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ABSTRACT

In recent years, machine learning methods have been successfully applied to pre-
dict human behaviour in strategic settings. However, as available data on human
behaviour is not always large enough and people’s reasoning processes in differ-
ent types of games are various, learning to get a satisfactory prediction model is a
challenge. In this paper, we employ a meta-learning method to improve the learn-
ing performance in predicting human behaviour in normal form games. In partic-
ular, we first design a behavioural predictor as a deep neural network that captures
mixed human behaviour features based on cognitive psychology theory. Given a
collected dataset of experimental human behaviour and the learned mixed features,
we then construct tasks with unsupervised learning methods and use meta-learning
to improve the predictor’s generalisation performance on new games. Experimen-
tal results show that our proposed meta-learning method considerably increases
the accuracy and generalisation for predicting human strategic behaviour.

1 INTRODUCTION

The Nash equilibrium in game theory provides an important solution concept, namely that the opti-
mal outcome of a game is one in which there is no incentive for perfectly rational players to deviate.
However, the perfectly rational assumption does not apply to many practical scenarios and these
equilibrium strategies may lead to suboptimal outcomes. Experimental results in behavioural game
theory literature have proven this (Camerer, 2003; Camerer et al., 2004; Haruvy & Stahl, 2007; Ho
et al., 2004), and a wide range of models for predicting human behaviour in games are developed
by incorporating the cognitive biases and limitations derived from observations of play and insights
from cognitive psychology. For example, quantal best response model (McKelvey & Palfrey, 1995)
features that people become more likely to make errors as those errors become less costly, and
quantal level-k model (Costa-Gomes et al., 2001) captures the idea that humans can perform only
a limited number of iterations of strategic reasoning. Quantal cognitive hierarchy model (Wright
& Leyton-Brown, 2014), which combined both insights of quantal response and iterative reasoning,
is the state-of-the-art behavioural model for predicting human play in normal form games (NFGs)
(Wright & Leyton-Brown, 2017; 2019).

In recent years, machine learning methods have been successfully applied for predicting and under-
standing human behaviours in decision making problems (such as risk choice problems (Peterson
et al., 2021) and NFGs (Hartford et al., 2016)). An NFG involves at least two players and a player
should consider other players’ possible choices when making her own decision. Given the insight
of iterative reasoning, a deep neural network predictor containing feature layers and action response
layers was designed in (Hartford et al., 2016), which achieved state-of-the-art performance by learn-
ing on a combined experimental dataset with more than 12k observations over 128 NFGs. Although
this dataset is the largest dataset of human behaviour on NFGs to date, their final network used only
one action-response layer as the networks with more than one action-response layer showed signs
of over-fitting: performance on the training set improved steadily as the action-response layers are
added but test set performance suffered. Indeed, predicting human behaviour in games is challeng-
ing because available human behaviour data is not always large and people’s reasoning processes in
different types of games are various.
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Figure 1.1: Illustration of the approach in this paper. (a) Extracting features from dataset D by
modelling the underlying predictor as a designed neural network MFAR, (b) clustering with the
learned features to generate tasks {Tt} and (c) meta-training on these tasks with a meta-learning
method of second-order gradient optimisation to get a predictor with parameters θ.

To address this challenge, we design a deep neural network (MFAR) that combines several non-
strategic human behaviour features with the architecture of a mixture of experts (MoE) (Jacobs
et al., 1991) and then propose a meta-learning method (MFAR-ML) to get a predictor with good
generalisation performance on new games (see Figure 1.1). To perform meta-learning, we need to
construct tasks from the current problem of learning on the dataset of all NFGs in it, where a task is
to learn from a batch of the whole human behaviour dataset. However, most NFGs have no specific
actual meaning (in analogy with the languages of texts and the species of animals in pictures) that
is proper to be used to label and divide them into tasks. Given this, we use an unsupervised learning
method to automatically generate tasks by clustering the extracted mixture of features that learned
with our designed neural network MFAR.

The main contribution of this paper is as follows: (1) We design a deep neural network that embodies
mixed human behaviour features that follows cognitive psychology theory. (2) We propose a meta-
learning method to improve prediction performance by learning on tasks that generated by clustering
the extracted mixture of features of human behaviour. (3) We empirically evaluate our approaches on
experimental datasets and show that it significantly outperforms state-of-the-art on both the accuracy
and generalisation for predicting human strategic behaviour.

2 RELATED WORK

2.1 PREDICTION IN NORMAL-FORM GAMES

The research on predicting human behaviours in NFGs is mainly focused on the behavioural game
theory literature, and has gradually attracted the attention of the machine learning community in
recent years. The models proposed in behavioural game theory literature (Camerer, 2003; Camerer
et al., 2004; Haruvy & Stahl, 2007; Ho et al., 2004) are mainly defined to describe previously iden-
tified cognitive processes such as quantal best response (McKelvey & Palfrey, 1995) and limited it-
erative strategic reasoning (Costa-Gomes et al., 2001). Quantal cognitive hierarchy model (Camerer
et al., 2004), combined both insights of quantal response and iterative reasoning, is the state-of-
the-art model in the behavioural game theory literature for predicting human play in NFGs (Wright
& Leyton-Brown, 2017; 2019). Afterwards, a deep learning approach (Hartford et al., 2016) was
proposed to automatically perform cognitive modelling without relying on expert knowledge in be-
havioural game theory. Comparing to these methods, we defined a new deep neural network with
mixture of features and improve the learning performance with meta-learning.

