
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FEDERATED UNLEARNING WITH GRADIENT SHIELD-
ING

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated unlearning enables the removal of a specific client’s data contribution
from a trained federated model, thereby avoiding the substantial computational
cost of complete retraining. However, existing methods suffer from high memory
overhead, training instability, and performance degradation on remaining clients,
particularly in non-IID settings. These challenges arise from fundamental issues
including gradient explosion and the conflict between forgetting and retaining gra-
dients. To address these limitations, we propose Federated Unlearning with GrA-
dient Shielding (FUGAS), which integrates a novel forgetting loss with a flexible
gradient projection to achieve efficient unlearning while preserving model utility,
all without storing extensive historical information. Specifically, we formulate
unlearning as a preference optimization problem. The model’s original predic-
tions on the data to be forgotten serve as a negative reference, and our objective
function encourages the model’s current outputs to diverge from this reference,
effectively erasing the targeted knowledge. Concurrently, during the server aggre-
gation phase, gradients from unlearning clients are projected onto a dynamically
estimated compatibility subspace derived from the gradients of retained clients,
which ensures directional coherence and mitigates destructive interference be-
tween competing updates. Furthermore, we provide theoretical guarantees that our
novel forgetting loss prevent gradient explosion, and that the projection ensures a
non-increase in risk on the retained tasks. Extensive experiments demonstrate that
FUGAS not only achieves thorough unlearning but also consistently maintains or
even improves the model’s accuracy on retained data.

1 INTRODUCTION

Federated Learning (FL) (McMahan et al., 2017; Yang et al., 2019; Kairouz et al., 2021; Li et al.,
2020a;b; T. Dinh et al., 2020; Smith et al., 2017) is a distributed machine learning framework that
enables multiple clients to collaboratively train a global model without sharing their local datasets.
However, the practical FL systems necessitates managing the dynamic lifecycle of data and client
participation. A critical requirement in this context is Federated Unlearning (FU) (Liu et al., 2021;
Gong et al., 2021a; Wu et al., 2022c; Liu et al., 2025a), which aims to remove the contributions of
specific clients or data samples from a trained global model.

Current FU methods predominantly fall into two categories including update-storage and gradient-
modification (Liu et al., 2025b; Dhasade et al., 2023; Halimi et al., 2022). Although conceptually
straightforward, these methods face significant practical challenges. Update-storage approaches in-
cur high memory consumption, as the storage overhead scales linearly with the number of training
rounds. While memory-free gradient-modification solutions avoid this cost, they introduce the risk
of training instability. Maximizing the loss on the forgetting set can lead to gradient explosion since
losses like cross-entropy are unbounded above, causing drastic and unstable parameter updates (Ro-
mandini et al., 2025; Alam et al., 2024; Li et al., 2023). Furthermore, a fundamental challenge in FU
arises from the inherent conflict between gradients from the forgetting and retained clients. Updates
intended to erase specific data often directly oppose the updates required to maintain performance on
the remaining data (Alam et al., 2024). This gradient conflict is severely exacerbated in FL scenar-
ios with non-independent and identically distributed (non-IID) data. Consequently, existing methods
face a difficult trade-off in which unlearning too cautiously fails to completely remove the targeted
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influence, while unlearning too aggressively causes irreparable damage to the model’s utility for the
remaining clients.

To address these limitations, we propose Federated Unlearning with GrAdient Shielding (FUGAS),
a novel method that achieves effective forgetting while simultaneously ensuring the performance
and stability of the resulting model. Our approach introduces an integrated solution that combines
a bounded forgetting objective with a flexible gradient projection mechanism. This design directly
addresses the challenges of gradient explosion and gradient conflict without requiring extensive
historical data storage, thus enabling effective, stable, and memory-efficient unlearning.

Specifically, we reformulate unlearning as a preference optimization problem, which treats the
model’s original predictions on the data to be forgotten as a negative reference (Rafailov et al., 2023).
Our novel objective function encourages the model’s current outputs to diverge from this reference,
effectively erasing the targeted knowledge without resorting to unbounded loss maximization. To
resolve the issue of gradient conflict, we employ a flexible gradient projection during server aggre-
gation. The gradients from unlearning clients are projected onto a compatibility subspace, which is
estimated from the gradients of the retained clients. Unlike prior methods that project onto a strictly
orthogonal subspace, our more flexible approach only requires that the unlearning updates are not
in opposition to the retaining updates, ensuring directional coherence. This process mitigates de-
structive interference between competing updates and safeguards the model’s performance on the
retained data.

We provide theoretical guarantees that our novel forgetting loss prevents gradient explosion and en-
sures process stability. Furthermore, we demonstrate that our gradient projection offers first-order
guarantees of a non-increase in risk for the retained tasks, formally preserving model performance.
Our extensive experimental results show that FUGAS achieves thorough unlearning while simulta-
neously maintaining classification accuracy on retained data, showcasing its superior performance
and robustness compared to state-of-the-art methods.

In summary, our work makes several key contributions. First, we propose FUGAS, a robust frame-
work that addresses the critical challenges of instability and performance degradation with minimal
training cost in federated unlearning. Second, we introduce a novel forgetting objective based on
preference optimization and a flexible gradient projection mechanism, achieving effective unlearn-
ing and preserving model utility. Finally, we provide both theoretical guarantees and extensive
empirical validation to demonstrate the superior performance and reliability of our method.

2 RELATED WORK

2.1 MACHINE UNLEARNING

Machine unlearning seeks to efficiently remove the influence of designated data from trained models
so that the resulting model behaves as if it were trained without it (Bourtoule et al., 2021; Nguyen
et al., 2022; Wang et al., 2024; Qu et al., 2023). Full retraining from scratch remains the gold
standard, but its cost is prohibitive. To mitigate this, exact unlearning methods like SISA (Bourtoule
et al., 2021) partition the dataset into isolated shards, enabling targeted retraining of only the affected
submodels at the expense of substantial storage and recomputation (Kadhe et al., 2023; Gupta et al.,
2021). Approximate unlearning methods (Marchant et al., 2022; Han et al., 2024; Foster et al.,
2024; Lin et al., 2023; Wu et al., 2022b) seek greater efficiency by directly modifying the trained
model’s parameters to approximate a retrained state. Representative techniques include reversing
the learning process through gradient ascent (Thudi et al., 2022; Chen et al., 2025; Tarun et al.,
2023), leveraging influence functions to estimate data impact (Warnecke et al., 2023; Peste et al.,
2021), and employing knowledge distillation to suppress targeted information (Kim et al., 2024;
Zhou et al., 2025; Zhang et al., 2023b; Wang et al., 2023a; Chundawat et al., 2023). However, these
methods presuppose a centralized environment with unrestricted access to data. This assumption is
violated in federated learning due to its principles of data decentralization, privacy constraints, and
statistical heterogeneity across clients. Consequently, the direct application of centralized unlearning
techniques to the federated setting is infeasible.
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2.2 FEDERATED UNLEARNING

