Under review as a conference paper at ICLR 2025

MULTI-OBJECTIVE DIFFERENTIABLE NEURAL
ARCHITECTURE SEARCH

Anonymous authors
Paper under double-blind review

ABSTRACT

Pareto front profiling in multi-objective optimization (MOO), i.e., finding a diverse
set of Pareto optimal solutions, is challenging, especially with expensive objectives
that require training a neural network. Typically, in MOO for neural architecture
search (NAS), we aim to balance performance and hardware metrics across devices.
Prior NAS approaches simplify this task by incorporating hardware constraints into
the objective function, but profiling the Pareto front necessitates a computationally
expensive search for each constraint. In this work, we propose a novel NAS
algorithm that encodes user preferences to trade-off performance and hardware
metrics, yielding representative and diverse architectures across multiple devices
in just a single search run. To this end, we parameterize the joint architectural
distribution across devices and multiple objectives via a hypernetwork that can
be conditioned on hardware features and preference vectors, enabling zero-shot
transferability to new devices. Extensive experiments involving up to 19 hardware
devices and 3 different objectives demonstrate the effectiveness and scalability
of our method. Finally, we show that, without any additional costs, our method
outperforms existing MOO NAS methods across a broad range of qualitatively
different search spaces and datasets, including MobileNetV3 on ImageNet- 1k, an
encoder-decoder transformer space for machine translation and a decoder-only
space for language modelling.

1 INTRODUCTION

The ability to make good tradeoffs between predictive accuracy and efficiency (in terms of latency
and/or energy consumption) has become crucial in an age of ever increasing neural networks
complexity and size (Alabdulmohsin et al.| 2023; [Hoffmann et al., [2022; |Kaplan et al., [2020; |Zhai
et al.| |[2022) and a plethora of embedded devices. However, finding the right trade-off remains a
challenging task that typically requires human intervention and a lot of trial-and-error across devices.
With multiple conflicting objectives, it becomes infeasible to optimize all of them simultaneously
and return a single solution. Ideally, NAS should empower users to choose from a set of diverse
Pareto optimal solutions that represent their preferences regarding the trade-off between objectives.

Neural Architecture Search (NAS) (White et al.| |2023) provides a principled framework to search for
network architectures in an automated fashion. Several works (Cai et al.| [2020; [Chen et al.| 2021a;
Elsken et al.,|2019b; Wang et al.|[2020b)) have extended NAS for multi-objective optimization (MOO),
considering performance and hardware efficiency metrics like latency and energy consumption.
However, to the best of our knowledge, no existing gradient-based method returns the full Pareto front
for the MOO problem at hand without repeating their search routine multiple times with different
hardware constraints.

In this work, we propose a scalable and hardware-aware Multi-Objective Differentiable Neural
Architecture Search (MODNAS) algorithm that efficiently trains a single supernet which can be
used to read off Pareto-optimal solutions for different user preferences and different target devices,
without any additional search steps. To search across devices, we frame the problem as a multi-task,
multi-objective optimization problem, where each task (device) has multiple (conflicting) objectives,
e.g., classification accuracy and latency. The user’s preferences are modelled by a preference vector
that defines a scalarization (weighted sum), of the different objectives. This preference vector, along
with features of the hardware of interest, is fed to a hypernetwork (Ha et al., 2017) that outputs
continuous architectural parameters «.. To search in the space of architectures, we employ a one-shot



Under review as a conference paper at ICLR 2025

Supernet f(-;w,a) (Obj.1)

= V(p(hl:% +r L+ rMLiw)

Architect|
A@)

gg, = V(p(r].[% + rzl‘_%-+.4.+ rM,[‘_ITw)

Update @ . é .
- 8 = V8w
features - using MGD: oy
Devi 1 "Dﬁi‘\ MetaPredictor (0bj.2)
evice | < scalarizations f(-;w, @) :supernet
i ! MetaPredictor (Obj.M) Tm = SCA
Dev1.ce 2, D:D: etarredictor J dy' chwembedd.  pg(-) : predictor
: Loy M(y gM L :loss .
Device T | (111, k Po ( % ) t Ho s hypernet

M ~
th[T] a, a :arch param

Figure 1: MODNAS overview. Given a set of 7" devices, MODNAS seeks to optimize M (potentially
conflicting) objectives across these devices. To this end, it employs a MetaHypernetwork Hg (1, d;),
that takes as input a scalarization r, representing the user preferences, and a device embedding d;, to
yield an un-normalized architectural distribution &. The Architect uses & to sample differentiable
discrete architectures, used in the Supernetwork to estimate accuracy and in the MetaPredictor
to estimate the other M — 1 loss functions (e.g. latency, energy consumption) for every device. By
iterating over devices and sampling scalarizations uniformly from the M -dimensional simplex, at
each iteration we update the MetaHypernetwork using multiple gradient descent (MGD).

model and a bi-level optimization scheme, as is typically done in gradient-based NAS. In our case,
however, the upper-level parameters are the hypernetwork weights, optimized in expectation over
different preference vectors and hardware devices via multiple gradient descent (Désidéri, [2012)).

To evaluate our method, we conduct experiments on multiple NAS search spaces, including CNN
and Transformer architectures, and up to 3 objectives across 19 hardware devices. While other NAS
methods that utilize hardware constraints in their search objectives require substantial search costs
both for each new constraint and each new hardware, MODNAS addresses both in a zero-shot manner,
without extra search cost, while yielding higher quality solutions.

Our contributions can be summarized as follows:

1. We present a principled approach for Multi-objective Differentiable NAS, that leverages hyper-
networks and multiple gradient descent for fast Pareto-Front approximation across devices.

2. This work is the first to provide a global view of the Pareto solutions with just a single search
run, without the need to repeat search or fine-tune on new target devices.

3. Extensive evaluation of our method across 4 different search spaces (NAS-Bench-201, Mo-
bileNetV3, an encoder-decoder and a decoder-only Transformer space), 3 tasks (image classi-
fication, machine translation and language modeling), and up to 19 hardware devices and 3
objectives, show both improved efficiency and performance in comparison to previous approaches
that use a constrained objective in their search.

To facilitate reproducibility, we provide our code via the following |anonymous link.

2 BACKGROUND AND RELATED WORK

In this section, before describing our algorithm, we introduce some basic concepts, definitions and
related work. Refer to Appendix [A]for an extended related work.

Multi-objective optimization (MOQ) for Multi-Task Learning. Consider a multi-task dataset D
consisting of NV instances, where the feature vector of the ¢ —th instance is denoted as z; € X, and the
M -many associated target variables as yz1 eyt ..., ZM e YM  Moreover, consider there exists a
family of parametric models f(x;w) : X — {Y! x -+ x Y™}, parameterized by w, that maps the
input x to the joint space of the multiple tasks. To simplify the notation, we denote the prediction of the
m-th task as f™(z;w) : X — Y™, and the respective loss L™ (w) £ 4 Ziv 0 (ym, 7 (z; w)).
The vector of the values of all loss functions is denoted as L(w) = (£ (w), ..., LM (w)). MOO
then seeks to find a set of Pareto-optimal solutions w™* that jointly minimize L(w

w”* € argmin L(w) e

'w can be replaced with any other parameter here, also architectural ones (see Section .


https://anonymous.4open.science/r/MODNAS-1CB7/README.md

Under review as a conference paper at ICLR 2025

Definition 2.1. (Pareto Optimality): A solution wy dominates w iff L™ (w3) < L™ (wy), Vm €
{1,..., M}, and L(wy) # L(ws). In other words, a dominating solution has a lower loss value on
at least one task and no higher loss value on any task. A solution w* is called Pareto optimal iff there
exists no other solution dominating w*.

Definition 2.2. (Pareto front): The sets of Pareto optimal points and their function values are called
Pareto set (P,,) and Pareto front (Pr, = {L(w)wep,, }), respectively.

Linear Scalarization. In MOO, a standard technique to solve the M -dimensional problem is
using a preference vector r € S = {RM] Z%Zl rm = Lry > 0,Ym € {1,...,M}} in
the M-dimensional probability simplex (Lin et al.l 2019; |Mahapatra & Rajan, 2020; Ruchte &
Grabocka, [2021). Every r € S yields a convex combination of the loss functions in Equation [I]
as L(w) = 7T L(w). Given a preference vector r, one can apply standard, single-objective opti-
mization algorithms to find a minimizer w}; = argmin,, £, (w). By sampling multiple r vectors,
one can compute Pareto-optimal solutions w;: that profile the Pareto front. Several methods (Hoang
et al., [2023} [Lin et al., 2020} Navon et al., 2021} [Phan et al.,[2022) employ a hypernetwork (Ha et al.,
2017) to generate Pareto-optimal solutions given different preference vectors as input. In this work,
we utilize a hypernetwork conditioned on scalarizations to generate Pareto-optimal architectures.
Furthermore, we also extend the hypernetwork by conditioning it on different task vectors.