2.2 META-LEARNING

Meta-learning is one of the fastest-growing areas of research in machine learning. Meta-learning
explores the common laws in data through machine learning methods, and finds a sufficient repre-
sentation model of this law. This law is used to complete other tasks and improve the generalisation
ability and training efficiency of the model. Typical meta-learning algorithms include model agnos-
tic meta-learning (MAML) (Finn et al., 2017), prototypical networks (ProtoNets) (Snell et al., 2017)
and construct tasks for unsupervised meta-learning (CACTUs) (Hsu et al., 2018), et.al. MAML
(Finn et al., 2017) trains a meta-model as initialisation and adapts the meta-model to new tasks by
gradient descent for several steps. Making a prototypical representation of each class and categoriz-
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ing a query point (that is, a new point) depending on how far off they are from each other is the basic
idea of ProtoNets (Snell et al., 2017). CACTUs (Hsu et al., 2018) automatically construct tasks from
unlabeled data using unsupervised learning, and then apply meta-learning to the generated tasks. In
this paper, we also use unsupervised learning as one of the two ways of constructing tasks for meta-
learning, and the difference is that we design a neural network that combing several non-strategic
human behaviour features with MoE to get exacted features for this task construction. Moreover,
compared with most researches that apply meta-learning to multi-task problems, our main purpose
of using meta-learning is to improve the learning performance under the condition of small samples.

While most meta-learning literature focus on image classification problems, some of them study
prediction problems such as human motion prediction (Gui et al., 2018) and human decision making
(Peterson et al., 2021). A proactive and adaptive meta-learning (PAML) method was proposed in
(Gui et al., 2018) by combing model-agnostic meta-learning and model regression networks for
human motion prediction. The work in (Peterson et al., 2021) studied to use large-scale experiments
and machine learning to discover theories of human decision-making. They fine-tune the models
that were previously already fitted to the aggregate data to data from individuals in their replication
dataset in order to obtain a model with an individual difference. These challenges, however, are
different from the NFGs studied in this paper, where a player should take into account other players’
potential choices when making her own.

3 PRELIMINARY

3.1 NORMAL-FORM GAMES

Formally, an NFG can be defined by a tuple G = (N ;A;u), where N = {1, 2, ..., n} is the set
of n players; A = A1 × A2 × ... × An is the set of possible action profiles; Ai is the set of
actions available to player i ∈ N . Moreover, agents’ strategies can be defined as a function ui :
A → R, each of which maps from an action profile to a utility for player i. A mixed strategy
of player i is a probability distribution over her set of possible action profiles. Rational agents
play to maximise their expected utilities and game theory studies how to play optimally in these
settings with multiple players. Although game theory solution concepts such as Nash equilibrium
have many appealing properties, experimental evidence shows that Nash equilibrium often fails to
describe human behaviour in games (Goeree & Holt, 2001), even among professional game theorists
(Becker et al., 2005).

3.2 PREDICTING HUMAN BEHAVIOUR IN NFGS

Formally, we denote an experimental dataset D = {(Gi, aij |j = 1, . . . , Ji)|i = 1, ..., I} as a set
containing I elements. Each element is a tuple containing a game Gi and a set of Ji pure actions
aij , each played by a human subject in Gi. A behavioural model (a predictor) is a mapping from a
game description G and a vector of parameters θ to a predicted distribution over each action profile
a in G, which we denote Pr(a|G, θ). The statistical frequency of the action choices in each game
can be viewed as a label for predictor learning.

The main two category of behavioural models for human playing in NFGs are cognitive psychology
models and deep neural network models, in which the former one is aim to describe previously
identified cognitive processes and the later one is designed and learned by deep neural networks.
The state-of-the-art deep neural network predictor consists well-designed feature layers and action
response layers (Hartford et al., 2016). We name their approach as neural network with feature
layers and action response layers (FAR) for the simplicity of description later in this paper.

4 METHODS

In this section, we present our method of meta-learning with auto-generated tasks for human be-
haviour prediction. First, we design a deep neural network with mixture of features and action
response layers (MFAR) to roughly model and be learned to get an underlying behavioural predic-
tor. Then, we propose three methods to construct tasks from the experimental human behaviour
dataset and use meta-learning to improve the prediction performance.

3



Under review as a conference paper at ICLR 2023

...

...Soft
max

Gating

Expert 1

Expert K

...

Expert 2

Gating

Expert 1

Expert K

...

Expert 2

Gating

Expert 1

Expert 2

Expert K

...

Gating

Expert 1

Expert 2

Expert K

...

×

×

×

Soft
max

×

×

×

Inputs Mixture of Features Softmax Action Response Layers Outputs

y

U
(c)

U
(r)

ar0
(r)

ar1
(r) ark-1

(r)
ark

(r)

ark-1
(c)ar0

(c) ar1
(c)

Figure 4.1: Modelling the underlying predictor (MFAR) as a deep neural network with mixture of
features and action response layers, where each non-strategic human behaviour feature is modelled
by an expert in MoE and the iterative strategic reasoning processes are modelled by the action
response layers.

