
Under review as a conference paper at ICLR 2022

EFFICIENT PACKING: TOWARDS 2X NLP SPEED-UP
WITHOUT LOSS OF ACCURACY FOR BERT

Anonymous authors
Paper under double-blind review

ABSTRACT

We find that at sequence length 512 padding tokens represent in excess of 50% of
the Wikipedia dataset used for pretraining BERT (Bidirectional Encoder Repre-
sentations from Transformers). Therefore by removing all padding, we achieve
a 2x speed-up in terms of sequences/sec. To exploit this characteristic of the
dataset, we develop and contrast two packing algorithms. Both algorithms rely
on the assumption that sequences are interchangeable and therefore packing can
be performed on the histogram of sequence lengths, rather than per sample. This
transformation of the problem leads to algorithms which are fast and have linear
complexity in dataset size. The shortest-pack-first histogram-packing (SPFHP)
algorithm determines the packing order for the Wikipedia dataset of over 16M
sequences in 0.03 seconds. The non-negative least-squares histogram-packing
(NNLSHP) algorithm converges in 28.4 seconds but produces solutions which are
more depth efficient, managing to get near optimal packing by combining a maxi-
mum of 3 sequences in one sample. Using the dataset with multiple sequences per
sample requires adjusting the model and the hyperparameters to keep the predic-
tive quality of the model. We demonstrate that these changes are straightforward
to implement and have relatively little impact on the achievable performance gain
on modern hardware. Finally, we pretrain BERT-Large using the packed dataset,
demonstrating no loss of convergence and the desired 2x speed-up.

1 INTRODUCTION

Since its introduction in 2019, BERT (Devlin et al., 2019a) has been the backbone driving the most
exciting advances in Natural Language Processing (NLP). Pre-training BERT from scratch requires
substantial computational resources which may be out of reach for researchers and industry pro-
fessionals. To some extent this has been addressed by the public release of pre-trained models of
different sizes and depths (Turc et al., 2019). The introduction of ALBERT (Lan et al., 2019) and
Switch transformers (Fedus et al., 2021) further improved the accessibility of larger models. How-
ever, the dependence on pre-trained models limits the ability of researchers to explore new backbone
architectures. Furthermore, it limits the extent to which practitioners in industry can leverage inter-
nal datasets and adapt the model to their particular needs. Hence, any approach that speeds up the
pre-training process is desirable from an economical as well as environmental perspective.

In this paper, we present efficient methods to enable researchers to accelerate the pre-training of
BERT by as much as 2x without loss of accuracy. The de-facto pre-training dataset Wikipedia,
as well as many other NLP datasets, have a skewed distribution of sequence lengths. We show
that padding tokens (wasted compute) represent 50% of all tokens of the Wikipedia pre-training
dataset at sequence length 512. Thus, by avoiding processing the padding tokens one can get a
2x speed-up. Overall, the lengths range between 5 tokens up to 512 (see Figure 1). Samples of
length 512 represent only 23.5% of the dataset, a surprising result given that the pre-processing
in BERT attempts to “pack” together sentences so as to fill the sequence length as completely as
possible (Devlin et al., 2019c). While processing the padding tokens wastes compute, it is still
the most standard approach for leveraging modern massively-parallel compute especially on GPUs.
These are most efficient when applying the same operation to each sequence in a batch. By padding
all sequences to the same maximum sequence length, they can easily be batched. We note that this
naive batching is the most widely used and provided in the vanilla BERT implementation as well as
the Hugging Face framework (Wolf et al., 2020) and thus considered as our baseline for comparison.

1

Under review as a conference paper at ICLR 2022

0 25 50 75 100 125
sequence length

0.000

0.001

0.002

0.003

0.004

0.005

pr
ob

ab
ilit

y
de

ns
ity

59.9%

max. sequence length: 128
theoretical max. speed-up: 1.210

0 100 200 300 400
sequence length

0.000

0.001

0.002

0.003

0.004

0.005
30.6%

max. sequence length: 384
theoretical max. speed-up: 1.742

0 100 200 300 400 500
sequence length

0.000

0.001

0.002

0.003

0.004

0.005
23.5%

max. sequence length 512
theoretical max. speed-up: 2.001

Figure 1: Wikipedia BERT pre-training dataset sequence length histograms (token count excluding
padding) for different maximum sequence lengths. Based on the Wikipedia article dump from Oc-
tober 1st 2020. The theoretical speed-up relates to not using any padding tokens and not having any
overhead from processing the different lengths.

The most obvious way to reduce the extent of padding in the dataset is to group samples by size be-
fore batching (SORT), i.e., process the shorter samples together and longer samples together. BERT
is pre-trained in two phases, where the first phase uses sequence length 128 for 900K steps and
the second phase uses sequence length 512 for 100K steps. However even by splitting the train-
ing in this way, the wasted compute due to padding is approximately 20% (see Figure 1). Other
examples of this “sorted batching” approach can be found in Faster Transformer (NVIDIA, 2021),
lingvo (Shen et al., 2019) fairseq (Ott et al., 2019), and RoBERTa (Liu et al., 2019), which group
samples of similar size together in one batch and fill up with padding only to the maximum length in
this batch. This approach can be highly efficient in cases where the dataset length is multiple orders
of magnitude larger than the batch size and the number of different sequence lengths. Despite its
high computational efficiency, this approach has multiple drawbacks. We outline these below and
propose an alternative which maintains the high efficiency, while also circumventing the downsides.
Firstly, sorting the data can reduce the overall convergence speed when the batch size is large be-
cause it violates the i.i.d. assumption on the data distribution (Bottou et al., 2018; Meng et al., 2019).
Secondly, processing batches with shorter sequence lengths under-utilizes the compute compared to
running the same batch size with a longer sequence length. For GPUs, a common heuristic to miti-
gate this effect is to adjust the batch size to keep the number of processed tokens near constant (Ott
et al., 2019; Liu et al., 2019). In general however, the relationship between the sequence length
and the optimum batch size is more complex and maximizing compute utilization can require the
model to be sharded differently across multiple accelerators. Avoiding this, often manual process,
is important for ease of use and the portability of methods across different hardware architectures.
Thirdly, modern NLP applications are optimized and compiled for fixed tensor sizes using tools
such as XLA (XLA, 2021; Fedus et al., 2021), which provides a ≈ 7x acceleration for BERT in
MLPerf™ (Mattson et al., 2020) compared to the non-XLA baseline (XLA, 2021). Changing the
sequence length or batch size requires re-optimization of the computational graph and recompila-
tion of the program for the new tensor shapes. For complex models such as BERT, optimization
and recompilation take a non-negligible amount of time. Even if one pre-compiled and cached all
combinations of batch size and sequence length, the kernels would still need to be re-uploaded to
the device every time the shapes change. Depending on how frequently the tensor shapes change,
the overhead from switching kernels adds up. To avoid these issues, it is preferable (and common)
to work with fixed tensor shapes for the entire duration of the training run.

More advanced approaches for reducing the padding overhead rely on custom computational kernels.
Loosely these are referred to as “un-padding” approaches. In Effective Transformer (ByteDance
Inc., 2021), the input batch is provided as a padded matrix but padding values are dynamically
removed and restored during different calculation stages. While un-padding implementations are
highly sophisticated and are able to completely circumvent the processing of padding tokens, they
introduce a significant overhead due to the multiple GPU kernel launches (i.e., one kernel per se-
quence rather than one kernel per batch). Additionally the time to process each batch will fluctuate
depending on the sequence lengths in each batch, i.e., batches with only shorter sequences will
typically be processed faster. When working with more than one accelerator, this variability in
throughput results in all devices in the cluster waiting for the device with the most compute inten-

2

Under review as a conference paper at ICLR 2022

sive batch to finish processing. As such, un-padding approaches are not appropriate for deployment
on large clusters. The “packing” based approach introduced in this paper offers significant advan-
tages over un-padding approaches. Firstly, packing is implemented directly at the framework level
and requires no additional custom kernel implementations. Secondly, the processing time for each
batch is independent of the content of the batch, allowing the packing based approach to maintain
the same speed-up whether running on a single device or thousands.

While we demonstrate the effectiveness of packing specifically on the Wikipedia dataset, pack-
ing SQuAD (Rajpurkar et al., 2016) or GLUE datasets (Warstadt et al., 2018; Wang et al., 2018) for
BERT also leads to significant speed-ups (some in excess of 9x) (Sections H and I). The effectiveness
of packing is a result of both the length distribution of the documents in the source datasets as well
as the different text preprocessing steps for BERT (Devlin et al., 2019c). The use of bi-directional
self-attention in BERT implies that the input sequences should contain complete sentences. If a
sentence is abruptly cut short, the hidden state on other (preceding) tokens in the sequence will be
affected. Language models with causal attention (only attending to previous tokens in the input) do
not have this issue to the same degree. For such models, if a sequence is cut short at an arbitrary
token, the other tokens (which occur earlier in the sequence) will not be affected. This ability to
cut sequences arbitrarily completely trivializes the packing problem for models based on causal at-
tention. For instance, GPT-3 (Brown et al., 2020) is trained with a maximum sequence length of
2048 where a single sequence may contain multiple segments of sentences separated by a special
end of segment token. The last segment in each sequence is simply cut to meet the sequence length
requirement making the packing problem trivial and avoiding any padding. In the interest of com-
putational efficiency GPT-3 does not mask the attention between different segments in a sequence.
In contrast, the packing approach presented in this paper introduces a mask in the attention layer
(see Section 3.2.2) to prevent cross-contamination between examples in a pack. Note, we mask
the interaction between different sequences and not between different sentences or segments in the
same sequence. This ensures that the characteristics of the original dataset and model are matched
as closely as possible. RoBERTa and many other models in production like T5 (Raffel et al., 2019)
use a similar packing approach as GPT-3, combining full sentences/sequences with GREEDY pack-
ing (first come first concatenate) and also separation tokens or additional padding. The RoBERTa
ablation study shows that mixing of sentences from different documents reduces accuracy, but it is
used nonetheless for load balancing reasons which indicates that sorted batching is not sufficient.

In summary, the contributions of the paper are as follows. In Section 2, we produce histograms of
the Wikipedia pre-training dataset showing the high percentage of padding tokens. We present two
new deterministic and efficient packing algorithms which efficiently pack datasets with millions of
sequences in a matter of seconds (or less) in Section 3.1. We empirically show that the proposed
packing algorithms produce a nearly-optimal packing scheme In Section 3.2 and Section 3.3, we
explain how the BERT model can be adjusted to show the same convergence behavior on packed and
unpacked sequences. In Section 4.2, we demonstrate that the convergence of the BERT large model
on the packed dataset is equivalent to that on the un-packed dataset with 2x throughput increase on
the Wikipedia sequence length 512 pre-training dataset.

2 WIKIPEDIA BERT PRE-TRAINING DATASET

BERT is pre-trained using masked-language modelling and next-sentence prediction on a large cor-
pus of Wikipedia articles. Each sequence is composed of one <CLS> token followed by the first
“segment” of sentences, followed by a <SEP> token, and then finally the second “segment” of sen-
tences. Because these “segments” are created in sentence-level increments there is no token-level
control of sequence length. Furthermore 10% (default value, (Devlin et al., 2019b)) of sequences are
intentionally cut short. This leads to significant levels of padding, especially for longer maximum
sequence lengths (see Figure 1). At sequence length 128 (commonly used in phase 1 of pre-training)
the theoretical speed-up is around 1.2, at sequence length 384 this increases to 1.7, and finally at
sequence length 512 (commonly used for phase 2 of pre-training) it is 2.0. Despite the widespread
use of the Wikipedia dataset for pre-training BERT such histograms have, to the best of our knowl-
edge, not been published previously. This has perhaps lead to the underestimation of the speed-up
opportunity available. To put things into perspective, the sequence length 512 dataset contains 8.33
billion tokens, of which 4.17 billion are padding tokens.

3

Under review as a conference paper at ICLR 2022

3 METHODS

Our approach consists of three distinct components. Firstly, we pack the n data samples efficiently
during pre-processing to make full use of the maximum sequence length, sm (Sections 3.1.1, 3.1.2,
and E). Secondly, we introduce a series of model changes in Section 3.2 that preserve the equiva-
lence with the original BERT implementation. The changes include a self-attention mask to prevent
the model from attending between different sequences in the same pack (Section 3.2.2), and an ad-
justment of the the positional embeddings (Section 3.2.1) to handle packs of sequences. Other com-
ponents of the model, such as the feed-forward layer (Vaswani et al., 2017), operate on a per-token
basis and do not require modification for pre-training. In Section 3.2.3, we also demonstrate how to
compute a per-sequence loss and accuracy for NSP and downstream fine-tuning tasks. Thirdly, we
provide suggestions for hyperparameter adjustment (Section 3.3) that lead to analogous convergence
behavior between the packed and un-packed BERT implementations.

3.1 PACKING ALGORITHMS

The problem of optimally concatenating multiple sequences of different length until a maximum
combined length is reached can be directly framed as a bin-packing problem. Since an exact solution
is strongly NP-complete (Korte & Vygen, 2012), we propose two new heuristic algorithms that are
tailored to the NLP setting. A detailed introduction to packing is provided in Section E.

3.1.1 SHORTEST-PACK-FIRST HISTOGRAM-PACKING (SPFHP)

Shortest-pack-first histogram-packing (SPFHP) works on the bins in the sequence length histogram
(with bin size 1) rather than the individual samples. The histogram is traversed in sorted order from
longest to shortest sequences. Then, to pack the data during the traversal, we apply the worst-fit
algorithm (Johnson, 1973; Yue & Zhang, 1995) such that the histogram bin being processed goes to
the “pack”1 that has the most space remaining (“shortest-pack-first”). If the histogram bin does not
fit completely, a new pack is created. We also limit the packing depth, in other words the maximum
number of sequences that are allowed in a pack. Therefore, an existing pack is only extended if it is
not already at maximum packing depth. The detailed code for the algorithm is provided in Listing 3.
The time and space complexity of the algorithm are O(n+ s2m) and O(s2m) (Section F.2).

3.1.2 NON-NEGATIVE LEAST SQUARES HISTOGRAM-PACKING (NNLSHP)

The proposed NNLSHP algorithm is based on re-stating the packing problem as a (weighted) non-
negative least squares problem (NNLS) (Bro & De Jong, 1997) of the formwAx = wbwhere x ≥ 0.
The vector b is the histogram containing the counts of all the sequence lengths in the dataset. Next,
we define the A matrix (the “packing matrix“) by first generating a list of all possible sequence
length combinations (“strategies”) that add up exactly to the maximum sequence length. We focus
specifically on strategies that consist of at most 3 sequences per pack (independent of b) and encode
each strategy as a column of the sparse matrix A. For example, a strategy consisting of the sequence
length 128, 128, and 256 in represented a column vector that has the value 2 at the 128th row, the
value 1 at the 256th row, and zero at all other rows. The variable x describes the non-negative
repetition count for each strategy. So a 24 in the ith row of x means that the strategy represented by
the ith column ofA should repeat 24 times. Moreover, in the un-weighted setting,Ax = b states that
we would like to “mix” the pre-defined strategies (columns of A) such that the number of samples
matches the histogram b, and where each strategy is used x ≥ 0 times. We use the residual weight
w to control the penalization of the Ax− b residual on different sequence lengths (different rows of
b). Heuristically, we set the weight of 0.09 for all sequences of length 8 or smaller because they are
considered acceptable padding sequences while all other sequence lengths get weight 1. We discuss
this heuristic choice of parameters in Section E.4.5 and E.5. The overall efficiency of the packing is
not greatly influenced by the weighing (less than 1% extra speed-up).

After solving wAx = wb for x ≥ 0 using an off-the-shelf solver, we obtain a floating point solution,
which means that the repetition counts are not necessarily integers. Since we cannot use a non-
natural number of strategies, we round the solution x̂ to the nearest integer. The error introduced

1We avoid the ambiguous terms “bin” and “sample/sequence”and use “pack” instead to refer to the multiple
sequences concatenated during packing.