Multiple Gradient Descent (MGD). MOO can be solved to local optimality via MGD (Désidéri,
2012), as a natural extension of single-objective gradient descent, which iteratively updates w towards
a direction that ensures that all tasks improve simultaneously (called Pareto improvement): w' <+
w — &g, where g3, is a vector field that needs to be determined. If we denote by g7 = V, L™ (w)
the gradient of the m-th scalar loss function, via Taylor approximation, the decreasing direction of
L™ when we update w towards gy, is given by (g7, %) ~ —(L™(w’) — L™(w))/&. In MGD g,
is chosen to maximize the slowest update rate among all objectives:

g oc  argmax  { min gy, gi) |- )
gw€RY ||gwl|<1 * mEM]

The early work of |Désidéri| (2012) has been extended in various settings, particularly multi-task

learning, with great promise (Lin et al.,|2019;Liu & Vicente| [2021; [Mahapatra & Rajanl 2020; |Sener

& Koltun, 2018)), but these approaches are applied to mainly a fixed architecture and extending them

to a supernet subsuming a search space of multiple architectures is non-trivial.

One-shot NAS and Bi-Level optimization. With the architecture space being intrinsically discrete,
large (often consisting of upto 10%¢ architectures) and hence expensive to search on, most existing
differentiable NAS approaches leverage the weight sharing paradigm and continuous relaxation to
enable gradient descent (Bender et al., 2018} (Chen et al., |2021b; |Dong & Yang, [2019; [Liu et al.,
2019b; 2023; Movahedi et al. [2022} [Pham et al.,|2018}; Xie et al., 2019; Xu et al.l |2020a; |[Zhang
et al.}2021). Typically, in these approaches, architectures are stacks of cells, where the cell structure
is represented as a directed acyclic graph (DAG) with N nodes and E edges. Every transition from
node i to j, i.e. edge (4,7), is associated with an operation ol7) € O, where O is a predefined
candidate operation set. |Liu et al.| (2019b)) proposed a continuous relaxation of the search space
by parameterizing the discrete operation choices in the DAG edges via a learnable vector «. This
enables framing the NAS problem as a bi-level optimization one, with differentiable objectives w.r.t.
all variables:

argmin £ (w*(a),a) s.t. w*(a) = argmin L7 (w, ), 3)
where £17%" and £V are the empirical losses on the training and validation data, respectively, w
are the supernetwork parameters, o € A are the continuous architectural parameters, and w*(«) :
A — R% is a best response function that maps architectures to their optimal weights.

Comparison to single-objective constrained NAS. Early NAS methods predominantly targeted high
accuracy, whereas contemporary hardware-aware differentiable NAS approaches (Cai et al., 2018} [Fu
et al., [2020; Jiang et al., 20215 Wan et al., 2020} [Wang et al., 2021; Wu et al.,|2019; 2021} Xu et al.,
2020b)) are designed to identify architectures optimized for target hardware efficiency. Typically, these
methods integrate hardware constraints within their objectives, yielding a single optimal solution
and necessitating multiple search iterations to construct the Pareto front. Our proposed algorithm
addresses this by profiling the entire Pareto front in a single search iteration. While single-objective
constrained optimization is advantageous in scenarios demanding optimization of one objective under



Under review as a conference paper at ICLR 2025

a specific constraint, practical applications often require a suite of models adaptable to varying user
preferences even on a single device. Our efficient Pareto-front approximation algorithm provides
such a suite of optimal models to choose from.

3 HARDWARE-AWARE MULTI-OBJECTIVE DIFFERENTIABLE NEURAL
ARCHITECTURE SEARCH

We first formalize the multi-objective bi-level optimization NAS problem across multiple hardware
devices, and then introduce a scalable and differentiable method that combines MGD with linear
scalarizations to efficiently solve this problem.

3.1 PROBLEM DEFINITION & SKETCH OF SOLUTION APPROACH

In multi-objective NAS, the bi-level problem described in Equation[I]becomes more difficult, since
we are not only concerned with finding w* given a fixed architecture, but we want to optimize in the
space of architectures .4 as well. Assuming we have T" hardware devices (target functions) and M
objectives (e.g. accuracy, latency, etc.), similar to , forevery t € {1...T}, the Pareto set can be
obtained by solving the following bi-level optimization problem:

argmin LY (w*(a),a) s.t. w*(a) = argmin LI (w, o), )
where the M-dimensional loss vector Ly(w* (), a) £ (L} (w* (), ), ..., LM (w* (@), )) is
evaluated V¢ € {1,...,T}. L7 and LY* are the vectors with all M loss functions evaluated on
the train and validation splits of D, used in the lower- and upper-level problems of (@), respectively.

Our goal is to find Pareto-optimal architectures for each target s N
device, covering diverse and representative preferences for )
different objectives. However, naively solving () for each /|hP"1|L -
device t requires T' independent bi-level searches, making .

this very inefficient for large models. To overcome this, we d
incorporate a single hypernetwork within the one-shot model
(supernetwork) commonly used in conventional NAS (Bender

et al.L 2018 [Liu et al., 2019b; Pham et al.,[2018). This allows

us to generate architectures based on device embeddings and
preference vectors in just one search run, reducing the search

cost from O(T) to O(1). ~

hpn !

3.2 ALGORITHM DESIGN AND COMPONENTS Figure 2: Architecture overview of
the MetaHypernetwork, which gets
as input a device embedding d; (in-
put to an embedding layer E) and
a scalarization r (input to K hyper-
networks) and yields an architecture
encoding a.

Our search procedure is composed of four core modular com-
ponents (see Figure [I): (1) a MetaHypernetwork that gen-
erates the architectural distribution; (2) an Architect that
samples discrete architectures from this distribution; (3) a
Supernetwork that exploits the weight-sharing paradigm for
search efficiency and serves as a proxy for the network accu-
racy; and (4) aMetaPredictor that predicts hardware metrics and enables gradient propagation back
to the MetaHypernetwork. We now discuss each of these in detail.

MetaHypernetwork. In order to generate architectures across multiple devices, inspired by [Wang
et al.| (2022) and [Lin et al.| (2020), we propose a MetaHypernetwork that can meta-learn across
different hardware devices (see Figure[2). Hypernetworks are a class of neural networks that generate
the parameters of another model. They were initially proposed for model compression (Ha et al.|
2017) and were later adopted for NAS (Brock et al.,[2018) and MOO (Lin et al., [2020; |[Navon et al.,
2021). Here, given a preference vector r = (71, ..., 7)) and a hardware device feature vector d;, for
device t € {1,...,T}, we use the MetaHypernetwork Hg (7, d;), parameterized by @, to generate
an un-normalized architecture distribution &g that is later used to compute the upper-level updates
in . Similar to |Lee et al.|(2021b), d, is a fixed-size feature vector that is obtained by evaluating
a fixed set of reference architectures on device t. The MetaHypernetwork is composed of 2 main
components (see Figure[2):



Under review as a conference paper at ICLR 2025

1. A bank of K independent hypernetworks: hpn,, . .., hpn, that parse the preference vector r and
generate the architectural parameters &y, . . ., g, respectively.

2. A linear layer E, that learns a similarity map from device feature vectors to the bank of hpns. E
takes as input the device feature vector d; and outputs an attention vector of size K.

The final output, &, of the MetaHypernetwork is computed as a weighted sum of the outputs of the
K hypernetworks, where the vector of weights is the output of the linear layer E. For a more detailed
description of the MetaHypernetwork we refer the reader to Appendix[E.2]

In all experiments, we initialize the MetaHypernetwork to yield a uniform probability mass over
all architectural parameters for all scalarizations and device embeddings. By using the preference
vector r to create a linear scalarization of L; and the MetaHypernetwork to model the architectural
distribution across 1" devices, the bi-level problem in reduces to:

valid train

argmin E,.s [rTLt (w*(as),00)] st. w'(as) =argminE,.s ['rTLt (w, as)], 5)
2 w

where ag are the normalized architectural parameters obtained from the Architect A(ag)

and rTL;(-, a9) = Z%Zl rm LY (-, a) is the scalarized loss for device ¢. Conditioning the
MetaHypernetwork on the hardware embeddings allows us to generate architectures on new test
devices without extra finetuning or meta-learning steps. Iniutively, the MetaHypernetwork, learns
to map the new test device, to the most similar device, in its learnt bank of embeddings (see also
Figurein the appendix). We use the Dirichlet distribution Dir(3), 8 = (1, .., B ), to sample
the preference vectors and approximate the expectation over the scalarizations using Monte Carlo
sampling. In our experiments, we set §; = --- = [y = 1, for a uniform sampling over the
(M — 1)-simplex, however, one can set these differently based on user priors or make it a learnable
parameter (Chen et al.,[2021b)).