Federated unlearning (Romandini et al., 2025; Liu et al., 2025a; Su & Li, 2023; Jeong et al., 2024;
Liu et al., 2022) aims to erase a target client’s impact from the global model while preserving util-
ity for the remaining clients. Current approaches are commonly organized into update-storage and
gradient-modification methods. Update-storage methods such as FedEraser (Liu et al., 2021) and
FedRecovery (Zhang et al., 2023a) reconstruct a model without the target client by replaying or
calibrating stored client updates, which incur memory that scales linearly with training rounds. Al-
though variants attempt to reduce storage through selective retention, compression, or knowledge
distillation on proxy data (Wu et al., 2022a; Yuan et al., 2023; Guo et al., 2024; Gong et al., 2022),
they still rely on substantial server-side history (Cao et al., 2023; Guo et al., 2024; Wang et al.,
2023b). In contrast, gradient-modification methods avoid this storage burden by formulating un-
learning as an optimization problem and typically perform gradient ascent on the forgetting set to
reverse prior updates (Halimi et al., 2022; Alam et al., 2024; Gong et al., 2021b). To mitigate ad-
verse effects on model utility, some studies project ascent into a subspace that is orthogonal to the
updates of retained clients (Li et al., 2023), while others introduce bounded objectives to prevent
gradient explosion (Pan et al., 2025). However, gradient-modification introduce instability through
gradient explosion and conflict with directions needed to maintain performance, especially under
non-IID data. Our work addresses these limitations with a memory efficient federated unlearning
mechanism that pairs a novel forgetting objective with a flexible projection to keep unlearning steps
compatible with retained clients’ gradients. The design avoids storing historical updates and yields
stable progress with strong utility.

3 PRELIMINARY

We consider a federated learning setting with a collection of clients k ∈ [K], each possessing a
private data dataset Dk, and a central server coordinates the training of a global model θ∗G:

θ∗G = argmin
θ

K∑
k=1

pkLk(Dk; θ), (1)

where pk are non-negative weights, typically proportional to the size of each client’s dataset. In each
federated round t, each client k performs gradient descent on its private data to update local model
θt+1
k . The server then aggregates these updates to form the new global model, θt+1 ←

∑
pkθ

t+1
k .

Federated unlearning can be viewed as the inverse process of federated learning and is typically
categorized into sample, class, or client unlearning. This work focuses on client unlearning, where
the goal is to remove the influence of a subset of forgetting clients F ⊆ [K] from the trained model,
while preserving the knowledge from the retained clients R = [K]\F . The ideal target is the model
that would have been obtained by training exclusively on the data of the retained clients:

θ∗R = argmin
θ

FR(θ) =
∑
k∈R

pk Lk(Dk; θ). (2)

However, gradient conflict is the principal challenge in client unlearning. We define gtk the gradient
for client k in round t, and aggregate gradient directions for the forgetting and retained sets as
gtF =

∑
k∈F pFk g

t
k and gtR =

∑
k∈R pRk g

t
k, respectively. Conflict can be quantified as follow:

αt = ⟨gtF , gtR⟩. (3)

Harmful interference occurs when αt < 0, as the updates for the two sets are in opposing directions,
leading to training instability. Non-IID setting magnifies this gradient conflict, where the local
gradients for one client’s local data can diverge significantly from those of other clients, leading
to a larger variance in gradient directions across overall clients. This statistical dissimilarity is
particularly detrimental in client unlearning, as it implies that the aggregate gradients gtF and gtR will
aim to steer the model towards disparate optimal points. This conflict complicates the preservation
of model utility for retained clients and can impede the unlearning process itself.

In this work, we aim to achieve efficient unlearning while preserving model performance on retained
data, even under challenging non-IID conditions.

3
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4 METHODOLOGY

Figure 1: The pipeline of the proposed FUGAS method.

4.1 FEDERATED UNLEARNING VIA SUBSPACE ESTIMATED DIRECTIONS

In this work, we reformulate the unlearning task as a preference optimization problem. Inspired
by NPO (Zhang et al., 2024), we treat the model’s original predictions on the forgetting samples
as a negative reference point to be diverged from, and encourages the model’s current outputs to
move away from these reference outputs. This approach effectively erases the previously learned
knowledge without resorting to unbounded loss maximization, naturally preventing the possibility
of gradient explosion and promoting a more stable unlearning process.

Specifically, for each client k ∈ F designated for unlearning, we capture the model’s reference
outputs ybefi = f(xi; θ

t
k) at the beginning of an unlearning round t. During the local unlearning

process, the client aims to produce new outputs yi = f(xi; θ
t+1
k ) that are dissimilar to ybefi . The

forgetting objective for a client k ∈ F is defined as:

Lforget(Dk; θ
t) ≜ E(x,y)∈Dk

[
log

(
1 + exp

(
yT ybef

τ

))]
, (4)

where τ is a hyperparameter as temperature, controlling the sensitivity of the forgetting objective.

Although our novel objective addresses training stability, the fundamental challenge of gradient
conflict remains. To resolve the issue of gradient conflict, FUGAS employs a dynamic gradient
projection strategy during the server aggregation stage. Specifically, the server seeks the optimal
update gradient g̃t that is nearest to the naive unlearning direction while satisfying all compatibility
constraints:

g̃t = argmin
g̃

1

2
∥g̃ − gtF ∥22 s.t. ⟨g̃, gtk⟩ ≥ 0, ∀k ∈ R. (5)

The constraint ensures the resulting update does not work against any retained client’s objective ,
thereby preventing performance degradation.