4

Under review as a conference paper at ICLR 2022

by this rounding is found to be negligible (a few hundred sequences in the worst case) compared to
the size of the dataset (millions of sequences). The time complexity and space complexity of the
algorithm are O(n+ s5m) and O(s3m). Further details are provided in Section E.4.

3.2 PACKEDBERT: MODEL CHANGES

This section describes how any vanilla BERT implementation should be modified for packed se-
quence processing, such that the behavior of the model is the same as when processing unpacked
sequences. Preserving the mathematical equivalence is necessary to ensure existing BERT pre-
training and fine-tuning practices remain valid, as well as being required by benchmarks such as
MLPerf™ (Mattson et al., 2020).

3.2.1 POSITIONAL EMBEDDINGS FOR PACKED SEQUENCES

The BERT model uses three types of embeddings: token, segment, and positional embeddings. The
latter is canonically implemented as a bias add operation, rather than a full embedding look-up. This
is possible because the positional indices are the same for every sequence. However, when using
the packed data format the position index needs to be reset with each new packed sequence. For
instance, when packing two sequences one of length 2 and one of length 3, the positional embedding
indexes that need to be picked up are [0, 1, 0, 1, 2]. To achieve this, the bias add needs to be replaced
by an embedding look-up to extract the correct positional embedding for each token in the pack.
This also requires keeping an extra input which specifies the position of each token in its sequence.
This adjustment has only a minor impact on absolute accuracy/loss but is required to reach the target
accuracy (Section 4.2 and C).

3.2.2 ATTENTION MASKING FOR PACKED SEQUENCES

To maintain an implementation that is consistent with the un-packed version, tokens from different
sequences within a pack should not be able to attend to each other. This is typically achieved in other
implementations by unpacking the sequences using custom attention kernels and then doing the at-
tention per-sequence (ByteDance Inc., 2021). Instead, we propose directly masking the attention
matrix with a block-diagonal mask before the attention softmax. This is straightforward to imple-
ment in modern frameworks (see Figure 2). Naturally, there is a cost to both the mask construction
and applying it to the attention matrix (see Table 1, Section 4.1). However, it is required to keep the
accuracy (Section 4.2 and C).

1 mask = np.array([[1, 1, 1, 2, 2]]) # input
2 zero_one_mask = tf.equal(mask, mask.T) # 0, 1 mask
3 # for use with softmax:
4 softmax_mask = tf.where(zero_one_mask, 0, -1000)


1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
0 0 0 1 1
0 0 0 1 1



Figure 2: Attention mask code sample [left] and example zero-one mask [right].

3.2.3 CALCULATING PER-SEQUENCE LOSS AND ACCURACY

Canonical implementations of BERT compute the cross-entropy loss for the masked language model
on a per-token basis. However other NLP tasks, such as SQuAD, compute the loss and accuracy on
a per-sequence basis. This section discusses how to handle such tasks when training with packed
sequences. Simply feeding packs of sequences to the same implementation of cross-entropy would
result in a per-pack weighted loss. In other words, the overall loss on the micro-batch would sum-
up the losses on the individual packs, rather than individual sequences. As a result, the model
would converge to a different optimum than when running with the un-packed implementation. For
instance, a pack of a single sequence would contribute to the loss with the same weight as a pack of
three sequences.

To recover the per-sequence averaging behavior of the canonical un-packed BERT implementation,
we effectively “unpack” the incoming logits and labels. Once the sequences have been unpacked,
we can compute the loss on each sequence separately as usual and then add up the losses. How-
ever, rather than looping through the sequences index, we compute on all indexes in parallel (see

5

Under review as a conference paper at ICLR 2022

Figure 3). This minimizes the latency overhead of un-packing the loss calculation. As an example,
we show how per-sequence loss can be implemented for the pre-training task. We use the “masked
lm weight” (Devlin et al., 2019b) input tensor to represent which sequence a given masked token
belongs to (0, 1, 2 and so on). This is consistent with the canonical BERT implementation where
this input takes a value of either 1 (belonging to the sequence) or 0 (belonging to padding). The full
methodology is detailed in Listing 5 and can be applied to other classification or pre-training tasks.

Figure 3: Vectorized unpacking of the sequence loss. White rectangles correspond to padding.

3.3 HYPERPARAMETER ADJUSTMENT

In terms of convergence behavior, the primary consequence of packing is an increase in the effective
batch size (with respect to number of sequences and real tokens) with some variation over different
iterations. When the loss is averaged per-sequence, if each pack on average contains two sequences,
the batch size (per optimization step) is effectively doubled on average. Similarly, for per-token
averaged losses depends on the effectiveness of the compression. Reducing the fraction of padding
tokens in the dataset from 50% to 0% results in there being twice as many tokens in the batch i.e.
the dataset is compressed by a 2x factor. While one could subsequently reduce the computational
batch size by the packing factor (average number of sequences per pack) and keep using the same
hyperparameters, this is typically not desirable as it might imply under-utilizing the memory/com-
pute.

Instead, we propose an approximate heuristic for updating the decay parameters of the LAMB op-
timizer (You et al., 2019). For a packed dataset with a packing factor p, we update the decay
parameters as: β1 := βp

1 , β2 := βp
2 . For p = 2, this corresponds to the exact parameters for calcu-

lating momentum and velocity, when updating with the same gradient twice (Section A). A common
approach is to scale the learning rate with the batch size. However, our experiments in Section 4.2
show that this reduces convergence speed.

Since these adjustments are only heuristics the convergence of the model will be comparable but not
identical. In particular, it is unlikely that simply adjusting the hyperparameters will fully undo the
impact of the increased batch size. However, with these adjustments, researchers should be able to
continue to use existing configurations.

4 EXPERIMENTS

4.1 BIN-PACKING ALGORITHM COMPARISON

We evaluate our algorithms using the following metrics: number of packs, number of all tokens,
number of padding tokens, solution time of the packing algorithm (after histogram and strategy
creation), number of strategies used, packing efficiency (the fraction of non-padding tokens in the
packed dataset), the speed-up achieved compared to not packing (depth 1), and the average number
of sequences per sample (packing factor). For SPFHP, we analyse different (maximum) packing
depth, since packing is less efficient with smaller depth and we want to get a general understanding
on how the packing depth influences the processing time. For NNLSHP, we focus on packing depth
3 because it packs the data sufficiently well.

For the speed-up analysis, we focus on the intelligence processing unit (IPU) (Jia et al., 2019) (IPU-
M2000, 16 accelerator chips). A GPU dynamically loads the code into the accelerator; in contrast,
the IPU works with a static pre-compiled engine that gets loaded onto the chip at the start of the run.
While other approaches result in excessive padding or continuous changes of the code, our approach
can work with the same code for the whole dataset. So in this setting the IPU architecture would

6

Under review as a conference paper at ICLR 2022

especially benefit from our approach since it avoids code changes. Nevertheless, it can be applied
to any implementation on GPU or TPU. For determining the speed-up, we take advantage of the
precompiled kernel. Since time measurements are quite noisy, we can profile the kernel and how
many cycles it takes for processing a batch. That way, we can determine the overhead (in cycles)
from processing the additional attention masking and for unpacking the loss. Combining overhead
and packing factor, we get the speed-up estimate. No experiment repetitions are required since the
algorithms and measurements are deterministic.

The main results for the performance metric evaluation are displayed in Table 1. The processing time
for SBFHP was around 0.03s and independent from the packing depth. We see that the overhead
slightly increases with packing depth but that the benefits of packing outweigh the cost. The best
speed-up is obtained with NNLSHP at depth 3 which required 28.4s for processing and ran out of
memory for larger depth. With a value of 1.913, it is close to the theoretical upper bound of 2.001.
The results show that efficiency, packing factor, and speed-up can be viewed inter-changeably. The
amount of time needed to process a sample (a pack of sequences) is barely changed relative to the
un-packed implementation. The packing factor or the improvement in efficiency effectively provide
an accurate estimate of the speed-up.

Table 1: Key performance results of proposed packing algorithms (SPFHP and NNLSHP).

packing packing # packs efficiency packing overhead realized
depth algorithm [M] (%) factor (%) speed-up
1 NONE 16.280 49.97 1.000 0.000 1.000
1 SORT 16.280 99.99 2.000 100 1.000
≈10 GREEDY ≈10.397 ≈78.24 ≈1.566 ≈4.48 ≈1.5
2 SPFHP 10.102 80.52 1.612 4.283 1.544
3 SPFHP 9.095 89.44 1.790 4.287 1.716
3 NNLSHP 8.155 99.75 1.996 4.287 1.913
4 SPFHP 8.659 93.94 1.880 4.294 1.803
8 SPFHP 8.225 98.90 1.979 4.481 1.895
16/max SPFHP 8.168 99.60 1.993 4.477 1.905

Packing depth describes the maximum number of packed sequences. NONE is the baseline BERT
implementation, whereas SORT corresponds to sorted batching, and GREEDY concatenates se-
quences as they arrive until they exceed 512 tokens. Setting no limit resulted in a maximum packing
depth of 16. The number of packs describes the length of the new packed dataset. Efficiency is
the percentage of real tokens in the packed dataset. The packing factor describes the resulting po-
tential speed-up compared to packing depth 1. With overhead, we denote the percentage decrease
in throughput due to changes to the model to enable packing (such as the masking scheme intro-
duced in Section 3.2.2). The realized speed-up is the combination of the speed-up due to packing
(the packing factor) and the decrease in throughput due to the overhead. It is used to measure the
relative speed-up in throughput and the overhead from masking and loss adjustment.

4.2 LEARNING CURVES AND HYPERPARAMETER ADJUSTMENT

For depth 1 (classic BERT) and NNLSHP with depth 3, we additionally evaluate on the MLPerf™
version 0.7 BERT pre-training benchmark (Mattson et al., 2020). Briefly, this involves training from
a standard checkpoint to a masked-language model accuracy of 71.2% using 3 million sequences
with a maximum length of 512 tokens (refer to MLCommons (2020) for details). Following this
standardized benchmark supports reproduction of results even on other systems and makes sure
that the reproduction effort is moderate and setup rules are clearly documented. We compare the
resulting speed-up as well as the respective learning curves by evaluating the data on a held-out
validation dataset. The objective of this additional evaluation is to analyse if convergence behavior
is changed by the packing strategy and if the theoretical speed-up can be achieved in practice.

With packing, we effectively increase the average batch size by the packing factor (≈ 2). However,
with a different batch size, different hyperparameters are required (see Section 3.3) and there is no
mapping that will generate exact matching of results but only heuristics. In a first comparison, we
use the same hyperparameters when comparing packed and unpacked training except for cutting the
accumulation count by half. This way, we make sure that the batch size is constant on average.

7

Under review as a conference paper at ICLR 2022

In the second comparison, we evaluate our heuristics and how they compensate the difference in
batch size. This setup is more desirable because it is beneficial to use the hardware to its full
potential and cutting the batch size by half usually reduces throughput. In the third comparison, we
compare two optimized setups.

The learning curves are displayed in Figure 4. In the first setup, we see the curves almost matching
perfectly when normalizing by the numbers of samples processed. Differences can be explained
by the variation of the number of sequences in the packing batch, and general noise in the training
process. Especially after the initial phase, the curves show a near-identical match. The second setup
shows bigger differences since changing the batch size and hyperparameters changes the training
dynamics. We observe slower convergence early on in training due to the increased batch size. This
is expected. The adjustment of the learning rate actually decreases performance probably because
we correct for the increased number of sequences already in the modified loss. With the adjustment
of the decay parameter of LAMB, we see matching performance at the later training stages. How-
ever, it is not feasible to completely recover the early convergence behavior of the smaller batch
size by adjusting the hyperparameters. For instance doubling the batch size of unpacked BERT to
3000 and adjusting the LAMB decay parameters leads to more of a slow down in convergence than
when running packed BERT with a batch size of 1500 and a packing factor of 2. n practice, our
implementations exceeds the estimated 1.913 maximum speed-up. This estimate is based on the
reduction in the computational work needed to process the dataset. However, packing the data also
reduces the latency of the transferring the data to the device. Figure 4 shows that the realized total
speed-up from packing exceeds 2x. On Squad 1.1 after full packed pretraining, F1 score is reduced
by 0.003% whereas the EM score is increased by 0.049% (Section D).

0 1 2 3
samples 1e6

1.5

2.0

2.5

3.0

3.5

tra
in

in
g

lo
ss

classic, bs: 1500, beta: 0.81
packed, ebs: 768*2, beta: 0.81

0 1 2 3
samples 1e6

2

3

4

tra
in

in
g

lo
ss

classic, beta: 0.81
packed, beta: 0.66
packed, beta: 0.66, double lr
packed, beta: 0.81, double lr

0.0 0.5 1.0 1.5 2.0
relative time

1.5

2.0

2.5

3.0

3.5

tra
in

in
g

lo
ss

classic, bs: 1500, beta: 0.81
classic, bs: 3000, beta: 0.66
packed, ebs: 1500*2, beta: 0.66

Figure 4: Comparison of learning curves for packed and unpacked processing, where all experiments
converged to the target accuracy within the same number of training samples(3 million). [left] same
effective batch size (ebs is batch size times packing factor), [middle] different heuristic adjustments
of the hyperparameters (batch size 1500 for all runs, such that ebs for packed runs is 1500 ∗ 2), and
[right] realized speed-up from packing (in excess of desired 2x).

4.3 SCALING ANALYSIS: IMPACT OF THE NUMBER OF ACCELERATORS

A further advantage of packing over competing un-padding approaches is the inherent load balanc-
ing provided by packing. So called un-padding approaches rely on dynamically launching custom
kernels that ignore padding. A stated advantage of such implementations is the ability to avoid com-
puting the complete (512 x 512) attention matrix. This provides additional computational savings
compared to packing, where the attention matrix is computed in its entirety and then masked. Be-
cause of these additional savings, un-padding can exceed the theoretical upper bound for speed-up
from packing (2.013 on Wikipedia). As a result of the dynamic nature of the approach, the process-
ing time with un-padding is different for each sequence in the batch, and the amount of time required
to process a batch of sequences will be determined by the processing time of the longest sequence in
the batch (with the sequences being processed in parallel). Furthermore, in the multiple accelerator
setting the processing time on each device will vary depending on the sequences in the batch that it
receives. Devices which finish early have to wait for the slowest device to finish before exchanging
gradients. This load-imbalance between the devices (and inside the batch) leads to a considerable
decrease in the speed-up from un-padding as the number of accelerators is increased (see Figure 5).

In contrast, packing (our approach) is inherently load-balanced. The processing time on each ac-
celerator is independent of the content inside the batch received by the device. Any number of
accelerators can therefore operate in unison without having to wait for the slowest batch to process

8

Under review as a conference paper at ICLR 2022

(all per-device batches are equally fast). To demonstrate the severity of the load-imbalance issue, we
consider the scaling of an un-padding approach with a per-device batch size of 32 running on eight
devices (NVIDIA, 2020). From there, we readily extrapolate the performance to both larger and
smaller cluster sizes by fitting a Gumbel distribution to the observed processing times (Section B).
On a single device with batch size 32 un-padding outperforms packing and exceeds the theoretical
upper-bound for packing. As the number of devices increases to two or more, the proposed pack-
ing approach outperforms the dynamic un-padding approach. On a cluster with 32 accelerators the
speed-up from un-padding drops to 50% and with 2048 devices the speed-up is only 30%. In con-
trast, the speed-up due to packing is independent of the number of accelerators and stays at 1.913.
Switching to a smaller batch size would reduce the load-imbalance issue to some extent, but would
also result in under-utilization of the available memory and compute.

1 2 4 8 16 32 64 128 256 512 1024 2048
number of accelerators

1.000
1.100
1.200
1.300
1.400
1.500
1.600
1.700
1.800
1.913
2.013

es
tim

at
ed

 sp
ee

d-
up

theoretical upper-bound
packing (our approach)
un-padding
padding

Figure 5: Comparison of the theoretical speed-up achievable as the number of accelerators is in-
creased.