4.1 MODELLING THE UNDERLYING PREDICTOR

Following the FAR designed in (Hartford et al., 2016), we model our network MFAR with two
parts: mixture of features (MF) and action response (AR) layers, as shown in Figure 4.1. Unlike
the feature layers in FAR, MFAR combines human behavioural features with the architecture of
MoE (Jacobs et al., 1991), which is an ensemble learning method that looks to explicitly tackle a
predictive modelling problem in terms of subtasks leveraging expert models.

Mixture of features The behavioural feature layers take the row and column player’s normalised
utility matrices U(r) and U(c) ∈ R of an NFG as input, and output a mixed non-strategic behavioural
feature (i.e., a probability distribution for each player over all of her actions), where the row player
has m actions and the column player has n actions. Five non-strategic human behaviours based
on cognitive psychology theory (Wright & Leyton-Brown, 2019) are chosen as features/experts in
MFAR: Maxmax payoff, Maxmin payoff, Minmax regret, Minmin unfairness and Maxmax welfare.
Details of these features’ mathematical formulation and network structures are given in Appendix
A.1. To combine these features, MFAR uses an MoE architecture to model the mixture of features
as shown in Figure 4.1, in which each expert models a non-strategic human behaviour feature and
the weights of experts (i.e., the outputs of gating) depends on the inputs (i.e., the payoff matrix of
a game). The gating network is a fully-connected network with one or two layers, and receives the
same input as the expert networks. Formally, the column player’s output of MF can be represented as
h
(
U(c)

)
=

∑K
k=1 g

(
U(c)

)
k
fk

(
U(c)

)
, where g

(
U(c)

)
k

is the kth logit of the output of g
(
U(c)

)
,

indicates the probability for expert fk. Here, fk, k = 1 . . .K are K expert networks and g represents
the gating network that ensembles the results from all experts.

This is different with the way in (Wright & Leyton-Brown, 2019) that the learned combing weights
are fixed and independent with inputs. Obviously, the dependence in this MoE architecture allows
the combing weights (i.e., values of g

(
U(c)

)
and g

(
U(r)

)
) vary with different games (i.e., U(c)

and U(r) of an NFG G). This is more realistic, because in different games, a person may follow
different criteria in mind to make decisions.

To note, the experts in this designed MFAR do not retain any learnable parameters, only the gating
network have learnable parameters. Moreover, to reduce model parameters, the parameters of both
the row and the column player’s gating network are shared in MFAR.
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Action response layers After the softmax layer, the column player’s distribution over each action
profile is calculated and can be seen as a mixed level-0 heuristic for her, i.e., ar(c)0 = h(c). We use
the same architecture AR layers as that defined in (Hartford et al., 2016). Thus, we can compute
expect utility of the row player with respect to the vector of beliefs about the column player’s choice
of actions ar(c)0 and takes a softmax over it to get ar(r)1 as follows:

ar(r)1 = softmax

(
λ
∑
j

u
(r)
1,jar(c)0,j , . . . , λ

∑
j

u
(r)
m,jar(c)0,j

)
(1)

Where λ is a scalar sharpness parameter to sharpen the resulting distribution. Following this way,
other units of action response layers can be calculated. Although multiple action-response layers
tested in the deep network in (Hartford et al., 2016), their final network used only one action-
response layer because more than one action-response layer showed signs of over-fitting: perfor-
mance on the training set improved steadily as they added AR layers but test set performance suf-
fered. However, statistics in (Ho et al., 2004) show that cognitive levels many people are more than
one. In this paper, we expect to use meta-learning eliminate to this over-fitting and effectively utilise
multi-layer action-response architecture.

Representational generality of our model Thus we have defined the model of MFAR, in which
MF embodies several human behaviour features that follows cognitive psychology theory. If we
don’t specify the features in MF, MFAR is more general than FAR as the later one can be derived
from the former one by setting all outputs of gating units as one. Therefore, as FAR, MFAR can
express several cognitive psychology models such as the quantal cognitive hierarchy (Wright &
Leyton-Brown, 2014), quantal level-k (Stahl II & Wilson, 1994), cognitive hierarchy (Camerer et al.,
2004) and level-k (Costa-Gomes et al., 2001). Moreover, given its neural network architecture,
MFAR is more general than that proposed in (Wright & Leyton-Brown, 2019) takes weighted linear
or logit specification to ensemble the non-strategic behaviours.

Given this, MFAR can be extended to a model with high representational generality and can be
learned with the experimental human behaviour dataset to get an underlying behavioural predictor.
Moreover, to improve the predictor’s learning generalisation on new games, we next propose meth-
ods of constructing tasks from the human behaviour dataset and meta-learning on these tasks to get
our final model.

4.2 CONSTRUCTING TASKS

To perform meta-learning, we need to construct behavioural prediction tasks {Tt} from the problem
of predicting over all games {Gi} in D. Here, a task Tt is to learn from a batch of the whole human
behaviour dataset. Tt consists of K training games and statistics of actions human subjects played,
R query games and statistics of actions human subjects played. That is, in a task, we have K + R
games and statistics of actions.

