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Abstract
In online platforms, incentives (e.g., discounts,
coupons) are used to boost user engagement and
revenue. Uplift modeling methods are developed
to estimate user responses from observational
data, often incorporating distribution balancing to
address selection bias. However, these methods
are limited by in-distribution testing data, which
mirrors the training data distribution. In reality,
user features change continuously due to time, ge-
ography, and other factors, especially on complex
online marketing platforms. Thus, effective up-
lift modeling method for out-of-distribution data
is crucial. To address this, we propose a novel
uplift modeling method Invariant Deep Uplift
Modeling, namely IDUM, which uses invariant
learning to enhance out-of-distribution general-
ization by identifying causal factors that remain
consistent across domains. IDUM further refines
these features into necessary and sufficient fac-
tors and employs a masking component to reduce
computational costs by selecting the most infor-
mative invariant features. A balancing discrep-
ancy component is also introduced to mitigate
selection bias in observational data. We conduct
extensive experiments on public and real-world
datasets to demonstrate IDUM’s effectiveness in
both in-distribution and out-of-distribution sce-
narios in online marketing. Furthermore, we also
provide theoretical analysis and related proofs to
support our IDUM’s generalizability.
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1. Introduction
With the development of online platforms, online marketing
has become increasingly important and competitive (Liu
et al., 2023; Sun et al., 2024a). Assigning appropriate incen-
tives to users has become a pivotal strategy for enhancing
user conversion rates and boosting revenue. These incen-
tives generally contain carefully designed contents (e.g.,
discounts, coupons). To achieve this purpose, uplift mod-
eling has been proposed in recent years (Yao et al., 2021;
Sun & Chen, 2024). For instance, Booking implements
promotional strategies to enhance user satisfaction (Albert
& Goldenberg, 2022), Meituan uses cash bonuses to stim-
ulate user retention (Wang et al., 2023), Kuaishou utilizes
virtual coins to increase users’ playback duration (Ai et al.,
2022). A primary challenge arises from the non-random
assignment of incentives in observational data. For instance,
platforms may assign incentives based on user age, indi-
cating a tendency to target younger users to enhance profit
margins, which is called selection bias.

In recent years, with the development of uplift modeling,
there have been many works proposed to solve the above
challenge (Zhang et al., 2021). These works can be divided
into three research lines: 1) Meta-learner-based. The ba-
sic idea of this line is to estimate the users’ responses by
using existing predictive models as the base learner. Two
of the most representative methods are S-Learner and T-
Learner (Künzel et al., 2019), which adopt a global base
learner and two base learners corresponding to the treat-
ment and control groups, respectively. 2) Tree (or Forest)-
based. The basic idea of this line is to employ a hierarchical
tree structure to systematically partition the user popula-
tion into sub-populations that exhibit sensitivity to specific
treatments. An essential step involves modeling the uplift
directly by applying diverse splitting criteria, including con-
siderations of distribution divergences (Radcliffe & Surry,
2011) and expected responses (Zhao et al., 2017; Saito et al.,
2020). 3) Neural network-based. The basic idea of this
line is to leverage the power of neural networks to develop
estimators that are both intricate and versatile in predicting
the user’s response. CFRNet (Shalit et al., 2017) uses the
Integer Probabilistic Metric (IPM) to solve the selection bias
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(a) Different kinds of short videos 
(i.e., Fashion and Hobbies).

(b) Play counts of different user groups at the 
same time across different kinds of short videos.

(c) Play counts of one user group at the different 
time across different kinds of short videos.

Figure 1. The visualization of the out-of-distribution problem in the online short video platform.

in the latent space. Dragonnet (Shi et al., 2019) constructs
the target regularizer for modeling the prediction biases of
the user response, which can reduce the estimation errors of
the uplift.

However, the main limitation of these methods is that they
have only tested on data similar to the training data, which
is known as the in-distribution (ID) data. In real-world
applications, user features suffer continuous changes due
to varying time and different geographical environments.
Thus, concerns arise regarding the performance of these
methods when applied to users whose feature distributions
differ from those of the training data (Zhou et al., 2022). As
shown in Figure 1, this problem is more severe in short video
online marketing scenario, where the features of the users
are more complex than others. In Figure 1(b), we can see
a vast difference in the play counts between different user
groups. The distribution of users’ features may change over
time, seasons, holidays, urban and rural areas, etc., resulting
in the emergence of change in users’ preferences, which
also can be reflected in Figure 1(c). This can be regarded as
the issue of out-of-distribution (OOD) data generalization.
If we only use the previous methods on the specific data, we
may get unreliable prediction results. Such unreliability may
lead to inappropriate incentive assignments, posing a huge
threat to users’ experience. Therefore, an urgent demand
is to develop uplift modeling methods that can effectively
generalize to unseen testing data or different users.

In this paper, in order to solve the above challenges, we pro-
pose a novel uplift modeling method Invariant Deep Uplift
Modeling, namely IDUM. Specifically, our IDUM proposes
an invariant property learning part aimed at enhancing out-
of-distribution uplift generalization by identifying causal
features with invariant properties across domains. By sep-
arating these features into necessary and sufficient factors,
we can learn the invariant features with finer granularity.
Moreover, to reduce computational redundancy, we design
a Gumbel-Softmax-based feature selection part to identify
key subsets for invariant property learning. Additionally,
to address the common selection bias issue of uplift esti-

mation over observational data, we introduce a balancing
discrepancy part to balance the distributions between dif-
ferent treatment groups. Moreover, we conduct extensive
experiments on various datasets to evaluate the effectiveness
of our IDUM model.

2. Related Work
Uplift Modeling. Recent years have witnessed significant
attention in uplift modeling (Sun et al., 2024b; 2025), par-
ticularly in the environment of online marketing (Zhang
et al., 2021). This research predominantly focuses on model
development and real-world applications. In cases of bi-
nary outcomes, the standard approach entails constructing
two classification models (Künzel et al., 2019), which in-
volve separate conditional probability models for treated
and control users. This two-model strategy, compatible with
any conventional estimator such as regression trees (Loh,
2011), is straightforward and versatile. However, it does
not address the disparity in feature distributions between
treatment and control groups. To overcome this, Künzel et
al. (Künzel et al., 2019) introduced the X-Learner, which
utilizes propensity scores (Caliendo & Kopeinig, 2008) to
calculate a weighted average of two estimators, thus miti-
gating differences in feature distributions. For direct uplift
modeling, a transformed response method (Athey & Im-
bens, 2016) was proposed, yet its success heavily relies
on the accuracy of propensity scores. Regarding continu-
ous outcomes, the Causal Forest (Davis & Heller, 2017), a
random forest-like algorithm, employs causal trees (Daron-
deau & Degano, 1989) as its basic learner, offering a robust
framework with theoretical support. With the emergence
of deep learning in causal inference, many studies focus-
ing on individual treatment effect (ITE) estimation have
been introduced. TARNet (Shalit et al., 2017) features a
two-head structure similar to the T-Learner, with a shared
representation layer that facilitates the exchange of informa-
tion between the heads. CFRNet employs distance metrics
(MMD and WASS) based on TARNet’s architecture to bal-
ance the representation across both heads. To address the
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sample imbalance between treatment and control groups,
Dragonnet (Shi et al., 2019) implements a tri-head structure,
incorporating a separate head for learning the propensity
score. Different from the above methods, our IDUM focuses
on the distributional shift of the testing data in the uplift
modeling.

