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Abstract

Graph Networks (GNs) enable the fusion of prior knowledge and relational reason-1

ing with flexible function approximations. In this work, a general GN-based model2

is proposed which takes full advantage of the relational modeling capabilities of3

GNs and extends these to probabilistic modeling with Variational Bayes (VB). To4

that end, we combine complementary pre-existing approaches on VB for graph data5

and propose an approach that relies on graph-structured latent and conditioning6

variables. It is demonstrated that Neural Processes can also be viewed through the7

lens of the proposed model. We show applications on the problem of structured8

probability density modeling for simulated and real wind farm monitoring data, as9

well as on the meta-learning of simulated Gaussian Process data. We release the10

source code, along with the simulated datasets.11

1 Introduction12

Graph Neural Networks (GNNs) [1, 2] have been established as an effective tool for representation13

learning on graph structured data. Graph structured data are routinely employed to represent entities14

and relations among them. The present work focuses in representation of uncertainty and generative15

modeling for attributed directed graph data with continuous attributes. The initiating motivation for16

this work is the ubiquity of noisy structured data and systems with stochastic or partially observable17

interactions of industrial relevance (e.g. wind farms and urban transportation networks).18

In the context considered herein, modeled entities (nodes) and modeled relations (edges) may feature19

a state, which may not be fully observed and/or stochastic. The same may also holds for global20

(graph) attributes. At the same time, nodes and relations may possess a dynamic partially observed21

state, which we may infer directly from data. Both the node states and edge states are not fully22

observed and non-deterministic, which amply motivates probabilistic extensions of graph networks.23

In essence, this work proposes a method that 1) exploits the relational structure of data and 2) allows24

for learning flexible distributions over entity and relation attributes. Several partially overlapping25

approaches for this problem exist. A short review of such prior approaches is offered in section 3.26

Modeling entities and relations has been shown empirically to allow for stronger generalization27

[3, 4, 5] in novel settings. The main contribution of this work is to propose an approach to transfer the28

potent combinatorial generalization and modeling capabilities of GNNs to the problem of modeling29

conditional distributions of structured data.30

2 Methods31

Attributed graphs Following [2], global attribute augmented graphs are denoted by G =32

(V, E ,u) where V : {vi}i=1:Nv with vi ∈ Rdv denoting the nodes (vertices) of the graph,33
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E : {(ek, sk, rk)}k=1:Ne designating the set of edges, with edge attributes ek ∈ Rde , sk, ri ∈ N134

denote the head (sender) and tail (receiver) nodes of the modeled relation, while u ∈ Rdu is the35

global attribute.36

Graph Networks (GN) (or GraphNets) are composite functions that receive and return attributed37

graphs. The full GN block consists of an edge update, a node update and a global update block. Each38

block contains a corresponding function φe, φv, φu. The edge update function uses edge, node and39

global data. The edge block is followed by an aggregation step ρe→n, where edge messages are40

accumulated according to a permutation invariant function, e.g. a mean function. The node update41

uses (optionally) the global state, the aggregated edge state and the current node state. Finally, a global42

block aggregates with permutation invariant functions the edge and node properties (ρe→u, ρv→u),43

and optionally uses the global state for updating the global variable state. Different parts of the full44

GN computation may be omitted. Several Graph Neural Network architectures can be cast as special45

cases of GNs by omitting certain features or by special choices of the different functions involved46

[2]. In what follows, when referring to GNNs, the most general and expressive GN layer is implied47

except otherwise specified.48

In the proposed model, entities (nodes), relations (edges) and global attributes contain both determin-49

istic and stochastic variables. These variables in turn, may be observable or not directly observable.50

Both observable and unobservable attributes may be deterministic or stochastic (static or evolving).51