To further improve computational efficiency, especially when the model dimension is high, we can
solve its Lagrangian dual problem:

L(v, g̃t) = 1

2
g̃t

⊤
g̃t − gtF

⊤
g̃t − v⊤gtRg̃

t, (6)

where v is the Lagrangian multiplier. By optimizing the quadratic programming (QP) problem, we
can find the exact solution to the primal problem with significantly reduced overhead. This makes
the FUGAS aggregation step practical for the large-scale federated system.

Once the optimal combined gradient g̃t is computed by solving the QP, the server performs the
update to the global model. The model for the next communication round is updated θt+1

G ← θtG−g̃t.
This update step integrates the forgetting and learning objectives, ensuring that the removal of one
client’s data does not hurt the integrity and performance of the model for the remaining clients. For
more detailed information, please refer to the Appendix A.

4
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4.2 ANALYSIS

Bounded-Gradient Guarantees for Stable Unlearning. Conventional unlearning methods that
utilize gradient ascent on unbounded loss functions are susceptible to instabilities in the unlearning
process. We provide a theoretical analysis to formalize the stability of our unlearning objective in
the following proposition.

Proposition 1. Under the Gradient Descent unlearning objective for the forgetting loss, the Eu-
clidean norm of the gradient ||∇θLforget|| is bounded.

Proof. First, we demonstrate that the loss function is lower-bounded, a necessary condition for stable
optimization. Our goal is to make the current output y dissimilar to the reference output ybef , which
corresponds to driving the similarity score s = yT ybef towards −∞. We analyze the behavior of
the loss function as this objective is met:

lim
s→−∞

L = lim
s→−∞

log
(
1 + exp

( s

τ

))
= log(1 + 0) = 0. (7)

The loss function is lower-bounded by 0. A lower-bounded objective ensures that the optimization
process has a stable target and does not drive the parameters into numerically unstable regions.

Second, we derive the gradient of the loss with respect to the model’s output and show that its norm
is strictly bounded, which in turn implies a bounded parameter gradient. Using the chain rule, the
gradient with respect to the model parameters is∇θL = (∇yL) · (∇θy).

The gradient of the loss with respect to the output y is:

∇yL =
∂L
∂s
· ∂s
∂y

=
1

τ
σ

(
yT · ybef

τ

)
ybef . (8)

We analyze the Euclidean norm of this gradient:

||∇yL|| =
∣∣∣∣∣∣∣∣1τ σ

(
yT ybef

τ

)
ybef

∣∣∣∣∣∣∣∣ = 1

τ

∣∣∣∣σ(
yT ybef

τ

)∣∣∣∣ ||ybef || < 1

τ
||ybef ||. (9)

Since the sigmoid function is strictly bounded, such that 0 < σ(z) < 1 for all z ∈ R, we can
establish a strict upper bound on the norm of the gradient. ybef is a fixed reference output computed
at the beginning of the unlearning step. Therefore, its norm ||ybef || is a finite constant. This proves
that the gradient with respect to the model’s output is strictly bounded.

Since the gradient with respect to the model’s output ∇yL is bounded and the loss function is
lower-bounded, which prevents the parameter norms ||θ|| from being forced to diverge while the
Jacobian term∇θy also remains well-behaved during optimization. Consequently, the full parameter
gradient∇θL which is the product of these two terms, is also bounded. The optimization process is
self-regulating: as the unlearning objective successfully met yT ybef → −∞, and the sigmoid term
σ(yT ybef/τ) approaches 0, causing the gradient to vanish naturally. This self-regulating mechanism
prevents runaway updates and eliminates the risk of gradient explosion.

Gradient Conflict Resolution via Flexible Projection. Instead of pursuing overly strict orthog-
onality, we adopt a more flexible approach. We require only that the final update direction does not
conflict with the learning objectives of the retained clients, which is formalized by the constraint that
the inner product between the corrected gradient and each retained gradient must be non-negative,
implying an angle of no more than 90 degrees. This section provides a theoretical analysis to formal-
ize the efficacy of this approach. To ground our analysis, we introduce the following assumptions:

Assumption 1. The loss functions for the unlearning client LF and the retained clients LR are
continuous and differentiable with respect to the model parameters θ.

Assumption 2. The pre-unlearning process has converged, meaning the global model θpre is already
near-optimal for the retained clients. Formally, further training on the retained data yields negligible
parameter changes, which implies that the gradient for the retained task at these parameters is
approximately zero: ∥gR(θpre)∥ ≈ 0.

Proposition 2. Under Assumptions 1 and 2, the proposed gradient projection mechanism ensures
that the unlearning update does not increase the loss for retained clients.

5
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Proof. Our goal is to analyze the performance degradation on the retained clients’ task TR, after the
model has been optimized on the unlearning client’s objective TF . We define this degradation as the
change in the retained loss:

∆LR = LR(θ
∗
F )− LR(θ

∗
R), (10)

where θ∗F and θ∗R denotes the optimal parameters for the unlearning and retained tasks, respectively.

Based on Assumption 1, we can approximate the loss at θ∗F using a first-order Taylor expansion
around the retained-optimal point θ∗R from the work (Lee et al., 2019) :

LR(θ
∗
F ) ≈ LR(θ

∗
R) + gR(θ

∗
R)

⊤ · (θ∗F − θ∗R). (11)

Rearranging this equation yields an approximation for the performance degradation:
∆LR ≈ gR(θ

∗
R)

⊤ · (θ∗F − θ∗R). (12)

The parameter difference (θ∗F − θ∗R) can be expressed by considering their evolution from the pre-
unlearning model θpre, after the optimization steps with learning rate η:

θ∗F − θ∗R = −η (gF (θpre)− gR(θpre)) . (13)
From Assumption 2, the initial model is near-optimal for retained clients, thus gR(θpre) ≈ 0 and
θpre ≈ θ∗R. This allows us to simplify the parameter difference:

θ∗F − θ∗R ≈ −η · gF (θ∗R). (14)
Substituting this result back into our expression for performance degradation gives:

∆LR ≈ gR(θ
∗
R)

⊤ · (−η · gF (θ∗R)) = −η · ⟨gR(θ∗R), gF (θ∗R)⟩. (15)

To analyze this expression geometrically, we relate it to the cosine similarity Φ between the two task
gradients at the retained-optimal point:

Φ(θ∗R, TR, TF ) =
⟨gR(θ∗R), gF (θ∗R)⟩
∥gR(θ∗R)∥ · ∥gF (θ∗R)∥

. (16)

The performance degradation can now be expressed as:
∆LR ≈ −η · ∥gR(θ∗R)∥ · ∥gF (θ∗R)∥ · Φ(θ∗R, TR, TF ). (17)

Since the term −η · ∥gR(θ∗R)∥ · ∥gF (θ∗R)∥ is non-positive, the sign of the degradation ∆LR is
determined by the sign of the cosine similarity Φ. Our proposed projection mechanism directly
constrains Φ by enforcing that the final update vector g̃t satisfies ⟨g̃t, gtR⟩ ≥ 0 for all retained
clients. This ensures that the cosine similarity is non-negative Φ ≥ 0. This proves that our flexible
projection mechanism formally prevents performance degradation on retained clients’ tasks.