In order to construct tasks, although it is not easy to use the actual meaning of NFGs (such as the
languages of texts and the species of animals in some pictures), we can facilitate some abstract
features to do this. For example, in an NFG that all players have more actions available than in
another NFG, humans likely take more effort to make a decision. Moreover, for the two NFGs with
and without dominant equilibrium, humans’ decision-making process should also be very differ-
ent. In addition, human population are heterogeneous because for sub-populations of players using
different behavioural rules (i.e., action selection principles.) (Haruvy & Stahl, 2007). Given this,
we can divide the whole predicting problem into several tasks so that NFGs in a same task have
some similarity. Next, we propose three methods to construct tasks given different features (one is
human-specific and the other two are automatically generated).

Constructing tasks with game theoretic features Research results in (Wright & Leyton-Brown,
2017) show that the performance of a prediction model is sensitive to the selected games with dif-
ferent properties of dominance solvability and equilibrium structure. However, the neural networks
both designed in FAR and MFAR have not featured this. Given this, we partition the games by (1)
whether an iterated removal of dominant strategies (either strict or weak) might solve a game and
how many iterations were necessary, and (2) the number and type of Nash equilibria that each game
possesses. These game theoretic properties are listed in Appendix A.2.
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Algorithm 1 Meta-learning for predicting human behaviour in NFGs
Input: experimental dataset D including the games and statistics of actions human played, predictor
Pθ with initial parameters θ
Parameter: α, β: meta-learning rate hyper-parameters
Output: Learned predictor Pθ

1: Randomly initialise predictor parameters θ.
2: Extract features and construct tasks {Tt} from D by using one of the three methods proposed
3: while not done do
4: Sample batch of tasks from {Tt}
5: for all Tt in the batch do
6: Evaluate ∇LTt

(Pθ) with respect to K games in this task
7: Compute adapted parameters with gradient descent: θ′t = θ − α∇θLTt

(Pθ)
8: end for
9: Update θ = θ − β∇θ

∑
Tt

LTt
(Pθ′

t
)

10: end while
11: return Pθ

Constructing tasks by deep clustering with payoff matrix For the original game set {Gi}, ac-
cording to its potential characteristics, the tasks of meta-learning can be constructed by DeepCluster
(Caron et al., 2018), a deep clustering approach that simultaneously learns the neural network’s pa-
rameter settings and the clustering of the output features. Generally, we haven’t the label information
that conforms to the game category, so we use an auto-encoder network (Rumelhart et al., 1985) for
unsupervised learning in the deep clustering method. The auto-encoder network is composed of en-
coder and decoder, and guides the neural network to learn a mapping relationship by taking the input
data as supervision information. When training the network, we expect to get a reconstructed output
that can accurately characterise the games in {Gi}, and cluster the output information (i.e., a parti-
tion of the game set {Gi} to get tasks {Tt}). The detailed network structure and hyper-parameters
of the adopted auto-encoder is listed in Appendix A.5.

Constructing tasks by clustering with mixture of features As shown in Figure 1.1, another way
to realise the auto-generation of tasks is using the learned mixture of features in MFAR, i.e., using
h
(
U(c)

)
and h

(
U(r)

)
of a game G with payoff matrix U(c) and U(r). Specifically, once we have

got an underlying predictor by learning with NFAR from all games in D, we can take h
(
U(c)

)
and h

(
U(r)

)
as the features of a game, select the coefficient of association to measure similarity

of these sample features, and carry out the clustering with Gaussian mixture models (Diaz-Rozo
et al., 2020) according to the distribution form of features in space. In addition, as h

(
U(c)

)
=∑K

k=1 g
(
U(c)

)
k
fk

(
U(c)

)
, we also can use only g

(
U(c)

)
or

{
fk

(
U(c)

)}
of a game as its features

for clustering. Intuitively, g
(
U(c)

)
and

{
fk

(
U(c)

)}
respectively represents weights and values of

non-strategic human behaviours, and may work in different ways. We also compared with using
these two features for clustering as ablation experiments and the results are shown in Appendix A.6.

4.3 META-TRAINING

Given the constructed tasks, we use meta-learning to improve predictor’s the learning performance.
The meta-learning algorithm we use in this paper is model agnostic meta-learning (MAML) (Finn
et al., 2017), which is one of the state-of-the-art meta-learning algorithms. Through a meta-learning
process that gains knowledge from a large number of behaviour prediction tasks {Tt} with small
samples, MAML enables the meta-learner to produce a model θ with high accuracy and generali-
sation. The loss LTt(Pθ) is defined by a certain function to evaluate the prediction performance on
task Tt with model Pθ. In addition, our task construction method via unsupervised learning makes
this meta-learning can be seen as a variant of CACTUs(Hsu et al., 2018).

Thus, we have presented all the key parts of our method and here we present our algorithm of
training a predictor with meta-learning in Algorithm 1. The input includes experimental human
behaviour dataset D, the network model of the predictor Pθ (such as FAR, MFAR or other models)
with parameters θ, and two hyper-parameters of meta-learning rates α, β, where α controls the
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learning rate in the inner-loop and β controls the learning rate in the outer-loop. The tasks {Tt} can
be constructed by using one of the methods proposed in previous section. Then we use MAML to
learn to get the model Pθ by using both the inner-loop and outer-loop training.