5 CONCLUSION

We showed that packing can be easily implemented without the need for any custom kernels while
still providing a 2x speed-up without a loss of accuracy. Additionally, we showed that any additional
speed-ups resulting from dynamic un-padding approaches diminish for even moderate batch sizes
or when additional accelerators are added. In contrast, packing is load-balanced and maintains
the 2x throughput when scaling to large numbers of accelerators. Furthermore, the computational
overhead introduced by the positional embedding, the attention mask, and potentially the packed per-
sequence loss are small compared to the achieved acceleration. This overhead remains below 5%
on the IPU for all tested packing depths. The efficient packing algorithms presented in this paper
enable us to efficiently pack millions of sequences in a matter of seconds. Compared to both the
pre-processing time for the Wikipedia dataset and the training runtime, this overhead is negligible.
Furthermore, we showed that performing packing as a pre-processing step does not significantly
impact the training convergence. Our proposed hyperparameter adjustment scheme additionally
helps practitioners easily modify existing validated optimizer settings for use with packed BERT.
Further exploration of hyperparameter selection is left to future work.

When performing packing as a pre-processing step, the proposed NNLSHP and SPFHP methods
achieve near optimal compression efficiency. In this offline setting, we are able to build a histogram
of the dataset, and thus achieve linear time complexity with respect to the number of samples. This
makes packing modern datasets with millions of sequences possible. In the future, it would be
interesting to extend SPFHP to the online setting where a histogram of the entire dataset cannot
be built. Another interesting direction is the packing of images of different sizes to help accel-
erate computer-vision applications. This is especially relevant given the recent advances in the
use of transformer-based approaches in the computer vision domain, for example the visual trans-
former (Wu et al., 2020). Masking out the self-attention within transformers is easier to implement
than avoiding cross-contamination of convolutions applied to packed images. Future work should
explore improving the performance of other models (RoBERTa, GPT-3, T5) by avoiding contamina-
tion between non-contiguous segments from different documents. Even BERT itself might benefit
from avoiding contamination between the two concatenated segments.

9

Under review as a conference paper at ICLR 2022

REPRODUCIBILITY STATEMENT

All code for the packing algorithms is available in the appendix (Section O) and is directly linked to
our GitHub page to simplify the download and usage. We even provide code for different variants
and the histograms of sequence length for different datasets that got tokenized for BERT training of
fine-tuning.

To generate the learning curves, our public submission to MLPerf™ could be used and we are
preparing further code releases in other frameworks. To encourage the use of the adjustments of
models for packed sequences, we additionally provide detailed explanations and code snippets in
TensorFlow.

Detailed mathematical formulas (Section B and E), a theorem proof (Section A), and complexity
calculations (Section F) are provided in the appendix to support our claims in this paper in full
detail.

REFERENCES

Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization Methods for Large-Scale Machine
Learning. SIAM Review, 60(2):223–311, jan 2018. ISSN 0036-1445. doi: 10.1137/16M1080173.

Rasmus Bro and Sijmen De Jong. A fast non-negativity-constrained least squares algorithm.
Journal of Chemometrics, 11(5):393–401, sep 1997. ISSN 0886-9383. doi: 10.1002/(SICI)
1099-128X(199709/10)11:5〈393::AID-CEM483〉3.0.CO;2-L.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language Models are Few-Shot Learners. In Advances in
Neural Information Processing Systems 33 pre-proceedings (NeurIPS 2020), may 2020. URL
http://arxiv.org/abs/2005.14165.

ByteDance Inc. Effective Transformer. https://github.com/bytedance/effective_
transformer, 2021.

Jacob Devlin, Ming Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. NAACL HLT 2019 - 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies - Proceedings of the Conference, 1:4171–4186, oct 2019a. URL http://arxiv.
org/abs/1810.04805.

Jacob Devlin, Ming Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding. https://github.com/
google-research/bert, 2019b.

Jacob Devlin, Ming Wei Chang, Kenton Lee, and Kristina Toutanova. Pre-training data creation
script for BERT. https://github.com/google-research/bert/blob/master/
create_pretraining_data.py#L243, 2019c.

William Fedus, Barret Zoph, and Noam Shazeer. Switch Transformers: Scaling to Trillion Parameter
Models with Simple and Efficient Sparsity. arXiv, jan 2021. URL http://arxiv.org/abs/
2101.03961.

Zhe Jia, Blake Tillman, Marco Maggioni, and Daniele Paolo Scarpazza. Dissecting the Graphcore
IPU architecture via microbenchmarking. ArXiv, abs/1912.03413, 2019.

David S Johnson. Near-optimal bin packing algorithms. PhD thesis, Massachusetts Institute of
Technology, 1973.

10

http://arxiv.org/abs/2005.14165
https://github.com/bytedance/effective_transformer
https://github.com/bytedance/effective_transformer
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://github.com/google-research/bert
https://github.com/google-research/bert
https://github.com/google-research/bert/blob/master/create_pretraining_data.py#L243
https://github.com/google-research/bert/blob/master/create_pretraining_data.py#L243
http://arxiv.org/abs/2101.03961
http://arxiv.org/abs/2101.03961

Under review as a conference paper at ICLR 2022

David S. Johnson and Michael R. Garey. A 7160 theorem for bin packing. Journal of Complexity,
1(1):65–106, oct 1985. ISSN 0885064X. doi: 10.1016/0885-064X(85)90022-6. URL https:
//linkinghub.elsevier.com/retrieve/pii/0885064X85900226.

Bernhard Korte and Jens Vygen. Combinatorial Optimization, volume 21 of Algorithms and Com-
binatorics. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. ISBN 978-3-642-24487-
2. doi: 10.1007/978-3-642-24488-9. URL http://link.springer.com/10.1007/
978-3-642-24488-9.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Sori-
cut. ALBERT: A lite BERT for self-supervised learning of language representations. CoRR,
abs/1909.11942, 2019. URL http://arxiv.org/abs/1909.11942.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. RoBERTa: A Robustly Optimized BERT Pre-
training Approach. arXiv, jul 2019. URL http://arxiv.org/abs/1907.11692.

P. Mattson, V. J. Reddi, C. Cheng, C. Coleman, G. Diamos, D. Kanter, P. Micikevicius, D. Patterson,
G. Schmuelling, H. Tang, G. Wei, and C. Wu. MLPerf: An Industry Standard Benchmark Suite
for Machine Learning Performance. IEEE Micro, 40(2):8–16, 2020. doi: 10.1109/MM.2020.
2974843.

Qi Meng, Wei Chen, Yue Wang, Zhi Ming Ma, and Tie Yan Liu. Convergence analysis of dis-
tributed stochastic gradient descent with shuffling. Neurocomputing, 337:46–57, apr 2019. ISSN
18728286. doi: 10.1016/j.neucom.2019.01.037.

MLCommons. v0.7 Results. https://mlcommons.org/en/training-normal-07/,
2020. Result not verified by MLPerf. Throughput/speedup is not the primary metric of MLPerf.
MLPerf name and logo are trademarks. See www.mlperf.org for more information.

NVIDIA. Reference numbers for BERT un-padding results. https://github.com/
mlcommons/training_results_v0.7/blob/master/NVIDIA/results/
dgxa100_ngc20.06_pytorch/bert/result_0.txt, 2020. Throughput/speedup is not
the primary metric of MLPerf. MLPerf name and logo are trademarks. See www.mlperf.org
for more information.

NVIDIA. Faster Transformer. https://github.com/NVIDIA/
DeepLearningExamples/tree/master/FasterTransformer/v1, 2021.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier,
and Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. In Proceedings of
NAACL-HLT 2019: Demonstrations, 2019.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: an asr corpus
based on public domain audio books. In Acoustics, Speech and Signal Processing (ICASSP), 2015
IEEE International Conference on, pp. 5206–5210. IEEE, 2015.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the Limits of Transfer Learning with a Unified Text-
to-Text Transformer. Journal of Machine Learning Research, 21, oct 2019. URL http://
arxiv.org/abs/1910.10683.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions
for machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pp. 2383–2392, Austin, Texas, November 2016. Association
for Computational Linguistics. doi: 10.18653/v1/D16-1264. URL https://www.aclweb.
org/anthology/D16-1264.

Jonathan Shen, Patrick Nguyen, Yonghui Wu, Zhifeng Chen, et al. Lingvo: a modular and scalable
framework for sequence-to-sequence modeling, 2019.

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Well-read students learn better:
On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962v2, 2019.

11

https://linkinghub.elsevier.com/retrieve/pii/0885064X85900226
https://linkinghub.elsevier.com/retrieve/pii/0885064X85900226
http://link.springer.com/10.1007/978-3-642-24488-9
http://link.springer.com/10.1007/978-3-642-24488-9
http://arxiv.org/abs/1909.11942
http://arxiv.org/abs/1907.11692
https://mlcommons.org/en/training-normal-07/
www.mlperf.org
https://github.com/mlcommons/training_results_v0.7/blob/master/NVIDIA/results/dgxa100_ngc20.06_pytorch/bert/result_0.txt
https://github.com/mlcommons/training_results_v0.7/blob/master/NVIDIA/results/dgxa100_ngc20.06_pytorch/bert/result_0.txt
https://github.com/mlcommons/training_results_v0.7/blob/master/NVIDIA/results/dgxa100_ngc20.06_pytorch/bert/result_0.txt
www.mlperf.org
https://github.com/NVIDIA/DeepLearningExamples/tree/master/FasterTransformer/v1
https://github.com/NVIDIA/DeepLearningExamples/tree/master/FasterTransformer/v1
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
https://www.aclweb.org/anthology/D16-1264
https://www.aclweb.org/anthology/D16-1264

Under review as a conference paper at ICLR 2022

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, un-
definedukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of the 31st
International Conference on Neural Information Processing Systems, NIPS’17, pp. 6000–6010,
Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. GLUE:
A multi-task benchmark and analysis platform for natural language understanding. In Proceed-
ings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks
for NLP, pp. 353–355, Brussels, Belgium, November 2018. Association for Computational Lin-
guistics. doi: 10.18653/v1/W18-5446. URL https://www.aclweb.org/anthology/
W18-5446.

Alex Warstadt, Amanpreet Singh, and Samuel R Bowman. Neural network acceptability judgments.
arXiv preprint arXiv:1805.12471, 2018.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gug-
ger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing: System Demonstrations, pp. 38–45, Online, October 2020. As-
sociation for Computational Linguistics. URL https://www.aclweb.org/anthology/
2020.emnlp-demos.6.

Bichen Wu, Chenfeng Xu, Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Zhicheng Yan, Masayoshi
Tomizuka, Joseph Gonzalez, Kurt Keutzer, and Peter Vajda. Visual transformers: Token-based
image representation and processing for computer vision, 2020.

Tensorflow XLA. XLA: Optimizing Compiler for Machine Learning. https://www.
tensorflow.org/xla, 2021.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large Batch Optimization for Deep
Learning: Training BERT in 76 minutes. arXiv, apr 2019. URL http://arxiv.org/abs/
1904.00962.

Minyi Yue and Lei Zhang. A simple proof of the inequality MFFD(L) ≤ 71/60OPT (L) + 1, L
for the MFFD bin-packing algorithm. Acta Mathematicae Applicatae Sinica, 11(3):318–330, jul
1995. ISSN 01689673. doi: 10.1007/BF02011198.

12

https://www.aclweb.org/anthology/W18-5446
https://www.aclweb.org/anthology/W18-5446
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.tensorflow.org/xla
https://www.tensorflow.org/xla
http://arxiv.org/abs/1904.00962
http://arxiv.org/abs/1904.00962

Under review as a conference paper at ICLR 2022

Appendix
TABLE OF CONTENTS

1 Introduction 1

2 Wikipedia BERT pre-training dataset 3

3 Methods 4

3.1 Packing algorithms . 4

3.2 packedBERT: model changes . 5

3.3 Hyperparameter adjustment . 6

4 Experiments 6

4.1 Bin-packing algorithm comparison . 6

4.2 Learning curves and hyperparameter adjustment . 7

4.3 Scaling analysis: Impact of the number of accelerators . 8

5 Conclusion 9

A Theorem on LAMB hyperparameter correction heuristic 14

B Un-padding scaling estimate 16

C Ablation study 17

D SQuAD 1.1 17

E Technical background on packing 18

E.1 Canonical packing problem . 18

E.2 Approximate bin-packing problem . 18

E.3 Definitions . 19

E.4 Non-negative least squares histogram-packing . 19

E.5 Discussion of residual weight choice . 22

F Complexity analysis of the proposed packing approaches 23

F.1 Complexity Analysis of non-negative least-squares histogram-packing . 23

F.2 Complexity Analysis of shortest-pack-first histogram-packing . 24

G Performance Comparison to GREEDY Packing in T5 24

H Packing SQuAD 1.1 25

I Packing GLUE 26

J Packing Audio Data (LibriSpeech) 27

K Packing Paper Abstracts (PubMed) 28

L Further learning curves 29

M Fine-tuned longest-pack-first histogram-packing 30

N Extended NNLS with padding token weighting 31

O Packing source code 32

13

Under review as a conference paper at ICLR 2022

BROADER IMPACT

We showed that when pre-training BERT on Wikipedia, the computational overhead taken to pro-
cess padding tokens is roughly 50%. By eliminating this wasted computational time, the approach
presented in this paper paves a way to halving the carbon footprint of training BERT-based models.

Furthermore, our approach circumvents the need for custom kernels, making the benefits of packing
readily accessible to a broader audience of NLP practitioners. As such, we are hopeful the research
will have a positive impact on the NLP community, and do not see any disadvantage of using this
approach.

The benefit of our algorithm is based on two assumptions: A skewed length distribution in the
training dataset and a hardware setup that trains efficiently on a fixed batch size. If efficient train-
ing is possible, with a variable batch size approaches like FasterTransformer and the fairseq sorted
batch approach will result in the same or even larger benefits (due to smaller self-attention matri-
ces). If the dataset is generated differently like in GPT models (Brown et al., 2020) and RoBERTa
(FULL-SENTENCES) (Liu et al., 2019), all sequences will be at full length and sequences cannot
be concatenated and there is indeed no benefit in packing sequences. However, strategies that reach
full sequence length usually combine segments from different unrelated document sources which
can result in reduced performance. Even in the normal BERT model, there might be this contam-
ination between segments from different documents. Our paper introduced an approach to avoid
the contamination between sequences. However, the same approach could also be applied to avoid
contamination between segments and it remains future work to explore its benefits beyond BERT
pretraining.

Future work would need to investigate the applicability of packing on text produced by different cul-
tures and in different languages. We have already shown that the speed-up resulting from using our
methods does not only occur when pre-training BERT on Wikipedia but also on other datasets such
as SQuAD and GLUE. Furthermore, the sentence length distribution of the original English language
text shows similar characteristics. Our research leads us to believe that compressible distributions
arise naturally in language tasks and beyond, for instance in DNA sequence lengths (Hansen et al.,
2017), protein lengths (Guillén et al., 2013), and speech (Section J). Many such sequence modelling
workloads are based on variations of the BERT/transformer architecture and would therefore easily
benefit from our acceleration.

Failures in NLP can have a big impact on society; many technologies, such as Alexa, Siri, and
Google Home, rely on them. Whilst any errors arising from our approach can be avoided, one po-
tential source of error comes from the implementation. Both the attention mask and the per-sequence
loss need to be modified to support packing. These changes are significantly smaller than those re-
quired by custom kernels, however they may still be time consuming to implement and debug. To
help mitigate the risk of any implementation errors, we share our reference implementations of the
required changes in the appendix.

A THEOREM ON LAMB HYPERPARAMETER CORRECTION HEURISTIC

With packing, the effective batch size changes and hence hyperparameters of the LAMB opti-
mizer (You et al., 2019) need to be adjusted. For a packed dataset with a packing factor p, we
update the decay parameters as: β1 := βp

1 , β2 := βp
2 . For instance if β1 = 0.81 for the un-packed

dataset, then for a packed dataset with an average of 2 sequences per sample one should use a value
of 0.812 ≈ 0.66 instead. Assuming no or only minor changes in gradients and p being a natural
number, we can prove that this heuristic is the exact solution to make sure that momentum and ve-
locity in LAMB are unaffected by packing. This can be proven by mathematical induction. Note
that p ≥ 1 by definition.
Theorem 1. For any p ∈ N and assuming that respective gradients on a batch of b random samples
are (approximately) the same, choosing

β1 := βp
1 (1)

β2 := βp
2 . (2)

as hyperparameters in the LAMB optimizer ensures that the momentum and velocity after p separate
update steps are the same as with one packed update step with p× b samples.