In what follows, a part of the observable quantities is referred to as conditioning or context. The node,52

edge and global observable quantities are denoted as vh, eh,uh where h signifies that a variable53

corresponds to conditioning. Conditioning variables may either correspond to conditioning with54

known dynamic quantities or static quantities. Common instantiations of such conditioning are55

positional encoding for vertices, relative position for edges between vertices and time of day as56

a global variable. The node, edge and global variables that correspond to the rest of the states57

(stochastic, evolving, unobserved) are denoted by vd, ed,ud. In essence, the conditioning attributes58

can be used to create a conditioning graph variable Gh = (Vh, Eh,uh) and a state graph variable59

Gx = (Vx, Ex,ux). The full graph state, is denoted by Gd = (Vx ∪ Vh, Ex ∪ Eh,ux ∪ uh) where60

∪ denotes set union. Since part of the node, edge and global attributes may be stochastic, a graph61

structured latent variable Gz = (Vz, Ez,uz) is assumed. The graph structure may also be determined62

through the edge variables as in [6], but we restrict our model to a pre-determined graph structure63

in this work. The following model is proposed for the joint distribution of the graph structured64

observations65

p(Gx;Gh) =

∫
p(Gx|Gz;Gh)p(Gz;Gh)dGz (1)

where p(Gz;Gh) = p(Vz;Vh)p(Ez; Eh)p(uz;uh) is the distribution of the latent variables given Gh.66

A prior distribution conditioned on Gh is assumed for the latent variable, which is further factorized67

along each edge and node latent separately, i.e.,68

p(Gz;Gh) = p(V)(Vz;Vh)p(E)(Ez; Eh)p(u)(uh;uz) (2)

=

Nv∏
i=1

p(vzi ;v
h
i ) ·

Ne∏
k=1

p(ezk; e
h
k) · p(uz;uh). (3)

An approximate posterior (i.e., recognition model) is assumed for Gz as qφ(Gz|Gx;Gh) together69

with a generative model for Gx, pθ(Gx|Gz;Gh). In correspondence with the Variational Autoen-70

coder (VAE) [7], we seek to learn the generative model parameters θ and inference model param-71

eters φ simultaneously. Assuming independent identically distributed (i.i.d.) graph observations72

{G(1)
x , . . . G

(i)
x }, the Evidence Lower Bound (ELBO) for the marginal log-likelihood reads73

L(θ,φ;G(i)
x , G

(i)
h ) =E

qθ(Gz|G(i)
x ;G

(i)
h )

[
log pθ(G

(i)
x |Gz;G

(i)
h )
]

−DKL(qφ(Gz|G(i)
x ;G

(i)
h )||pθ(Gz;G(i)

h )) (4)

We seek to perform fast and scalable approximate inference over the Gz graph variable and at the74

same time take advantage of the relational structure in the data. A particularly convenient choice75

for parametrizing Gz is to assume a parametric distribution over edges, nodes and globals. A GN is76
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proposed for inferring the parameters. For a graph structured observation observation Gx, we write77

Vz ∼ q(V)φ (Gz|Gx;Gh) = N (f
µ(V)
qφ (Gx;Gh), f

σ2
(V)

qφ (Gx;Gh)) (5)

Ez ∼ q(E)φ (Gz|Gx;Gh) = N (f
µ(E)
qφ (Gx;Gh), f

σ2
(E)

qφ (Gx;Gh)) (6)

uz ∼ q(u)φ (Gz|Gx;Gh) = N (f
µ(u)
qφ (Gx;Gh), f

σ2
(u)

qφ (Gx;Gh)). (7)

The functions f
µ(·)
· and f

σ2
(·)
· are implemented by a GN to allow for taking into account in a general78

manner relational information while inferring over Vz, Ez and uz . In practice a shared, single GN,79

fqφ(·) is used. The parametrization for vertices, edges and global variables are the corresponding80

states of the GN at the final message passing step. In a similar manner, a GN generator network,81

gpθ (·), is used for pθ. Since the prior and posterior are factorized over nodes, edges and the global82

variable of each graph datapoint, the ELBO is split accordingly as83

L(θ,φ;G(i)
x , G

(i)
h ) =E

qθ(Gz|G(i)
x ;G

(i)
h )