5 EXPERIMENTAL EVALUATION

The goal of our experimental evaluation are designed to answer the following research questions:
(1) Can the MoE architecture in MFAR improve the learning accuracy? (2) Which one of the three
ways for constructing tasks is most effective? (3) Can meta-training improve the learning accuracy
and model generalisation? The experimental setup and main results are presented in this section and
other results are provided in Appendix.

5.1 EXPERIMENTAL SETUP

Following (Hartford et al., 2016), we collect a dataset that combines observations from 9 human-
subject experimental studies conducted by behavioural economists, in which human subjects were
paid to select actions in NFGs. The payment depended on the subject’s actions and the actions of
their unseen opposition who chose an action simultaneously. Given this, we get a dataset with 11827
observations of 127 unique games for experimental evaluation. Details of the combination of the
dataset are listed in Appendix A.3

We set meta-learning rate of the inner loop and outer loop in meta-training for all the models to
0.005 and use Adam as the meta-optimiser. The initial learning rate is 0.0002, β1 = 0.9, β2 = 0.99
and ϵ = 10−8. The gating network and action response layers use L1 regularisation with a parameter
of 0.01. During the meta-training period, we use 10 meta-gradient updates to train 31k epochs. We
train all of these networks on a single computer with an Intel i7 CPU, 32 GB of RAM.

We focus on the model’s ability to predict the distribution over the row player’s action, rather than
just its accuracy in predicting the most likely action. As a result, we fit models to maximise the
likelihood of training data P(D|θ) (where θ denotes the parameters of the model and D is the dataset)
and evaluate them in terms of negative log-likelihood on the test set.

5.2 RESULTS

Benefit of Mixture of Features We compare MFAR with FAR on a variety of configurations of
the MF layers and AR layers. Hyperparameters of the final MFAR and FAR are listed and compared
in Appendix A.4. Figure 5.1 (a) shows the effect of using a different number of gating units and
layers in MF on performance with one AR layer. We found that the two-layer gating network with
5 units of MFAR (blue curve) performed generally in training, but well in testing. Meanwhile, a
two-layer gating network with 50 units makes MFAR perform better on both the training set and test
set. Clearly, adding a third gating layer results in better training performance, but the three-gating
network (dark blue curve) makes the model easier to overfit, therefore, the test loss is about 13.17%
higher than that of the two-gating network model. After training 25k epochs, the test loss of MFAR
(50,50) is 9.16% lower than that of the best trained FAR model (red curve). In summary, combined
with training loss and test results, MFAR (50,50) is the best model when the number of AR layers
is one.

Figure 5.1 (b) and (c) consider the effect of varying the number of AR layers on performance. When
the AR layer is two or higher, the test performance of FAR (50,50) is worse and overfitting occurs.
On the contrary, for MFAR (50,50) model (sky blue curve), different AR layers have little effect
on the test accuracy of the model. Hence, we picked AR = 1 since it performs well during training
and reduces the negative log-likelihood of test loss to the lowest of all AR layers. Therefore, our
final underlying network used only one AR layer. Our model combines human behavioural features
with the architecture of MFAR achieves the better performance under the same amount of training
data, and has made a good balance between efficiency and effectiveness. Thus, our final underlying
network contains two layers of 50 gating units and one AR layer.

Task Construction By using each of the methods proposed in section 4.2, we construct three
tasks and visually analyse these tasks’ clustering effects with t-sne. As shown in Figure 5.2 (a)
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(a) 1 AR layer (b) 2 AR layers (c) 3 AR layers

Figure 5.1: Loss curves of original FAR and MFAR in the training process with different AR layers
and different neural networks are shown in the top three figures and the performance of testing is
reported in the bottom table. The lower loss MFAR (50,50) model (shown as a sky blue curve)
performs well in the training process and test results. The shadow parts of curves represents 95%
confidence intervals, with results from 10 different random seeds.

(a) D (b) NE (c) DC (d) MF

Figure 5.2: Constructed tasks’ visualisation via t-sne for constructing methods based on (a) games’
dominance solvability (D), (b) games’ equilibrium structure (NE), deep clustering with payoff ma-
trix (DC) and (d) clustering with mixture of features (MF).

(b), it is difficult to see obvious clustering effect from the tasks constructed with the properties of
dominance solvability (D) and Nash equilibrium structure (NE). The tasks constructed with deep
clustering (DC) are visually shown in Figure 5.2 (c), and the main characteristics of the data are
clearly distinguished. The best clustering effect belongs to the tasks constructed with mixture of
features (MF), in which the tasks are divided into three distinct types of data, as shown in the Figure
5.2 (d). Additional results of the tasks constructed by methods with more different settings are given
in Appendix A.6.