Invariant Learning. In recent years, invariant learning has
become a critical field of research in machine learning, fo-
cused on developing models that retain robust performance
amidst distributional changes (Zhao et al., 2019). Many
works on environmental generalization concentrate on iden-
tifying invariances across training environments (Zhou et al.,
2022). Recently, a strategy that has made significant im-
pacts involves learning features that enable a predictor to
remain invariant across different environments (Creager
et al., 2021; Lin et al., 2022; Hung & Chou, 2015), termed
invariant learning in this paper. Such strategy is based
on the theory of causality (Saengkyongam et al., 2023),
where Structural Equation Models (Pearl, 2010) or causal
graphs (Yao et al., 2021) are used to describe assumptions on
the data generation process. The feature-conditioned label
distribution invariance arises from the consistency of causal
mechanisms across various environments. Recent theoreti-
cal studies on invariant learning examine its failure cases in
environment generalization tasks where environments are
known prior (Chen et al., 2022). Invariant risk minimiza-
tion (IRM) methodologies (Rosenfeld et al., 2020) present
an approach for acquiring knowledge of invariant variables
and functions. Based on this, some other works (Krueger
et al., 2021; Lu et al., 2021; Ahuja et al., 2021) further
extend the IRM framework involves the incorporation of
elements from game theory, variance penalization, informa-
tion theory, as well as the integration of nonlinear prediction
functions. Additionally, recent studies have applied the
IRM framework to large neural networks, thereby contribut-
ing to its advancement (Rosenfeld et al., 2020; Gulrajani
& Lopez-Paz, 2020). Based on the probability of neces-
sity and sufficiency (PNS), some works design structures
to discover the PNS features. CaSN employs probability
of necessity and sufficiency (PNS) to extract environment-
invariant information (Yang et al., 2024). Diverging from
the aforementioned approaches, our IDUM focuses on the
probability of necessity and sufficiency within generalized
uplift modeling methods. Moreover, taking into account
computational costs, we design additional structures to ad-
dress this concern.

3. Preliminaries
3.1. Problem Setup

Following previous studies (Sun et al., 2023b; Zhu et al.,
2023; He et al., 2024), we address the problem of uplift
modeling within the framework of the Potential Outcome

Framework (Rubin, 2005). Our aim is to predict the up-
lift across multiple users. Generally, we consider the users
used for training the model are sampled from the environ-
ment e ∈ E , the target users are sampled from environment
e′ ∈ E . With an observed dataset De = {xe

i , t
e
i , y

e
i }Ni=1,

where N represents the number of samples. For each user
i, xe

i ∈ X d denotes the features, tei ∈ {0, 1} indicates
the treatment assignment (1 for receiving an incentive, 0
otherwise), yei ∈ Y ⊂ R is the response variable. The
target users are from a different environment e′ ∈ E , and
{xe′

i }Vi=1, where V represents the number of samples. This
dataset only considers the feature shift without the corre-
sponding treatment assignment or responses. Our goal is
to learn a model from the dataset De to predict the uplift
for the dataset De′ sampled from different environments
e′ ∈ E . We treat this problem as the uplift prediction for
Out-of-Distribution users. The objective of uplift modeling
is to evaluate the effect of treatment tei on the response yei
for a given user with features xi, specifically calculating
the difference between treatment and control responses as
follows:

τei = yei (1)− yei (0), (1)

In the real world, we can only observe one of the two re-
sponses for each user, that is, either yei (1) or yei (0) is the
accessible factual response, the other is the counterfactual
one remained unavailable.

For simplicity, subscript i and superscript e will be omit-
ted where the context remains clear. Although the uplift or
individual treatment effect in Eq. (1) cannot be directly iden-
tified due to the unobserved counterfactual, the conditional
average treatment effect (CATE) offers a viable estimator
for uplift under common assumptions (Shalit et al., 2017;
Abrevaya et al., 2015). The CATE for a sub-population or
individual is defined as:

τ(x) = E (Y (1) | X = x)− E (Y (0) | X = x)

= E(Y | T = 1,X = x)− E(Y | T = 0,X = x)).
(2)

After that, we can derive the uplift τ(x) by only leveraging
the observational dataset.

3.2. Probability of Necessity and Sufficiency

Invariant learning is widely employed for out-of-distribution
generalization (Arjovsky et al., 2019; Liu et al., 2021). The
fundamental assumption of invariant learning posits that,
given the features X , response Y and treatment T , only the
environment invariant features Xc can reliably predict the
response, while other environment-specific features Xv are
spurious correlates of the response, thereby compromising
the model’s generalizability. Hence, invariant learning aims
to identify domain-invariant features that satisfy the distri-
butions of responses Pe(Y |Xc, T ) = Pe′(Y |Xc, T ) across
environments e and e′.
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To further analyze the invariant features, Probability of Ne-
cessity and Sufficiency (PNS) (Pearl, 2022) is proposed to
describe the probability that event A occurs if and only if
event B occurs, which separates the invariant features into
necessary and sufficient features. This probability operates
in two events to compute the probability that event A is nec-
essary and sufficient cause for event B. To better understand
this, we have the following definitions:

Definition 3.1 (Probability of necessity, PN).

PN = P (BĀ | A,B) , (3)

PN is the probability that, given that events A and B both
occur initially, event B does not occur (e.g., B̄) after event
A is changed from occurring to not occurring (e.g., Ā).

Definition 3.2 (Probability of sufficiency, PS).

PS = P
(
BA | Ā, B̄

)
, (4)

PS is the probability that, given that events A and B both did
not occur initially, event B occurs after event A is changed
from not occurring to occurring.

Definition 3.3 (Probability of necessity and sufficiency,
PNS).

PNS = PN · P (A,B) + PS · P (Ā, B̄), (5)

PNS is the sum of PN and PS, each multiplied by the prob-
ability of its corresponding condition. PNS measures the
probability that event A is a necessary and sufficient cause
for event B.

4. Methodology
In this section, we propose the IDUM model, a novel method
to improve the out-of-distribution generalization for uplift
modeling task. To begin with, we design an invariant prop-
erty learning part to learn the sufficient and necessary fea-
tures, capturing the invariant pattern behind data simulta-
neously. To reduce the computational cost, we employ a
feature selection part with a neural network-based masking
function. Finally, we introduce a balancing discrepancy part
to address the selection bias issue in the incentive assign-
ment process. The whole structure of our IDUM is shown
in Figure 2. The notations used in this paper are presented
in Appendix A.

4.1. Invariant Property Learning

As mentioned in Section 1, existing uplift modeling methods
are hard to handle the distribution shift, therefore perform
poorly in the out-of-distribution testing data. As proved
in Zhou et al. (2021), the distribution shift issue is probably
caused by the spurious correlation between the user features
and the response. Therefore, an intuitive solution is to learn

Figure 2. The whole structure of our IDUM, where h0 and h1 are
the prediction heads of treatment and control groups. For simplic-
ity, we use h to represent the response prediction in Section 4.

the causal and invariant features to remove such spurious
relationships. Technically, inspired by Pearl (2022); Yang
et al. (2024), we design an invariant property learning part
for enhancing the out-of-distribution uplift generalization.
In detail, we propose the theories and the objective for
extracting sufficient and necessary features based on PNS
in the uplift generalization.

PNS Risk and Upper Bound. We begin by introducing
the basic backbone Φ(x), which is constructed by a multi-
layer perceptron (MLP) on the features of the treated and
control samples. Based on the conceptions of sufficient and
necessary features, we have the definition of PNS risk to
learn the PNS value.

Definition 4.1 (PNS Risk). The PNS Risk is defined over
the distribution of a target environment e′ ∈ E .