[
log pθ(G

(i)
x |Gz;G

(i)
h )
]

− βVDKL(q
(V)
φ (Gz|G(i)

x ;G
(i)
h )||p(V)θ (Gz;G

(i)
h ))

− βEDKL(q
(E)
φ (Gz|G(i)

x ;G
(i)
h )||p(E)θ (Gz;G

(i)
h ))

− βuDKL(q
(u)
φ (Gz|G(i)

x ;G
(i)
h )||p(u)θ (Gz;G

(i)
h )) (8)

where βV , βE , βu can be used for controlling disentanglement as in β–VAE [8] or the rate-distortion84

characteristics of the model [9] or for preventing posterior collapse and aiding training through85

KL-annealing [10, 11]. In a similar manner to VAEs, the approach to representing distributions over86

graph data with a distribution that factorizes over V, E and u allows for defining alternative evidence87

lower bounds for variational Bayes. Note that the distribution does not need to be factorized along the88

elements of the latent vector. This allows straight-forward extensions using more flexible distributions89

[12]. A generative model based on normalizing flows that uses shift-scale transformations [13] has90

already been proposed in [14] for graph generation. The Relational VAE (RVAE) model proposed91

can be extended as a hierarchical VAE [15] yielding a model akin to Doubly Stochastic Variational92

Neural Process (DSNPV) [16], which uses global and node variables. Finally, Neural Processes93

[17, 18] (NP) and other graph encoder-decoder models [6, 19, 20, 21, 22] are closely related to the94

proposed model.95

3 Related work96

GNN Encoder-decoder models In Neural Relational Inference (NRI) [6] discrete edge latent vari-97

ables are inferred from node representations and a re-parametrized Gumbel− Softmax distribution98

is used[23, 24]. A coarse representation of the computational graphs of NRI, NPs and the RVAE99

is shown in Figure 1. In [19] graphs are modeled from global continuous latent variables, which100

are subsequently used for graph generation through an adjacency matrix. In GraphVAE [20] the101

global variable together with a graph-structured conditioning variable is used for generation. In102

Graphite [21] a latent variable for each node is inferred from the encoder, while the edge variables103

(i.e., symmetric adjacency matrix) is inferred through efficient iterated message passing. Similarly,104

the VariationalGAE[22] uses a separate latent variable for every node and a graph convolutional105

encoder. Several of the aforementioned works take advantage of recent advances in low-variance106

gradient estimates for distributions over latent variables, as in Variational Autoencoders (VAEs) via107

the reparametrization trick [7, 25]. The overlapping traits of the aforementioned are the treatment108

of edge, node and global variables. In Table 1 a summary of the relational modeling capabilities of109

various graph encoder-decoder models is offered. Note that the table highlights only the relevant110

parts to this work together with several important and influential design choices for graph representa-111

tion learning were not touched upon. For instance, the graph convolutional models of some of the112

aforementioned works offer the important advantage of scalability and small computation cost.113

In this work, the above mentioned approaches, are generalized and unified in the proposed Relational114

Variational Autoencoder (RVAE) model. Note that it is not difficult to yield explicit graph connectivity115

in RVAE as in NRI [6] since the type and existence of a connection can be seen as a categorical116

variable. See also Figure 1 (b), where a sketch of NRI is offered. Inferring graph connectivity or117
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generating graphs, however, falls out of the scope of this work. In RVAE the focus is generative118

modeling of graph structured data with an apriori known connectivity, with attributed nodes and119

edges, which optionally may include a global attribute that influences both entities and relations.120

Table 1: Features of different related Bayesian graph network encoder-decoder models (see also
Figure 1). For the NP models that contain a latent variable, it is straightforward to combine a
deterministic global encoder for the context inputs at test time [26]. The attributes with subscript z
denote that the model performs optimization using an ELBO objective. The attributes with superscript
h denote whether the models may facilitate deterministic conditioning for the corresponding graph
attribute at test time.