Results of Prediction Performance We choose the negative log-likelihood to measure the pre-
diction performance of these models, as shown in Table 1. Both FAR and MFAR have trained 25k
epochs, but the assessment differs. FAR needs to be retrained 100 times on 10-fold cross-validation
to acquire better results, whereas MFAR does not need fine-tuning and has far superior verification
performance than FAR. We evaluate the performance of the model on the total dataset with 10-fold
cross-validation after training 31k epochs for FAR-ML and MFAR-ML. It can be seen from Table 1
that the overall performance of MFAR and its meta-training process is significantly better than FAR
and FAR-ML. In particular, MFAR-ML(MF-3C) performs well in clustering results and obtains the
best performance among all task construction methods for MFAR-ML. Detailed clustering results
analysis and DBI indicators are shown in Appendix A.6. For the test loss, MFAR-ML(MF-3C) im-
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Table 1: Prediction performance of FAR, MFAR and both of them with four different construction
of tasks. DC-3C and DC-4C represent the use of DC to construct three and four classes of tasks for
meta-training, respectively. Similarly, the same is true for MF-3C and MF-4C.

Method NLL ±95%CI
Test Loss Training Loss

FAR 1497.25±2.85 13230.50±4.46
FAR-ML(D) 959.02±5.85 8566.22±12.21
FAR-ML(NE) 938.89±4.32 8449.56±3.12
FAR-ML(DC-3C) 951.03±0.36 8531.46±0.24
FAR-ML(MF-3C) 1376.75±0.17 12389.40±0.38
FAR-ML(DC-4C) 1067.66±0.98 9606.39±5.57
FAR-ML(MF-4C) 990.95±1.02 8918.52±0.43
MFAR 794.68±0.76 7151.28±1.28
MFAR-ML(D) 883.62±4.67 7952.44±2.54
MFAR-ML(NE) 889.79±5.41 8008.09±1.81
MFAR-ML(DC-3C) 886.47±0.23 7978.13±2.48
MFAR-ML(MF-3C) 744.84±1.15 6702.91±0.56
MFAR-ML(DC-4C) 893.10±0.68 8037.84±0.78
MFAR-ML(MF-4C) 773.35±0.49 6957.54±0.18

Table 2: Generalisation (with 95% confidence intervals) performance on the validation set. We
compared the model performance of FAR and MFAR with or without a meta-training process.

FAR FAR-ML(MF-3C) MFAR MFAR-ML(MF-3C)
Generalisation Error 1703.93±80.81 1451.48±11.47 1243.37±16.94 1109.56±14.68

proves the accuracy by 50.30% compared with the previous best model, which is quite accurate and
far superior to FAR.

As shown in the above results of clustering findings and prediction performance, clustering with
a mixture of features is the best method for MFAR-ML. With three tasks, MFAR-ML(MF) has
the highest prediction accuracy in a 10-fold cross-validation when it comes to clustering findings.
Hence, we finally choose clustering with a mixture of features to generate MFAR-ML tasks.

Results of Generalisation Performance We validated the generalizability of our approach to new
tasks using 80% trained and 20% validated proportional datasets. Instead of using the same 10-fold
cross-validation method as the results in Table 1, we use the hold-out method. The training set is
used for meta-training and the validation set is applied to detect the generalisation performance of
the model. As shown in Table 2, meta-training largely improves the generalisation of the model. In
particular, the meta-training effect on MFAR is more significant, exceeding the existing state-of-the-
art level. In conclusion, MFAR with a meta-training process can further capture iterative strategic
reasoning with good generalisation performance in the face of new games.

6 DISCUSSION AND CONCLUSIONS

In this work, we have proposed a method of meta-learning with auto-generated tasks for predicting
human behaviour in NFGs. Compared with FAR, a state-of-the-art human strategic behaviour pre-
dictor with a deep neural network, our MFAR performs well both when using itself and using it in
meta-training processes. Experimental results show that MFAR and MFAR-ML dramatically out-
perform FAR in prediction performance. Among all the task construction methods, clustering with
a mixture of features has achieved the best performance, which means that the unsupervised learn-
ing method significantly outperforms the classical game theoretic method to generate meta-learning
tasks. However, it is still an open problem of exploring a perfect representation for constructing
meta-learning tasks for NFGs. In addition, extending our approach to more complex environments
such as extensive-form games and stochastic games is a direction of future work.
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A APPENDIX

A.1 NON-STRATEGIC HUMAN BEHAVIOURS IN NFGS

We use the architecture of MoE to ensemble five non-strategic behaviours (Wright & Leyton-Brown,
2019). The mathematical formulation of these five non-strategic behaviours are as follows:

• Maxmax payoff. A maxmax action for a player is the best action in best case. That is:
fmaxmax(i) = 1

l if i ∈ argmaxi∈{1,...,m} maxj∈{1,...,n} ui,j ∈ U(r) and fmaxmax(i) = 0
otherwise.

• Maxmin payoff. In contrast, a maxmin action for a player is the action with the best worst-
case guarantee. That is: fmaxmin(i) = 1

l if i ∈ argmaxi∈{1,...,m} minj∈{1,...,n} ui,j ∈
U(r) and fmaxmin(i) = 0 otherwise.