MetaPredictor. For the cheap-to-evaluate hardware objectives, such as latency, energy consumption,
we employ a regression model pj* (v, d}*) that predicts the target labels y;™ for objective m and
device ¢, given an architecture o and device embedding d;*. We use the same predictors as [Lee

et al[(2021b) and optimize the MSE loss: ming Eq. ¢~(r) (v — g (e, d?))Q, as done in Lee
et al.| (2021a) for meta-learning performance metrics across datasets. In our experiments, we pretrain
a separate MetaPredictor for every hardware objective m (e.g. latency, energy, etc.) on a subset
of (o, y;™) pairs, and use its predicted value directly in (5) as £}*(-, as) = pj*(cw, d}*). Since the
MetaPredictor is in principle a small neural network this pretraining step is inexpensive. During
search, we freeze and do not further update the MetaPredictor parameters 6.

Supernetwork. For expensive objectives like neural network classification accuracy, we use a
Supernetwork that encodes the architecture space and shares parameters between architectures,
providing a best response function w*(«g) for the scalarized loss in . While any parametric
model could estimate this function, such as performance predictors (Lee et al., 2021a)), this requires
an expensive prior step of creating the training dataset for the predictor, by training architectures
from scratch. To reduce memory costs of Supernetwork training, we: (1) use a one-hot encoding
of ag for differentiable architecture sampling (Cai et al.| 2018} Dong & Yang| 2019; [Xie et al.|
2019)), activating only one architecture per step, and (2) entangle operation choice parameters in
the Supernetwork, further increasing memory efficiency beyond weight sharing (Sukthanker et al.,
2023).

Architect. The Architect A(&) samples discrete architectural configurations from the un-
normalized distribution &g = Ho (7, d;) and enables gradient estimation through discrete variables
for VoL (-, ag ). Methods such as GDAS (Dong & Yang}[2019) utilize the Straight-Through Gumbel-
Softmax (STGS) estimator (Jang et al.| [2017)), that integrates the Gumbel reparameterization trick
to approximate the gradient. Here we employ the recently proposed ReinMax estimator (Liu et al.|
2023)), that yields second-order accuracy without the need to compute second-order derivatives. See
Appendix [B.T|for more details on these discrete samplers. Similar to the findings in[Liu et al (2023),
in our initial experiments, ReinMax outperforms the GDAS’ STGS estimator (see Figure[I5]in the
Appendix), therefore, we use ReinMax in all experiments that follow.

3.3 OPTIMIZING THE MetaHypernetwork viA MGD



Under review as a conference paper at ICLR 2025

We denote the gradient of the scalarized loss in (5) with respect to the MetaHypernetwork

parameters ®, shared across all devices t €

1,...,T, as: g% rTVeLy(-, ag)

Zi\f:l rm Vo L7 (-, ), Where ag is the discrete architectural sample from the Architect A(a®).

Algorithm 1: MODNAS

Data: Dy, uin: Dyalid; Supernetwork; device features
{d;}I_,; MetaHypernetwork Hg; nr. of objectives

M; Architect A; learning rates &1, &o.
while not converged do
fort € {1,...,7T} do
Sample scalarization 7 ~ Dir ()
Set arch params &g + Ho (7, d;)
Sample agp ~ A(ag) from Architect

gfb — Zi\,le TmVCPE?L(Dvalid;wya@)
v9E) 5 /7 see

1

2
3
4
5

7 + FrankWolfeSolver(gl,...
9o Y1t g
D—P—-¢& 95
fort € {1,...,7} do
Sample scalarization 7 ~ Dir ()
Set arch params &g < He (7, dt)
Sample agp ~ A(ag) from Architect

gfu «— Zn]\le Tm VLl (Dtmin§ w, 06<I>)

1 T t
91*1:<_th:1911;
w—w—E& gl

return Hg

—
[

Alg .

// update MetaHypernetwork

// update Supernetwork

Multiple Gradient Descent (MGD) (Désidéril,
2012;|Sener & Koltun, 2018)) provides a plausible
approach to estimate the update directions for ev-
ery task simultaneously by maximizing (2). Via
the Lagrangian duality, the optimal solution to
equationis g X Zthl vi g%, where {~v; }E
is the solution of the following minimization
problem:

T
{ HZ Y
t=1

The solution to this problem is either 0 or, given
a small step size £, a descent direction that mono-
tonically decreases all objectives at the same
time and terminates when it finds a Pareto sta-
tionary point, i.e. g5 = 0,Vt € {1,...,T}.
When T' = 2, the problem above simplifies
. 1 9112 Lo
to min,ep.1] ||v95 + (1 — )93 | ,» Which is a
quadratic function of « with a closed form solu-

tion:
2 1\T,?2
~* = max (min (W, 1),0).
||9<I> - 9<1>||2
When T > 2, we utilize the Frank-Wolfe

solver (Jaggil |2013) as in[Sener & Koltun|(2018)),
where the analytical solution in for 7" = 2 is used

min
Yise-YT

T
Z’yt = ].,’Yt > O,Vt}

2
2 ' t=1

tit,
L1ty 25 gold_6226

—¥— MODNAS  —*— CMA-ES+LaMOO  —— MO-ASHA  —#— QEHVI
—— RS CMA-ES —e— RS-BO NSGA-II
—A— RHPN —4— LS —»— LS-BO —- Global opt.

Figure 3: Hypervolume (HV) of MODNAS and
baselines across 19 devices on NAS-Bench-201.
For every device, we optimize for 2 objectives,
namely latency (ms) and test accuracy on CIFAR-
10. For each method, metric and device we report
the mean of 3 independent search runs. Higher
area in the radar plot indicates better HV. Test
devices are colored in red around the plot.

inside the line search. We provide the full algorithm to compute ~* in Algorithm []in Appendix [B.2]

In Algorithm|T]and Figure[T|we provide the pseudocode and an illustration of the overall search phase
of MODNAS. For every mini-batch sample from D,,;;4, We iterate over the device features d; (line
2), sample one scalarization r and condition the MetaHypernetwork on both r and d; to generate
the un-normalized architectural distribution &g (lines 3-4). We then compute the device-specific



Under review as a conference paper at ICLR 2025

gradient in line 6 which is used to estimate the v coefficients (line 7) used from MGD to update ¢
(lines 8-9). Similarly to[Liu et al.| (2019b)), we use the first-order approximation to obtain the best
response function in the lower level (lines 10-14) and repeat the same procedure for the upper-level
(lines 2-6), except now the Supernetwork weights w are updated with the mean gradient (line 15),
over devices.

4 EXPERIMENTS

In this section, we firstly demonstrate the scalability and generalizability of our MODNAS approach
on a NAS tabular benchmark (Section[4.1). Then, we validate MODNAS on larger search spaces for
Machine Translation (Section[d.2), Image Classification and Language Modeling (Section {.3).

Search Spaces and Datasets. We

evaluate MODNAS on 4 search ¢

spaces: (1) NAS-Bench-201 (Dong| §[<z~. jheeeweos
& Yang| [2020; L1 et al., [2021) with ‘l \\\
19 devices and CIFAR-10 dataset; =S
(2) MobileNetV3 from Once-for-All MTL
(OFA) (Cai et al.l 2020) with 12 Test Device: %7
devices and ImageNet-1k dataset;

(3) Hardware-Aware-Transformer ] ) ]
(HAT) (Wang et al.,[2020b) on the machine tranb 1268 HehlHstal oy IFMQIRNAY S Sifferent
hardware devices; (4) HW-GPT-Bench (Sukthanker et al.}2024) — a GPT-2 based search space used
for language modeling on the OpenWebText (Gokaslan & Cohen, |2019)) across 8 devices. We refer to
Appendices[F| and [G] for more details on these search spaces.

The trained MetaHPN approximates the Pareto front by generating architectures given:

<

“Accuracy i

Latency

Evaluation. At test time, in order to profile the Pareto front with MODNAS on unseen devices, we
sample 24 equidistant preference vectors r from the M -dimensional probability simplex and pass
them through the pretrained MetaHypernetwork Hg(r,d;) to get 24 architectures. Here the test
device feature d; is obtained similarly as for the train devices. See Figure @ or an illustration.

titan_rtx_256

Baselines. We compare MODNAS against several base-
linesﬂ such as Random Search (RS), Local Search (LS) and 093
various Evolutionary Strategy and Bayesian Optimization
MOO methods. Please refer to Appendix [C| for a more
comprehensive description of each of them. Furthermore,
we also evaluate the MetaHypernetwork with randomly
initialized weights (RHPN).