Latent Conditioning

Name Vz Ez uz Vh Eh uh Architecture notes

CNP [17] – – – 3 – 3 DeepSet encoder, GN node block
AttCNP [27] – – – 3 3 (3) Attention encoder/decoder

Decoder edge cond. through cross-attention
ConvCNP [28] – – – 3 3 (3) SetConv encoder

NP [18] – – 3 3 – (3) DeepSet encoder
GraphVAE [20] – – 3 3 3 3 Graph conv. encoder

VariationalGAE [22] 3 – – – – – Graph convolutions
Graphite [21] 3 – – 3 – – Iterative decoder

NRI [6] – 3 – 3 – – MP encoder/decoder
MPNP [29] – – 3 3 3 (3) MP encoder/decoder

DSVNP [16] 3 – 3 3 – (3) Vz ∼ p(Vz|uz,V∗,Vh∗)
RVAE (this work) 3 3 3 3 3 3 MP encoder/decoder

Neural processes In Neural Processes (NP)[17, 18], we consider a set of mappings F : X → Y121

where X : {xi}, xi ∈ RNx ,Y : {yi}, yi ∈ RNy . A particular draw of a function f ∼ F , is modeled122

as f(xi) = gθ(xi, z) where z ∼ p(z) is a high dimensional random vector (e.g. a standard normal)123

and gθ is a neural network and θ denotes the parameters of g. Given a set of nm input-output124

observations D : {(x1:nm , y1:nm)fm} from m different realizations of f (potentially different in125

number), we want to learn a distribution over z ∼ p(z|D). Under the NP approximation, assuming126

observation noise yi ∼ N (gθ(xi, z), σ
2), the distribution of y is defined as127

p(z, y1:n|x1:n) = p(z)

n∏
j=1

N (yi|g(xi, z), σ2). (9)

In practice, the input-output observation cases D, are split as DC∪T = DC ∪ DT , where C denotes128

a set of points with observations in X and Y and T denotes a set of points where we only observe129

X (i.e., the inputs). This can be cast as a conditional generative model for p(yT |xT , xC , yC) =130

pθ(yT |xT , z)p(z|xC , yC), where the conditioning is the fully observed context pairs. The ELBO131

used for optimization is132

log p(yT |xT , xC , yC) ≥Eqφ(z|DC∪T )
[∑
i∈T

log pθ(yi|z, xi) + log
q(z|DC)
q(z|DC∪T )

]
Eqφ(z|DC∪T )

[∑
i∈T

log pθ(yi|z, xi)
]
−DKL(qφ(z|DC∪T )||qφ(z|DC))

(10)

Note that the above variational objective has an intuitive interpretation, as a reconstruction loss (first133

part) and a Kullback-Leibler divergence between the approximate posterior distributions predicted134

when using both C ∪ T and when using only C (the context set). In [30] a similar loss function was135

proposed with the motivation of training VAEs that can be used with arbitrary conditioning masks. By136

considering the set of observations as nodes in a disconnected graph, (i.e., V : {vi|(xi, yi)}i=1:Nv )137

and training while masking the context output nodes yC , the same objective is retrieved. Therefore,138

following the nomenclature of [2], we can instantiate a NP from the proposed model, by using139

arbitrary conditioning as described in [30], a DeepSet [31] as an encoder and only a node-block as a140

decoder as shown in Figure 1.141
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Figure 1: (a) Proposed architecture with a single message passing step in the encoder and decoder
(b) the Neural Relational Inference model of [6]. (c) The Neural Process model [18]. For direct
correspondence between the present work and [6] and [18] the notations of the other works are
included in the figure (e.g. ρv→u = a in the Neural Process model).