Re′(h,Θ,Ψ) = E(x,t,y)∼e′

[
Exc∼PΘ

e′ (X
c|Φ(x))I [h(xc, t) ̸= y]︸ ︷︷ ︸
SF e′ (h,Θ)

+

Exc∼PΨ
e′ (X

c|Φ(x))I [h(xc, t) = y]
]

︸ ︷︷ ︸
NCe′ (h,Ψ)

,

(6)
where SFe′(h,Θ) and NCe′(h,Ψ) denote the sufficient
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and necessary terms, respectively. xc and xc are the special
implementations of Xc, where xc ̸= xc. Θ and Ψ are the
parameters for learning the sufficient and necessary terms.

Variable Xc has a high probability of being the sufficient
and necessary feature of Y when the PNS value is small.
However, computing the probability is a challenging prob-
lem for gathering counterfactual data (i.e., xc and xc),
which may be impractical or unattainable in real-world sys-
tems. Fortunately, the PNS defined on the counterfactual
distribution can be directly estimated from the data under
appropriate conditions (i.e., Exogeneity and Monotonicity).

Definition 4.2 (Exogeneity (Pearl, 2022)). Xc is exogenous
relative to variable Y w.r.t. source and target environments
e and e′, if the probability is identified by conditional proba-
bility Pe

(
Ydo(Xc=xc) = y | Xc, T

)
= Pe(Y = y | Xc =

xc, T ) and Pe′
(
Ydo(Xc=xc) = y | Xc, T

)
= Pe′(Y = y |

Xc = xc, T ).

Definition 4.3 (Monotonicity (Pearl, 2022)). Y
is monotonic relative to X if and only if either
P
(
Ydo(Xc=xc) = y, Ydo(Xc=xc) ̸= y | Xc, T

)
= 0

or P
(
Ydo(Xc=xc) ̸= y, Ydo(Xc=xc) = y | Xc, T

)
= 0.

The definition of Exogeneity delineates that the disparity be-
tween the counterfactual data and conditional distributions
diminishes when Xc is exogenous with respect to Y , while
Monotonicity illustrates the monotonic effect of variable
Xc on Y . Then, the identifiability of PNS can be described
as the following lemma.

Lemma 4.4. (Pearl, 2022) If Xc is exogenous relative to
Y , and Y is monotonic relative to Xc, then

PNS(xc,xc) = Pe′(Y = y | Xc = xc, T )

− Pe′(Y = y | Xc = xc, T ).
(7)

According to Lemma 4.4, the computation of PNS becomes
feasible through observational data under the assumptions
of Exogeneity and Monotonicity. This enables the quantifi-
cation of PNS even in the absence of counterfactual data.
The proof of Lemma 4.4 is provided by Pearl (2009), and its
applicability to our problem setting can be directly extended.
Subsequently, we seamlessly incorporate the measure of
Monotonicity into the PNS risk by deriving an upper bound.

Proposition 4.5 (Upper Bound of PNS Risk). Given the
target environment, let the Monotonicity measurement be:

Mh
e′(Θ,Ψ) = E(x,t,y)∼e′Exc∼PΘ

e′ (X
c|Φ(x))Exc∼PΨ

e′ (X
c|Φ(x))

I [h(xc, t) ̸= h(xc, t)] ,

Then, we can get:

Re′(h,Θ,Ψ) = Mh
e′(Θ,Ψ) + 2SFe′(h,Θ)NCe′(h,Ψ)

≤ Mh
e′(Θ,Ψ) + 2SFe′(h,Θ).

(8)

We present the proof in Appendix B. The upper bound for
the PNS risk in Eq. (8) comprises two components: (1) the
sufficiency evaluator SFe′(h,Θ) and (2) the monotonicity
measurement Mh

e′(Θ,Ψ). In this upper bound, the neces-
sary term NCe′(h,Ψ) is assimilated into the Monotonic-
ity measurement Mh

e′(Θ,Ψ). The minimization process
of Eq. (6) with respect to its upper bound, Eq. (8), entails
ensuring the satisfaction of Monotonicity.

OOD Generalization. In out-of-distribution (OOD) uplift
generalization, only source data gathered from environment
e are available, whereas the target environment e′ remains
inaccessible throughout the optimization procedure. Con-
sequently, directly assessing the risk on the target environ-
ment, denoted as Re′(h,Θ,Ψ), is unfeasible. Hence, we
establish the linkage between the risks associated with the
source environment, Re(h,Θ,Ψ), and the target environ-
ment, Re′(h,Θ,Ψ).

We introduce the divergence measurement known as β di-
vergence (Ganin et al., 2016) and apply variational approxi-
mation to weight the term Re′(h,Θ,Ψ). Formally, β diver-
gence quantifies the dissimilarity between environments e
and e′, as formally defined below.

βq(e
′∥e) =

[
E

(x,t,y)∼e

(
e′(x, t, y)

e(x, t, y)

)q] 1
q

, (9)

Based on βq(e
′∥e), we connect the risks on the source and

target environments by Theorem 4.6.
Theorem 4.6. The risk in the target environment is bounded
by the risk in the source environment:

Re′(h,Θ,Ψ) ≤ lim
q→+∞

βq(e
′∥e)

([
Mh

e′(Θ,Ψ)
]1− 1

q

+2 [SFe′(h,Θ)]
1− 1

q

)
+ ξe′\e(X, T, Y ),

where ξe′\e(X, T, Y ) := Pe′(X × T × Y /∈ supp(e)) ·
sup(Re′\e(h,Θ,Ψ)).

We provide the proof in Appendix B. Here supp(e) is the
support set of source environment distribution Pe(X),

Re′\e(h,Θ,Ψ) =E(x,t,y)∼Pe′ (X×T×Y /∈supp(e)) [SFe′(h,Θ)

+NCe′(h,Ψ)] .

Theorem 4.6 establishes a connection between the risks of
the source and target environments. Within Theorem 4.6,
ξe′\e(X, T, Y ) delineates the expectation of the worst risk
in unknown area, where the data sample (x, t, y) does not
belong to the support set supp(e) of the source environment.
When the observations X in e and e′ share the same support
set, the term ξe′\e(X, T, Y ) tends towards 0.

In many real-world uplift modeling scenarios where the
distribution e is not directly accessible, we examine the
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association between the expected risk based on the source
environment distribution and the empirical risk computed
from the data of the source environment. Similarly, we can
assess the empirical risks with respect to S̃F e(h,Θ) and
ÑCe(h,Ψ). Subsequently, we leverage PAC-learning (De-
nis, 1998) to formulate a theorem in the following, establish-
ing an upper bound for the discrepancy between empirical
risk and expected risk.

Theorem 4.7. Given parameters Θ,Ψ, for any h, prior
distribution πXc = Pe(X

c) and πX
c = Pe(X

c
)

which make EenKL
(
PΘ
e (Xc | Φ(X) = Φ(x))∥πXc

)
and

EenKL
(
PΨ
e (X

c | Φ(X) = Φ(x))∥πX
c

)
both lower than

a positive constant C, then with a probability at least 1− ϵ
over source environment data,

(1)
∣∣∣SFe(h,Θ)− S̃F e(h,Θ)

∣∣∣ is upper bounded by

EenKL
(
P̃Θ
e (Xc | Φ(X) = Φ(x))∥πXc

)
+

ln(n/ϵ)

2(n− 1)
+C,

where n is the number of the source data.

(2)
∣∣∣Mh

e (Θ,Ψ)− M̃h
e (Θ,Ψ)

∣∣∣ is upper bounded by

EenKL
(
P̃Θ
e (Xc | Φ(X) = Φ(x))∥πXc

)
+ EenKL

(
P̃Ψ
e (X

c | Φ(X) = Φ(x))∥πX
c

)
+

ln(n/ϵ)

2(n− 1)
+ 2C.