• Minmax regret. The minimax regret criterion is the criteria that minimise the maximum
regret. It is a kind of analysis that evaluates the maximum regret a player will have by
choosing an action and calculate the best actions that will make the regret minimum. The
regret is defined as r(i, j) = maxi ui,j − ui,j , ui,j ∈ U(r) and the Minimax regret is:
fminmax regret(i) = 1

l if i ∈ argmini∈{1,...,m} maxj∈{1,...,n} ri,j and fminmax regret(i) = 0
otherwise.

• Minmin unfairness. Fairness of outcomes is a common feature of human play in strategic
situations and the minmin unfairness can be defined as: fminmin unfairness(i) = 1

l if i ∈
argmaxi∈{1,...,m} minj∈{1,...,n} |u

(r)
i,j − u

(c)
i,j | and fminmin unfairness(i) = 0 otherwise.

• Maxmax welfare. Finally, a nonstrategic player might choose an action that produces
the best overall benefit to the players collectively. That is: fmaxmax welfare(i) = 1

l if i ∈
argmaxi∈{1,...,m} maxj∈{1,...,n} |u

(r)
i,j + u

(c)
i,j | and fmaxmax welfare(i) = 0 otherwise.

The network structure of these five non-strategic behaviours are as follows:

• Maxmax payoff. We denote H(1) and H(2) as the output of the first and second expert
layers, respectively, and H

(1)
r is its maximum row pooling output. Let w1 = w2 = 1, and

b = 0 where is some scalar b ≥ mini,jU
(r)
i,j for mini,jU

(r)
i,j = 0. Then

H(1) = relu(U (r) + b)

H(2) = relu(cH(1)
r )

where U (r) is the payoff matrix of row players, and b is the bias of the neural network.
That is, all the elements in each row of H(2) equal an positive affine transformation of the
maximum element from the corresponding row in U (r).

f
(1)
i = softmax(H(2))

Therefore, as c → ∞, f (1)
i → fmaxmax(i) as required.

• Maxmin payoff. Max Min Payoff is derived similarly to Max Max except with w1 =

−1, and b1 = b where b ≥ maxi,jU
(r)
i,j ; we remain w2 = c as some large positive

constant.Then H(1) reduces to,

H(1) = relu(−U (r) + b)

H(2) = relu(cH(1)
r )

f
(1)
i = softmax(H(2))

Therefore, as c → ∞, f (1)
i → fmaxmin(i) as required.
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• Minmax regret. Let b1 = 0, and we keep w2 = c as some large positive constant.Then
H(1) reduces to,

H(1) = relu(U (r)
c − U (r))

Where U
(r)
c is the maximum column pooling of the output of U (r).

H(2) = relu(cH(1)
r )

f
(1)
i = softmax(H(2))

Therefore, as c → ∞, f (1)
i → fminmax(i) as required.

• Minmin unfairness.
H(1) =

∣∣∣U (r) − U (c)
∣∣∣

Which gives us a measure of ”unfairness” as the absolute difference between the two pay-
offs.

f
(1)
i = softmax(cH(1)

r )

Therefore, as c → ∞, f (1)
i → fminmin(i) as required.

• Maxmax welfare.
H(1) =

∣∣∣U (r) + U (c)
∣∣∣

Which represent the overall welfare as the absolute sum between the two payoffs.

f
(1)
i = softmax(cH(1)

r )

Therefore, as c → ∞, f (1)
i → fmaxmax(i) as required.

A.2 GAME THEORETIC PROPERTIES

Three game theoretic properties of dominance solvability are as follows (Osborne et al., 2004):

• Weak dominance solvable. Dominant strategies are considered as better than other strate-
gies, no matter what other players might do. In game theory, there are two kinds of strategic
dominance. One is weakly dominance, of which a strategy is that provides at least the same
utility for all the other player’s strategies, and strictly greater for some strategy.

• Strict dominance solvable. The other kind of strategic dominance is strictly dominance, of
which a strategy is that always provides greater utility to a player, no matter what the other
player’s strategy is.

• Not dominance solvable. Not dominance solvable means there is no strictly or weakly
dominant strategy dominance solvable for a game.

Three game theoretic properties of equilibrium structure are as follows (Osborne et al., 2004):

• Single Nash equilibrium, which is pure. A Pure strategy Nash equilibrium is an action
with the property that no single player i can obtain a higher payoff by choosing an action
different from ai, given every other player i adheres to their choice aj .

• Single Nash equilibrium, which is mixed. A Mixed strategy Nash equilibrium is a mixed
strategy action profile with the property that single player cannot obtain a higher expected
payoff according to the player’s preference over all such lotteries.

• Multiple Nash equilibria. This features a game with multiple Nash equilibria which are
pure or/and mixed.
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Table 3: Our datasets consist of 127 unique games, each experiment allows participants to play 3 to
20 games. The “games” column shows how many games of the complete datasets we utilised, and
the “num”column represents how many observations were included in each dataset.

Source (Hartford et al., 2016) Our work
Games Num Games Num

(Stahl II & Wilson, 1994) 10 400 10 400
(Stahl & Wilson, 1995) 12 576 12 576

(Costa-Gomes et al., 2001) 18 1296 16 1252
(Goeree & Holt, 2001) 10 500 3 300
(Cooper et al., 2003) 8 2992 16 2992
(Haruvy et al., 2001) 15 869 15 869

(Haruvy & Stahl, 2007) 20 2940 20 2940
(Stahl & Haruvy, 2008) 18 1288 18 1288

(Rogers et al., 2009) 17 1210 17 1210
All 9 128 games, 113 unique 12071 127 unique 11827
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Figure A.1: The normal form game data set diagram. Given such a matrix as input we aim to predict
the distribution over the row player’s choice of actions defined by the observed frequency of selected
actions shown on the bottom.