Metrics. To assess the quality of the Pareto set solu-
tions, we use the hypervolume (HV) indicator, which

Hypervolume

is a standard metric in MOO. Given a reference point
p=1[p',...,p"] € RY that is an upper bound for all ob-
jectives {f™(-;w, ) }M_,, ie. supofm(;w,a) < p™,
VYm € [M], and a Pareto set P, C A, HV(P,) measures

Num. evaluations

Figure 5: HV over number of evalu-
ated architectures on NAS-Bench-201

the region of non-dominated points bounded above from p:  of MODNAS and the blackbox MOO

M baselines on a test device. For MOD-
)x({q eRY [JaePa:qge []IF(5w, a),pm]}), NAS we only do 24 full evaluations.

m=1
where A(+) is the Euclidean volume. HV can be interpreted as the total volume of the union of the
boxes created by the Pareto front.

4.1 SIMULTANEOUS PARETO SET LEARNING ACROSS 19 DEVICES AND ABLATIONS

We firstly validate the scalability and learning capability of MODNAS by evaluating on the NAS-
Bench-201 (Dong & Yang| [2020) cell-based convolutional space. Here we want to optimize both
latency and classification accuracy on all devices. We utilize the same set of 19 heterogeneous devices
as|Lee et al.[(2021b), from which we use 13 for search and 6 at test time. For the latency predictor,

>We use the implementations from SyneTune (Salinas et al.l 2022): https://github.com/awslabs/
syne-tune


https://github.com/awslabs/syne-tune
https://github.com/awslabs/syne-tune

Under review as a conference paper at ICLR 2025

FPGA + Global opt.
« RS
+ RHPN

gold_6226

+  MODNAS
« 1580

i Latency constraint

0.7 i —— MODNAS

—<= MODNAS (0.2) MO-ASHA
NSGAI

« RSBO

. aERVI

—*- MODNAS (0.4)
—+~ MODNAS (0.6)
—= MODNAS (0.8)
MODNAS (1.0)
MetaD2A+HELP | &

o o
e
Hypervolume

o
w

Normalized latency

s o © S e S & O
& EF S F S P S

FSEFFTSE
S FET e

0.0 0.2 0.4 0.6 0.8
Normalized error

Figure 8: HV (leff) and Pareto front (right) of
MODNAS and baselines on FPGA with 3 nor-
Figure 7: Pareto front on Eyeriss (leff) and HV across malized objectives: error, latency and energy
devices (right) of MODNAS ran with various latency usage. HV is computed using the (1,1, 1) refer-
constraints on NAS-Bench-201. See Fig.[2T]in Ap- ence point on the right 3D plot. See Fig. [I6]for
pendixmfor all results. results on Eyeriss.

we use the one from HELP, namely a graph convolutional network (GCN), which we pretrain for 3
GPU hours on the ground truth latencies on the 13 search devices as described in Section 3] We run
the MODNAS search (see Appendix [E}for more details on the search hyperparameters), as described
in Algorithm ([T} for 100 epochs (22 GPU hours on a single NVidia RTX2080Ti) and show the HV in
Figure |§| of the evaluated Pareto front in comparison to the baselines, for which we allocate the same
search time budget across all devices equivalent to the MODNAS search + evaluation.

Most notably, MODNAS consistently outperforms all other fpga
baselines across every device. For the baselines, we con-
duct 19 separate search runs (one for each device), whereas
MODNAS leverages meta-learning to generate the Pareto

set on each device using the same MetaHypernetwork in é

a single search run. Interestingly, the trained MODNAS  §

attention-based MetaHypernetwork significantly outper- = (|

forms the RHPN baseline in profiling the Pareto front, ~o7 Ybsameing) M
demonstrating its effectiveness in optimizing across multi- &SN mean

ple devices and conflicting objectives simultaneously. In 0-603 20 0 60 s 100
Figure 20a]in the Appendix, we compare MODNAS with search Epochs

additional baselings, runn.ing .them at dquble the budget Figure 6: HV over search epochs of dif-
used for the experiments in F1gure.|z[ Figure [5 (see Fig- foront gradient schemes in MODNAS.
ure 23] in the appendix for all devices) shows that most

baselines require more than twice the number of architecture evaluations to reach the same HV as
MODNAS. Results show that MODNAS remains the top performer across hardware devices on
average. Furthermore, in the appendix, Figure 20| presents radar plots for four additional metrics, and
Figure[T8]and[T7|results on NB201 when optimizing CIFAR-100 accuracy and device latency.

Reliably learnt embeddings for hardware devices. To demonstrate the effectiveness of our
MetaHypernetwork in learning hardware device similarities, Figure [T2]in the appendix shows
K-means clustering of original and MetaHypernetwork embeddings, reduced via t-SNE. The
MetaHypernetwork successfully clusters similar devices, confirming its efficacy.

MetaHypernetwork update schemes: robustness of MGD. We compare the MGD update scheme
for the MetaHypernetwork @ (line 9 in Alg. |I[) against (1) the mean gradient over tasks: ®
P—Er Z;le gk (2) sequential updates with all single tasks’ gradients: ® < ® —&g), Vt; (3) single
updates using gradients of MC samples over tasks: ® < ® — g, ¢ ~ {1,...T}. Figure |§| (see
Figure 24]in Appendix [[| for more results) shows the HV over search epochs for these schemes. MGD,
by accounting for inter-task dependencies, achieves higher final HV, better anytime performance, and
faster convergence than the other schemes.

Scalability to three objectives. We show the scalability of MODNAS to 3 objectives, namely,
accuracy, latency and energy consumption. For this experiment we use the FPGA and Eyeriss tabular
energy usage values from HW-NAS-Bench (Li et al.,2021). In addition to the MetaPredictor for
latency, we pretrain a second predictor on the energy usage objective. We then run MODNAS and the
MOO baselines with the same exact settings as for 2 objectives. Results shown in Figure [§]indicate
that MODNAS can scale to M > 2 without additional search costs or hyperparameter tuning and yet
achieves HV close to the global optimum front of the NAS-Bench-201 space.



Under review as a conference paper at ICLR 2025

MODNAS vs. constrained single-objective optimization. To compare against single-objective
NAS with hardware constraints in the objective, we run MetaD2A+HELP [2021b). Since
MetaD2A + HELP is not able to profile the Pareto front directly, we run the NAS search 24 times with
different constraints, which we compute by denormalizing the same 24 equidistant preference vectors
we use to evaluate MODNAS. We also extend MODNAS to incorporate user prior constraints over
the multiple objectives being optimized during search. Namely, we add a normalized constraint ¢,
such that if the predicted value from the MetaPredictor during search satisfies this constraint, i.e.
Py (as,d”) < ™, we remove the gradient w.r.t. to that objective in lines 6 and 14 of Algorithm
In Figure[7] (other devices in Figure 2T)) we can see that when increasing the latency constraint to 1
(only cross-entropy optimized), though the HV decreases, MODNAS returns Pareto sets with more
performant architectures. MetaD2A+HELP, despite multiple search runs, prioritizes performance
over diversity, resulting in less varied solutions.

4.2 PARETO FRONT PROFILING ON TRANSFORMER SPACE

RaspberryPi-CPU
—— RS

RaspberryPi-CPU

0.046
—— MO-RE
— s
! —a NSGAI
0.044 —— 1580
—— RS:BO
MO-ASHA
4+ QEHVI
—4— RHPN
—¥— MODNAS
—— HaT

0.042

Hypervolume
1/BLEU

0.040

0.038

© & LSO 3000 4000 5000 6000 7000 8000 9000
S AP o)
o PSR Latency (ms)

Figure 9: HV and Pareto fronts of MODNAS and
baselines across devices on the HAT space. Average HV (12 devices) for OFA

To demonstrate its effectiveness beyond image classification and
CNN spaces, we apply MODNAS to the hardware-aware Trans-
former (HAT) search space fromWang et al| (2020b)) on the WMT’ 14
En-De (Jean et al} 2015} Machéddek & Bojar] [2014) machine transla-
tion task. We pretrain the MetaPredictor (details in Appendix [E-T])
for 5 GPU hours on 2000 architecture samples from the search space
and then conduct the search for 110 epochs (6 days on 8 NVIDIA
RTX A6000 GPUs) using 2 search devices, adhering to the same
hyperparameters as[Wang et al.| (2020b)) to optimize for latency and
validation cross entropy loss. We allocate to each baseline 2.5 x SFTESESES ¢SS
more runtime budget than MODNAS, resulting in 1300 (RS-BO) = °

to 6000 (MO-ASHA) total architecture evaluations, whereas MOD- Figure 10:  Average HV
NAS evaluates only 24 generated architectures. Details on the HAT ©f MODNAS and baselines
search space and search hyperparameters are in Appendix [F} We acToss 12 devices on OFA
evaluate MODNAS on all 3 devices (2 search and 1 test) using the Space. For every device we op-
BLEU score, and results in Figure ] show that MODNAS outper- {1mize for 2 objectives, namely
forms all baselines, achieving a higher hypervolume (left plot) of larency (ms) and test accuracy
the generated Pareto fronts (right plot). For HAT, we evaluate the ©n ImageNet-Ik.
architectures provided in their paper. Additional results on other training devices and evaluation
metrics are presented in Figures [26] 27 and 28] in the Appendix.