The NP framework has been extended to take advantage of special inductive biases, such as the142

relation of observation and target nodes in Attentive Conditional Neural Processes (AttNP) [27] or143

the translation equivariance in Convolutional Conditional Neural Processes (ConvCNP) [28]. More144

recently, relational inductive biases were employed in Message Passing Neural Processes (MPNP)145

[29]. The aforementioned models, feature a global latent variable uz which is inferred from the146

context points and parametrizes the distribution over functions. With the exception of MPMP, the147

aforementioned works target non-relational data. Nevertheless, MPMPs does not directly implement148

edge-bound uncertainty or edge-level conditioning, which is the most pronounced difference to RVAE.149

Similar to this work, in DSNPV [16] a NP that allows for both node and global latent variables150

was proposed, which in addition, employs a hierarchical VAE [15]. The motivation of DSNPV is151

to include node-context information, which in the conditional RVAE is also supported by design152

through Vh. RVAE attempts to merge the complementary strengths of the aforementioned models153

in representation of uncertainty, with a focus towards modeling graph structured continuous data.154

Finally, in contrast to Functional Neural Processes [32] we do not deal with inferring a graph of155

dependencies among latent variables, yet hierarchical RVAE adaptations may also manage such tasks.156

Graph Gaussian processes Sharing the motivation of this work, i.e., taking advantage of relational157

information and learning joint distributions of graph structured data, in [33] GPs were defined over158

graphs with undirected binary (positive or negative) edges and applied to semi-supervised learning159

problems. In [34] the authors applied GPs trained with variational approximations for semi-supervised160

learning on graphs that contain non-attributed edges. In [35] GP-based approaches are fused with161

deep learning for learning graph (e.g. network) structured signals.162

4 Results163

4.1 Wind farm operational data164

A real-world industrial application, where relational structure is inherent in the observed data, is165

found in modeling of operational data of wind turbines positioned in a farm. The wind turbines166

(nodes) feature static variables, such as their power production characteristics and their position,167

as well as dynamic variables such as their current operational state. The actual operational state168

of a turbine is only known up to a certain precision from historical data, (i.e., Supervisory Control169

and Data Acquisition (SCADA) data), which is usually limited to 10 minute statistics. Due to170

the stochasticity of the wind excitation, compounded by incomplete information due to coarse171

measurements, there is uncertainty associated with the actual operational state of a wind turbine.172

Wind turbines arranged in a wind farm interact through the so-called wakes, which are travelling173

5



vortices that affect the power production and vibrations of downstream turbines. The magnitude174

of wake effects is related to large scale turbulence (which is a global dynamic variable), to wind175

orientation (which is a global dynamic variable), to upwind turbine nacelle orientation (which is a176

node dynamic variable), the relative position between the two turbines (an edge static variable), the177

rotor diameter and the distance between the two turbines. The interaction is one-way directional but178

can change directionality depending on the wind orientation. The effect of wakes is stochastic due to179

turbulence. For robust wind power prediction, monitoring, control, and maintenance planning, we180

want to infer the distribution of operational characteristics of a wind farm conditioned on turbine181

characteristics and farm layout. Of crucial importance is the inclusion of stochastic variables in182

the interactions (i.e., edges) of the considered graph. Static graph edges, used as part of the graph183

conditioning, are constructed by considering the spatial proximity and relative position of pairs of184

turbines. The goal is to generalize directly to unseen farm configurations while learning directly on185

real condition monitoring data (zero-shot generalization) but at the same time to yield uncertainty186

estimates.187

Graph machine learning in wind farm modeling In [36] a GNN was trained on simulated data188

for wind power prediction. Recently, in [37] GNNs were applied as a surrogate model to more189

accurate fluid dynamic simulations. With the architectural advancements proposed in this work, we190

extend the wind farm relational modeling literature by providing a solution for representation of191

uncertainty in wind turbine interactions. Moreover, we empirically show in real wind farm data that192

significant accuracy improvements are possible through the incorporation of the proposed relational193

modeling and variational Bayes approach.194
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Figure 2: Imputation qualitative results for wind speed. The imputed points are marked with a dark
circle on the background. The mean absolute percentage error is reported, which is computed as
1/NT

∑NT

i=1(|vTi − v̂i
T |)/|vTi | where vTi is the actual value of node i , NT the number of target

turbines and v̂i is the CRVAE prediction.