The proof is provided in Appendix B. Theorem 4.7 illus-
trates that as the sample size increases and the terms involv-
ing KL divergence diminish, the empirical risk computed
on the source environment dataset converges towards the
expected risk. By combining Theorems 4.6 and 4.7, we
can get the expected PNS risk on the target distribution by
leveraging the empirical risk computed on the source data.

4.2. Feature Selection

After we have designed the above PNS risk upper bound,
a problem that needs to be solved is that the dimension of
the shared feature representation Φ(x) in the uplift model
is always large, thus, the computational cost to find xc is
big. To address this challenge, we employ a neural network-
based masking function, denoted as ŵ(·), which determines
the contribution of each feature in the uplift estimation. Ad-
ditionally, we utilize the Gumbel-Softmax trick (Jang et al.,
2016) to constrain the model, enabling the acquisition of an
approximate k-hot mask vector m(xc). The κ-ratio features
with the greatest contribution are identified as the desired
key features, while the remaining features are deemed irrele-
vant or redundant. The formulation of m(xc) is as follows:

m(xc) = Gumbel-Softmax(ŵ(xc), κH) ∈ RH , (10)

where k = ⌊κH⌋ ∈ Z+ is the number of features expected
to be obtained, H is the number of input features. Specifi-
cally, in Eq. (10), let z = ŵ(xc) ∈ RH represent a probabil-
ity vector. For any feature dimension j ∈ 1, . . . ,H , it holds
that zj ≥ 0 and

∑
j zj = 1. With a predefined temperature

ζ > 0, the computation of each feature dimension in the
mask vector can be expressed below (Lv et al., 2022).

mj = max
l∈{1,...,k}

exp
((
log zj + ηlj

)
/ζ

)
∑N

j′=1 exp
((

log zj′ + ηlj′
)
/ζ

) ,
(11)

where l ∈ {1, . . . , k} denotes the index of the selected
feature, ηlj = − log

(
− log ul

j

)
, and ul

j ∼ Uniform(0, 1)
denotes a uniformly distributed sampling. Finally, we can
get the masked features xc

m by multiplying the original
features xc with the resulting mask vector m(x).

xc
m = xc ⊙m(xc), (12)

where ⊙ denotes the element-wise multiplication. Remark-
ably, the same procedure is applied to xc.

4.3. Balancing Discrepancy

Up to now, we have adopted invariant learning to enhance
out-of-distribution uplift generalization. However, there re-
mains the issue of selection bias, which is common when
estimating uplift on observational datasets. To address this,
we apply the distribution discrepancy regularizer from CFR-
Net (Shalit et al., 2017), which achieves a balanced represen-
tation by minimizing the distributional differences between
treatment and control groups. A typical metric used for
measuring the distribution discrepancy is the Integral Prob-
ability Metric (IPM) (Müller, 1997; Sriperumbudur et al.,
2012), which is formally defined as,

disc (P t
Φ, P

c
Φ) = suph0,h1∈H

∣∣∣Ex∼P t
Φ
[h1(x, t)]− Ex∼P c

Φ
[h0(x, t)]

∣∣∣ ,
(13)

where P t
Φ = {Φ (x)}t=1 and P c

Φ = {Φ (x)}t=0 denote the
feature distributions of the treatment and control groups in
the representation space, respectively. h0(x, t) and h1(x, t)
represent the prediction heads, which are optimized by the
cross entropy loss. For ease of understanding, we use h(x, t)
to represent them in the following description. For function
families H with sufficient richness, when the discrepancy
between the distributions P t

Φ and P c
Φ equals zero, it follows

that P t
Φ = P c

Φ holds (Shalit et al., 2017). Consequently,
minimizing this discrepancy entails aligning the means in
the feature space.

4.4. Optimization and Training Procedure

From above description, we know that the learning process
of PΨ(X

c | Φ(X) = Φ(x)), coupled with the feature
selection outlined in Section 4.2, can solve the uplift gen-
eralization problem. Throughout the learning phase, our
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Table 1. Overall comparison between our IDUM and the baselines on ID Lazada and Production datasets. We report the results over five
random seeds. The best results and second best results are bold and underlined, respectively.

Method Lazada Dataset (ID) Production Dataset(ID)
AUUC QINI KENDALL AUUC QINI KENDALL

S-Learner 0.0117 ± 0.0029 0.3826 ± 0.0377 0.1073 ± 0.0141 0.2450 ± 0.0232 0.3292 ± 0.0258 0.1643 ± 0.0169
T-Learner 0.0125 ± 0.0027 0.4442 ± 0.0245 0.1197 ± 0.0140 0.2461 ± 0.0229 0.3486 ± 0.0247 0.1671 ± 0.0161
TARNet 0.0171 ± 0.0026 0.4457 ± 0.0217 0.1372 ± 0.0121 0.2493 ± 0.0218 0.3428 ± 0.0227 0.1698 ± 0.0173

CFRNet-mmd 0.0271 ± 0.0036 0.4610 ± 0.0219 0.1698 ± 0.0132 0.2691 ± 0.0224 0.3408 ± 0.0246 0.1915 ± 0.0139
CFRNet-wass 0.0273 ± 0.0034 0.4465 ± 0.0209 0.1753 ± 0.0137 0.2579 ± 0.0223 0.3503 ± 0.0246 0.1921 ± 0.0147

DragonNet 0.0241 ± 0.0037 0.4392 ± 0.0292 0.1444 ± 0.0132 0.2527 ± 0.0201 0.3476 ± 0.0230 0.1747 ± 0.0173
EUEN 0.0267 ± 0.0033 0.4456 ± 0.0237 0.1523 ± 0.0113 0.2793 ± 0.0209 0.3693 ± 0.0234 0.2004 ± 0.0193
UniTE 0.0189 ± 0.0030 0.4563 ± 0.0283 0.1457 ± 0.0144 0.2408 ± 0.0211 0.3681 ± 0.0225 0.1997 ± 0.0167
TEED 0.0120 ± 0.0026 0.4395 ± 0.0234 0.1256 ± 0.0129 0.2492 ± 0.0239 0.3515 ± 0.0241 0.1695± 0.0167

IDUM 0.0270 ± 0.0023 0.4646 ± 0.0184 0.1798 ± 0.0137 0.2907 ± 0.0248 0.3700 ± 0.0255 0.2091 ± 0.0154

objective is to minimize the risk under the worst-case sce-
nario induced by X

c

m, namely, the maximum PNS risk
resulting from the selection of PΨ(X

c

m | Φ(X) = Φ(x)).
Minimizing the upper bounds established in Theorem 4.6
and 4.7 can be simulated through the following optimization
procedure:

min
Θ,h,m,Φ

max
Ψ

M̃h,m
e (Θ,Ψ) + S̃F e(h,m,Θ)

+ α disc
(
P t
Φ, P

c
Φ

)
+ λLKL,

subject to ∥xc
m − xc

m∥2 > δ,

(14)

where LKL = EenKL
(
P̃Θ
e

(
Xc

m | Φ(X) = Φ(x))∥πXc
m

))
+EenKL

(
P̃Ψ
e

(
X

c

m | Φ(X) = Φ(x))∥πX
c
m

))
. h(xc

m, t)

is the prediction head of the response variable, and the
optimization function can be the cross entropy loss. The
constraint ∥xc

m − xc
m∥2 > δ is established to ensure

δ-Semantic Separability (Yang et al., 2024). This criterion
stipulates that the semantic meaning should be discernible
between xc

m and xc
m when their distance exceeds a certain

threshold. The absence of this constraint may result
in nearly identical values representing vastly different
semantic information, leading to inherently unstable and
chaotic data. Consequently, the final optimization objective
is derived as follows:

LIDUM = min
Θ,h,m,Φ

max
Ψ

M̃h,m
e (Θ,Ψ) + S̃F e(h,m,Θ)

+ α disc
(
P t
Φ, P

c
Φ

)
+ β ∥xc

m − xc
m∥2 + λLKL.