Hypervolume

4.3 EFFICIENT DIFFERENTIABLE MOOQO STARTING FROM PRETRAINED SUPERNETWORKS

Image Classification on ImageNet-1k. We now evaluate MODNAS on ImageNet-1k using the
MovileNetV3 search space from Once-for-All (OFA) 2020). For this experiment, we
run MODNAS using 11 search (and 1 test) devices starting with the pretrained OFA supernetwork
and run the search further for 1 day on 8 RTX2080Ti GPUs. During the search, we only update the
MetaHypernetwork weights and keep the pretrained Supernetwork weights frozen. Details on the
search space and hyperparameters are in Appendices[Fland[E.3] We use the simple MLP from [Lee]
as our MetaPredictor, pretraining it for 6 hours on 5000 sampled architecture-latency
pairs. To evaluate the 24 points generated by our MetaHypernetwork and baselines, we use the
OFA pretrained Supernetwork. Results in Figure [I0]show that MODNAS achieves a higher average



Under review as a conference paper at ICLR 2025

HV across all devices compared to baselines, which we run for 192 hours using the OFA pretrained
accuracy predictor (see Figure [31]for all results and Figure 30| for the Pareto fronts).

Comparison to Zero-Cost Proxies. We also compare the HV of the Pareto front obtained by
MODNAS to that produced by NSGA-II (Deb et al., [2002), which uses a zero-cost proxy (ZCP) (Ab-
delfattah et al.,[2021) for performance estimation instead of the actual accuracy. We select Zico (Li
et al.| [2023) since it is one of the few ZCPs evaluated in the MobileNetV3 search space and on large
datasets like ImageNet-1k. Table [T| presents the results of this experiment on two devices. As shown,
despite its improved runtime efficiency, the ZCP-guided search underperforms compared to both the
existing baselines and MODNAS, which optimize for accuracy directly.

Table 1: HV of MODNAS and baselines on the OFA search space. For every device we optimize for
2 objectives: latency (ms) and validation accuracy on ImageNet-1k.

LS-BO MO-ASHA RS-BO MO-REA NSGA-II Zico-NSGA-II. MODNAS

0.749 0.740 0.747 0.750 0.744 0.689 0.757
0.755 0.736 0.753 0.752 0.744 0.690 0.763

Device Name RS

v100_64 0.677
titan_rtx_64 0.722

RHPN HELP EHVI LS

0.683  0.638 0.748 0.697
0.698  0.663 0.751 0.734

Language Modeling with GPT-2. With the rapid growth of language model sizes, it is crucial to iden-
tify transformer variants that are efficient during inference (latency) while maintaining competitive

performance. We apply MODNAS to the GPT-S space from
HW-GPT-Bench (Sukthanker et al., 2024])), which features a non-
convex Pareto front between perplexity and hardware metric ob-
jectives. Using pretrained Supernetwork weights from HW-
GPT-Bench, we conduct a single 6-hour search on 4 Nvidia A100
GPUs, optimizing for energy consumption (Wh) and perplexity
across 8 different GPU devices. See Appendix [E] for details on
the MetaHypernetwork architecture and search hyperparame-
ters. The Supernetwork weights are kept frozen while updating
the MetaHypernetwork. Figure [TT]shows that, with the same
time budget, MODNAS matches or surpasses other MOO base-
lines, demonstrating its effectiveness in optimizing beyond con-
vex Pareto fronts.

40.8

Perplexity
w w
= o
© w

N
N
w

22.8

0.2 0.3 0.4 0.5
Energy (Wh)

Figure 11: Pareto front of MOD-
NAS and baselines on the HW-

4.4 COMPUTATIONAL COMPLEXITY GPT-Bench. A100 GPU.

Ignoring the cost to train final architectures
in the Pareto set, methods like MetaD2A +
HELP (Lee et al., 2021ajb)) have a worst-

Table 2: Cost of MODNAS in comparison to other
methods. N is the number of trained architectures during
search, T the number of devices and C the number of

case time complexity of O(CT) to build constraints.
the Pareto set, where T is the number of

devices and C is the number of constraints.

Method | Search Cost | Pareto Set Build Cost

LEMONADE (Elsken et al.{2019a} O(NT) o)

1 - Blackbox MOO {Daulton et al.|[2020{Zhao et al.}|2022} O(NT) [@Q))]

MODNAS r?duces thlS tO O( 1 ) by con ProxylessNAS (Car et al.2018) O(CT) o)
d1t10n1ng a Slng]e MetaHypernetwork on MetaD2A + HELP (Lee et al.|[2021a[b] O(N) O(CT)
" . OFA (Cai et al.; 2020} + HELP (Lee et al.{2021b) o(1) O(CT)

both device types and constraints. Methods MoDNas @urs) o) o)

like LEMONADE (Elsken et al.l, 2019al)

and ProxylessNAS (Cai et al.l 2018) apply constraints during the search phase, requiring an indepen-
dent search per device. Black-box methods such as LEMONADE, NSGA-II (Deb et al.,[2002), or
gEHVI (Daulton et al.,[2020) train O(NT) architectures or a surrogate based on O(N) architectures in
the case of MetaD2A + HELP. In contrast, MODNAS and OFA have a cost of O(1) as they train a
single supernetwork. Although MODNAS iterates over T devices to compute g3 and g5, Figure
in Appendix [I.2] shows that MODNAS generalizes well on 17 test devices with only 2 search devices
due to its meta-learning capabilities. See Tables[2]and [5|in the Appendix for more details.

5 BROADER IMPACT AND LIMITATIONS

Broader Impact. In an era of large-scale models (e.g. foundation models), speeding up the search
and training cost for inference-optimal neural architectures is an important aspect of responsible
research (Cai et al.,2024; Muralidharan et al., 2024} Zhang et al.| |2024a)). The main goal of this work
is to improve the search costs, as well as the efficiency of the found architectures in terms of various

10



Under review as a conference paper at ICLR 2025

hardware metrics, therefore reducing the energy consumption and CO5 footprint.The energy savings
of these architectures will be amplified as they might be deployed on a large number of devices.

Limitations. While our differentiable multi-objective search method shows promising results, there
are potential limitations. MODNAS inherits challenges common to gradient-based search, such as
the risk of failure without proper tuning or regularization (Zela et al.,[2020). For example, gradients
may favor one objective, leading to local optima that hinder exploration of the full Pareto front.
Additionally, the method relies on differentiable proxies for objectives, which may not always align
with ground truth values.

6 CONCLUSION

In this paper, we propose a novel hardware-aware differentiable NAS algorithm for profiling the
Pareto front in multi-objective problems. In contrast to constraint-based NAS methods, ours can
generate Pareto optimal architectures across multiple devices with a single hypernetwork that is
conditioned on preference vectors encoding the trade-off between objectives. Experiments across
various hardware devices (up to 19), objectives (accuracy, latency and energy usage), search spaces
(CNNs and Transformers), and applications (classification, machine translation, language modeling)
demonstrate the effectiveness and efficiency of our method.

11



Under review as a conference paper at ICLR 2025

REFERENCES

M. Abdelfattah, A. Mehrotra, L. Dudziak, and N. Lane. Zero-cost proxies for lightweight NAS.
In Proceedings of the International Conference on Learning Representations (ICLR’21), 2021.
Published online: [iclr.ccl

Ibrahim Alabdulmohsin, Xiaohua Zhai, Alexander Kolesnikov, and Lucas Beyer. Getting vit in shape:
Scaling laws for compute-optimal model design. Thirty-seventh Conference on Neural Information
Processing Systems, 2023. [I]

Stephan Patrick Baller, Anshul Jindal, Mohak Chadha, and Michael Gerndt. Deepedgebench:
Benchmarking deep neural networks on edge devices. 2021 IEEE International Conference on
Cloud Engineering (IC2E), pp. 20-30, 2021. @]

G. Bender, P-J. Kindermans, B. Zoph, V. Vasudevan, and Q. Le. Understanding and simplifying
one-shot architecture search. In Proceedings of the 35th International Conference on Machine
Learning (ICML’18), volume 80. Proceedings of Machine Learning Research, 2018.