14

Under review as a conference paper at ICLR 2022

Proof.

• Base Case:
For p = 1 the left and right side of the equation are the same which matches exactly the
unpacked case. Hence, the theorem holds for p = 1.

• Inductive hypothesis: Suppose the theorem holds for all values of p up to some k, k ≥ 1.

• Inductive proposition: The theorem holds for p = k + 1.

• Proof of the inductive step: Let l be the loss function, wt the weight vector after t updates,
and xt1, . . . , x

t
b the respective underlying data to calculate the gradient gt. For a single

update step in LAMB with batch size b samples, we compute the gradient

gt =
1

b

b∑
i=1

∂l

∂w
(xti, w

t). (3)

Since g1 ≈ g2 ≈ . . . ≈ gk+1, We have with the inductive hypothesis and the definitions in
LAMB:

mk = βk
1m0 + (1− βk

1)g1 (4)

vk = βk
2 v0 + (1− βk

2)g
2
1 (5)

Now we can calculate (with g1 ≈ gk+1)

mk+1 = β1mk + (1− β1)gk+1 (6)

≈ β1
(
βk
1m0 + (1− βk

1)g1
)
+ (1− β1)g1 (7)

= βk+1
1 m0 + (1− βk+1

1)g1 (8)

The calculation for vk is the same. As reference for a packed update with p = k + 1 with
β1 and β2, we would get

g =
1

pb

p∑
j=1

b∑
i=1

∂l

∂w
(xji , w

1) =
1

p

p∑
j=1

(
1

b

b∑
i=1

∂l

∂w
(xji , w

1)

)
≈ 1

p

p∑
j=1

g1 = g1 (9)

since we are calculating gradients over b samples which are assumed to be approximately
the same. Consequently, the updates for momentum and velocity would be

mk = β1m0 + (1− β1)g1 (10)

vk = β2v0 + (1− β2)g21 . (11)

Hence, β1 = βk+1
1 and β2 = βk+1

2 is required to map to the formula with the consecutive
updates (for the same amount of data).

• Conclusion: The theorem holds for any p ∈ N.

Since we proved that the formulas β1 := βp
1 , β2 := βp

2 . hold for all p ∈ N, p ≥ 1, it is safe to
assume that it is an appropriate heuristic for all p ∈ R, p ≥ 1.

15

Under review as a conference paper at ICLR 2022

B UN-PADDING SCALING ESTIMATE

Firstly, we retrieve the per-batch processing time for an un-padding implementation running pre-
training on the Wikipedia dataset from (NVIDIA, 2020). These processing times were obtained
using 8 GPUs each with a per-device batch size of 32. We also retrieve the throughput numbers for
the same system running with padding from (NVIDIA, 2021) and use that as the baseline to compare
the un-padded throughput against.

The throughput on the 8 GPU system is effectively limited by the slowest of the eight batches being
processed in parallel. The Gumbel distribution is particularly suited to modelling the maximum or
minimum value of a fixed size collection of i.i.d. samples (in this case batches). We observe that on
8 GPUs the throughput (i.e. speed-up) distribution indeed closely resembles a Gumbel distribution
with α1 = 1.6 and β8 = 0.13 as shown in Figure 6.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
speed-up from un-padding

0.0

0.5

1.0

1.5

2.0

2.5

3.0

pr
ob

ab
ilit

y
de

ns
ity

8 GPUs with (bs=32 each)
fitted Gumbel
data

0 1 2 3 4
speed-up from un-padding

0.0

0.2

0.4

0.6

0.8

1.0

1.2
1 GPU with bs=32

Estimate

Figure 6: Left: Speed-up from un-padding on 8 GPUs closely resembles a Gumbel distribution.
Right: statistical estimate of speed-up distribution on a 1 GPU system running un-padding

We can extrapolate the performance on the 8 GPU system to larger clusters by recognizing that
the processing time for each cluster is effectively determined by the slowest batch being processed.
Specifically, we could randomly sample (without replacement) two processing times for the 8 GPU
system, and record the max of the two as the processing time for a system of 16 GPUs. However,
this simple approach is too sensitive to outliers in the data and would result in an under-estimate
of the performance of un-padding on large systems. We mitigate the effect of outliers in the data
by avoiding directly sampling the processing times. Instead, we fit a Gumbel distribution to the
processing times of a single batch of size 32 running on one GPU. To perform the fit, we observe
that the cdf on one GPU (P1) is related to the cdf on 8 GPUs (P8) through (Kotz & Nadarajah,
2000)(section 1.3):

(1− P8(s)) = (1− P1(s))
8 (12)

In other words, if the speed-up on the cluster is larger than s, this implies that the speed-up on
every GPUs in the cluster was at least s. Assuming P1 is Gumbel and given the 8 GPU Gumbel
parameters α8 and β8, we need to fit two parameters, α1 and β1. Consequently for the median
(s = α8 − β8 ln(ln(2)), P8(s) = 0.5), we have:

0.5 = (1− P1(α8 − β8 ln(ln(2))))8 . (13)

And since P8 is Gumbel, we also have an equation for the mode (s = α8, P8(s) = e−1):

(1− e−1) = (1− P1(α8))
8 . (14)

We solve these two non-linear equations simultaneously using the standard SciPy optimization pack-
age.

16

Under review as a conference paper at ICLR 2022

Listing 1: Infer Gumble distribution parameters.
1 import numpy as np
2 from scipy import stats, optimize
3 alpha_8 = 1.6038
4 beta_8 = 0.1288
5 def g(x):
6 alpha_1, beta_1 = x
7 dist = stats.gumbel_r(loc=alpha_1, scale=beta_1)
8 # Equations for median and mode
9 median = alpha_8 - beta_8*np.log(np.log(2))

10 equation1 = 0.5 - dist.sf(median)**n_gpu
11 mode = alpha_8
12 equation2 = (1-np.exp(-1)) - dist.sf(mode)**n_gpu
13 return (equation1**2 + equation2**2)
14
15 res = optimize.minimize(g, [alpha_8, beta_8], method="Nelder-Mead")
16 alpha_1, beta_1 = res.x

The resulting estimated speed-up Gumbel distribution for a single device has α = 1.94, β = 0.108
and is shown in Figure 6 [right]. To simulate the performance of a cluster of size n with a batch size
of 32 per device, we take the minimum over n samples from this distribution. Repeating this process
to generate many samples allows us to estimate the expected speed-up for any given cluster size.
Unfortunately, we cannot make any statistical inference about the processing times of individual
sequences since the data is only provided at the granularity of 32 sequences per batch, and it is not
clear how much of the computation is done in parallel and how much in serial.

C ABLATION STUDY

So far, we have shown that with the introduced adjustments, we can match the accuracy of unpacked
BERT. In the following, we wanted to analyze in how far the masking adjustment is required. In
Figure 7, we can see that without our adjustments, training loss and accuracy worsen drastically and
a longer training time does not lead to a recovery. When not adjusting the positional embedding, the
loss and accuracy almost match. However, the accuracy stalls at 71.8% and does not reach the target
accuracy of 72.1%. So overall, both adjustments are crucial.

0 500 1000 1500
Iteration count

50

55

60

65

70

tra
in

in
g

ac
cu

ra
cy

 (p
er

ce
nt

)

no mask adjustment
packed BERT baseline
no pos. emb. adjustment

0 500 1000 1500
Iteration count

2 × 100

3 × 100

4 × 100

tra
in

in
g

lo
ss

no mask adjustment
packed BERT baseline
no pos. emb. adjustment

Figure 7: Comparison of learning curves with and without mask or positional embedding adjustment
in our packed BERT approach. The grey accuracy baseline to reach is 72.1%.

D SQUAD 1.1

Packing slightly violates the i.i.d. assumption of data. Thus, it is of interest, if the algorithm matches
downstream performance. This is especially relevant with a full training setup without a starting
checkpoint. We trained Phase 1&2 of BERT base with and without packing. To avoid giving an ad-
vantage to packing by further hyperparameter tuning, we instead reduced the gradient accumulation
count for the packed BERT training for Phase 1 and Phase 2 to match the total number of sequences
that get processed. With this approach, we could use the same hyperparameters and number of
training steps. This gives a slight disadvantage to the packed run. For Phase 2, we used sequence
length 348 since longer range attention is not relevant for SQuAD 1.1. For the fine-tuning training
on SQuAD 1.1, we did not use packing. After 10 repetitions, the results showed that on average, the
F1 score is reduced by 0.003% whereas the EM score is improving by 0.049%.

17

Under review as a conference paper at ICLR 2022

E TECHNICAL BACKGROUND ON PACKING

E.1 CANONICAL PACKING PROBLEM

The bin-packing problem deals with the assignment of items into bins of a fixed capacity such that
the number of utilized bins is minimized. In the canonical formulation of the packing problem a
vector s(i) of length n is used to represent the items being packed, where s(i) denotes the length of
the i-th sequence/item. The allocation of items into bins is tracked through the assignment matrixB,
where Bij ∈ {0, 1} states whether the i-th sequence should be placed into the j-th bin. In the worst
case scenario, every item is assigned to its own bin, thus B ∈ Rn×n. Notably, s grows linearly in
the number of sequences/items being packed andB grows with the square. To mask out unused bins
yj ∈ {0, 1}, denotes whether the j-th bin is being used. The optimization objective is to minimize the
sum of yj while making sure to assign each si to exactly one bin and not exceeding the maximum
bin capacity sm for each bin. This problem formulation is well known as bin-packing (Korte &
Vygen, 2012).

min
y∈{0,1}n,B∈{0,1}n×n

n∑
j=1

yj Minimize the number of bins.

s.t.
∑
j=1

bij = 1 ∀i Assign each length/sequence to only one bin.

n∑
i=1

s(i)bij ≤ smyj ∀j Cumulative length cannot exceed capacity.

(15)

Bin-packing is a strongly NP-complete (Korte & Vygen, 2012) problem. Producing an exact and
optimal solution is possible with a variety of existing algorithms, for example with the branch-and-
cut-and-price algorithm (Belov & Scheithauer, 2006). However, given that we want to apply it for
very large n (16M for the Wikipedia dataset) an approximate approach is required.

E.2 APPROXIMATE BIN-PACKING PROBLEM

Approximate packing approaches are divided into online and offline algorithms (Johnson, 1973).
Online algorithms process incoming sequences one-by-one in a streaming fashion, whereas offline
algorithms have a holistic view of all samples to be packed but typically still operate on a per
sample basis. This results in best case time and memory complexities of at least O(n log(n)) and
solutions that can sometimes be far from optimal, especially for the online algorithms which do
not have access to a holistic view of the datasets. The simplest online approach (next-fit) would
be to keep a single open bin at any given time. An incoming sequence is added to this open bin
if it fits, otherwise the bin is closed (can never be appended to again) and a new one is opened to
accommodate the new sequence (Johnson, 1973). In the case of the Wikipedia pre-training dataset
almost 25% of the sequences are of length 512, which makes this approach very inefficient since
bins would frequently be closed because the incoming sequence did not fit. More specifically, this
approach is not able to efficiently combine one long sequence with one shorter sequence, when the
number of long sequences is large. The algorithms that come closest to the approaches proposed
in this paper are the online harmonic-k algorithm (Lee & Lee, 1985), which creates harmonic sized
bins for the assignment decision, and the offline Modified First Fit Decreasing method (Johnson &
Garey, 1985; Yue & Zhang, 1995), which sorts the data, groups it into 4 size categories and defines
a strategy adjusted to these sizes.

In our approaches, we make three major simplifications. We make the problem of bin packing less
dependent on n by operating on the histogram of sequence lengths with bin size 1. Hence, we
replace s(i) by its histogram b and the bin assignment y,B by a mixture of strategies x, where the
set of all available packing strategies is modeled as the matrix A (see also Section E.4.2).

Then, we do not solve the full packing problem but focus on a fixed packing depth (in other words
the well known 3-partition problem). Last but not least, we solve the limited depth packing problem
only approximately either with a non-negativity-constrained linear least squares (Bro & De Jong,

18

Under review as a conference paper at ICLR 2022

1997) (NNLS) followed by rounding to nearest integer solution or by applying Worst-Fit (Johnson
& Garey, 1985; Yue & Zhang, 1995) to the histogram, sorted from largest to smallest (in contrast to
using an unsorted dataset). An exact solution would not be appropriate, since the 3-partition problem
is strongly NP-complete (Garey & Johnson, 1990) as well.

E.3 DEFINITIONS

In this section, we standardize the terms used throughout our methods. Firstly, the terms pack and
bin may be used interchangeably. Secondly, the presented packing schemes impose a limit on how
many sequences can be packed into any given bin. This limit is referred to as the maximum packing
depth. For simplicity, we require the different sequence lengths in a pack to always add up exactly
to the bin capacity sm (we can always generate a padding sequence of just the right length to fill-up
the bin). A packing strategy is a sorted list of sequence lengths, for example [5, 7, 500], such that the
total sequence length is no more than sm and the number of sequences in the pack does not exceed
the maximum packing depth. The output of a packing scheme is typically as set of packing strategies
and the corresponding repeat count for each strategy stating how many times each strategy should
be repeated in order to cover the entire dataset. The strategy repeat count is also referred to as the
mixture of strategies. The objective of the packing algorithm is to jointly design a set of packing
strategies and their repeat counts, such that the amount of padding is (approximately) minimized.
The presence of padding in the packs can either be implicit or explicit. For instance for sm = 512 the
strategy [2, 508] has an implicit padding of 2 (needed to fill the pack up to the sm). Alternatively, the
strategy repeat count may over-subscribe a particular sequence length leading to explicit packing.
For instance constructing a pack of [4, 508] may require a new padding sequence of length 4 be
constructed, if there are not enough sequences of that length in the dataset. The packing algorithms,
we present, use both representations.

E.4 NON-NEGATIVE LEAST SQUARES HISTOGRAM-PACKING

The first algorithm proposed in this paper is suitable for settings where it is desirable to achieve a
high packing efficiency with a limited packing depth. The algorithm is deterministic and has three
major components described in Sections E.4.1, E.4.2 and E.4.3.

E.4.1 ENUMERATING PACKING STRATEGIES OF FIXED PACKING DEPTH

Listing all unique ways of packing up to a maximum packing depth can be achieved through dynamic
programming. We only consider packing at most up to 3 sequences per pack. This is the smallest
packing depth that can eliminate the need for most padding on the Wikipedia dataset. Increasing the
depth to 4, increases the size of the packing problem drastically and yields no throughput benefit 2.
With only two sequences, packing would be not as efficient since the distribution on sequence length
is not symmetric. We use dynamic programming to enumerate all feasible ways/strategies that up
to M sequences of length 1 − 512 can be packed into a bin of length 512. For example, a packing
strategy may be [512] or [6, 506] or [95, 184, 233]. To avoid listing the same strategy multiple times,
we enforce the sequence lengths within a pack to occur in sorted order, for example, [95, 184, 233]
is equivalent to [184, 95, 233] and should only be listed once. This reduces the search space as well
as the space of potential solutions by a factor of 6 approximately and thus significantly accelerates
the optimization process. If you had the same strategy repeated 6 times instead of having just one
instance of that strategy with weight X , you will have six instances with weight x/6 (for example,
or any other distribution). This would conflict with integer rounding of the solutions and with
convergence of optimization algorithms.

E.4.2 CONSTRUCTING THE PACKING MATRIX

The number of rows in the packing matrix is equal to the number of different sequence length
categories. For instance, if we are using a granularity of 1 token to distinguish between different
sequence lengths, then there are “maximum sequence length” rows. Each column of the matrix
corresponds to a valid packing strategy (given the depth of packing). An example packing matrix
for fitting up to 3 sequences into sequence length 8 is given in Table 2. Each column of the matrix

2For data distributions that are more skewed than Wikipedia this might look different.