(15)

5. Experiments
5.1. Experimental Setups

Datasets. Lazada dataset (Zhong et al., 2022). We uti-
lize a large-scale production dataset obtained from real
voucher distribution operations at Lazada, a prominent e-
commerce platform in Southeast Asia (SEA) operated by

the Alibaba Group. In the actual production setting, treat-
ment assignment is selective owing to operational targeting
strategies. Our training dataset comprises data characterized
by significant treatment bias collected under these condi-
tions. Additionally, we have a slightly smaller subset of
users unaffected by the targeting strategies, where treatment
assignment follows randomized controlled trials (RCT) for
out-of-distribution (OOD) testing.

Production dataset. This dataset comes from an industrial
production environment, specifically one of the largest short-
video platforms in China. Clarity serves as a crucial user
experience metric for such platforms. A decrease in clar-
ity can significantly impact user satisfaction on the plat-
form. Hence, we conducted random experiments over the
course of a week, wherein high-clarity videos (t = 1) were
provided to the treatment group, while low-clarity videos
(t = 0) were provided to the control group. We collected the
total play counts of users’ short videos over the week and
quantified the impact of resolution degradation on user ex-
perience. To enhance data robustness and mitigate response
variance, we discretized each user’s response (i.e., total play
counts) into four levels. Furthermore, for each user group,
we collect data at two distinct time points to facilitate out-of-
distribution (OOD) testing. Moreover, the dataset statistics
and visualization are presented in Appendix A.

Baselines and Metrics In this paper, we compare our
method with the commonly used uplift modeling methods,
S-Learner (Künzel et al., 2019), T-Learner (Künzel et al.,
2019), TARNet (Shalit et al., 2017), CFRNet (Shalit et al.,
2017), DragonNet (Shi et al., 2019), EUEN (Ke et al.,
2021), UniTE (Liu & Hou, 2023) and TEED (Sun et al.,
2023a). Following the previous works (Sun et al., 2023b;
2024c), we evaluate the performance of the methods by
AUUC, QINI and KENDALL. More details are presented
in Appendix A.

Implementation Details We implement all baselines and
our IDUM based on Pytorch 1.10, with Adam as the opti-
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Table 2. Overall comparison between our IDUM and the baselines on OOD Lazada and Production datasets. We report the results over
five random seeds. The best results and second best results are bold and underlined, respectively.

Method Lazada Dataset (OOD) Production Dataset (OOD)
AUUC QINI KENDALL AUUC QINI KENDALL

S-Learner 0.0093 ± 0.0028 0.3581 ± 0.0393 0.1036 ± 0.0137 0.2444 ± 0.0229 0.3284 ± 0.0263 0.1632 ± 0.0172
T-Learner 0.0101 ± 0.0027 0.4392 ± 0.0228 0.1032 ± 0.0124 0.2442 ± 0.0235 0.3411 ± 0.0244 0.1617 ± 0.0159
TARNet 0.0104 ± 0.0025 0.4448 ± 0.0204 0.1081 ± 0.0118 0.2365 ± 0.0205 0.3347 ± 0.0231 0.1684 ± 0.0161

CFRNet-mmd 0.0262 ± 0.0037 0.4618 ± 0.0210 0.1737 ± 0.0126 0.2665 ± 0.0214 0.3383 ± 0.0228 0.1894 ± 0.0143
CFRNet-wass 0.0269 ± 0.0036 0.4332 ± 0.0219 0.1742 ± 0.0137 0.2583 ± 0.0206 0.3391 ± 0.0237 0.1912 ± 0.0157

DragonNet 0.0224 ± 0.0035 0.4179 ± 0.0279 0.1040 ± 0.0124 0.2423 ± 0.0214 0.3287 ± 0.0212 0.1724 ± 0.0169
EUEN 0.0250 ± 0.0032 0.4270 ± 0.0225 0.1428 ± 0.0107 0.2755 ± 0.0210 0.3632 ± 0.0220 0.1995 ± 0.0180
UniTE 0.0122 ± 0.0028 0.4499 ± 0.0291 0.1284 ± 0.0131 0.2298 ± 0.0221 0.3568 ± 0.0215 0.1899 ± 0.0154
TEED 0.0102 ± 0.0031 0.4239 ± 0.0268 0.1089 ± 0.0128 0.2237 ± 0.0297 0.3275 ± 0.0223 0.1682 ± 0.0153

IDUM 0.0274 ± 0.0026 0.4633 ± 0.0191 0.1790 ± 0.0152 0.2847 ± 0.0265 0.3681 ± 0.0245 0.2051 ± 0.0166

mizer and a maximum iteration count of 50. We use the
QINI as a reference to search for the best hyper-parameters
for all baselines and our model. We also adopt an early stop-
ping mechanism with a patience of 5 to avoid over-fitting to
the training set. Furthermore, we utilize the hyper-parameter
search library Optuna (Akiba et al., 2019) to accelerate
the tuning process, all experiments are implemented on
NVIDIA A40 and Intel(R) Xeon(R) 5318Y Gold CPU @
2.10GHz.

5.2. Overall Performance

To evaluate the performance of our IDUM on both in-
distribution (ID) and out-of-distribution (OOD) testing data,
we conduct several experiments on the Lazada dataset and
the Production dataset. The results are reported in Table 1
and 2, where we can observe: 1) Among all the baseline
methods, the S-learner, T-learner, and TARNet exhibit the
poorest performance across both ID and OOD experiments.
We speculate that their simplistic model architectures, lack-
ing further constraints, struggle to mitigate both the selec-
tion bias and the distribution shift between training and
testing sets, consequently leading to inaccurate uplift predic-
tion in real-time marketing scenarios. 2) CFRNet-wass and
CFR-mmd consistently demonstrate superior performance
compared to other baselines. This can be attributed to their
utilization of Integral Probability Metrics, such as Maxi-
mum Mean Discrepancy and Wasserstein distance, which
facilitate the mitigation of selection bias between treatment
and control groups. However, they still exhibit challenges in
coping with the distribution shift problem, as evidenced by
their comparatively lower performance in OOD experiments.
3) Encouragingly, our IDUM consistently outperforms all
baselines across both the Lazada dataset and the Production
dataset, particularly on OOD testing data. This demon-
strates the effectiveness of the carefully designed invariant
property learning part within IDUM, which encompasses
the PNS risk and adversarial feature selection components,
in robustifying the uplift model in a collaborative manner.

Therefore, our proposed IDUM can be considered as an
effective generalized uplift model in online marketing.

5.3. Ablation Study

In this section, we conduct ablation studies on the OOD
testing data to assess the necessity of each component in
our proposed IDUM model. Specifically, we sequentially re-
move the Integral Probability Metrics-based representation
Balancing Discrepancy component (BD), the Invariant Prop-
erty Learning with PNS risk (IPL), and the Feature Selection
with Gumbel-Softmax of IPL (IPL-FS). We then tailor three
variants of IDUM, namely w/o BD, w/o IPL, and w/o IPL-
FS. From the results reported in Table 3, it is evident that
removing any part of IDUM leads to performance degra-
dation. Firstly, the IPM regularization for representation
balancing helps address the internal selection bias between
the treatment group and the control group. Secondly, the
IPL part, serving as a crucial component for managing the
distribution shift between training and testing data, signif-
icantly contributes to the accurate estimation of uplift, as
evidenced by the substantial performance drop when it is
removed from IDUM. Lastly, the adversarial feature selec-
tion part aids in efficiently learning the invariant property
hidden in the data, thereby further enhancing the robustness
of our IDUM model in out-of-distribution scenarios.