A.3 DATA

The dataset we collect comes from 9 human experimental experiments that behavioural economists
conducted, in which participants made decisions in NFGs. We used the open source code for the
FAR model, but collated a slightly different dataset. The payoff matrices of 2× 4 in (Costa-Gomes
et al., 2001) and (Goeree & Holt, 2001) are not included, hence the FAR model on our dataset
performs differently from how it did in the original work (Hartford et al., 2016).

We divided the payoff matrix of both sides of a game into two for our dataset, which increased
the number of datasets, but there was a draw. In a symmetric game, the payoff matrices of both
sides were the same, however, the number of actions was different. In this case, we kept the payoff
matrix belonging to the row player, removed other payoff matrices that were similar to it, and finally
reduced the number of data sets from 147 to a unique 127. The comparison between the dataset used
in (Hartford et al., 2016) and the one in our work is shown in Table 3.

A.4 HYPER-PARAMETERS AND MORE DETAILS OF THE EMPIRICAL RESULTS

In the mixture of experts structure, the experts do not retain any learnable parameters, only the gating
network and meta-learning component have learnable parameters and hyperparameters. Comparing
hyperparameters of FAR and MFAR Models, is shown in Table 4.

A.5 THE ARCHITECTURE OF THE AUTO-ENCODER

The auto-encoder is used to extract the main characteristics of the return matrix of both sides of the
game. The network architecture and parameters are shown in Table 5.
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Table 4: Detailed hyper-parameters of FAR and MFAR models
FAR MFAR

Feature layers 2 hidden layers 2 gating layers
Feature units (50, 50) (50, 50)
Action Response layers 1 layer 1 layer
AR units 50 50
Optimizer Adam Adam
Optimizer Learning rate 0.0002 0.0002
β1 0.9 0.9
β2 0.99 0.99
Dropout 0.2 /
L1 regularization 0.01 0.01
Training epoch 25000 32500

Table 5: The network structure and hyper-parameters of auto-encoder
Hyper-parameters Value

Hidden layers 2 layers
Neural units (per layer) (8,4,2)

Loss function MSE
Batch size 10
Optimiser Adam

Learning rate 0.01
Training epoch 500

A.6 ABLATION STUDY

We carried out an extensive ablation study, as shown in Figure A.2, to assess the efficiency of
task construction methods. As the output of MF is h

(
U(c)

)
=

∑K
k=1 g

(
U(c)

)
k
fk

(
U(c)

)
, we have

analysed that weights and values of non-strategic human behaviours (i.e., g
(
U(c)

)
and

{
fk

(
U(c)

)}
) of a game can also be used for clustering. Hence, we also tested these two methods and the results
are shown in Figure A.2(a) and (b). Each column represents one of the four clustering approaches
discussed. Clustering creates a visualisation for 3 to 5 categories of the same work from top to
bottom. Clearly, MF outperforms the other three clustering algorithms on all tasks, whereas the
others fail to classify the data. However, we discovered a problem with too little data labelled 2
when clustering into 5 classes in the MF clustering findings, which was easily caused by overfitting
in MAML training. As a result, clustering into three or four tasks is the optimum option for MF.

To better assess the quality of clustering, we quantified the clustering performance using an internal
evaluation index, the DBI index, to make the results more convincing. As the t-SNE visualisation
is strongly influenced by the parameter, we conducted ablation experiments on the parameter and
used different parameter values for t-SNE visualisation of the data, as shown in Figure A.3, and the
results were all consistent with those in the paper, as shown in Table 6.

As shown by Table 6, the clustering results of MF are overall better than the clustering results of the
other methods. Although the DBI metric is best when MF is divided into 4 classes, the total number
of samples is only 127. Considering that too few samples would affect the training effect, the final
model chose MF clustered into 3 classes as the task division for meta-learning.

Table 6: DBI value under different t-SNE parameter settings
Parameter Value D NE DC MF-3 MF-4 MF-5

10 5.5809336 8.7850499 1.5515862 0.5790317 0.266343 0.3537695
15 4.8725202 8.7397419 1.3158266 0.4650905 0.207548 0.2459401
20 5.1242206 8.8724134 1.0976955 0.499458 0.104965 0.1780445
25 5.7262574 8.8242524 1.1597403 0.4785413 0.089039 0.2362738
30 4.741271 8.5563453 1.0422968 0.4269047 0.087788 0.3767202
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(d) MF(a) DC (b) Gating Out (c) Experts Out

Figure A.2: Ablation analyses clustering results of four task construction methods. 2D t-SNE exhibit
distinct clusters that correspond to performance where deep clustering with payoff matrix (DC),
clustering with the gating out, clustering with experts out, and clustering with mixture of features
(MF).
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Figure A.3: Clustering results under different t-SNE parameter settings
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