Hadjer Benmeziane, Kaoutar E1 Maghraoui, Hamza Ouarnoughi, Smail Niar, Martin Wistuba, and
Naigang Wang. Hardware-aware neural architecture search: Survey and taxonomy. In Proceedings
of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21, pp. 4322-4329,
8 2021. Survey Track.

J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. Journal of Machine
Learning Research, 13:281-305, 2012. @

Andrew Brock, Theo Lim, J.M. Ritchie, and Nick Weston. SMASH: One-shot model architecture
search through hypernetworks. In International Conference on Learning Representations, 2018.

H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han. Once-for-All: Train one network and specialize it
for efficient deployment. In International Conference on Learning Representations (ICLR), 2020.

[T} [7} B} [0} 211 26 (42

Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search on target task
and hardware. In International Conference on Learning Representations, 2018. 3] 5]

Ruisi Cai, Saurav Muralidharan, Greg Heinrich, Hongxu Yin, Zhangyang Wang, Jan Kautz, and
Pavlo Molchanov. Flextron: Many-in-one flexible large language model. arXiv preprint
arXiv:2406.10260, 2024. [10]

Minghao Chen, Houwen Peng, Jianlong Fu, and Haibin Ling. Autoformer: Searching transformers
for visual recognition. In Proceedings of the IEEE/CVF international conference on computer
vision, pp. 12270-12280, 2021a. [T} [21]

Xiangning Chen and Cho-Jui Hsieh. Stabilizing differentiable architecture search via perturbation-
based regularization. In International conference on machine learning, pp. 1554-1565. PMLR,
2020. @21

Xiangning Chen, Ruochen Wang, Minhao Cheng, Xiaocheng Tang, and Cho-Jui Hsieh. DrNAS:
Dirichlet neural architecture search. In International Conference on Learning Representations,

2021b. B ]

Richeek Das and Samuel Dooley. Fairer and more accurate tabular models through nas. Algorithmic
Fairness through the Lens of Time Workshop at NeurIPS, 2023. [19]

S. Daulton, M. Balandat, and E. Bakshy. Differentiable expected hypervolume improvement for
parallel Multi-Objective Bayesian optimization. In Advances in Neural Information Processing
Systems, volume 33, pp. 9851-9864. Curran Associates, Inc., 2020. [I0} [22]

Samuel Daulton, David Eriksson, Maximilian Balandat, and Eytan Bakshy. Multi-objective bayesian

optimization over high-dimensional search spaces. In Uncertainty in Artificial Intelligence, pp.
507-517. PMLR, 2022.

12


iclr.cc

Under review as a conference paper at ICLR 2025

Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and Tanaka Meyarivan. A fast elitist non-dominated
sorting genetic algorithm for multi-objective optimization: Nsga-ii. In Parallel Problem Solving
from Nature PPSN VI: 6th International Conference Paris, France, September 18-20, 2000
Proceedings 6, pp. 849-858. Springer, 2000. [I9]

Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast and elitist multiob-
jective genetic algorithm: Nsga-ii. IEEE transactions on evolutionary computation, 6(2):182—-197,

2002. [10} [191 1]

Jean-Antoine Désidéri. Multiple-gradient descent algorithm (mgda) for multiobjective optimization.
Comptes Rendus Mathematique, 350:313-318, 2012. 21 [3] [} [T9] [42]

X. Dong and Y. Yang. Searching for a robust neural architecture in four gpu hours. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2019. B 5]

29 BT} 2

X. Dong and Y. Yang. NAS-Bench-201: Extending the scope of reproducible neural architecture
search. In Proceedings of the International Conference on Learning Representations (ICLR’20),
2020. Published online: iclr.cc. [7}22] 26]

Samuel Dooley, Rhea Sanjay Sukthanker, John P Dickerson, Colin White, Frank Hutter, and Micah
Goldblum. Rethinking bias mitigation: Fairer architectures make for fairer face recognition. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023.

Lukasz Dudziak, Thomas Chau, Mohamed Abdelfattah, Royson Lee, Hyeji Kim, and Nicholas Lane.
Brp-nas: Prediction-based nas using gcns. Advances in Neural Information Processing Systems,
33:10480-10490, 2020. 19} 22]

T. Elsken, J. Metzen, and F. Hutter. Efficient multi-objective neural architecture search via lamarckian
evolution. In International Conference on Learning Representations, 2019a. [L0]

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Efficient multi-objective neural architecture
search via lamarckian evolution. In International Conference on Learning Representations, 2019b.

Yonggan Fu, Wuyang Chen, Haotao Wang, Haoran Li, Yingyan Lin, and Zhangyang Wang.
AutoGAN-distiller: Searching to compress generative adversarial networks. In Proceedings
of the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 3292-3303. PMLR, 13-18 Jul 2020.

Aaron Gokaslan and Vanya Cohen. Openwebtext corpus. http://Skylion007.github.io/
OpenWebTextCorpus, 2019. [7} 26

Nyoman Gunantara. A review of multi-objective optimization: Methods and its applications. Cogent
Engineering, 5(1):1502242, 2018.

Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and Jian Sun.
Single path one-shot neural architecture search with uniform sampling. In Computer Vision—-ECCV
2020: 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part XVI 16,
pp. 544-560. Springer, 2020.

D. Ha, A. Dai, and Q. Le. Hypernetworks. In Proceedings of the International Conference on
Learning Representations (ICLR’17), 2017. [1] B} #]

Chaoyang He, Haishan Ye, Li Shen, and Tong Zhang. Milenas: Efficient neural architecture search
via mixed-level reformulation. 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 11990-11999, 2020. [19] [31]

Long P Hoang, Dung D Le, Tran Anh Tuan, and Tran Ngoc Thang. Improving pareto front learning

via multi-sample hypernetworks. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 37, pp. 7875-7883, 2023.

13


iclr.cc
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus

Under review as a conference paper at ICLR 2025

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Thomas
Hennigan, Eric Noland, Katherine Millican, George van den Driessche, Bogdan Damoc, Aurelia
Guy, Simon Osindero, Karén Simonyan, Erich Elsen, Oriol Vinyals, Jack Rae, and Laurent Sifre.
An empirical analysis of compute-optimal large language model training. In Advances in Neural
Information Processing Systems, volume 35, pp. 30016-30030. Curran Associates, Inc., 2022. [T]

Chi-Hung Hsu, Shu-Huan Chang, Jhao-Hong Liang, Hsin-Ping Chou, Chun-Hao Liu, Shih-Chieh
Chang, Jia-Yu Pan, Yu-Ting Chen, Wei Wei, and Da-Cheng Juan. Monas: Multi-objective neural
architecture search using reinforcement learning. arXiv preprint arXiv:1806.10332, 2018.

C. Igel, Nikolaus Hansen, and Stefan Roth. Covariance matrix adaptation for multi-objective
optimization. Evolutionary Computation, 15:1-28, 2007. @]

Rafael C Ito and Fernando J Von Zuben. Ofa 2: A multi-objective perspective for the once-for-all
neural architecture search. arXiv preprint arXiv:2303.13683, 2023.

Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In International
Conference on Machine Learning, 2013. [6] [20]

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax.
In Proceedings of the International Conference on Learning Representations (ICLR’17), 2017.
Published online: [iclr. ccl [3] 20|

Sébastien Jean, Orhan Firat, Kyunghyun Cho, Roland Memisevic, and Yoshua Bengio. Montreal
neural machine translation systems for wmt’15. In Proceedings of the tenth workshop on statistical
machine translation, pp. 134-140, 2015. E]

Qian Jiang, Xiaofan Zhang, Deming Chen, Minh N Do, and Raymond A Yeh. Eh-dnas: End-to-end
hardware-aware differentiable neural architecture search. arXiv preprint arXiv:2111.12299, 2021.