19

Under review as a conference paper at ICLR 2022

represents a packing strategy. For instance, the first column represents the strategy [1, 1, 6] of
packing two length-1 sequences and one length-6 sequence together to form a pack of length 8. The
number of strategies (and columns in the matrix) is discussed in Section F. For a packing depth
of 3 and maximum sequence length, we obtain around s2m+6sm+12

12 strategies. For depth 4, around
sm(sm+4)(2sm+1)

288 more get added.

Table 2: Example packing matrix for sequence length 8. Columns represent different kinds of packs.
Rows represent the number of sequences in these packs with a certain length. The last column
represents a pack with only a single sequence of length six.

2 1 1 1 0 0 0 0 0 0
0 1 0 0 2 1 1 0 0 0
0 0 1 0 0 2 0 1 0 0
0 0 1 0 1 0 0 0 2 0
0 1 0 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1

E.4.3 SOLUTION OF THE NNLS APPROXIMATE PACKING PROBLEM

A solution of the packing problem is the mixture of packing strategies x that minimizes the amount
of padding in the packed dataset. We solve directly for the mixture (positive real numbers) and
recover the padding as the negative portion of the residual (see Section E.4.4).

min
x∈Rm

‖A · x− b‖2

s.t. x ≥ 0
(16)

The solution vector x will represent the mixture of the columns of A, in other words the mixture
of valid packing strategies such that A · x is as close as possible (in the least squares sense) to the
histogram of sequence lengths b. We obtain a solution with a non-negative least squares implemen-
tation (Lawson & Hanson, 1995; Virtanen et al., 2020) Interestingly in the case of sequence length
512 only 634 out of the 22102 available packing strategies of depth up to 3 are used (3%).

E.4.4 PADDING AS THE RESIDUALS OF THE PACKING PROBLEM

We compute the residuals of the least squares solution (after rounding the mixture to integer) as:
r = b−A · round(x) (17)

The negative portion of the residuals represents sequences that we are “short”. That is, there is a
deficit of those sequences and we are over-subscribing to them. The positive portion of the residuals
represents sequences which have failed to be packed. Typically, there is a deficit of short sequences
and a surplus of long sequences as demonstrated by the following plot.

In total, there are n = 16‘279‘552 sequences in the Wikipedia pre-training dataset. After
the non-negative least squares packing (and rounding to integer solution) there are 56‘799 un-
packed sequences left un-packed (about 0.352%). The residual on sequence lengths 1 to 8 are
[−4620,−4553,−4612,−4614,−3723,−3936,−3628,−3970]. These negative residuals imply
that we need to add this many sequences of their corresponding sequence length to realize the
mixture of packing strategies. In total the first iteration introduces 7.94106 tokens of padding. In
contrast large sequence lengths have a positive residual (a surplus of unused sequences). For se-
quence lengths 504 to 512 the values are [3628, 3936, 3724, 4613, 4612, 4553, 4619, 0]. Note that
sequence length 512 has a residual of 0 since they do not need packing. Intermediate sequence
lengths typically have non-zero (but much smaller) residuals.

The detailed code for the algorithm is provided in Listing 2.

E.4.5 RESIDUAL WEIGHTING

A natural extension of the non-negative least squares problem introduced in Section E.4.3 is to
weight the residuals on different sequence length differently.

20

Under review as a conference paper at ICLR 2022

0 100 200 300 400 500
sequence length

4000

2000

0

2000

4000

nu
m

be
r o

f r
es

id
ua

l s
eq

ue
nc

es

Un-weighted nnls packing residual

under-used sequences
over-used sequences

Figure 8: Visualization of the residual of the NNLS packing problem

min
x∈Rm

‖(wA) · x− (wb)‖2

s.t. x ≥ 0
(18)

We should not significantly penalize a deficit in short sequence lengths (smaller than 8 tokens) as
adding up to 8 tokens of padding is not much overhead. Similarly, a surplus in long sequences is
not worrisome because the amount of padding needed to achieve a sequence length of 512 is small.
Reducing the weight of the residual on the first 8 tokens to 0.09 leads to the following residual plot
shown on the right in Figure 9. In this case the residual is almost entirely shifted to the shorter
sequences and the positive residual on the longer sequences has virtual disappeared.

0 100 200 300 400 500
sequence length

25000

20000

15000

10000

5000

0

nu
m

be
r o

f r
es

id
ua

l s
eq

ue
nc

es

Weighted nnls packing residual

under-used sequences
over-used sequences

Figure 9: Visualization of the weighted residual of the NNLS packing problem

21

Under review as a conference paper at ICLR 2022

E.5 DISCUSSION OF RESIDUAL WEIGHT CHOICE

This section discusses the choice and effect of the weighting parameters in the NNLSP packing
algorithm. To simplify the problem of selecting reasonable defaults for the residual weights, we
use just two parameters to completely describe the weights: an “offset” parameter and a “weight”
parameter. Originally, all sequence length residuals are given the same weight of 1. This results
in a packing with leftover long sequences, because there are not enough short sequences to pack
them with. To reduce the residual on long sequences, we could either increase the residual weight
on long sequences or reduce the weight on short sequences. We chose to reduce the weight on short
sequences. Specifically, sequence lengths up to the “offset” length have a reduced “weight”. The
other residual weights stay at 1.

To start, we chose an offset of 8 tokens, which is the smallest power of 2 for which there are
examples in the Wikipedia dataset. We decrease the weight on sequences shorter than the “offset”
from 1 to 0.9 to 0.09 to see which order of magnitude is the most appropriate. On visual inspection
(looking at the residual plots as in Figure 9), we found that 0.9 still left too many long sequences
unpacked. So, we reduced the weight a further order of magnitude to 0.09. This seemed sufficient
to encourage nearly all long sequences to pack. While visual inspection helps in understanding how
many long/short sequences are leftover, we are also interested in the impact the weights have on the
overall efficiency of the packing.

Without any weighting, we get 99.746359% efficiency, whereas the weighted approach results in
99.746274% efficiency. Hence, we conclude that the impact of the weights on the packing effi-
ciency is very limited. Additionally, using an “offset” length of 4, resulted in similar numbers, for
the full range of weights from 0 to 1. Using a weight of 0 for an “offset” length of 8 resulted in
insignificantly higher efficiency of 99.7519%, whereas using an “offset” length of 16 reduces per-
formance to 99.38964%. A weight of 0 implies that the residual on those lengths can be safely
ignored, i.e., the packing algorithm can thus add as many short sequences as it chooses without any
penalty. It is very interesting that this does not significantly impact the packing efficiency, and can
even have a slightly positive impact. However, increasing the “offset” length further significantly
decreases the performance with weight 0. Keeping the weight at 0.09 and increasing the length
reduces performance slightly, for example with 99.53% at length 256 and 99.728% at length 16.

For our Squad analysis, weighting improved the efficiency slightly from 96.94% to 97.38%. Fine
tuning further with direction grid search, delivered a local optimum of 98.767% efficiency with
length 64 and weight 0.002.

Overall the influence of different residual weights on the packing efficiency (and the acceleration
factor) is less than 1%. This might differ from application to application, but it shows that we are
able to use the residual weights to achieve secondary targets (like not having leftover long sequences)
without significantly compromising the packing efficiency.

22

Under review as a conference paper at ICLR 2022

F COMPLEXITY ANALYSIS OF THE PROPOSED PACKING APPROACHES

Since approximate packing algorithms have a complexity of at least O(n log(n)) and we would
like to be able to tackle datasets with 2K million samples, we will discuss the complexity of our
packing algorithms in this section. The complexity depends on the maximum sequence length sm,
the number of samples n, and the packing depth d.

To create the histogram, we have to iterate over the data once (O(n)). Our histograms will be binned
by size 1, meaning one bin for each sequence length. Hence, a dictionary can be generated (O(sm))
and used for the sorting (O(1)). The respective histogram vector has dimension sm.

F.1 COMPLEXITY ANALYSIS OF NON-NEGATIVE LEAST-SQUARES HISTOGRAM-PACKING

For a packing depth of one, there is only the strategy [sm]. For a packing depth of two, we add
the strategies [1, sm − 1], ..., [sm − b sm2 c] which results in an additional b sm2 c potential strategies.
Following the dynamic programming approach, the number of possible additional strategies of depth
three can be calculated with

potential strategies =
b sm3 c∑
j=1

b sm−j
2 c∑

i=j

1 =

b sm3 c∑
j=1

⌊
sm − j

2

⌋
− (j − 1)

≈
b sm3 c∑
j=1

sm
2
− 3

2
j ≈ sm

2

sm
3
− 3

2

sm/3(sm/3 + 1)

2

≈
[
s2m
12

]
(19)

Note that for sm = 512 the approximation is exact. This means that our strategy matrix A has the
dimensions sm ×

([
s2m
12

]
+ b sm2 c+ 1

)
. Overall, this leaves us with a space complexity of s3m since

A is larger than w, x, and b. So it contains 11‘316‘224 numbers which is still much smaller than n.
Note that the original data matrix B had n2 entries, which all needed to be optimized together with
the n bin assignments y. We now have only

[
s2m
12

]
+b sm2 c free variables in the strategy vector x. Also

note that A can be precomputed when sm is known and is independent of the number of samples.
Given a problem matrix with dimension i × j, Luo et al. (Luo & Duraiswami, 2011) indicate that
the asymptotic complexity of most solution approaches is O(ij2), whereas they propose an O(ij)
solution. Since we use the standard SciPy implementation (Lawson & Hanson, 1995), our estimated
total time complexity for NNLSHP is O(n+ s5m).

For sm = 2048, the estimate would be 350′540 potential strategies which is still far less than the
number of samples. For packing depth 4, we calculate (Wolfram Research Inc.):

b sm4 c∑
k=1

b sm−k
3 c∑

j=k

b sm−j−k
2 c∑

i=j

1

≈
b sm4 c∑
k=1

b sm−k
3 c∑

j=k

sm − k + 2− 3j

2

≈
b sm4 c∑
k=1

1

12
(s+ 4− 4k)(s+ 3− 4k)

≈ 1

288
s(2s2 + 9s+ 4)

=
1

288
s(s+ 4)(2s+ 1)

(20)

23

Under review as a conference paper at ICLR 2022

So with sm = 512, there would be around 940K strategies. In our implementation, this number of
strategies would be too high to create the problem matrix. One alternatives to simplify would be to
not use the exact length of sequences but to only consider even numbers for the sequence length and
round up. That way arbitrary sequence length could also be handled and the limiting factor would be
the complexity of the attention layer in BERT which does not scale well with the sequence length.

F.2 COMPLEXITY ANALYSIS OF SHORTEST-PACK-FIRST HISTOGRAM-PACKING

The complexity calculation of SPFHP is straightforward. We go over the whole data once for the
histogram sorting. Next, we iterate over each of the sm bins in the histogram. Lastly, we iterate
over all strategies that were encountered so far. It can be proven that, at each iteration, the number
of strategies can be maximally increased by one. In each step, we potentially add a sequence to
existing strategies but a new strategy is opened up only in the final step, when we either create a
new strategy or we split one of the existing strategies into two. Hence, the number of strategies is
bounded by sm and the overall time complexity is bounded by O(n+ s2m). The space complexity is
O(s2m) since we need to store up to sm strategies with maximum sm counts for different sequence
length.

G PERFORMANCE COMPARISON TO GREEDY PACKING IN T5

T5 (Raffel et al., 2019) is normally trained on the C4 dataset. However, to give an idea of the
difference in packing efficiency and acceleration compared to our newly introduced algorithm, we
can analyse the performance of greedy aggregation of samples on our given Wikipedia dataset.

We take the histogram and cast it back to a list of different sequence lengths since this is all that
matters for analysing packing behaviour. Next, we randomly shuffle the dataset and iterate with the
greedy aggregation algorithm multiple times to account for randomness. We iterate sequence by
sequence and combine them provided the maximum sequence length of 512 is not yet reached. If it
is exceeded, the packed sequence is considered finished and a new sequence is started.

The greedy packing algorithm itself takes a bit more than 10 seconds, since we are operating on
single sequences and not histogram counts. The efficiency of this approach is 78.24% (standard
deviation of 0.005) compared to our 99.75% for NNLSHP. The respective acceleration would be
around 1.566x compared to our 2x. With respective separator tokens, the performance decreases
around 0.13% for one separator token and 0.27% when two separator tokens are required between
two sequences. Following the brief documentation at https://github.com/tensorflow/
tensor2tensor/blob/5623deb79cfcd28f8f8c5463b58b5bd76a81fd0d/
tensor2tensor/data_generators/generator_utils.py#L1086, two separa-
tor tokens would be expected in the T5 processing.

In addition to the packing preprocessing, our paper proposes, rather than using separator tokens,
to instead modify the masking of the attention matrix during training. The RoBERTa paper shows
that avoiding contamination of sequences from different documents can consistently improve down-
stream F1 scores by 0.35%.

24

https://github.com/tensorflow/tensor2tensor/blob/5623deb79cfcd28f8f8c5463b58b5bd76a81fd0d/tensor2tensor/data_generators/generator_utils.py#L1086
https://github.com/tensorflow/tensor2tensor/blob/5623deb79cfcd28f8f8c5463b58b5bd76a81fd0d/tensor2tensor/data_generators/generator_utils.py#L1086
https://github.com/tensorflow/tensor2tensor/blob/5623deb79cfcd28f8f8c5463b58b5bd76a81fd0d/tensor2tensor/data_generators/generator_utils.py#L1086

Under review as a conference paper at ICLR 2022

H PACKING SQUAD 1.1

We tokenized SQuAD (Rajpurkar et al., 2016) for BERT (Devlin et al., 2019a) with maximum
sequence length 384 and visualized the histogram over the sequence length (Figure 10). The distri-
bution looks similar to the Wikipedia dataset but is slightly less skewed. However, the maximum
sequence length only had an occurrence of 1.2% compared to 23.5%. Hence, the theoretical un-
padding speedup is 2.232. In Table 3, we can see that SPFHP does not concatenate more than 3
samples and obtains 97.54% efficiency in contrast to a maximally used depth of 16 with 99.60%
efficiency on Wikipedia, because of the less skewed distribution. Note that we have less than 90′000
samples. Hence, NNLSHP is less efficient because the rounding in the residuals has a much larger
impact compared to more than 16 million sequences in the Wikipedia dataset.

50 100 150 200 250 300 350 400
sequence length

0.000

0.002

0.004

0.006

0.008

0.010

0.012

pr
ob

ab
ilit

y
de

ns
ity

Figure 10: SQuAD 1.1 BERT pre-training dataset sequence length histogram for maximum se-
quence length of 384.

Table 3: Performance results of proposed packing algorithms for SQuAD 1.1 BERT pre-training.
packing packing # strategies # packs # tokens # padding efficiency packing
depth algorithm used tokens (%) factor
1 none 348 88641 34038144 18788665 44.801 1.000
2 SPFHP 348 45335 17408640 2159161 87.597 1.955
3 NNLSHP 398 40808 15670272 420793 97.310 2.172
3/max SPFHP 344 40711 15633024 383545 97.547 2.177

25

Under review as a conference paper at ICLR 2022

I PACKING GLUE

To explore a variety of datasets and emphasize that skewed distributions are common, we explored
all datasets in the GLUE benchmark (Warstadt et al., 2018; Wang et al., 2018) that came with training
data. We loaded the datasets using the HuggingFace dataset loading API (Wolf et al., 2020). For
preprocessing, we followed the implementation in the HuggingFace transformers repository (Wolf
et al., 2020) 3 and extracted the respective data processing snippets to obtain tokenized data with a
maximum sequence length of 128. The histogram of the sequence length for each of the included
datasets is displayed in Figure 11 and the packing results are given in Table 4. Each dataset benefits
from packing. The lower the mean, the higher the packing factors are that can be reached but with a
higher packing depth.

0 20 40 60 80 100 120
sequence length

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

pr
ob

ab
ilit

y
de

ns
ity

Sequence length distributions of GLUE Datasets
cola
sst2
mrpc
qqp

stsb
mnli
rte
wnli

Figure 11: GLUE dataset sequence length histograms for maximum sequence length of 128.