5.4. Sensitivity Analysis

In this section, we conduct out-of-distribution (OOD) ex-
periments to analyze the sensitivity of each important hy-
perparameter in our framework. Specifically, we vary the
weight of IPM with α ∈ {0.001, 0.005, 0.01, 0.05, 0.1},
the weight of the semantic constraint with β ∈
{0.001, 0.005, 0.01, 0.05, 0.1}, the weight of KL diver-
gence with λ ∈ {0.01, 0.05, 0.1, 0.2, 0.3}, and the value
of temperature with ζ ∈ {0.5, 1, 1.5, 2, 2.5}. The results
are presented in Figure 3. It is evident that extreme val-
ues of α for representation balancing regularization may
adversely affect the model performance. Regarding the se-

8



Invariant Deep Uplift Modeling for Incentive Assignment in Online Marketing

Table 3. Ablation study of our IDUM. We report the results over five random seeds. The best results and second best results are bold and
underlined, respectively.

Method Production Dataset (ID) Production Dataset (OOD)
AUUC QINI KENDALL AUUC QINI KENDALL

IDUM 0.2907 ± 0.0248 0.3700 ± 0.0255 0.2091 ± 0.0154 0.2847 ± 0.0265 0.3681 ± 0.0245 0.2051 ± 0.0166

W/O BD 0.2863 ± 0.0246 0.3658 ± 0.0217 0.2041 ± 0.0277 0.2710 ± 0.0227 0.3383 ± 0.0264 0.1801 ± 0.0153
W/O IPL 0.2680 ± 0.0206 0.3531 ± 0.0236 0.1939 ± 0.0162 0.2732 ± 0.0235 0.3475 ± 0.0204 0.1781 ± 0.0173

W/O IPL-FS 0.2891 ± 0.0224 0.3651 ± 0.0214 0.2087 ± 0.0159 0.2737 ± 0.0251 0.3242 ± 0.0253 0.2039 ± 0.0124
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Figure 3. Sensitivity analysis of our IDUM on the OOD Production dataset. We report the results over five random seeds.

mantic constraint, the best uplift estimation performances
are consistently achieved with a moderate value of β. Addi-
tionally, our IDUM model demonstrates varying tendencies
across these three metrics when the value of λ for KL diver-
gence in invariant property learning is adjusted, indicating
the need for careful tuning in real-world scenarios. Lastly,
the IDUM model exhibits robustness to fluctuations in the
softmax temperature ζ, consistently selecting crucial fea-
tures effectively.

6. Conclusion
In this paper, we propose a novel method called Invariant
Deep Uplift Modeling, namely IDUM, to construct a gen-
eralized uplift model for incentive assignment in online
marketing. Our proposed IDUM incorporates three key
components to enhance out-of-distribution uplift generaliza-
tion. Firstly, an invariant property learning part is designed
to identify necessary and sufficient features with domain-
invariant characteristics. Secondly, to optimize computa-
tional efficiency, we implement a Gumbel-Softmax-based
feature selection mechanism that identifies crucial feature
subsets for invariant learning. Thirdly, a balancing dis-
crepancy component is introduced to mitigate distributional
differences across treatment groups. Through extensive
empirical evaluations and theoretical analysis, we demon-
strate the effectiveness of our IDUM and provide rigorous
generalization guarantees for it.
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Table 4. Statistics of the public dataset Lazada and real-world dataset Production.

Dataset Features Training Data Testing Data (ID) Testing Data (OOD)

Treated Control Total Treated Control Total Treated Control Total

Lazada 83 0.64 M 2.27 M 4.17 M 0.28M 0.32M 0.60M 0.47M 0.43 M 0.91 M

Production 104 1.91M 4.22M 6.13M 0.56M 0.61M 1.17M 0.37M 0.40M 0.77M

Figure 4. The visualization of the Production dataset. As t increases, the clarity of the video correspondingly enhances.

A. Additional Experiments
A.1. Dataset statistics

In this section, we provide the statistics of the datasets that we used in our work, where the selection bias and out-of-
distribution issues exist. The statistics of those two datasets are summarized in Table 4. Moreover, the visualization of the
Production dataset is provided in Figure 4.

A.2. Baselines and Metrics

We present a detailed description of the baselines we used in the following:

• S-Learner (Künzel et al., 2019): S-Learner is a kind of meta-learner method that uses a single estimator to estimate
the response without giving the treatment a particular role.

• T-Learner (Künzel et al., 2019): T-Learner is similar to S-Learner, which uses two estimators for the treatment and
control groups, respectively.

• TARNet (Shalit et al., 2017): TARNet is a commonly used neural network-based uplift model. It uses the shared
bottom network to extract feature information.

• CFRNet (Shalit et al., 2017): CFRNet (i.e., CFRNet-wass, CFRNet-mmd) applies an additional loss to TARNet, which
forces the learned treated and control feature distributions to be closer.

• DragonNet (Shi et al., 2019): DragonNet exploits the sufficiency of the propensity score for estimation adjustment and
uses a regularization procedure based on the non-parametric estimation theory.

• EUEN (Ke et al., 2021): EUEN is an explicit uplift modeling approach, which can correct the exposure bias.

• UniTE (Liu & Hou, 2023): UniTE adopts the Robinson Decomposition (Bratteli & Robinson, 2012) framework, and
design a MMoE (Ma et al., 2018) based structure for uplift prediction.

• TEED (Sun et al., 2023a): TEED is a novel direct learning framework along with distribution adaptation and reliable
scoring modules, which can solve the treatment effect estimation problem across environments.
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Table 5. Notation Table of the notations in this work.
Notation Definition

e and e′ Two different environments
X User features
Xc Environment invariant features
Xv Environment specific features
Y Response
T Incentive

Φ(·) The basic backbone of feature encoder
do(·) Intervention operation
h(·) Response prediction head

SF (·, ·) Sufficient term
NC(·, ·) Necessary term

Θ Parameters of the sufficient term
Ψ Parameters of the necessary term

βq (·∥·) β divergence between environments
πX Prior distribution of X

ξe′\e(·) The worst risk in unknown area
Mh

e (·) Monotonicity measurement
E Expectation

m(·) Mask vector
KL(· | ·) KL divergence

⊙ Element-wise multiplication

We present the detailed description of the metrics we used in the following:

• AUUC (AREA UNDER UPLIFT CURVE): A common metric to evaluate the area under the uplift curve (Rzepakowski
& Jaroszewicz, 2010). We use the CausalML package (Chen et al., 2020) to implement the metric.

• QINI (QINI COEFFICIENT) (Mouloud et al., 2020): A common metric to evaluate the area under the qini curve,
different from AUUC, it scale the responses in control group.

• KENDALL (KENDALL’S RANK CORRELATION) (Mouloud et al., 2020): A metric to evaluate the average predicted
uplift and the predicted uplift in each bin, we report the result of 20 bins.

And for the reading clarity, we provide a notation table in the following.

A.3. Computational Complexity

In this section, we show the computational complexity in the following.