Bl[19

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Sunghoon Kim, Hyunjeong Kwon, Eunji Kwon, Youngchang Choi, Tae-Hyun Oh, and Seokhyeong
Kang. Mdarts: Multi-objective differentiable neural architecture search. In 2021 Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE), pp. 1344-1349. 1IEEE, 2021. [I9]

Ivan Lazarevich, Matteo Grimaldi, Ravi Kumar, Saptarshi Mitra, Shahrukh Khan, and Sudhakar
Sah. Yolobench: Benchmarking efficient object detectors on embedded systems. 2023 IEEE/CVF
International Conference on Computer Vision Workshops (ICCVW), pp. 1161-1170, 2023. 43

Hayeon Lee, Eunyoung Hyung, and Sung Ju Hwang. Rapid neural architecture search by learning to
generate graphs from datasets. In International Conference on Learning Representations, 2021a.

Hayeon Lee, Sewoong Lee, Song Chong, and Sung Ju Hwang. Hardware-adaptive efficient latency
prediction for nas via meta-learning. In Advances in Neural Information Processing Systems,

volume 34, pp. 27016-27028. Curran Associates, Inc., 2021b. || 51 [7 [0 [10] 22} [23] 24] [26] [29]

Jaeseong Lee, Duseok Kang, and Soonhoi Ha. S3nas: Fast npu-aware neural architecture search
methodology. arXiv preprint arXiv:2009.02009, 2020.

Jayoung Lee, Pengcheng Wang, Ran Xu, Sarthak Jain, Venkat Dasari, Noah Weston, Yin Li, Saurabh
Bagchi, and Somali Chaterji. Virtuoso: Energy- and latency-aware streamlining of streaming
videos on systems-on-chips. ACM Trans. Des. Autom. Electron. Syst., 28(3), April 2023. ISSN
1084-4309.

Chaojian Li, Zhongzhi Yu, Yonggan Fu, Yongan Zhang, Yang Zhao, Haoran You, Qixuan Yu, Yue
Wang, and Yingyan (Celine) Lin. Hw-nas-bench: Hardware-aware neural architecture search
benchmark. In International Conference on Learning Representations, 2021.

14


iclr.cc

Under review as a conference paper at ICLR 2025

Guihong Li, Yuedong Yang, Kartikeya Bhardwaj, and Radu Marculescu. Zico: Zero-shot NAS via
inverse coefficient of variation on gradients. In The Eleventh International Conference on Learning
Representations, 2023. [I0]

L. Li and A. Talwalkar. Random search and reproducibility for neural architecture search. In J. Peters
and D. Sontag (eds.), Proceedings of The 36th Uncertainty in Artificial Intelligence Conference
(UAI’20), pp. 367-377. PMLR, 2020.

Liam Li, Kevin G. Jamieson, Afshin Rostamizadeh, Ekaterina Gonina, Moritz Hardt, Benjamin Recht,
and Ameet Talwalkar. Massively parallel hyperparameter tuning. ArXiv, abs/1810.05934, 2018. [21]

X. Lin, H. Zhen, Z. Li, Q. Zhang, and S. Kwong. Pareto multi-task learning. In Advances in Neural
Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

Xi Lin, Zhiyuan Yang, Qingfu Zhang, and Sam Tak Wu Kwong. Controllable pareto multi-task
learning. ArXiv, abs/2010.06313, 2020. [3] @ [19] 24]

Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig Adam, Wei Hua, Alan Loddon Yuille, and
Li Fei-Fei. Auto-deeplab: Hierarchical neural architecture search for semantic image segmentation.
2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 82-92,
2019a.

H. Liu, K. Simonyan, and Y. Yang. DARTS: Differentiable architecture search. In International
Conference on Learning Representations, 2019b. [3]

Liyuan Liu, Chengyu Dong, Xiaodong Liu, Bin Yu, and Jianfeng Gao. Bridging discrete and
backpropagation: Straight-through and beyond. Thirty-seventh Conference on Neural Information

Processing Systems, 2023. 3] 5] 20 @2]

Suyun Liu and Luis Nunes Vicente. The stochastic multi-gradient algorithm for multi-objective
optimization and its application to supervised machine learning. Annals of Operations Research,
pp. 1572-9338, 2021. [3} [I9]

Zhichao Lu, Kalyanmoy Deb, Erik Goodman, Wolfgang Banzhaf, and Vishnu Naresh Boddeti.
Nsganetv2: Evolutionary multi-objective surrogate-assisted neural architecture search. In Computer
Vision—-ECCV 2020: 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings,
Part I 16, pp. 35-51. Springer, 2020. [T9]

Matou$ Machacek and Ondfej Bojar. Results of the WMT 14 metrics shared task. In Proceedings of
the Ninth Workshop on Statistical Machine Translation, pp. 293-301, Baltimore, Maryland, USA,
June 2014. Association for Computational Linguistics. doi: 10.3115/v1/W14-3336. 0] [26]

D. Mahapatra and V. Rajan. Multi-task learning with user preferences: Gradient descent with
controlled ascent in pareto optimization. In Proceedings of the 36th International Conference on
Machine Learning (ICML’20), pp. 6597-6607. Proceedings of Machine Learning Research, 2020.

Bl[I9

Natalia Martinez, Martin Bertran, and Guillermo Sapiro. Minimax pareto fairness: A multi objective
perspective. In International Conference on Machine Learning, pp. 6755-6764. PMLR, 2020. [I9]

Rohit Mohan, Thomas Elsken, Arber Zela, Jan Hendrik Metzen, Benedikt Staffler, Thomas Brox,
Abhinav Valada, and Frank Hutter. Neural architecture search for dense prediction tasks in
computer vision. Int. J. Comput. Vision, 131(7):1784-1807, April 2023. ISSN 0920-5691. i3]

Michinari Momma, Chaosheng Dong, and Jia Liu. A multi-objective/multi-task learning framework
induced by pareto stationarity. In International Conference on Machine Learning, pp. 15895-15907.
PMLR, 2022. [T9]

Sajad Movahedi, Melika Adabinejad, Ayyoob Imani, Arezou Keshavarz, Mostafa Dehghani, Azadeh
Shakery, and Babak N Araabi. A-darts: Mitigating performance collapse by harmonizing operation
selection among cells. The Eleventh International Conference on Learning Representations, 2022.

k]

15



Under review as a conference paper at ICLR 2025

Saurav Muralidharan, Sharath Turuvekere Sreenivas, Raviraj Joshi, Marcin Chochowski, Mostofa
Patwary, Mohammad Shoeybi, Bryan Catanzaro, Jan Kautz, and Pavlo Molchanov. Compact
language models via pruning and knowledge distillation. arXiv preprint arXiv:2407.14679, 2024.
10

Aviv Navon, Aviv Shamsian, Gal Chechik, and Ethan Fetaya. Learning the pareto front with
hypernetworks. International Conference on Learning Representations, 2021.

Biswajit Paria, Kirthevasan Kandasamy, and Barnabas Péczos. A flexible framework for multi-
objective bayesian optimization using random scalarizations. In Uncertainty in Artificial Intelli-
gence, pp. 766-776. PMLR, 2020.

H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean. Efficient neural architecture search via parameter
sharing. In International Conference on Machine Learning, 2018. [3] ] [I9]

Hoang Phan, Ngoc Tran, Trung Le, Toan Tran, Nhat Ho, and Dinh Phung. Stochastic multiple target
sampling gradient descent. Advances in neural information processing systems, 35:22643-22655,

2022. BI[19]

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V. Le. Regularized evolution for image
classifier architecture search. In Proceedings of the Thirty-Third AAAI Conference on Artificial
Intelligence, AAAT’ 19. AAAI Press, 2019. ISBN 978-1-57735-809-1. [21]

Binxin Ru, Clare Lyle, Lisa Schut, Miroslav Fil, Mark van der Wilk, and Yarin Gal. Speedy perfor-
mance estimation for neural architecture search. In Advances in Neural Information Processing
Systems, 2021.

Michael Ruchte and Josif Grabocka. Scalable pareto front approximation for deep multi-objective
learning. In 2021 IEEE international conference on data mining (ICDM), pp. 1306-1311. IEEE,

2021. B 23]

David Salinas, Valerio Perrone, Olivier Cruchant, and C. Archambeau. A multi-objective perspective
on jointly tuning hardware and hyperparameters. ArXiv, abs/2106.05680, 2021. [21]

David Salinas, Matthias Seeger, Aaron Klein, Valerio Perrone, Martin Wistuba, and Cedric Archam-
beau. Syne tune: A library for large scale hyperparameter tuning and reproducible research. In
International Conference on Automated Machine Learning, AutoML 2022, 2022.

Shreyas Saxena and Jakob Verbeek. Convolutional neural fabrics. Advances in neural information
processing systems, 29, 2016.