Table 4: Performance results of proposed packing algorithms for the GLUE dataset. Only the base-
line and the SPFHP packing results without limiting the packing depth are displayed.

data packing # strategies # packs # tokens # padding efficiency packing
name depth used tokens (%) factor
cola 1 34 8551 1094528 997669 8.849 1.000
cola 13/max 29 913 116864 20005 82.882 9.366
sst2 1 64 67349 8620672 7723633 10.406 1.000
sst2 15/max 64 7691 984448 87409 91.121 8.757
mrpc 1 77 3668 469504 274214 41.595 1.000
mrpc 4/max 74 1606 205568 10278 95.000 2.284
qqp 1 123 363846 46572288 35448844 23.884 1.000
qqp 5/max 123 97204 12442112 1318668 89.402 3.743
stsb 1 85 5749 735872 575993 21.726 1.000
stsb 6/max 83 1367 174976 15097 91.372 4.206
mnli 1 124 392702 50265856 34636487 31.093 1.000
mnli 8/max 124 123980 15869440 240071 98.487 3.167
rte 1 112 2490 318720 152980 52.002 1.000
rte 4/max 108 1330 170240 4500 97.357 1.872
wnli 1 72 635 81280 57741 28.960 1.000
wnli 6/max 63 192 24576 1037 95.780 3.307

3https://github.com/huggingface/transformers/blob/master/examples/
text-classification/run_glue.py

26

https://github.com/huggingface/transformers/blob/master/examples/text-classification/run_glue.py
https://github.com/huggingface/transformers/blob/master/examples/text-classification/run_glue.py

Under review as a conference paper at ICLR 2022

J PACKING AUDIO DATA (LIBRISPEECH)

In this section, we show that packing can benefit other domains than NLP like ASR. We use the
LibiSpeech dataset (Panayotov et al., 2015) and preprocess it as described at a reference implemen-
tation 4. The resulting histograms for the subsampled audio sample lengths and respective text labels
are provided in Figure 12.

0 50 100 150 200 250 300
sequence length

0.000

0.002

0.004

0.006

0.008

pr
ob

ab
ilit

y
de

ns
ity

0 20 40 60 80 100 120
sequence length

0.000

0.005

0.010

0.015

0.020

0.025

pr
ob

ab
ilit

y
de

ns
ity

Figure 12: LibriSpeech sequence length histograms of preprocessed audio data [top] as well as target
text data [bottom].

It can be seen that the audio sequence length is dominated by long sequences with 38% of required
padding to meet the max sequence length of 330. Thus the theoretical optimal speed-up of 1.6x
cannot be reached. However, 80% efficiency are possible with any of the proposed packing algo-
rithms to achieve 1.3x speed-up. This can be already achieved by combining up to 2 sequences. To
achieve almost perfect packing efficiency, a sequence length around 457 and concatenating up to 8
sequences is required. Due to the quadratic increased computational load that usually comes with
longer sequence length, increasing the sequence length is not practical.

If processing and packing the text data independently of the audio, 99.99% efficiency can be
achieved with a speed-up of 2.24x.

4https://github.com/mlcommons/training/tree/master/rnn_speech_
recognition/pytorch

27

https://github.com/mlcommons/training/tree/master/rnn_speech_recognition/pytorch
https://github.com/mlcommons/training/tree/master/rnn_speech_recognition/pytorch

Under review as a conference paper at ICLR 2022

K PACKING PAPER ABSTRACTS (PUBMED)

This section analyses the length of abstracts to give an intuition about how different documents
can be in length. Figure 13 depicts the length of abstracts in characters extracted from PubMed 5.
If these abstracts were directly used as sequences, a character length of 1000 could result in 1.9x
speed-up from packing. The potential speed-ups for length 2000, 3000, 4000 would be 2x, 3x, and
4x, respectively. Note that, document clean-up procedures would usually eliminate documents that
are too short or too long for data sanitizing purposes.

0 500 1000 1500 2000 2500 3000 3500 4000
number of characters

0

2000

4000

6000

8000

10000

12000

14000

16000

co
un

t o
f a

bs
tra

ct
s

Figure 13: Abstract length distribution in PubMed.

Note that for the processing in BlueBERT (Peng et al., 2019), paper titles and abstracts get separated
into sequences, tokenized, and then combined with the BERT sequence combination approach for a
maximum sequence length of 128 tokens. Thus, it results in a different distribution.

5https://huggingface.co/datasets/pubmed

28

https://huggingface.co/datasets/pubmed

Under review as a conference paper at ICLR 2022

L FURTHER LEARNING CURVES

This section provides further learning curves related to Section 4.2.

0 1 2 3
samples 1e6

0.50

0.55

0.60

0.65

0.70

tra
in

in
g

ac
cu

ra
cy

classic, bs: 1500
packed, bs: 768

0 1 2 3
samples 1e6

1.5

2.0

2.5

3.0

3.5

tra
in

in
g

lo
ss

classic, bs: 1500
packed, bs: 768

Figure 14: Comparison of learning curves for packed and unpacked processing with reduced batch
size for the packed approach.

0 1 2 3
samples 1e6

0.4

0.5

0.6

0.7

tra
in

in
g

ac
cu

ra
cy

classic, beta: 0.81
packed, beta: 0.66
packed, beta: 0.66, double lr
packed, beta: 0.81, double lr

0 1 2 3
samples 1e6

2

3

4

tra
in

in
g

lo
ss

classic, beta: 0.81
packed, beta: 0.66
packed, beta: 0.66, double lr
packed, beta: 0.81, double lr

Figure 15: Comparison of learning curves for packed and unpacked processing with heuristics
applied.

0.0 0.5 1.0 1.5 2.0
relative time

0.50

0.55

0.60

0.65

0.70

tra
in

in
g

ac
cu

ra
cy

classic, bs: 1500, beta: 0.81
packed, bs: 1500, beta: 0.66

0.0 0.5 1.0 1.5 2.0
relative time

1.5

2.0

2.5

3.0

3.5

tra
in

in
g

lo
ss

classic, bs: 1500, beta: 0.81
packed, bs: 1500, beta: 0.66

Figure 16: Comparison of learning curves for packed and unpacked processing in the optimized
setup.

29

Under review as a conference paper at ICLR 2022

M FINE-TUNED LONGEST-PACK-FIRST HISTOGRAM-PACKING

In the main paper, we focused on SPFHP due its simplicity. In this section, we analyse the effect of
applying the “Best-Fit” algorithm (Johnson, 1973). Here, the longest pack that still fits the sequence
is chosen instead of the shortest one. In contrast to SPFHP, we additionally consider splitting the
histogram count, if it can fit multiple times. A simple example is sequence length 256, where
we divide the respective histogram count by 2 to create the optimal pack with strategy [256, 256]
instead of the strategy [256]. This latter strategy would be complemented by other sequences but
would probably not result in an optimal packing. The implementation of this approach is much
more complex than the SPFHP implementation. The code is provided in Listing 8 and the results in
Table 5.

pack. # strat. # packs # tokens # padding efficiency pack.
depth used tokens (%) factor
1 508 16279552 8335130624 4170334451 49.967 1.000
2 634 10099081 5170729472 1005933299 80.546 1.612
3 648 9090154 4654158848 489362675 89.485 1.791
4 671 8657119 4432444928 267648755 93.962 1.880
8 670 8207569 4202275328 37479155 99.108 1.983
16 670 8140006 4167683072 2886899 99.931 2.000
29/max 670 8138483 4166903296 2107123 99.949 2.000

Table 5: Performance results of longest-pack-first histogram-packing for Wikipedia BERT pre-
training with maximum sequence length 512.

We can see that longest-pack-first histogram-packing (LPFHP) uses a much higher packing depth
when no limit is set (29 instead of 16). Splitting the histogram counts results in slightly higher
numbers of used strategies compared to SPFHP where the number of used strategies is limited by
the maximum sequence length. The best efficiency of LPFHP is 99.949% with packing factor of 2
which is slightly higher than the 99.75% (1.996 packing factor) for NNLSHP and 99.6% for SPFHP
(1.993 packing factor). All algorithms are very close to the upper limit.

Note that for NNLSHP, we only fill up the unpacked samples with padding. Applying best-fit on
the remains, similar results can be expected. Although the benefits of the improved algorithm are
negligible, we share the concept and code below in case packing is applied to other data with a
different distribution that would benefit more from it, or for applications where only perfectly packed
sequences without padding are of interest.

30

Under review as a conference paper at ICLR 2022

N EXTENDED NNLS WITH PADDING TOKEN WEIGHTING

In Section E.4.4, we defined the residual as

r = b−A · round(x) (21)

and discovered that a positive residual corresponds to sequences that we did not pack at all and
should be avoided. Negative residuals correspond to padding and should be minimized. Due to
this discrepancy, we decided to set small weights for very short sequences (that don’t occur in the
data). However, it was not possible to directly optimize the amount of padding. A negative residual
component for length i, ri, results in |ri| · i padding tokens, however a positive residual actually
results into (512− ri) · i padding tokens. This cannot be addressed by our weighting approach in

min
x∈Rm

‖(wA) · x− (wb)‖2

s.t. x ≥ 0
(22)

Working within the NNLS approach, we can strictly enforce a non-positive residual r (before round-
ing to integer). To that end, we define a new auxiliary variable r ≈ −(b−Ax) which is the negative
of the residual, r. This will allow us to reformulate the objective r ≤ 0 to the non-negative con-
straint: r ≥ 0.

min
x∈Rm

‖(wA) · x− (wb)‖2 + ‖w ·A · x− w · b− w · r‖2

s.t. x ≥ 0

r ≥ 0

(23)

This will enforce r = Ax − b ≥ 0 due to the large weight, w := 106, and no upper limits on r.
Now, we can set wi := i to optimize for the padding tokens. Due to the use of the squared error, we
would however optimize the squared sum of padding tokens instead of the preferred sum of padding
tokens. To accomplish the latter, we would have to replace the L2-norm problem by an L1-norm
problem which would be too complex to solve. Note that due to rounding, the unwanted positive
residuals r (r < 0) might still occur. This could be avoided by rounding up x instead of normal
rounding of x. To put the new formulation into a solver, we replace

b by
(
b
b

)
, x by

(
x
r

)
, w by

(
w
w

)
, and A by

(
A 0m
A −Dm

)
, (24)

where 0m is an m × m matrix with m being the maximum sequence length, 512, and Dm is a
unit matrix of the same dimensions as 0m. Since, we are already close to optimum especially on the
Wikipedia dataset, the results are only a little bit better. The processing time however increases from
30 to 415 seconds without considering the increased time for constructing the processing matrix.
Since the slightly improved algorithm might be nevertheless relevant for other applications, we
share it in Listing 9.

31

Under review as a conference paper at ICLR 2022

O PACKING SOURCE CODE

Listing 2: Non-negative least squares histogram-packing
1 import time
2 import numpy as np
3 from scipy import optimize, stats
4 from functools import lru_cache
5
6 def get_packing_matrix(strategy_set, max_sequence_length):
7 num_strategies = len(strategy_set)
8 A = np.zeros((max_sequence_length, num_strategies), dtype=np.int32)
9 for i, strategy in enumerate(strategy_set):

10 for seq_len in strategy:
11 A[seq_len - 1, i] += 1
12 return A
13
14 @lru_cache(maxsize=None)
15 def get_packing_strategies(start_length, minimum_increment, target_length, depth):
16 gap = target_length - start_length
17 strategies = []
18 # Complete the packing with exactly 1 number
19 if depth == 1:
20 if gap >= minimum_increment:
21 strategies.append([gap])
22 # Complete the sample in "depth" steps, recursively
23 else:
24 for new in range(minimum_increment, gap + 1):
25 new_gap = target_length - start_length - new
26 if new_gap == 0:
27 strategies.append([new])
28 else:
29 options = get_packing_strategies(start_length + new, new, target_length, depth - 1)
30 for option in options:
31 if len(option) > 0:
32 strategies.append([new] + option)
33 return strategies
34
35 def pack_using_nnlshp(histogram, max_sequence_length, max_sequences_per_pack):
36 # List all unique ways of packing to the desired maximum sequence length
37 strategy_set = get_packing_strategies(0, 1, max_sequence_length, max_sequences_per_pack)
38 print(f"Packing will involve {len(strategy_set)} unique packing strategies.")
39 # Get the packing matrix corresponding to this list of packing strategies
40 A = get_packing_matrix(strategy_set, max_sequence_length)
41 # Weights that penalize the residual on short sequences less.
42 penalization_cutoff = 8
43 w0 = np.ones([max_sequence_length])
44 w0[:penalization_cutoff] = 0.09
45 # Solve the packing problem
46 print(f"Sequences to pack: ", histogram.sum())
47 start = time.time()
48 strategy_repeat_count, rnorm = optimize.nnls(np.expand_dims(w0, -1) * A, w0 * histogram)
49 print(f"Solving non-negative least squares took {time.time() - start:3.2f} seconds.")
50 # Round the floating point solution to nearest integer
51 strategy_repeat_count = np.rint(strategy_repeat_count).astype(np.int64)
52 # Compute the residuals, shape: [max_sequence_length]
53 residual = histogram - A @ strategy_repeat_count
54 # Handle the left-over sequences i.e. positive part of residual
55 unpacked_seqlen = np.arange(1, max_sequence_length + 1)[residual > 0]
56 for l in unpacked_seqlen:
57 strategy = sorted([l, max_sequence_length - l]) # the depth 1 strategy
58 strategy_index = strategy_set.index(strategy)
59 strategy_repeat_count[strategy_index] += residual[l-1]
60 # Re-compute the residual with the updated strategy_repeat_count
61 # This should now be strictly < 0
62 residual = histogram - A @ strategy_repeat_count
63 # Add padding based on deficit (negative residual portion of residual)
64 padding = np.where(residual < 0, -residual, 0)
65 # Calculate some basic statistics
66 sequence_lengths = np.arange(1, max_sequence_length + 1)
67 old_number_of_samples = histogram.sum()
68 new_number_of_samples = int(strategy_repeat_count.sum())
69 speedup_upper_bound = 1.0/(1 - (histogram*(1 - sequence_lengths / max_sequence_length)).sum()/

old_number_of_samples)
70 num_padding_tokens_packed = (sequence_lengths * padding).sum()
71 efficiency = 1 - num_padding_tokens_packed/(new_number_of_samples*max_sequence_length)
72 print(f"Packing efficiency (fraction of real tokens): {efficiency:3.4f}\n",
73 f"Speed-up theoretical limit: {speedup_upper_bound:3.4f}\n",
74 f"Achieved speed-up over un-packed dataset: {old_number_of_samples/new_number_of_samples:3.5f}")
75 return strategy_set, strategy_repeat_count

32

https://github.com/graphcore/tutorials/tree/master/blogs_code/packedBERT/nnlshp.py

Under review as a conference paper at ICLR 2022

Listing 3: Shortest-pack-first histogram-packing
1 from collections import defaultdict
2 import numpy as np
3
4 def add_pack(pack, count, tmp, final, limit, offset):
5 """Filter out packs that reached maximum length or number of sequences."""
6 if len(pack) == limit or offset == 0:
7 final[offset].append((count, pack))
8 else:
9 tmp[offset].append((count, pack))