For the invariant property learning module, the computational complexity of the objective loss and negative log-likelihood
is linear, denoted as O(n). The complexity of the KL divergence, however, is O(n × d), where d represents the feature
dimensionality. For the feature selection module, the computational complexity of the linear transformation and batch
normalization in forward propagation is O(n× h), where n is the input dimensionality and h is the dimension of the hidden
layer. In the mask generation phase, the Gumbel-Softmax operation is applied iteratively k times, resulting in a complexity
of O(k ×m), where m is the number of mask elements. Consequently, the overall complexity of the mask generator can
be expressed as O(n× h+ k ×m). For the discrepancy balancing module, for the computational complexity of IPM, if
MMD distance is employed, the complexity increases to O(n2). In summary, the overall time complexity of the algorithm is
O(n2) +O(n× h) +O(k ×m).
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(a) Lazada Dataset (b) Production Dataset

Figure 5. Visualization of dataset distribution for in-distribution and out-of-distribution.

A.4. Analytical Experiments

To better help readers understand our motivation, i.e., the necessity of addressing selection bias and OOD problems in a
unified way, we visualize the distribution of the training set (including treatment and control groups) and the test set of
the dataset used in the experiment. This is shown in Figure 5, which illustrates the distribution gaps found by our model.
Combining the results in Tables 1 and 2, we see that this property makes our model more generalizable than existing
baselines under different test settings.

A.5. Online Experiment

To further show the effectiveness of our IDUM, we conduct an online experiment to evaluate our IDUM against the baseline
CFRNet, and we keep it for three days.

The experimental setups are listed in the following:

• In-Distribution (ID) Test: We selected two user groups with similar distributions to the training data.

• Out-of-Distribution (OOD) Test: We used two user groups with distinct distributions to assess generalization.

Due to the constraints of online inference, we could not obtain the true responses for users unaffected by the deployed
algorithm. Instead, we compared the watch time improvement and the cost reduction across experimental groups as the key
metrics.

Table 6. Online experimental results.

(a) Watch Time Improvement (%)

Method ID OOD

CFRNet 0 0
IDUM 0.012% 0.028%

(b) Cost Reduction (%)

Method ID OOD

CFRNet 0 0
IDUM -1.21% -1.75%

We report the percentage of watch time improvement relative to CFRNet’s performance (baseline, set at 0). And also,
we evaluate the cost of two methods, for that we assign less incentives (−1.21% and −1.75%) to the user group and get
competitive performance (0.012% and 0.028%).
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B. Proofs
B.1. Proof of Proposition 4.5

To explicitly define the Monotonicity evaluator, we decompose the original objective into three terms: the sufficiency
objective SFe′(h,Θ), the necessity objective NCe′(h,Ψ), and the Monotonicity evaluator objective Mh

e′(Θ,Ψ). The
Monotonicity term Mh

e′(Θ,Ψ) can be further decomposed as follows:

Mh
e′(Θ,Ψ) = SFe′(h,Θ) (1−NCe′(h,Ψ)) + (1− SFe′(h,Θ))NCe′(h,Ψ). (16)

We can further derive Eq. (16) as follows.

Mh
e′(Θ,Ψ) = SFe′(h,Θ) (1−NCe′(h,Ψ)) + (1− SFe′(h,Θ))NCe′(h,Ψ)

= SFe′(h,Θ) +NCe′(h,Ψ)− 2SFe′(h,Θ)NCe′(h,Ψ)

= Re′(h,Θ,Ψ)− 2SFe′(h,Θ)NCe′(h,Ψ).

(17)

Then we can rewrite the original objective Eq. (6) by

Re′(h,Θ,Ψ) = Mh
e′(Θ,Ψ) + 2SFe′(h,Θ)NCe′(h,Ψ).

B.2. Proof of Theorem 4.6

The rationale behind Theorem 4.6 is to establish a connection between the risk observed in the source environment and that
in the target environment. To prove the result stated in Theorem 4.6, we make reference to the technical details presented
in (Germain et al., 2016). We initially define u = E(x,t,y)∼e‘I[(x, t, y) /∈ sup(e)], allowing us to compute the value of
δ-Monotonicity measurement on samples originating from the target environment but not encompassed within the source
environment:

E(x,t,y)∼e′I[(x, t, y) /∈ supp(e)]Exc∼PΘ
e′ (X

c|Φ(X=Φ(x))

Exc∼PΨ
e′ (X

c|Φ(X)=Φ(x))I [h(xc, t) ̸= h(xc, t)]

=uEe′\eExc∼PΘ
e′ (X

c|Φ(X)=Φ(x))Exc∼PΨ
e′ (X

c|Φ(X)=Φ(x))

I [h(xc, t) ̸= h(xc, t)]

=uMh
e′(Θ,Ψ).

Likewise, the aggregate risk associated with samples originating from the target environment but not encompassed within
the source environment is denoted as ξe′\e(x, t, y). Next, we proceed to alter the distribution measure, taking Mh

e′(Θ,Ψ)
from Eq. (8) as an illustrative example.

Mh
e′(Θ,Ψ)

=E(x,t,y)∼e′Exc∼PΘ
e′ (X

c|Φ(X)=Φ(x))Exc∼PΨ
e′(X

c|Φ(X)=Φ(x))

I [h(xc, t) ̸= h(xc, t)]

≤βq(e
′∥e)

[
Exc∼PΘ

e (Xc|Φ(X)=Φ(x))Exc∼PΨ
e (X

c|Φ(X)=Φ(x))

I [h(xc, t) ̸= h(xc, t)]
q

q−1

]1− 1
q

+ uMh
e′\e(Θ,Ψ)

=βq(e
′∥e)

[
Exc∼PΘ

e (Xc|Φ(X)=Φ(x))Exc∼PΨ
e (X

c|Φ(X)=Φ(x))

I [h(xc, t) ̸= h(xc, t)]]
1− 1

k + uMh
e′\e(Θ,Ψ).

The third line is a consequence of Hölder’s inequality. In the final line, we omit the exponential term q
q−1 in

I [h(xc, t) ̸= h(xc, t)]
q

q−1 as the function yields results from the set {0, 1}. Similarly, for the term SFe(h,Θ)NCe′(h,Ψ),
we derive the ultimate bound for the overall Re′(h,Θ,Ψ) as shown in Eq. (8).
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B.3. Proof of Theorem 4.7

In this theorem, we investigate the bounding of distribution risk by empirical risk. The proof employs well-known inequalities
such as Jensen’s inequality, Markov’s inequality, and Hoeffding’s inequality. We initially focus on the term SFe(h,Θ). The
outline of the proof involves utilizing variational inference techniques to alter the distribution measure, followed by the
application of Markov’s inequality to compute the risk bound.

Let ∆(SFe(h,Θ)) = S̃F e(h,Θ)− SFe(h,Θ). By employing the variational inference technique and leveraging Jensen’s
inequality, we derive the following inequality:

4(n− 1)2∆(SFe(h,Θ))
2

=4(n− 1)2
(
S̃F e(h,Θ)− SFe(h,Θ)

)2

=
(
2(n− 1)EenKL

(
P̃ϕ
s (X

c | Φ(X) = Φ(x))∥πXc

)
− 2(n− 1)EeEPΘ

e (Xc|Φ(X)=Φ(x)) ln
πXc

PΘ
e (Xc | Φ(X) = Φ(x))

+Exc∼πXc ln exp (2(n− 1)EenI [h (xc, t) ̸= y])

− Exc∼πXc ln exp (2(n− 1)EeI [h (xc, t) ̸= y]))
2
,

≤
(
2(n− 1)EenKL

(
P̃Θ
e (Xc | Φ(X) = Φ(x))∥πXc

)
− 2(n− 1)EeEPΘ

e (Xc|Φ(X)=Φ(x)) ln
πXc

PΘ
e (Xc | Φ(X) = Φ(x))

+ lnExc∼πXc exp (2(n− 1)∆ (SF ′
e)))

2
,

≤ (2(n− 1)EenKL(q(xc | Φ(x))∥p(Xc))

− 2(n− 1)EeKL
(
PΘ
e (Xc | Φ(X) = Φ(x))∥πXc

)
+ lnExc∼p(Xc) exp (2(n− 1)∆ (SF ′

e))
)2

,

(18)

where ∆(SF ′
e) = |EenI [h (xc, t) ̸= y]− EeI [h (xc, t) ̸= y]|. Recall that Hoeffding’s inequality, we get the following

inequality.
P(e)2n−1 [∆ (SF ′

e) ≥ η] ≤ exp(−2n)η2 (19)

Then, denoting the density function of ∆(SF ′
e) as f (∆ (SF ′

e)) )

P(SF)2n−1 [∆ (SF ′
e) ≥ η] = e−2nη2

⇒
∫ ∞

η

f
(
∆(SF ′

e) d∆(SF ′
e) = e−2mη2

⇒ f(η) = 4mηe−2mη2

.