4.2 Real wind farm SCADA dataset195

Conditional RVAE models (CRVAE) were trained with with a 80/20 train/test split on a dataset that196

includes 6 months of 10-minute average SCADA data readings. Since the goal is to compare the197

fitting capability of the models and not model selection, no validation set was employed. Early198

stopping with patience of 2500 steps was used (test set evaluation every 500 steps). The larger RVAE199

models that also yield the best performance had not converged at the 10th epoch. The 20% of turbine200

data are randomly masked during training. A batch size of 16 was used for all models. In order201

to make a fair comparison no regularization or KL-annealing was used. A small learning rate of202

5 · 10−5 and the Adam optimizer [38] with default parameters was used for all the runs. The final203

ELBOs for all models are shown in Table 2. Amean aggregation function and composite aggregation204

function consisting of a concatenation of mean,max and min aggregators were used. Due to the205

concatenation operation, the composite aggregators result in slightly larger networks. Aligned with206

recent results on GN performance when using composite aggregation functions [39] we find that207

networks with the mean−max−min aggregator indeed yield better performance. The motivation,208

however, for using composite aggregators, is also due to the physics of the problem. By using209

such aggregators it is easier to discriminate the un-waked part of the farm and the waked turbines.210

More concretely, turbines at the upstream boundary of the farm have larger power production and211

this directional effect can easily be masked using the mean aggregation. The CRVAE models are212

compared to a two-layer MLP-based CVAE trained with the arbitrary conditioning objective [30] of213

varying sizes, with the largest CVAE model number of parameters corresponding to the number of214

parameters of the best performing RCVAE. The largest CVAE model was the worst-performing of215

the evaluated CVAE models.216
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The CVAE model with the smallest size has slightly better performance compared to the RVAE model217

that performs no message passing on the encoder part, and therefore ignores relational inductive218

biases when inferring Gz . All but one of the CRVAE models strongly outperform the CVAE models219

by a large margin which is attributed to the effective use of relational inductive biases. To further220

support this claim, in the supplemental material (section A.1) gradient sensitivities are plotted and it221

is observed that the imputation results for masked turbines depend on upstream turbines. Qualitative222

imputation results are shown in Figure 2.223

Table 2: Test set ELBO on Anholt SCADA dataset after 10 epochs. Numbers in parentheses are the
standard deviations of the ELBO estimates in the test set (higher is better). The same node, edge and
global latent sizes were used (NGz ). “(comp.)” stands for the composite mean-max-min aggregator.
All MLPs are 3 layer ReLU MLPs. The ·∗ superscript denotes results that were not derived from
early stopping.

MP Steps

Model mlp units NGz size enc. dec. agg. # params ELBO

CRVAE 64 32 0 1 mean 184,717 1.96, (0.30)
64 32 1 1 mean 341,517 6.99(0.29)
64 32 2 2 mean 498,317 7.48(0.61)∗

64 32 2 2 (comp.) 522,893 8.11(0.48)∗

64 32 3 3 (comp.) 679,693 7.70(0.53)∗

CVAE 128 64 – – – 77,194 2.12(0.10)
256 64 – – – 252,554 1.17(0.16)
384 96 – – – 563,146 1.23(0.09)

Table 3: Effect of edge latent variables.
Results based on 3 runs for each case.

