating prompts in SAM, we introduce and
evaluate two types of prompts: bounding box prompts and point prompts. The methods AMG-S and
AMG-D represent the vanilla grid search with 16× 16 and 32× 32 prompts, respectively, as utilized
in SAM [13]. We also examine the Object-Aware Sampling (OAS) method, which employs YOLOv8
to generate bounding box prompts [23]. Furthermore, we implement an additional method that uses
the central point of the bounding box generated by OAS as point prompts. Note that AoP-SAM is
trained on a subset dataset of SA_1B and tested on a separate test set, similarly all the comparative
methods we employ are also trained and tested on different sets.

Based on previous studies [13, 24], evaluating the accuracy of SAM, which produces masks without
predefined labels, presents challenges because traditional metrics for semantic segmentation, (mean
Intersection over Union with labels, mIoU) [18, 5], instance segmentation (mean Average Precision,
mAP) [15, 6], and panoptic segmentation (Panoptic Quality, PQ) [12] are not directly applicable.
To address this, we adopt the greedy Intersection over Union (IoU) algorithm [24], which matches
each generated SAM mask with the closest ground truth mask based on the highest IoU scores, then
calculates the mean IoU (mIoU) across all matches. In addition to evaluating accuracy performance,
we also assess the efficiency of Methods of Automating Prompts in time- or resource-constrained
environments using Inference Latency (InfLat) for producing prompts and peak memory (PeakMem)
consumption during mask generation as key metrics. Additionally, we count the number of essential
prompts (#P) as a reference point for comparing methods. It is important to note that a higher value
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of mIoU, or lower values of InfLat. and PeakMem., indicate higher efficiency. Although there is
no clear preference for the number of essential prompts, intuitively, a smaller number of prompts
yielding high accuracy performance is considered advantageous.

Implementation Details Following the previous prompting settings [13], we enable the option for
generating multiple mask outputs from a single prompt for point prompts, while disabling it for box
prompts [23]. No background prompts are provided in either case. We also implemented quality
checks for all methods, removing low-quality masks (e.g., those with low confidence or stability
scores) during performance evaluation.

For coarsely sampling point prompts from the PCM, we first apply a Smoothing Factor=2, a con-
fidence intensity threshold=0.2, and a prompt spacing factor=2. In each iteration, the output mask
from the previous iteration serves as a reference to generate a Prompt Elimination Map via the
ASF, adaptively filtering out selected prompt candidates during test-time to prevent redundant mask
generation in future iterations. The experiments are conducted using the PyTorch framework on a
single Nvidia Titan RTX GPU.

6.4 Limitation

Due to the use of point-type prompts, it is not possible to process all prompts in a single batch. As a
result, AoP-SAM requires iterative processing, which results in need of refinement and impacts the
overall end-to-end segmentation time. In future work, it is crucial to explore methods for removing
or minimizing these iterations, enabling a more efficient approach that can significantly enhance the
end-to-end speed and overall system performance without compromising segmentation quality.
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