Then, we get
E [exp (2(n− 1)∆ (SF ′

e))]

=

∫ 1

0

f (∆ (SF ′
e)) exp (2(n− 1)∆ (SF ′

e)) d∆(SF ′
e)

≤
∫ 1

0

4n∆(SF ′
e) exp (−2n∆(SF ′

e)) exp (2(n− 1)∆ (SF ′
e)) d∆(SF ′

e)

=n

∫ 1

0

2∆ (SF ′
e) exp (−2∆ (SF ′

e)) d2∆ (SF ′
e)

=− ne−2∆(SF ′
e) (2∆ (SF ′

e) + 1)
∣∣∣1
0

<− ne−2∆(SF ′
e) (2∆ (SF ′

e) + 1)
∣∣∣∞
0

=n lim
∆(SF ′

e)→∞
−e−2∆(SF ′

e) (2∆ (SF ′
e) + 1) + n = n.

(20)
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Combining Eq. (20) with Eq. (18), by Markov’s inequality, we further get:

P(e)2n−1 [∆ (SF ′
e) ≥ η] ≤ n

eη

Suppose that η = ln(n/ϵ), and with the probability of at least 1− ϵ, we have that for all πXc ,

Eq. (18)

≤
(
2(n− 1)EenKL

(
P̃Θ
e (Xc | Φ(X) = Φ(x))∥πXc

)
− 2(n− 1)EeKL

(
PΘ
e (Xc | Φ(X) = Φ(x))∥πXc

)
+ ln(n/ϵ)

)2
Then we have ∣∣∣S̃F e(h,Θ)− SFe(h,Θ)

∣∣∣
≤
∣∣∣EenKL

(
P̃Θ
e (Xc | Φ(X) = Φ(x))∥πXc

)
−EeKL

(
PΘ
e (Xc | Φ(X) = Φ(x))∥πXc

)
+

1

2(n− 1)
ln(n/ϵ)

∣∣∣∣
≤
∣∣∣EenKL

(
P̃Θ
e (Xc | Φ(X) = Φ(x))∥πXc

)
+EeKL

(
PΘ
e (Xc | Φ(X) = Φ(x))∥πXc

)
+

1

2(n− 1)
ln(n/ϵ)

∣∣∣∣
According to the assumption, we have∣∣∣S̃F e(h,Θ)− SFe(h,Θ)

∣∣∣
≤EenKL

(
P̃Θ
e (Xc | Φ(X) = Φ(x))∥πXc

)
+

1

2(n− 1)
ln(n/ϵ) + C.

We get the results demonstrated in Theorem 4.7 (1).

For the term Mh
e (Θ,Ψ), we define ∆(Me) = Mh

e (Θ,Ψ) − M̃h
e (Θ,Ψ), where M̃h

e (Θ,Ψ) :=
EenExc∼P̃Θ

e (Xc|Φ(X)=Φ(x))Exc∼P̃Ψ
e (X

c|Φ(X)=Φ(x)) I [h (xc, t) ̸= h (xc, t)]. Different from Theorem 4.7 (1), the

monotonicity measurement has an extra expectation on X
c
. We apply Jensen’s inequality again and then use the variational

inference trick to get the derivation results.

4(n− 1)2∆(Me)
2
= 4(n− 1)2

(
Mh

e (Θ,Ψ)− M̃h
e (Θ,Ψ)

)2

(21)

Then, we consider the term Mh
e (Θ,Ψ) and M̃h

e (Θ,Ψ) separately.

Mh
e (Θ,Ψ)

=EenExc∼PΘ
e (Xc|Φ(X)=Φ(x))Exc∼PΨ

e (X
c|Φ(X)=Φ(x))I [h (x

c, t) ̸= h (xc, t)]

=Ee

[
EXcEX

c ln
PΘ
e (Xc | Φ(X) = Φ(x))

πXc
+ EXcEX

c

ln
PΨ
e (X

c | Φ(X) = Φ(x))

πX
c

+EXcEX
c ln

πXc

PΘ
e (Xc | Φ(X) = Φ(x))

πX
c

PΨ
e (X

c | Φ(X) = Φ(x))

exp (I [h (xc, t) ̸= h (xc, t)])]

≤E(x,t,y)∼e

[
KL

(
PΘ
e (Xc | Φ(X) = Φ(x))∥πXc

)
+KL

(
PΨ
e (X

c | Φ(X) = Φ(x))∥πX
c

)]
+ lnExc∼πXcExc∼πXc exp (EeI [h (xc, t) ̸= h (xc, t)])

(22)
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Similarly, for the empirical risk M̃h
e (Θ,Ψ):

M̃h
e (Θ,Ψ)

=E(x,t,y)∼enExc∼P̃Θ
e (Xc|Φ(X)=Φ(x))Exc∼P̃Ψ

e (X
c|Φ(X)=Φ(x))

I [h (xc, t) ̸= h (xc, t)]

=Ee

[
EXcEX

c ln
P̃Θ
e (Xc | Φ(X) = Φ(x))

πXc
+ EXcEX

c

ln
P̃Ψ
e (X

c | Φ(X) = Φ(x))

πX
c

+EXcEX
c ln

πXc

P̃Θ
e (Xc | Φ(X) = Φ(x))

πX
c

P̃Ψ
e (X

c | Φ(X) = Φ(x))

exp (I [h (xc, t) ̸= h (xc, t)])]

≤E(x,t,y)∼e

[
KL

(
P̃Θ
e (Xc | Φ(X) = Φ(x))∥πXc

)
+KL

(
P̃Ψ
e (X

c | Φ(X) = Φ(x))∥πX
c

)]
+ lnExc∼πXcExc∼πXc exp (EeI [h (xc, t) ̸= h (xc, t)]) .

(23)

Combining Eq. (23) with Eq. (22) and plugin to Eq. (21), we have

4(n− 1)2∆(Me)
2

=4(n− 1)2
(
Mh

e (Θ,Ψ)− M̃h
e (Θ,Ψ)

)2

≤
(
2(n− 1)

(
EenKL

(
P̃Θ
e (Xc | Φ(X) = Φ(x))∥πXc

)
+ EenKL

(
P̃Ψ
e (X

c | Φ(X) = Φ(x))∥πX
c

)
+Ee KL

(
P̃Ψ
e (X

c | Φ(X) = Φ(x))∥πX
c

))
+ lnExc∼πXcExc∼πXc exp (2(n− 1)∆ (M ′

e))
)2

,

where ∆(M ′
e) = |EenI [h (xc, t) ̸= h (xc, t)]− EeI [h (xc, t) ̸= h (xc, t)]|. The rest of the proof is similar to Theorem 4.7

(1), thus we get the theoretical results of Theorem 4.7 (2).
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