5 EXPERIMENT

5.1 EXPERIMENT SETUP

We benchmark our approach against several representative federated unlearning methods. Retrain-
ing serves as the gold standard, where the global model is retrained from scratch on the remaining
clients during the unlearning phase. FedEraser (Liu et al., 2021) reconstructs the unlearned model by
leveraging historical parameter updates from the server’s storage. Projected Gradient Descent (PGD)
(Halimi et al., 2022) maximizes the loss on the target client’s data while keeping the model param-
eters within an ℓ2-norm ball of a reference model. FedBU (Alam et al., 2024) optimizes a weighted
objective that suppresses target knowledge while preserving important parameters for accuracy on
retain clients. FedOSD (Pan et al., 2025) computes an orthogonal steepest descent direction that
aligns with the target update while remaining orthogonal to the retained clients’ gradients, couples
this with an unlearning cross entropy loss at the target.

We evaluate our proposed method and all baselines on CIFAR-10 and CIFAR-100 using the same
four layer CNN for image classification. Our federated learning environment consists of ten clients,
with one or two client chosen uniformly at random for unlearning in each experimental run. All
clients participate in each communication round. For evaluation, we assess the test accuracy on a
held-out test set from the remaining clients’ data distribution. Additionally, we employ backdoor
attacks to further valid unlearning effectiveness (Gu et al., 2017; Bagdasaryan et al., 2020; Xie
et al., 2019), which is quantified by the attacks success rates (ASR) after the unlearning process is
complete. All results are averaged over three random seeds.
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Table 1: Comparison of ASR and classification accuracy (mean and std.) for various methods on
CIFAR-10 and CIFAR-100. ‘uc’ indicates the number of unlearning clients.

Algorithm CIFAR-10 Non-IID CIFAR-10 IID CIFAR-100 Non-IID CIFAR-100 IID
uc = 1 uc = 2 uc = 1 uc = 2 uc = 1 uc = 2 uc = 1 uc = 2

ASR Accuracy ASR Accuracy ASR Accuracy ASR Accuracy ASR Accuracy ASR Accuracy ASR Accuracy ASR Accuracy

w0 .914 .467(.012) .996 .257(.005) .670 .539(.016) .929 .345(.003) .890 .250(.055) .939 .233(.005) .785 .258(.065) .886 .254(.013)
Retrain .032 .576(.004) .062 .578(.002) .023 .700(.003) .021 .691(.001) .001 .298(.002) .002 .298(.000) .005 .325(.002) .005 .320(.002)

Gradient ascent .000 .111(.000) .000 .010(.000) .000 .099(.002) .000 .099(.001) .000 .010(.000) .000 .011(.000) .000 .013(.000) .000 .013(.000)
PGD .000 .108(.004) .000 .108(.003) .000 .099(.003) .000 .103(.000) .000 .029(.016) .000 .011(.001) .000 .010(.001) .000 .011(.000)
FedBU .000 .049(.012) .000 .064(.001) .000 .356(.014) .000 .336(.039) .000 .116(.009) .000 .056(.010) .000 .132(.025) .000 .091(.004)
FedEraser .019 .353(.009) .097 .371(.014) .047 .548(.030) .051 .572(.005) .005 .164(.015) .001 .176(.002) .004 .202(.014) .003 .224(.014)
FedOSD .005 .482(.016) .006 .299(.017) .000 .545(.014) .000 .562(.009) .001 .281(.007) .003 .295(.002) .001 .312(.007) .000 .320(.005)

FUGAS .010 .533(.009) .013 .462(.010) .006 .686(.017) .008 .674(.007) .006 .295(.001) .003 .299(.001) .009 .325(.002) .008 .324(.002)

5.2 RESULTS

We report the performance of various federated unlearning methods in terms of ASR and classifi-
cation accuracy under both IID and Non-IID settings in Table 1. We use the MIA metric to further
compare our method with other baselines in Appendix C.2.

As presented in Table 1, foundational approaches like Gradient Ascent and its constrained variant
PGD successfully reduce the ASR to zero, but they suffer from catastrophic forgetting, causing the
model’s accuracy to collapse to near-random levels. This outcome illustrates the instability of max-
imizing an unbounded loss function. Similarly, aggressive unlearning baselines such as PGD and
FedBU effectively nullify the ASR but at the cost of catastrophic forgetting, leading to a collapse in
model accuracy. While methods like FedEraser and FedOSD achieve a better balance by reducing
the ASR while retaining some model utility. However, their performance reveals a clear trade-off,
as they still incur a significant drop in accuracy compared to the retraining baseline. The retrain-
ing approach serves as the gold standard, successfully restoring high accuracy while maintaining a
negligible ASR, but it incurs prohibitive computational costs.

In contrast to the baselines, our method FUGAS balances unlearning efficacy with model utility
preservation across all evaluated settings. FUGAS consistently reduces the ASR to near-zero lev-
els, indicating a thorough erasure of the targeted client’s data. Most importantly, FUGAS excels
in maintaining high classification accuracy, outperforming all other unlearning methods and closely
matching the strong performance of the computationally intensive Retrain approach. This success
is directly attributable to our core methodology. The novel preference optimization objective effec-
tively erases knowledge by encouraging divergence from reference outputs, which circumvents the
gradient explosion problem. Furthermore, the flexible gradient projection strategy at the server level
is crucial for preserving utility, resolving gradient conflicts and ensuring the global update is not
detrimental to any remaining client.

5.3 ABLATION STUDY

Table 2: Ablation with gradient constraint under different positive and negative sample selection
strategies. ‘-’ means negative sample and ‘+’ means positive sample.