10
11 def pack_using_spfhp(histogram, max_sequence_length, max_sequences_per_pack):
12 """Shortest-pack-first histogram-packing algorithm."""
13 reversed_histogram = np.flip(histogram)
14 # Initialize main strategy data dictionary.
15 # The key indicates how many tokens are left for full length.
16 # The value is a list of tuples, consisting of counts and respective packs.
17 # A pack is a (sorted) list of sequence length values that get concatenated.
18 tmp_strategies_per_length = defaultdict(list)
19 strategies_per_length = defaultdict(list)
20 # Index i indicates here, how much space is left, due to reversed histogram
21 for i in range(max_sequence_length):
22 n_sequences_to_bin = reversed_histogram[i]
23 length_to_bin = max_sequence_length - i
24 offset = i + 1 # largest possible offset
25 while n_sequences_to_bin > 0:
26 if (length_to_bin + offset) in tmp_strategies_per_length:
27 # extract shortest pack that will get modified
28 n_sequences_to_pack, pack = tmp_strategies_per_length[
29 length_to_bin + offset].pop()
30 new_pack = pack + [length_to_bin]
31 count = min(n_sequences_to_pack, n_sequences_to_bin)
32 if n_sequences_to_pack > n_sequences_to_bin:
33 # old pack gets reduced
34 n_sequences_to_pack -= n_sequences_to_bin
35 tmp_strategies_per_length[length_to_bin + offset].append(
36 (n_sequences_to_pack, pack))
37 n_sequences_to_bin = 0
38 else:
39 n_sequences_to_bin -= n_sequences_to_pack
40 add_pack(new_pack, count,
41 tmp_strategies_per_length, strategies_per_length,
42 max_sequences_per_pack, offset)
43 # clean up to speed up main key search
44 if not tmp_strategies_per_length[length_to_bin + offset]:
45 tmp_strategies_per_length.pop(length_to_bin + offset)
46 else:
47 offset -= 1
48 # Does not fit anywhere. Create new pack.
49 if offset < 0:
50 add_pack([length_to_bin], n_sequences_to_bin,
51 tmp_strategies_per_length, strategies_per_length,
52 max_sequences_per_pack, i)
53 n_sequences_to_bin = 0
54 # merge all strategies
55 for key in tmp_strategies_per_length:
56 strategies_per_length[key].extend(tmp_strategies_per_length[key])
57 # flatten strategies dictionary
58 strategy_set = []
59 strategy_repeat_count = []
60 for key in strategies_per_length:
61 for count, pack in strategies_per_length[key]:
62 pack.reverse()
63 strategy_set.append(pack)
64 strategy_repeat_count.append(count)
65 return strategy_set, np.array(strategy_repeat_count)

33

https://github.com/graphcore/tutorials/tree/master/blogs_code/packedBERT/spfhp.py

Under review as a conference paper at ICLR 2022

Listing 4: Evaluation function of shortest-pack-first histogram-packing
1 """Max depth analysis of shortest-pack-first histogram-packing."""
2 from collections import defaultdict
3 import tabulate
4 import time
5 import numpy as np
6
7 def evaluate_spfhp(histogram, max_sequence_length):
8 """Evaluate shortest-pack-first histogram-packing algorithm."""
9 stats_data = [["pack. depth", "# strat. used", "# packs", "# tokens",

10 "# padding tok.", "efficiency (%)", "pack.factor", "time"]]
11 for max_sequences_per_pack in [1, 2, 3, 4, 8, 16, "max"]:
12 start = time.time()
13 strategy_set, strategy_repeat_count = pack_using_spfhp(
14 histogram, max_sequence_length, max_sequences_per_pack)
15 duration = time.time() - start
16
17 # Performance Evaluation of packing approach
18 n_strategies = int(len(strategy_set))
19 packs = int(sum(strategy_repeat_count))
20 sequences = sum([count*len(pack) for count, pack in
21 zip(strategy_repeat_count, strategy_set)])
22 total_tokens = int(max_sequence_length * packs)
23 empty_tokens = int(sum([
24 count*(max_sequence_length-sum(pack)) for count, pack in
25 zip(strategy_repeat_count, strategy_set)]))
26 token_efficiency = 100 - empty_tokens / total_tokens * 100
27 if max_sequences_per_pack == "max":
28 m_length = max([len(pack) for pack in strategy_set])
29 max_sequences_per_pack = "max ({})".format(m_length)
30 stats_data.append([
31 max_sequences_per_pack, n_strategies, packs, total_tokens,
32 empty_tokens, token_efficiency, sequences / packs, duration])
33 print(tabulate.tabulate(stats_data, headers="firstrow", floatfmt=".3f"))

Listing 5: Loss calculation
1 # The number of sequences in each batch may vary
2 sequences_in_batch = tf.reduce_sum(tf.reduce_max(masked_lm_weight, -1))
3 sequences_in_batch = tf.cast(sequences_in_batch, tf.float32)
4 # Create the 0/1 mask that will be used to un-packed sequences
5 masked_lm_weight = tf.reshape(masked_lm_weight, [B, 1, -1])
6 sequence_selection = tf.reshape(tf.range(1, max_sequences_per_pack + 1), [1, -1, 1])
7 sequence_selection = tf.cast(masked_lm_weight == sequence_selection, tf.float32)
8 # Apply the mask to un-pack the loss per sequence
9 nll_per_token = tf.reshape(nll_per_token, [B, 1, -1])

10 nll_per_sequence = sequence_selection * nll_per_token
11 # Normalize the per-sequence loss by the number of mlm-tokens in the sequence (as is standard)
12 attempted = tf.reduce_sum(sequence_selection, -1, keepdims=True)
13 attempted = attempted + tf.cast(attempted == 0, tf.float32) # prevent NaNs when dividing by attempted
14 nll_per_sequence = nll_per_sequence/attempted
15 # Average per-batch loss (so contributions from different batches are comparable)
16 lm_loss = tf.reduce_sum(nll_per_sequence)/sequences_in_batch

34

Under review as a conference paper at ICLR 2022

Listing 6: Wikipedia and SQuAD 1.1 histograms
1 import numpy as np
2 wikipedia_histogram = np.array([
3 0, 0, 0, 0, 1821, 1226, 1969, 1315, 1794, 1953, 3082, 3446, 4166, 5062,
4 9554, 16475, 19173, 17589, 17957, 19060, 21555, 23524, 26954, 30661, 33470, 36614, 40134, 43256,
5 46094, 49350, 52153, 55428, 58109, 60624, 63263, 64527, 65421, 66983, 68123, 68830, 70230, 70486,
6 72467, 72954, 73955, 74311, 74836, 74489, 74990, 75377, 74954, 75096, 74784, 74698, 74337, 74638,
7 74370, 73537, 73597, 73153, 72358, 71580, 71082, 70085, 69733, 69445, 67818, 67177, 66641, 65709,
8 64698, 63841, 63218, 62799, 61458, 60848, 60148, 59858, 58809, 58023, 56920, 55999, 55245, 55051,
9 53979, 53689, 52819, 52162, 51752, 51172, 50469, 49907, 49201, 49060, 47948, 47724, 46990, 46544,

10 46011, 45269, 44792, 44332, 43878, 43984, 42968, 42365, 42391, 42219, 41668, 41072, 40616, 40587,
11 39999, 40169, 39340, 38906, 38438, 38142, 37757, 37818, 37535, 37217, 36757, 36589, 36151, 35953,
12 35531, 35496, 35089, 35053, 34567, 34789, 34009, 33952, 33753, 33656, 33227, 32954, 32686, 32880,
13 32709, 31886, 32126, 31657, 31466, 31142, 31106, 30650, 30316, 30494, 30328, 30157, 29611, 29754,
14 29445, 28921, 29271, 29078, 28934, 28764, 28445, 28319, 28141, 28282, 27779, 27522, 27333, 27470,
15 27289, 27102, 27018, 27066, 26925, 26384, 26188, 26385, 26392, 26082, 26062, 25660, 25682, 25547,
16 25425, 25072, 25079, 25346, 24659, 24702, 24862, 24479, 24288, 24127, 24268, 24097, 23798, 23878,
17 23893, 23817, 23398, 23382, 23280, 22993, 23018, 23242, 22987, 22894, 22470, 22612, 22452, 21996,
18 21843, 22094, 21916, 21756, 21955, 21444, 21436, 21484, 21528, 21597, 21301, 21197, 21281, 21066,
19 20933, 21023, 20888, 20575, 20574, 20511, 20419, 20312, 20174, 20023, 20087, 19955, 19946, 19846,
20 19562, 19710, 19556, 19477, 19487, 19387, 19225, 19069, 19360, 18655, 19034, 18763, 18800, 19012,
21 18893, 18714, 18645, 18577, 18317, 18458, 18374, 18152, 17822, 18102, 17735, 17940, 17805, 17711,
22 17690, 17703, 17669, 17410, 17583, 17331, 17313, 16892, 16967, 16870, 16926, 17233, 16845, 16861,
23 16576, 16685, 16455, 16687, 16747, 16524, 16473, 16349, 16273, 16255, 16228, 16219, 16021, 16111,
24 15867, 15751, 16081, 15703, 15751, 15854, 15665, 15469, 15431, 15428, 15464, 15517, 15335, 15461,
25 15237, 15292, 15305, 15351, 15078, 14810, 15119, 14780, 14664, 14869, 14722, 14890, 14672, 14439,
26 14685, 14706, 14840, 14373, 14286, 14596, 14615, 14168, 14299, 13987, 14167, 14107, 14096, 14202,
27 13985, 14118, 14094, 14127, 13896, 13864, 13597, 13572, 13717, 13669, 13782, 13617, 13284, 13333,
28 13425, 13457, 13256, 13404, 13318, 13425, 13317, 13179, 13193, 13257, 13160, 12813, 13149, 13010,
29 12867, 12958, 12818, 12801, 12749, 12810, 12575, 12673, 12514, 12735, 12523, 12677, 12298, 12469,
30 12341, 12445, 12477, 12326, 12110, 12087, 12305, 12156, 12032, 12190, 12150, 11980, 12022, 11825,
31 11969, 11831, 11997, 11924, 11739, 11685, 11702, 11783, 11783, 11659, 11647, 11610, 11526, 11577,
32 11538, 11536, 11497, 11480, 11374, 11234, 11433, 11466, 11475, 11147, 11376, 11217, 11002, 11245,
33 11124, 11000, 11129, 10923, 10966, 11071, 11029, 11036, 10972, 11012, 10800, 10936, 10904, 10750,
34 10669, 10766, 10780, 10675, 10905, 10511, 10598, 10583, 10658, 10471, 10667, 10601, 10430, 10440,
35 10510, 10148, 10468, 10346, 10257, 10286, 10235, 10351, 10182, 10182, 10095, 10192, 9866, 10070,
36 10148, 9956, 10132, 10043, 9741, 10003, 10056, 9920, 10021, 9838, 9854, 9740, 9782, 9799,
37 9798, 9788, 9840, 9747, 9797, 9893, 9593, 9535, 9658, 9554, 9593, 9530, 9523, 9488,
38 9548, 9418, 9418, 9508, 9638, 9521, 9277, 9289, 9255, 9322, 9281, 9351, 9259, 9255,
39 9225, 9098, 9268, 9227, 9224, 9106, 9239, 3815044], dtype=np.int64)
40
41 wikipedia_max_sequence_length = 512
42
43 squad_1_1_histogram = np.array([
44 0,
45 0, 0, 3, 2, 0, 9, 10, 16, 22, 24, 36, 35, 46, 42, 48, 57, 86, 83, 86, 87, 86, 97, 90, 99, 85, 94,
46 105, 114, 110, 93, 116, 118, 114, 116, 117, 127, 115, 155, 137, 145, 157, 151, 153, 149, 163, 157,
47 134, 150, 144, 132, 166, 162, 177, 160, 149, 151, 138, 156, 148, 176, 163, 182, 188, 182, 177, 199,
48 182, 203, 201, 264, 250, 244, 289, 346, 327, 298, 377, 386, 444, 431, 503, 553, 532, 570, 611, 677,
49 648, 673, 712, 722, 745, 692, 697, 747, 754, 741, 777, 781, 825, 813, 836, 777, 776, 756, 789, 790,
50 765, 753, 729, 748, 772, 766, 760, 741, 725, 729, 759, 732, 730, 730, 741, 705, 708, 725, 656, 688,
51 688, 677, 662, 628, 635, 618, 586, 527, 562, 619, 562, 578, 538, 558, 582, 541, 575, 526, 556, 498,
52 529, 486, 528, 541, 482, 521, 483, 466, 514, 459, 447, 436, 383, 401, 408, 381, 369, 364, 381, 420,
53 391, 388, 358, 365, 357, 358, 355, 297, 290, 267, 308, 329, 304, 332, 289, 282, 304, 242, 263, 288,
54 238, 257, 271, 288, 277, 264, 253, 239, 217, 260, 214, 247, 237, 212, 205, 193, 200, 208, 195, 193,
55 201, 187, 170, 176, 195, 156, 201, 179, 159, 183, 169, 178, 163, 153, 171, 144, 138, 181, 165, 171,
56 161, 159, 166, 142, 138, 151, 155, 134, 141, 132, 123, 119, 109, 125, 123, 131, 135, 115, 108, 102,
57 117, 105, 99, 84, 100, 85, 85, 85, 95, 122, 105, 114, 113, 100, 80, 96, 86, 79, 80, 87, 92, 73, 73,
58 64, 76, 72, 77, 67, 60, 71, 77, 79, 72, 55, 67, 42, 59, 65, 72, 49, 43, 62, 48, 50, 54, 45, 42, 53,
59 56, 45, 43, 32, 30, 36, 42, 37, 45, 28, 41, 31, 44, 35, 36, 47, 47, 48, 65, 32, 23, 35, 38, 20, 23,
60 22, 21, 27, 20, 26, 18, 18, 22, 17, 17, 14, 26, 15, 20, 22, 19, 24, 17, 15, 20, 20, 22, 22, 17, 20,
61 16, 21, 16, 23, 12, 14, 1054], dtype=np.int64)
62
63 squad_1)1_max_sequence_length = 384

35

https://github.com/graphcore/tutorials/tree/master/blogs_code/packedBERT/histograms.py

Under review as a conference paper at ICLR 2022

Listing 7: Histogram creation for GLUE training datasets
1 from transformers import AutoTokenizer
2 import datasets
3 import numpy as np
4
5 # constants
6 max_sequence_length = 128
7 task_to_keys = {
8 "cola": ("sentence", None),
9 "mnli": ("premise", "hypothesis"),

10 "mrpc": ("sentence1", "sentence2"),
11 "qnli": ("question", "sentence"),
12 "qqp": ("question1", "question2"),
13 "rte": ("sentence1", "sentence2"),
14 "sst2": ("sentence", None),
15 "stsb": ("sentence1", "sentence2"),
16 "wnli": ("sentence1", "sentence2"),
17 }
18 glue_keys = [’cola’, ’sst2’, ’mrpc’, ’qqp’, ’stsb’, ’mnli’, ’rte’, ’wnli’]
19 # unused datasets due to missing training data
20 unglue_keys = [’mnli_matched’, ’mnli_mismatched’, ’qnli’, ’ax’]
21
22 # load data
23 dataset_loads = {}
24 for key in glue_keys:
25 dataset_loads[key] = datasets.load_dataset("glue", key, split=’train’)
26
27 # tokenize data
28 tokenizer = AutoTokenizer.from_pretrained(’bert-base-uncased’)
29 tokenized_data = {}
30 for key in dataset_loads:
31 sentence1_key, sentence2_key = task_to_keys[key]
32
33 def preprocess_function(examples):
34 """Tokenize the texts"""
35 args = (
36 (examples[sentence1_key],) if sentence2_key is None
37 else (examples[sentence1_key], examples[sentence2_key])
38)
39 result = tokenizer(*args, padding=False, max_length=max_sequence_length, truncation=True)
40 return result
41
42 tokenized_data[key] = dataset_loads[key].map(preprocess_function, batched=True)
43
44 # extract length information (for histogram plots)
45 histogram_length = {}
46 for key in tokenized_data:
47 histogram_length[key] = []
48 for number, key in enumerate(tokenized_data.keys()):
49 for raw_record in tokenized_data[key]["input_ids"]:
50 histogram_length[key].append(len([x for x in raw_record if x!=0]))
51
52 # create histogram for packing
53 glue_histogram = {}
54 for data_key in histogram_length:
55 glue_histogram[data_key] = np.array([0] * max_sequence_length, dtype=np.int64)
56 for entry in histogram_length[data_key]:
57 glue_histogram[data_key][entry-1] += 1

36

Under review as a conference paper at ICLR 2022

Listing 8: Longest-pack-first histogram-packing
1 from collections import defaultdict
2 import numpy as np
3 import time
4
5
6 def add_pack(pack, count, tmp, final, limit, offset, max_sequence_length=512):
7 """Filter out packs that reached maximum length or number of components."""
8 # sanity checks
9 assert(max_sequence_length-sum(pack) == offset), "Incorrect offset."