Case log p(V̂x|Gz;Gh) Range

βE = 1. 4.16 ±0.43
βE = 0. 1.80 ±1.21

Effect of inferring edge latents Ez The introduction of224

continuous edge-related latent variables is overlooked in a225

large part of the literature. Wake effect modeling is an appli-226

cation that may benefit from edge latent variables. We test227

the effect of edge latent variables by setting βE = 0 while228

still using Gh. The results of this experiment are shown in229

Table 3. The inclusion of the KL term with respect to edge230

latent variables seems to improve the reconstruction error231

achieved by the model.232

4.3 Wind farm simulation dataset233

The steady-state wind farm wake simulator FLORIS [40] was used. A dataset of wake effect234

simulations and preprocessing tools for demonstrating the wind farm modeling approach adopted235

herein is released as part of this work. In what follows we test the generalization capabilities of a236

trained RVAE to novel geometric configurations. A single farm configuration is used for training237

and another one is used for testing. Both farms are simulated with random wind characteristics such238

as direction and average wind speed. An example output from the simulation can be found in the239

supplemental material. The train and test farm configurations can also be found in the supplemental240

material.241

Qualitative results The RVAE model is able to capture the orientation-dependent wake deficit for242

each turbine separately on the test wind farm as shown in Figure 3. Furthermore, we use a single243

turbine as a probe and position it on a regular grid while keeping a turbine on a fixed position (0,0).244

By inspecting the wind speed predicted at the probe turbine, we can map the wake deficit in 2D245

behind the source turbine. This is shown in Figure 4. The spatial dependence of the wake deficit246

is also shown as computed from FLORIS and the error in RVAE estimation. For distances larger247

than 200m the wind deficit is accurately predicted. Note that this result is from a model trained on248

operational data from a single simulated windfarm. When the turbines are very close (< 200m) the249

wakes are not predicted correctly, but this is an expected effect since the RVAE never encounters250

turbines at these distances. Wake effects estimated with the RVAE are slightly lower than those251

derived from the simulation as shown in Figure 3. However, the RVAE seems to capture the intricate252

wind orientation-dependent effects which depend on the farm layout.253
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Figure 3: Wind deficits on the simulated test farm and estimates from the trained RVAE. Each
point associated with a turbine is plotted in a 2D polar coordinate system centered on the turbine.
Each point is plotted towards the orientation of the incoming wind. The distance from the origin is
proportional to the wake deficit, estimated as max(v)− v where v is mean power and mean wind.
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Figure 4: Learned spatial distribution of wake related wind speed deficit, evaluated as w(0,0) −w(x,y)

where w(0,0) is the the wind speed at the up-wind turbine and (x, y) denotes the wind speed for a
probe turbine positioned at w(x,y).

4.4 1D regression254

In order to further demonstrate the versatility of the RVAE in modeling structured data, and in255

order to make the connection to NPs [18] clearer, in what follows an RVAE adapted for node data256

imputation is presented [30]. The dataset consists of sets of points sampled from a zero-mean 1D257

Gaussian process with a squared exponential kernel. The pairs of input points {(x1:nm , y1:nm)m}258

are used as node features to construct a set of context and target graphs, where m corresponds to259

different GP realizations. Each graph contains a set of edges ei which encode the relative position260

of the observation points. The edge features between observations at points xi, xj are defined as261

f(xi, xj) = e−c·|xi−xj |
2

where c is a function of the cutoff distance for edge creation. Note that262

the construction of such edge features endows the model with translation equivariance. In contrast263

to MPNPs, [29], the edges are the same in the context and target graphs. The loss function used264

is the same as in Equation 10. Both pφ and qθ are implemented as GNs. The outputs of the GNs265

parameterize a Gaussian, i.e.,266

qφ(z|D) = N (µφ(D), σ2
φ(D)), pθ(y|D) = N (µθ(D), σ2

θ(D)). (11)

The y values ofDT are replaced with 0 when fed through the encoder and an additional binary feature267

b for the node, which denotes masking, is appended to the node tuple. The b feature is zero for the268

unmasked nodes and 1 for the masked nodes. The masked input is denoted by DT\b. The union of269

the masked target input with the context dataset is denoted by DT\b∪C . Instead of using two different270

functions for the prior of p(z|DT\b∪C) as in [30], and posterior network q(z|DT∪C) and in order to271