CIFAR-10 Non-IID CIFAR-10 IID CIFAR-100 Non-IID CIFAR-100 IID
ASR Accuracy ASR Accuracy ASR Accuracy ASR Accuracy

Uniform Distribution+ .012 .505(.016) .026 .673(.008) .010 .292(.001) .010 .317(.004)
Data Augmentation+ .020 .525(.005) .030 .693(.006) .008 .273(.026) .016 .321(.004)
Label− .043 .503(.025) .003 .681(.013) .006 .281(.017) .011 .323(.004)
FUGAS .010 .533(.009) .006 .686(.017) .006 .295(.001) .009 .325(.002)

The Effectiveness of Sample Selection Strategies. We evaluate the effective of positive and neg-
ative preference samples in the unlearning objective. We introduce additional positive samples
through sampling from a uniform distribution (Uniform Distribution+) and applying data augmen-
tation (Data Augmentation+). Furthermore, we use the negative preference with ground-truth labels
as the negative reference (Label−) for comparison. The results are summarized in Table 2.

Specifically, Label− proves overly aggressive while it achieves a notably low ASR, it leads to a
consistent degradation in classification accuracy, particularly in the Non-IID setting. Conversely,
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while introducing explicit positive samples can maintain or slightly improve final model accuracy,
these variants consistently yield a higher residual ASR. We attribute this to the fact that providing
a less-defined or overly broad positive target can dilute the unlearning signal, allowing backdoor
knowledge to persist. Moreover, incorporating additional positive samples incurs extra training
costs. In contrast, our approach using the pre-unlearning model’s outputs as a negative reference
provides a contextually relevant target at low computational cost, effectively guiding the model to
forget backdoor influences.

Table 3: Ablation of gradient conflict mitigation strategies.
CIFAR-10 Non-IID CIFAR-10 IID CIFAR-100 Non-IID CIFAR-100 IID
ASR Accuracy ASR Accuracy ASR Accuracy ASR Accuracy

Naive Unlearning .000 .111(.000) .000 .099(.002) .000 .010(.000) .000 .013(.000)

FUGAS w/o Constraint .005 .428(.022) .000 .575(.041) .001 .285(.006) .002 .320(.003)
FUGAS w/ Orthogonal .019 .466(.040) .003 .495(.081) .004 .273(.006) .006 .321(.007)
FUGAS .010 .533(.009) .006 .686(.017) .006 .295(.001) .009 .325(.002)

The Effectiveness of Angle Constraint. We perform an ablation study to quantify the effect of
imposing an angle constraint on the gradients of unlearned and retained clients. We first establish a
baseline with Naive Unlearning, which applies a standard cross-entropy unlearning objective with-
out any constraints, thereby revealing the unmodified effects of gradient conflict. We then analyze
two variations of our proposed method: FUGAS without any constraint and FUGAS with a strict
orthogonality constraint. The result is presented in the Table 3.

Naive Unlearning baseline successfully reduces the ASR to zero but suffers from catastrophic forget-
ting, causing accuracy to collapse to near-random levels. This collapse is a direct result of destructive
interference from unconstrained gradient conflicts. While our bounded unlearning objective alone
(FUGAS w/o Constraint) substantially mitigates this issue and preserves significant model utility, it
remains suboptimal. Conversely, enforcing strict orthogonality (FUGAS w/ Orthogonal) degrades
performance compared to the unconstrained version in several cases, as it excessively restricts the
unlearning updates and discards potentially useful information. In contrast, our full FUGAS method
consistently achieves the highest accuracy, which demonstrates that by flexibly ensuring unlearning
updates are merely compatible with retaining updates rather than strictly orthogonal. Therefore,
our acute angle constraint strikes a more effective balance, successfully resolving conflicts while
preserving the performance of the global model.

(a) CIFAR-10 (b) CIFAR-100

Figure 2: Comparison of gradient magnitudes for our objective versus a cross-entropy maximization
objective on (a) CIFAR-10 and (b) CIFAR-100. The y-axis plots the log of the gradient norm.

5.4 ANALYSIS

Analysis of Gradient Stability. To analyze the instability inherent in naive unlearning and to
highlight the stability offered by our proposed objective, we compare the gradient magnitudes of
our method against a standard cross-entropy (CE) maximization baseline, as illustrated in Figure 2.
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The gradient norms associated with the CE objective are consistently several orders of magnitude
larger than those produced by our method. This gradient explosion phenomenon provides a direct
explanation for the catastrophic forgetting observed in Table 1. The explosive gradients destructively
interfere with the learned representations, effectively nullifying the model’s utility. In contrast,
our bounded unlearning objective maintains small and stable gradient magnitudes throughout the
unlearning process. Even without the final gradient projection step, our bounded objective alone is
sufficient to prevent catastrophic forgetting, retaining a high level of accuracy as shown in Table 3.
This stable foundation ensures that the unlearning process can precisely remove specific knowledge
without hurting the model’s performance on the retained data, enabling a favorable balance between
unlearning efficacy and utility.

(a) CIFAR-10 Non-IID (b) CIFAR-100 Non-IID

Figure 3: Visualization of our gradient projection mechanism in mitigating gradient conflict.

Analysis of Gradient Harmony. We empirically investigate the critical issue of gradient conflict
during the global aggregation phase of federated unlearning, a phenomenon visualized in Figure
3. This conflict arises when the gradient updates from the unlearning client are misaligned with
the aggregate gradient of the retaining clients, leading to destructive interference. Our analysis
shows that employing a CE loss for unlearning consistently results in an obtuse angle between
the unlearning and retaining gradients, visually confirming a state of severe conflict. This direct
opposition explains the performance collapse observed in Table 1, where the model’s accuracy on
retained data degrades catastrophically despite a successful reduction in ASR.

In contrast, our unlearning objective alone significantly alleviates this issue by inherently stabilizing
the gradients and reducing the angle of opposition. This effect is further enhanced by our flexible
acute angle projection mechanism, which explicitly enforces gradient compatibility by projecting
the unlearning update to ensure it is not in opposition to the retaining updates. This resolution of
gradient conflict is the key mechanism that enables our method to achieve effective unlearning while
simultaneously safeguarding high performance on the remaining clients task.