10 assert(offset >= 0), "Too small offset."
11 assert(offset < max_sequence_length), "Too large offset."
12 if len(pack) == limit or offset == 0:
13 final[offset].append((count, pack))
14 else:
15 tmp[offset].append((count, pack))
16
17
18 def pack_using_lpfhp(histogram, max_sequence_length, max_sequences_per_pack, distribute=True):
19 """Longest-pack-first histogram-packing."""
20 start = time.time()
21 reversed_histogram = np.flip(histogram)
22 # Initialize main strategy data dictionary.
23 # The key indicates how many tokens are left for full length.
24 # The value is a list of tuples, consisting of counts and respective packs.
25 # A pack is a (sorted) list of sequence length values that get concatenated.
26 tmp_strategies_per_length = defaultdict(list)
27 strategies_per_length = defaultdict(list)
28 if max_sequences_per_pack is "max":
29 max_sequences_per_pack = max_sequence_length
30 # Index i indicates here, how much space is left, due to reversed histogram
31 for i in range(max_sequence_length):
32 n_sequences_to_bin = reversed_histogram[i]
33 length_to_bin = max_sequence_length - i
34 offset = 0 # smallest possible offset for perfect fit
35 while n_sequences_to_bin > 0:
36 if (length_to_bin + offset) in tmp_strategies_per_length:
37 # extract worst pack that will get modified
38 n_sequences_to_pack, pack = tmp_strategies_per_length[
39 length_to_bin + offset].pop()
40 # calculate how often the current sequence maximally fits in
41 repeat = min(1 + offset // length_to_bin, max_sequences_per_pack-len(pack))
42 # correct dependent on count
43 while n_sequences_to_bin//repeat == 0:
44 repeat -= 1
45 if not distribute:
46 repeat = 1
47 new_pack = pack + [length_to_bin]*repeat
48 count = min(n_sequences_to_pack, n_sequences_to_bin//repeat)
49 if n_sequences_to_pack > count:
50 # old pack gets reduced
51 n_sequences_to_pack -= count
52 tmp_strategies_per_length[length_to_bin + offset].append(
53 (n_sequences_to_pack, pack))
54 n_sequences_to_bin -= count * repeat
55 else:
56 n_sequences_to_bin -= n_sequences_to_pack * repeat
57 add_pack(new_pack, count,
58 tmp_strategies_per_length, strategies_per_length,
59 max_sequences_per_pack, offset - (repeat - 1) * length_to_bin,
60 max_sequence_length)
61 # clean up to speed up main key search
62 if not tmp_strategies_per_length[length_to_bin + offset]:
63 tmp_strategies_per_length.pop(length_to_bin + offset)
64 # reset offset in case best fit changed
65 offset = 0
66 else:
67 offset += 1
68 # Does not fit anywhere. Create new pack.
69 if offset >= max_sequence_length - length_to_bin + 1:
70 # similar repetition but no dependence on pack.
71 repeat = min(max_sequence_length//length_to_bin, max_sequences_per_pack)
72 while n_sequences_to_bin//repeat == 0:
73 repeat -= 1
74 if not distribute:
75 repeat = 1
76 add_pack([length_to_bin]*repeat, n_sequences_to_bin//repeat,
77 tmp_strategies_per_length, strategies_per_length,
78 max_sequences_per_pack, max_sequence_length-length_to_bin*repeat,
79 max_sequence_length)
80 n_sequences_to_bin -= n_sequences_to_bin//repeat * repeat

37

https://github.com/graphcore/tutorials/tree/master/blogs_code/packedBERT/lpfhp.py

Under review as a conference paper at ICLR 2022

1 # merge all strategies
2 for key in tmp_strategies_per_length:
3 strategies_per_length[key].extend(tmp_strategies_per_length[key])
4 # flatten strategies dictionary
5 strategy_set = []
6 strategy_repeat_count = []
7 for key in strategies_per_length:
8 for count, pack in strategies_per_length[key]:
9 pack.reverse()

10 strategy_set.append(pack)
11 strategy_repeat_count.append(count)
12
13 # Summarize efficiency of solution
14 duration = time.time() - start
15 sequence_lengths = np.arange(1, max_sequence_length + 1)
16 strategy_repeat_count = np.array(strategy_repeat_count)
17 n_strategies = len(strategy_set)
18 old_number_of_samples = histogram.sum()
19 new_number_of_samples = strategy_repeat_count.sum()
20 sequences = sum([count*len(pack) for count, pack in
21 zip(strategy_repeat_count, strategy_set)])
22 total_tokens = max_sequence_length * new_number_of_samples
23 empty_tokens = sum([count*(max_sequence_length-sum(pack)) for count, pack
24 in zip(strategy_repeat_count, strategy_set)])
25 efficiency = 100 - empty_tokens / total_tokens * 100
26 speedup_upper_bound = 1.0/(1 - (histogram*(
27 1 - sequence_lengths / max_sequence_length)).sum() / old_number_of_samples)
28
29 print(f"Packing efficiency (fraction of real tokens): {efficiency:3.4f}\n",
30 f"Speed-up theoretical limit: {speedup_upper_bound:3.4f}\n",
31 f"Achieved speed-up over un-packed dataset: {old_number_of_samples/new_number_of_samples:3.5f}",
32 f"Runtime: Packed {old_number_of_samples} sequences in {duration:3.3f} seconds.")
33
34 return strategy_set, strategy_repeat_count

38

https://github.com/graphcore/tutorials/tree/master/blogs_code/packedBERT/lpfhp.py

Under review as a conference paper at ICLR 2022

Listing 9: Extended non-negative least squares histogram-packing
1 import time
2 import numpy as np
3 from scipy import optimize, stats
4 from functools import lru_cache
5
6 def get_packing_matrix(strategy_set, max_sequence_length):
7 num_strategies = len(strategy_set)
8 A = np.zeros((max_sequence_length, num_strategies), dtype=np.int32)
9 for i, strategy in enumerate(strategy_set):

10 for seq_len in strategy:
11 A[seq_len - 1, i] += 1
12 return A
13
14 @lru_cache(maxsize=None)
15 def get_packing_strategies(start_length, minimum_increment, target_length, depth):
16 gap = target_length - start_length
17 strategies = []
18 # Complete the packing with exactly 1 number
19 if depth == 1:
20 if gap >= minimum_increment:
21 strategies.append([gap])
22 # Complete the sample in "depth" steps, recursively
23 else:
24 for new in range(minimum_increment, gap + 1):
25 new_gap = target_length - start_length - new
26 if new_gap == 0:
27 strategies.append([new])
28 else:
29 options = get_packing_strategies(start_length + new, new, target_length, depth - 1)
30 for option in options:
31 if len(option) > 0:
32 strategies.append([new] + option)
33 return strategies
34
35 def pack_using_ennlshp(histogram, max_sequence_length, max_sequences_per_pack):
36 # List all unique ways of packing to the desired maximum sequence length
37 strategy_set = get_packing_strategies(0, 1, max_sequence_length, max_sequences_per_pack)
38 print(f"Packing will involve {len(strategy_set)} unique packing strategies.")
39 # Get the packing matrix corresponding to this list of packing strategies
40 A = get_packing_matrix(strategy_set, max_sequence_length)
41 # Weights that penalize the residual by the number of resulting padding tokens.
42 w0 = np.array([x+1 for x in range(max_sequence_length)])
43 # construct the packing matrix
44 A_bar = np.zeros((2*max_sequence_length, len(strategy_set) + max_sequence_length), ’d’)
45 # Base weighted matrix
46 A_bar[:max_sequence_length, :len(strategy_set)] = np.expand_dims(w0, -1) * A
47 # Higher weight to avoid positive residual
48 A_bar[max_sequence_length:, :len(strategy_set)] = np.expand_dims(
49 10**6*np.ones([max_sequence_length]), -1) * A
50 # negative diagonal unity matrix for mapping to residual
51 A_bar[max_sequence_length:, len(strategy_set):] = np.expand_dims(
52 10**6*np.ones([max_sequence_length]), -1)*np.ones((max_sequence_length,max_sequence_length))
53 b_bar = np.zeros(2*max_sequence_length)
54 # Apply weighting to histogram vector
55 b_bar[:max_sequence_length] = w0 * histogram
56 b_bar[max_sequence_length:] = 10**6*np.ones([max_sequence_length]) * histogram
57 # Solve the packing problem
58 print(f"Sequences to pack: ", histogram.sum())
59 start = time.time()
60 strategy_residual, rnorm = optimize.nnls(A_bar, b_bar)
61 strategy_repeat_count = strategy_residual[:len(strategy_set)]
62 print(f"Solving non-negative least squares took {time.time() - start:3.2f} seconds.")
63 # Round the floating point solution to nearest integer
64 strategy_repeat_count = np.rint(strategy_repeat_count).astype(np.int64)
65 # Compute the residuals, shape: [max_sequence_length]
66 residual = histogram - A @ strategy_repeat_count
67 # Handle the left-over sequences i.e. positive part of residual
68 unpacked_seqlen = np.arange(1, max_sequence_length + 1)[residual > 0]
69 for l in unpacked_seqlen:
70 strategy = sorted([l, max_sequence_length - l]) # the depth 1 strategy
71 strategy_index = strategy_set.index(strategy)
72 strategy_repeat_count[strategy_index] += residual[l-1]
73 # Re-compute the residual with the updated strategy_repeat_count
74 # This should now be strictly < 0
75 residual = histogram - A @ strategy_repeat_count
76 # Add padding based on deficit (negative residual portion of residual)
77 padding = np.where(residual < 0, -residual, 0)
78 # Calculate some basic statistics
79 sequence_lengths = np.arange(1, max_sequence_length + 1)
80 old_number_of_samples = histogram.sum()
81 new_number_of_samples = int(strategy_repeat_count.sum())
82 speedup_upper_bound = 1.0/(1 - (histogram*(
83 1 - sequence_lengths / max_sequence_length)).sum()/old_number_of_samples)
84 num_padding_tokens_packed = (sequence_lengths * padding).sum()
85 efficiency = 1 - num_padding_tokens_packed/(new_number_of_samples*max_sequence_length)
86 print(f"Packing efficiency (fraction of real tokens): {efficiency:3.4f}\n",
87 f"Speed-up theoretical limit: {speedup_upper_bound:3.4f}\n",
88 f"Achieved speed-up over un-packed dataset: {old_number_of_samples/new_number_of_samples:3.5f}")
89 return strategy_set, strategy_repeat_count

39

https://github.com/graphcore/tutorials/tree/master/blogs_code/packedBERT/ennlshp.py

Under review as a conference paper at ICLR 2022

APPENDIX REFERENCES

G. Belov and G. Scheithauer. A branch-and-cut-and-price algorithm for one-dimensional stock
cutting and two-dimensional two-stage cutting. European Journal of Operational Research, 171
(1):85–106, may 2006. ISSN 03772217. doi: 10.1016/j.ejor.2004.08.036. URL https://
linkinghub.elsevier.com/retrieve/pii/S0377221704006150.

Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., USA, 1990. ISBN 0716710455.

Gabriel Guillén, Claudia Diaz-Camino, Carlos Loyola-Torres, Rosaura Aparicio-Fabre, Alejandrina
Hernández-López, Mauricio Dı́az-Sánchez, and Federico Sanchez. Detailed analysis of putative
genes encoding small proteins in legume genomes. Frontiers in Plant Science, 4:208, 2013.
ISSN 1664-462X. doi: 10.3389/fpls.2013.00208. URL https://www.frontiersin.org/
article/10.3389/fpls.2013.00208.

Henrik B. Hansen, Peter B. Damgaard, Ashot Margaryan, Jesper Stenderup, Niels Lynnerup, Eske
Willerslev, and Morten E. Allentoft. Comparing ancient dna preservation in petrous bone and
tooth cementum. PLOS ONE, 12(1):1–18, 01 2017. doi: 10.1371/journal.pone.0170940. URL
https://doi.org/10.1371/journal.pone.0170940.

S. Kotz and S. Nadarajah. Extreme Value Distributions. World Scientific Publishing Company, 2000.
ISBN 9781783261734.

Charles L. Lawson and Richard J. Hanson. Solving Least Squares Problems. Society for Industrial
and Applied Mathematics, jan 1995. ISBN 978-0-89871-356-5. doi: 10.1137/1.9781611971217.
URL http://epubs.siam.org/doi/book/10.1137/1.9781611971217.

C. C. Lee and D. T. Lee. A Simple On-Line Bin-Packing Algorithm. Journal of the ACM (JACM),
32(3):562–572, jul 1985. ISSN 1557735X. doi: 10.1145/3828.3833. URL https://dl.acm.
org/doi/10.1145/3828.3833.

Y. Luo and Ramani Duraiswami. Efficient parallel non-negative least squares on multi-core archi-
tectures. SIAM Journal on Scientific Computing, 33:2848 – 2863, 2011.

NVIDIA. Performance catalogue for BERT on Pytorch. https://ngc.nvidia.com/
catalog/resources/nvidia:bert_for_pytorch/performance, 2021.

Yifan Peng, Shankai Yan, and Zhiyong Lu. Transfer Learning in Biomedical Natural Language
Processing: An Evaluation of BERT and ELMo on Ten Benchmarking Datasets. In Proceedings
of the 2019 Workshop on Biomedical Natural Language Processing (BioNLP 2019), pp. 58–65,
2019.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Courna-
peau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der
Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nel-
son, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore,
Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mul-
bregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python. Nature Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

Thomas Wolf, Quentin Lhoest, Patrick von Platen, Yacine Jernite, Mariama Drame, Julien Plu,
Julien Chaumond, Clement Delangue, Clara Ma, Abhishek Thakur, Suraj Patil, Joe Davison,
Teven Le Scao, Victor Sanh, Canwen Xu, Nicolas Patry, Angie McMillan-Major, Simon Bran-
deis, Sylvain Gugger, François Lagunas, Lysandre Debut, Morgan Funtowicz, Anthony Moi,
Sasha Rush, Philipp Schmidd, Pierric Cistac, Victor Muštar, Jeff Boudier, and Anna Tordjmann.
Datasets. GitHub. Note: https://github.com/huggingface/datasets, 1, 2020.

Wolfram Research Inc. Mathematica, Version 12.2. URL https://www.wolfram.com/
wolfram-alpha-notebook-edition. Champaign, IL, 2020.

40

https://linkinghub.elsevier.com/retrieve/pii/S0377221704006150
https://linkinghub.elsevier.com/retrieve/pii/S0377221704006150
https://www.frontiersin.org/article/10.3389/fpls.2013.00208
https://www.frontiersin.org/article/10.3389/fpls.2013.00208
https://doi.org/10.1371/journal.pone.0170940
http://epubs.siam.org/doi/book/10.1137/1.9781611971217
https://dl.acm.org/doi/10.1145/3828.3833
https://dl.acm.org/doi/10.1145/3828.3833
https://ngc.nvidia.com/catalog/resources/nvidia:bert_for_pytorch/performance
https://ngc.nvidia.com/catalog/resources/nvidia:bert_for_pytorch/performance
https://www.wolfram.com/wolfram-alpha-notebook-edition
https://www.wolfram.com/wolfram-alpha-notebook-edition

	Introduction
	Wikipedia BERT pre-training dataset
	Methods
	Packing algorithms
	packedBERT: model changes
	Hyperparameter adjustment

	Experiments
	Bin-packing algorithm comparison
	Learning curves and hyperparameter adjustment
	Scaling analysis: Impact of the number of accelerators

	Conclusion
	Theorem on LAMB hyperparameter correction heuristic
	Un-padding scaling estimate
	Ablation study
	SQuAD 1.1
	Technical background on packing
	Canonical packing problem
	Approximate bin-packing problem
	Definitions
	Non-negative least squares histogram-packing
	Discussion of residual weight choice

	Complexity analysis of the proposed packing approaches
	Complexity Analysis of non-negative least-squares histogram-packing
	Complexity Analysis of shortest-pack-first histogram-packing

	Performance Comparison to GREEDY Packing in T5
	Packing SQuAD 1.1
	Packing GLUE
	Packing Audio Data (LibriSpeech)
	Packing Paper Abstracts (PubMed)
	Further learning curves
	Fine-tuned longest-pack-first histogram-packing
	Extended NNLS with padding token weighting
	Packing source code