8



keep the conditional RVAE model closer to the NP formulation, the approximate posterior (i.e., the272

encoder of the RVAE) is used also for the learned prior. The decoder pθ receives as node conditioning273

(and optionally edge conditioning) the xT values and the global latent variable uz . Each realization274

of uz corresponds to a different context set which in turn corresponds to a different sampled GP .275

More information about he training setup can be found in the appendix.276

The NP is implemented by defining a DeepSet encoder, a global latent variable of the same size277

as the NP MLP. The same latent variable size for nodes and edges was used for each experiment,278

which is the same as the core size. All aggregation functions are mean aggregations. Experiments279

were performed with different number of message passing steps, and inclusion of either the relative280

observation position as an edge feature or the absolute node position xi for each feature. The models281

are tested in un-seen GP realizations and the negative log-likelihood of predictions are reported in282

Table 4. The RVAE models compute edge, node and global variables. The test datasets contain points283

with x ∈ [0, 1] and x ∈ [1, 2] ranges in order to test the generalization capability of the proposed284

model in translation. Since the edge-blocks only ever receive translation equivariant inputs from285

the dataset, the RVAE models generalize well in the x ∈ [1, 2] range. This is presented only as an286

example of how special equivariant inductive biases may be implemented in RVAE. It is observed287

that the full RVAE model does not perform well when only the node features are available. As with288

NPs, it was empirically found that models yield better results with more training.289

Table 4: Test set log likelihoods on 1D GP regression with Conditional RVAE. The results are based
on a set of 5000 unseen GP samples, each with 50 context and 50 target points. The models were
trained only on points with x in the [0, 1] range. Values in parentheses are standard deviations of the
mini-batches. RVAE denotes a model where all latent variables are used (edge node and global).

Model size Only cond. on nodes Cond. on edges and nodes
(mlp/z/MP Steps) Gh = (Vh, ·, ·) Gh = (Vh, Eh, ·)

x ∈ [0, 1] x ∈ [1, 2] x ∈ [0, 1] x ∈ [1, 2]

CRVAE 64/64/0 −17.94(3.11) −24.59(4.10) 0.33(0.04) −0.21(0.13)
64/64/1 −12.55(2.51) −9.79(2.51) 0.36(0.07) 0.08(0.06)
64/64/2 – – 0.98(0.09) 0.67(0.08)

NP 64/64/NA −1.34(0.07) −11.13(3.08) NA NA
128/128/NA −1.08(0.11) −31.74(14.08) NA NA

Conclusions and broader impact290

This work introduces an attributed graph approach to the probabilistic modeling of relations within291

entities and their properties. The approach is verified and validated on wake effect simulations and292

actual data from wind turbines placed within a wind farm; a characteristic example that may be293

modeled as a graph. We also find some connections to the NP literature which we demonstrate by294

adapting the proposed method to perform a typical NP benchmark which is 1D regression for GP295

data.296

We introduce a method for data-driven wake effect modeling for wind farms that accounts for uncer-297

tainty. The proposed method fuses physical intuition, flexible function approximation through GNs,298

and variational Bayes through re-parametrized gradients. Better and more computationally efficient299

wake effect modeling can lead to improvements in terms of accuracy and computational efficiency in300

analysis for wind farm siting [41] farm layout optimization [42], wind farm control optimization [43]301

and ultimately power production improvements, as well as more robust to uncertainties maintenance302

planning. Ultimately, the aforementioned lead to wind energy being a more attractive clean energy303

solution.304

Graph data are naturally used to model social, transportation and communication networks. Possible305

negative implications of any graph ML work relate to possible malicious uses of analysis in such306

networks, such as de-anonymization in social networks [44], and vulnerability exploitation on307

transportation networks.308
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