6 CONCLUSION

In this work, we introduced Federated Unlearning with GrAdient Shielding (FUGAS), a framework
designed to address stability and performance degradation challenges in federated unlearning. By
reformulating unlearning as preference optimization against a negative reference, FUGAS replaces
unbounded loss maximization with a bounded objective that stabilizes training. The flexible projec-
tion of unlearning updates reduces gradient conflict and preserves utility, ensuring that unlearning
updates do not destructively interfere with the knowledge learned from the retained data. We prove
the stability of our unlearning process and the preservation of model performance on retained data.
Extensive experiments show that FUGAS achieves thorough removal of targeted information while
matching or improving accuracy on retained data. FUGAS requires no storage of historical updates,
significantly reducing memory overhead. Future work includes extensions to personalized federated
learning and foundation models, as well as more comprehensive privacy and security evaluations.
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ETHICS STATEMENT

This paper presents work whose goal is to advance the field of Federated Unlearning privacy and
user autonomy by enabling data contributors to revoke their influence on trained models, supporting
the “right to be forgotten”. The authors have read and comply with the ICLR Code of Ethics. The
research did not involve human subjects, animal experiments, or personally identifiable data. All
experiments were conducted on publicly available benchmarks and open-source models. We have
carefully considered the broader impacts and believe that this work poses no foreseeable risks of
harm while contributing to the development of robust and secure models.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our research. Our complete implementation, in-
cluding the source code to replicate all experiments and generate the figures and tables presented in
this paper, will be made publicly available upon publication. A detailed description of our proposed
method, Federated Unlearning with GrAdient Shielding (FUGAS), is provided in Section 4, with a
step-by-step pseudocode available in the Appendix ??. The theoretical claims regarding the stability
of our unlearning objective and the performance guarantees of our gradient projection mechanism
are formally stated and proven in Section 4.2, with additional mathematical derivations provided in
Appendix A. All experimental details, including the datasets (CIFAR-10 and CIFAR-100), the non-
IID data partitioning strategy using a Dirichlet distribution, the specific model architecture, and a
comprehensive list of all hyperparameters (such as learning rates, batch size, and the number of com-
munication rounds for each phase), are documented in Section and further expanded in Appendix
C.1 to facilitate the exact replication of our results.
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A METHODOLOGICAL DETAILS AND DERIVATIONS

We take the derivative with respect to g̃t in Eq. 6:

∇g̃tL = g̃t + gtF − gt
⊤

R v = 0. (18)

Solving gives:

g̃t = gt
⊤

R v + gF . (19)

Substituting g̃t back into the Lagrangian yields the dual problem:

minimize
v

L(v) =
1

2

(
gt

⊤

R v + gF

)⊤ (
gt

⊤

R v + gF

)
− g⊤F

(
gt

⊤

R v + gF

)
− v⊤gtR

(
gt

⊤

R v + gF

)
= −1

2
v⊤gtRg

t⊤

R v − v⊤gtRgF

subject to v ≥ 0.

(20)

Here, v ∈ Rc−1 is the Lagrange multiplier. By optimizing the dual function, we reduce the problem
from optimizing g̃t ∈ Rp to optimizing v ∈ Rc−1, simplifying the problem and significantly
reducing computation time.

Algorithm 1 FUGAS
Require: Pretrained model θ0G, unlearning round T , client set K unlearning client set F ;

1: Client set F request for unlearning
2: for t = 0 to T − 1 do
3: Server send global model θtG to all client i ∈ K
4: if client i ∈ F then
5: θti ← Client i performs unlearning using the loss L
6: Client i upload gti = (θtG − θti)
7: else
8: θti ← Each client i performs local training
9: Client i upload gti = (θtG − θti)

10: end if
11: gti ← ni∑k

j=1 nj
· gti ,∀i ∈ K, i ̸∈ F

12: gtF ← sum(· · · , gti , · · · )/F,∀i ∈ F
13: Calculate final unlearning gradient g̃t by Eq. 20
14: θt+1

G ← θtG − g̃t

15: end for

B PIPELINE

Federated Unlearning (FUGAS) consists of several stages, starting from pretraining and continuing
through the unlearning phase, followed by the global model update. In the pretraining phase, all
clients collaboratively train a global model. Each client performs local updates based on its own
data, and the server aggregates these updates to form a global model that generalizes well across
diverse data distributions.

Once the pretraining phase is complete, the unlearning phase begins. In this phase, a client that
requests unlearning aims to effectively forget its contribution to the global model while ensuring the
model’s utility for other clients. Client k ∈ F saves the output ybef on its dataset at the current
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model state as negative samples for unlearning. Client u performs local unlearning by optimizing a
specific loss function L. While all other clients continue their standard learning operations, updating
the global model based on their local data.

During the communication phase, both unlearning clients and remaining clients send their gradient
updates to the server. In the global aggregation phase, the server collects the gradient updates from
all clients. The server synthesizes the gradients gti from all remaining clients into a matrix gtF . When
there are multiple unlearning clients, we average the gradient updates returned by multiple clients to
obtain gtF . To alleviate gradient conflicts between forgotten clients and remaining clients, we solve
a constrained optimization problem to obtain the final gradient vector g̃t. This constraint ensures
that the dot product between the final gradient g̃t and the gradient direction of the retained clients is
positive, thereby preventing catastrophic forgetting of model performance on remaining clients.

Finally, the server applies the projected gradient to update the global model θt+1
G . The updated global

model is then broadcast to all clients, ensuring that the global model remains consistent across the
federation. This process repeats iteratively until the unlearning objective is met. The pseudo-code
of FUGAS is shown in Algorithm 1.

C EXPERIMENT

C.1 EXPERIMENT SETUP

Datasets. To simulate diverse federated learning environments, we consider both IID and non-IID
data distributions across clients. In the IID setting, the entire data is shuffled and partitioned uni-
formly, ensuring each client receives an equal number of samples with a balanced class distribution.
In the non-IID setting, client specific class proportions are drawn from a Dirichlet distribution with
a concentration parameter α = 0.1. Furthermore, to emulate a practical scenario where evaluation
is performed locally, we ensure that each client’s test data distribution is consistent with its local
training data distribution.

Figure 4: Examples of backdoor trigger pictures.

Implement Details. We implement all methods beginning with 500 pre-training rounds to estab-
lish a stable global model, with local optimization performed on each client using SGD with a batch
size of 32 and one local epoch per round. Following pre-training, we execute a 10-round unlearning
phase, where the designated unlearning protocol is applied. This is succeeded by a 10-round post-
training phase involving only the remaining clients to recover model utility. In the training phase,
we use a learning rate of 0.001, and in the forgetting phase, we use a learning rate of 1e-4.For each
algorithm, we select three random seeds for experimentation and calculated the mean and variance
of the results.

We evaluate the robustness of our approach through the execution of Membership Inference Attacks
and backdoor attacks. MIA assesses the model’s ability to protect the privacy of the unlearning
clients’ data, determining whether an attacker can infer whether a particular sample was included in
the training data of the model (Shokri et al., 2017; Bai et al., 2024). A lower MIA accuracy indi-
cates stronger privacy protection. On the other hand, backdoor attacks are used to test the model’s
resilience to malicious alterations during the unlearning process, where an attacker attempts to insert
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Table 4: MIA precision and classification accuracy comparison pre-unlearning under CIFAR-10 and
CIFAR-100 using different algorithms. ‘uc’ indicates the number of unlearning clients.

Algorithm CIFAR-10 Non-IID CIFAR-10 IID CIFAR-100 Non-IID CIFAR-100 IID
uc = 1 uc = 2 uc = 1 uc = 2 uc = 1 uc = 2 uc = 1 uc = 2

MIA Acc Accuracy MIA Acc Accuracy MIA Acc Accuracy MIA Acc Accuracy MIA Acc Accuracy MIA Acc Accuracy MIA Acc Accuracy MIA Acc Accuracy
w0 .979 .578(.002) .979 .578(.002) .975 .707(.000) .975 .707(.000) .971 .297(.002) .971 .297(.002) .984 .330(.007) .984 .330(.007)
Retrain .748 .573(.002) .751 .571(.001) .748 .704(.004) .756 .698(.003) .749 .298(.002) .750 .297(.002) .752 .327(.004) .756 .322(.006)

PGD .746 .142(.009) .756 .132(.000) .755 .279(.103) .749 .102(.022) .750 .194(.054) .748 .045(.045) .795 .287(.022) .796 .304(.034)
FedEraser .717 .334(.009) .715 .344(.012) .762 .559(.021) .773 .558(.021) .771 163(.004) .756 .177(.004) .753 .228(.032) .755 .229(.033)
FedOSD .759 .448.(.062) .745 .517(.007) .757 .373(.192) .752 .230(.155) .752 .262(.030) .753 .268(.021) .809 .245(.094) .798 .296(.032)
FUGAS .705 .564(.007) .708 .591(.004) .748 .691(.022) .755 .688(.010) .747 .294(.006) .748 .299(.003) .801 .332(.006) .816 .330(.002)

Table 5: Comparison of ASR and classification accuracy (mean and std.) for various methods on
CIFAR-10 and CIFAR-100 after post-training. ‘uc’ indicates the number of unlearning clients.

Algorithm CIFAR-10 Non-IID CIFAR-10 IID CIFAR-100 Non-IID CIFAR-100 IID
uc = 1 uc = 2 uc = 1 uc = 2 uc = 1 uc = 2 uc = 1 uc = 2

ASR Accuracy ASR Accuracy ASR Accuracy ASR Accuracy ASR Accuracy ASR Accuracy ASR Accuracy ASR Accuracy

w0 .914 .467(.012) .996 .257(.005) .670 .539(.016) .929 .345(.003) .890 .250(.055) .939 .233(.005) .785 .258(.065) .886 .254(.013)
Retrain .032 .576(.004) .062 .578(.002) .023 .700(.003) .021 .691(.001) .001 .298(.002) .002 .298(.000) .005 .325(.002) .005 .320(.002)

FedEraser .014 .373(.011) .075 .395(.006) .043 .585(.024) .030 .607(.010) .004 .184(.017) .001 .202(.001) .004 .233(.027) .017 .246(.032)
FedOSD .068 .546(.002) .135 .515(.005) .074 .703(.003) .065 .696(.003) .040 .295(.001) .015 .299(.002) .029 .323(.001) .023 .323(.002)
FUGAS .067 .545(.004) .168 .527(.002) .069 .703(.002) .042 .696(.003) .037 .295(.001) .015 .299(.001) .027 .325(.003) .018 .323(.002)

a trigger into the model that causes it to behave maliciously under specific conditions. ASR is used
to measure the success of the attack. Example images of backdoor attacks can be found in Figure 4,
illustrating how an attacker can manipulate the model’s behavior by introducing malicious triggers.
By convention, higher is better for forget accuracy, retain accuracy, and test accuracy, while lower is
better for MIA attack accuracy and cost time. In the complexity analysis we invert MIA attack rate
and when plotting.

To be continued, all experiments are conducted on a machine with an Intel(R) Xeon(R) Gold 6348
CPU @ 2.60GHz and an A100 GPU. The setup and parameters used in this experiment part are
consistent with those detailed in Section 6.

C.2 RESULT

In the experiments whose result is Table 4, we evaluate the performance of our FUGAS method
under MIA attacks using CIFAR-10 and CIFAR-100 datasets, considering both IID and Non-IID
settings. We explore scenarios where the unlearning clients consist of either one or more clients,
simulating different unlearning configurations. As shown in Table 4, FUGAS consistently demon-
strates superior robustness against MIA attacks compared to other methods like FedEraser and Fe-
dOSD. Specifically, FUGAS achieves low MIA accuracy while maintaining strong classification
performance across different experimental configurations. The consistent performance across dif-
ferent scenarios demonstrates the robustness of our approach in ensuring both privacy and model
accuracy, confirming the effectiveness of FUGAS in federated unlearning tasks.

In the experiment result Table 5, we focus on the unlearning phase and the post-training process,
which is complementary to the unlearning task. The post-training phase aims to recover the model’s
utility after the unlearning operation, ensuring that the model’s performance remains intact while the
influence of unlearning clients is effectively removed. Our method incorporates a gradient projection
strategy as the post-training approach used in FedOSD (Pan et al., 2025). In the post-training phase,
each retained client computes its gradient, and if the gradient is aligned with the unlearning direction,
it is projected onto a subspace that avoids reintroducing knowledge from the forgotten clients. The
global model is then updated based on the aggregated projections of the gradients from the retained
clients. This method ensures that the model does not revert to its original state after unlearning,
maintaining the effectiveness of the forget operation.

As shown in Table 5, the results indicate that FUGAS performs comparably to FedOSD in the
post-training phase, demonstrating its robustness. In all of the scenerios, FUGAS achieves good
classification accuracy and low ASR after the post-training phase. These results confirm that our
method effectively integrates unlearning with post-training to preserve model performance while
preventing the model from regaining knowledge of forgotten clients. Based on it, our potential
future direction is to explore additional post-training methods and their combination with FUGAS
to further enhance the model’s robustness while ensuring that the unlearning operation is not undone.
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Table 6: ”F-Acc” is the accuracy of the knowledge unique to the unlearning client, ”C-Acc” is for
overlapping knowledge, and ”R Acc” is for the knowledge unique to the remaining clients

CIFAR-10 CIFAR-100
F-Acc C-Acc R-Acc F-Acc C-Acc R-Acc

Retrain .000(.000) .358(.008) .704(.005) .000(.000) .209(.012) .333(.001)
FedEraser .000(.000) .000(.000) .601(.003) .000(.000) .000(.000) .257(.003)
FedOSD .001(.000) .001(.001) .679(.019) .015(.006) .047(.003) .321(.002)
FUGAS .008(.002) .177(.008) .699(.005) .026(.005) .192(.049) .332(.002)

C.3 KNOWLEDGE INTERFERENCE

To investigate the maintenance of overlapping knowledge among clients, we partition the CIFAR-
10 and CIFAR-100 datasets as follows: 90% of the data labeled as 0 and all data labeled as 1
are assigned to a specific client, while the remaining data are randomly distributed among other
clients. After applying the forgetting mechanism, we evaluate the classification accuracy for three
types of knowledge: 1) the unique knowledge of the forgetting client (data labeled as 1); 2) the
overlapping knowledge (the dataset labeled as 0 in remaining clients); and 3) the unique knowledge
of the remaining clients (all data excluding labels 0 and 1).

As shown in Tab 6, all algorithms demonstrate substantial forgetting of the unique knowledge held
by the unlearning client, with F-Acc approaching zero, indicating effective removal of client-specific
information. In contrast, for the overlapping knowledge shared across clients (C-Acc), the Retrain
baseline maintains high retention rates, while other methods like FedEraser and FedOSD suffer from
significant degradation, dropping to near-zero performance. Our proposed FUGAS method strikes
a favorable balance, thereby effectively safeguarding shared knowledge without compromising the
unlearning objective. Regarding the unique knowledge of the remaining clients (R-Acc), FUGAS
preserves relatively high accuracy, closely matching the Retrain baseline. Overall, these results val-
idate FUGAS’s balanced trade-off between targeted unlearning and global model utility, addressing
key limitations in prior frameworks.

C.4 COMPLEXITY ANALYSIS

The evaluation metrics in this section includes test accuracy, forget accuracy, retain accuracy, MIA
attack, and cost time, are visualized through Figure 5, which provides a comprehensive overview
of the model’s performance compared to baseline algorithms. Specifically, Forget accuracy mea-
sures the accuracy of the unlearning clients on the last epoch of the train phase during unlearning,
indicating how well the model forgets the data of the targeted clients; Retain accuracy reflects the
accuracy of the remaining clients on the last epoch of the train phase during unlearning, showing
how well the model retains the knowledge from the clients that were not selected for unlearning; Test
accuracy represents the accuracy of the remaining clients on the last epoch of the test phase during
unlearning, indicating the overall generalization ability of the model after unlearning; MIA attack
measures the accuracy of the Membership Inference Attack, assessing how well the model prevents
attackers from inferring if a client’s data was included in the training set; Cost time indicates the
total computational time spent in the unlearning process, providing insight into the efficiency of the
method. Because Retrain incurs much longer running cost time, we exclude it from the cost time
axis.

The Retrain method serves as an upper bound, showing the best performance. However, while
Retrain achieves the highest performance, it comes at the cost of significantly higher computational
time, making it impractical for large-scale applications. In contrast, our method, FUGAS, efficiently
achieves effective unlearning while maintaining good performance on the retained clients, all while
keeping the time cost manageable. The result is in Figure 5

When comparing FUGAS with other methods like FedOSD (Pan et al., 2025) and PGD (Halimi
et al., 2022) , we observe that FUGAS strikes a better balance between privacy protection and model
utility. In terms of MIA attack resistance, FUGAS performs better than FedOSD and PGD. More-
over, FUGAS excels in maintaining high retain accuracy, ensuring that the model retains most of
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(a) CIFAR-10 Non-IID (b) CIFAR-100 Non-IID

Figure 5: Performance comparison of various indicators between FUGAS and three other baselines
under MIA attack.

its utility even after unlearning certain clients’ data. As shown in the result plots, FUGAS consis-
tently outperforms FedOSD and PGD in multiple aspects, particularly in forget accuracy, while also
remaining more computationally efficient than Retrain.

Turning to the method-wise comparison, PGD sacrifices utility on both the forgotten and retained
domains, yielding smaller polygons despite decent privacy, which is evidence of over-aggressive
updates. FedOSD improves retain/test accuracy over PGD and offers competitive privacy, but its
utility on the forgotten domain remains limited, suggesting residual gradient interference under Non-
IID heterogeneity. Across both datasets, FUGAS expands the polygon along all four effectiveness
axes (forget accuracy, retain accuracy, test accuracy, and declien of MIA) while matching peers on
time, thereby maximizing the overall area. Notably, FUGAS closes much of the gap to Retrain on
the accuracy axes, approaching the upper bound without the prohibitive runtime. This aligns with
our design: per-client update correction mitigates destructive interference, removing client-specific
signals (lower MIA) while preserving task-relevant structure (higher accuracies). Overall, FUGAS
achieves the most favorable balance of privacy, utility, and efficiency among practical methods,
making it a strong choice for real-world federated unlearning.

D THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the preparation of this manuscript, we utilized a Large Language Model (LLM) as a writing
assistant. The use of the LLM was strictly limited to improving the language and readability of the
text. This included tasks such as correcting grammar and spelling, rephrasing sentences for clarity
and flow, and ensuring stylistic consistency.

The LLM did not contribute to the research ideation, the development of the FUGAS methodology,
the theoretical analysis, the design of the experiments, or the interpretation of the results. All core
scientific concepts, mathematical formulations, experimental findings, and conclusions presented
in this paper are the original work of the human authors. The authors have carefully reviewed and
edited all LLM-assisted text to ensure its technical accuracy and take full responsibility for the entire
content of this paper.
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