Robin Schmucker, Michele Donini, Muhammad Bilal Zafar, David Salinas, and C. Archambeau.
Multi-objective asynchronous successive halving. ArXiv, abs/2106.12639, 2021. [21]

Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. In Neural
Information Processing Systems, 2018. [3] [6]

Albert Shaw, Daniel Hunter, Forrest Landola, and Sammy Sidhu. Squeezenas: Fast neural architecture
search for faster semantic segmentation. In Proceedings of the IEEE/CVF International Conference
on Computer Vision Workshops, pp. 0-0, 2019. [T9]

Samuel L Smith, Benoit Dherin, David Barrett, and Soham De. On the origin of implicit regularization
in stochastic gradient descent. In International Conference on Learning Representations, 2021. [i2]

Rhea Sanjay Sukthanker, Arjun Krishnakumar, Mahmoud Safari, and Frank Hutter. Weight-
entanglement meets gradient-based neural architecture search. arXiv preprint arXiv:2312.10440,

2023. Bl A2

Rhea Sanjay Sukthanker, Arber Zela, Benedikt Staffler, Joerg K.H. Franke, and Frank Hutter.
Hw-gpt-bench: Hardware-aware architecture benchmark for language models. arXiv preprint

arXiv:2405.10299, 2024. 1] [T0l 23] 26] 291 B3]

M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and Q. Le. Mnasnet: Platform-
aware neural architecture search for mobile. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2019.

16



Under review as a conference paper at ICLR 2025

Alvin Wan, Xiaoliang Dai, Peizhao Zhang, Zijian He, Yuandong Tian, Saining Xie, Bichen Wu,
Matthew Yu, Tao Xu, Kan Chen, et al. Fbnetv2: Differentiable neural architecture search for
spatial and channel dimensions. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 12965-12974, 2020. E]

Dilin Wang, Meng Li, Chengyue Gong, and Vikas Chandra. Attentivenas: Improving neural
architecture search via attentive sampling. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 6418-6427, 2021. [3| [I9]

H. Wang, Z. Wu, Z. Liu, H. Cai, L. Zhu, C. Gan, and S. Han. Hat: Hardware-aware transformers for
efficient natural language processing. arXiv:2005.14187[cs.CL], 2020a. 26]

Hanrui Wang, Zhanghao Wu, Zhijian Liu, Han Cai, Ligeng Zhu, Chuang Gan, and Song Han. HAT:
Hardware-aware transformers for efficient natural language processing. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, pp. 7675-7688, Online, July
2020b. Association for Computational Linguistics. ol

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent
Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 139-149, 2022. [4] [24]

Colin White, Mahmoud Safari, Rhea Sanjay Sukthanker, Binxin Ru, Thomas Elsken, Arber Zela,
Debadeepta Dey, and Frank Hutter. Neural architecture search: Insights from 1000 papers. ArXiv,
abs/2301.08727, 2023. 1]

Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian,
Peter Vajda, Yangqing Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient convnet design
via differentiable neural architecture search. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 10734-10742, 2019. [3| [T9]

Yan Wu, Zhiwu Huang, Suryansh Kumar, Rhea Sanjay Sukthanker, Radu Timofte, and Luc Van Gool.
Trilevel neural architecture search for efficient single image super-resolution. arXiv preprint
arXiv:2101.06658, 2021. 3 [19]

S. Xie, H. Zheng, C. Liu, and L. Lin. SNAS: stochastic neural architecture search. In International
Conference on Learning Representations, 2019. [3 5]

Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and Hongkai Xiong.
Pc-darts: Partial channel connections for memory-efficient architecture search. In International
Conference on Learning Representations, 2020a. [3]

Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Bowen Shi, Qi Tian, and Hongkai Xiong.
Latency-aware differentiable neural architecture search. arXiv preprint arXiv:2001.06392, 2020b.

Bl[19

Xinmin Yang, Wei Yao, Haian Yin, Shangzhi Zeng, and Jin Zhang. Gradient-based algorithms for
multi-objective bi-level optimization. Science China Mathematics, 2024.

Feiyang Ye, Baijiong Lin, Xiaofeng Cao, Yu Zhang, and Ivor W. Tsang. A first-order multi-gradient
algorithm for multi-objective bi-level optimization. In ECAI, volume 392 of Frontiers in Artificial
Intelligence and Applications, pp. 2621-2628. 10S Press, 2024.

Mao Ye and Qiang Liu. Pareto navigation gradient descent: a first-order algorithm for optimization
in pareto set. In Uncertainty in Artificial Intelligence, pp. 2246-2255. PMLR, 2022. [19]

A. Zela, T. Elsken, T. Saikia, Y. Marrakchi, T. Brox, and F. Hutter. Understanding and robustifying
differentiable architecture search. In International Conference on Learning Representations, 2020.
URL |https://openreview.net/forum?id=H1gDNyrKDS| [IT] 2]

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
12104-12113, 2022.

17


https://openreview.net/forum?id=H1gDNyrKDS

Under review as a conference paper at ICLR 2025

Dingkun Zhang, Sijia Li, Chen Chen, Qingsong Xie, and Haonan Lu. Laptop-diff: Layer pruning
and normalized distillation for compressing diffusion models. arXiv preprint arXiv:2404.11098,
2024a.

Li Lyna Zhang, Yuqing Yang, Yuhang Jiang, Wenwu Zhu, and Yunxin Liu. Fast hardware-aware
neural architecture search. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops, pp. 692—-693, 2020.

Miao Zhang, Steven Su, Shirui Pan, Xiaojun Chang, Ehsan Abbasnejad, and Reza Haffari. idarts:
Differentiable architecture search with stochastic implicit gradients. In International Conference
on Machine Learning, 2021. [3]

Qi Zhang, Peiyao Xiao, Shaofeng Zou, and Kaiyi Ji. Mgda converges under generalized smoothness,
provably. 2024b. [42]

Yiyang Zhao, Linnan Wang, Kevin Yang, Tianjun Zhang, Tian Guo, and Yuandong Tian. Multi-
objective optimization by learning space partition. In International Conference on Learning

Representations, 2022.

B. Zoph and Q. V. Le. Neural architecture search with reinforcement learning. In Proceedings of the
International Conference on Learning Representations (ICLR’17), 2017. [I9]

18



Under review as a conference paper at ICLR 2025

A EXTENDED RELATED WORK

Multi-objective optimization. Multi-objective optimization (MOOQO) (Gunantara, |2018)) is a crucial
field in optimization theory, tackling decision-making scenarios with multiple conflicting objectives.
MOQO techniques can be categorized into gradient-based and gradient-free approaches. Gradient-free
MOO approaches, such as evolutionary algorithms and dominance-based methods like NSGA-II
(Deb et al.| 2000), often suffer from sample inefficiency and are typically unsuitable for deep
learning applications. On the other hand, gradient-based MOO methods leverage gradients. The
foundational work by [Désidéri| (2012) has been significantly extended in multi-task learning contexts,
demonstrating considerable potential (Lin et al|2019; |Liu & Vicente, [2021; Mahapatra & Rajanl
2020; Sener & Koltun, 2018). However, these methods are primarily applied to fixed architectures,
and adapting them to architecture search spaces is complex. This adaptation would require retraining
each architecture with multiple objectives, which is impractically expensive for large search spaces.
Another major challenge in MOO is balancing the different objectives. To address this, preference
vectors have been proposed to guide the prioritization of objectives on the Pareto Front (Momma
et al., 2022} |Ye & Liu, [2022). An emerging approach to mitigate the retraining issue involves
hypernetworks, which determine the weights of the main network in MOO scenarios (Lin et al.|
2020), often incorporating preference vector (Hoang et al.,|2023; Navon et al., [2021; |Phan et al.,
2022).

Neural Architecture Search. A major challenge in the automated design of neural network architec-
tures is the efficient exploration of vast search spaces. Early NAS methods relied on Reinforcement
Learning (Zoph & Le}, [2017), evolutionary algorithms (Deb et al.l [2002; Elsken et al.l 2019bj |[Lu
et al.,|2020), and other black-box optimization techniques (Daulton et al.,|2022)) to train and evalu-
ate numerous architectures from scratch. The advent of one-shot NAS introduced weight sharing
among architectures by training an over-parameterized network, known as a supernet, to expedite
the evaluation of individual networks within the search space (Bender et al., [2018} |Liu et al.,[2019b;
Pham et al.,[2018; |Saxena & Verbeek, [2016)). Differentiable one-shot NAS methods (Cai et al.| 2018;
Fu et al, 2020} He et al., [2020; |Wu et al.,[2019; 2021) further improved efficiency by applying a
continuous relaxation to the search space, enabling the use of gradient descent to identify optimal
sub-models within the supernet. In contrast, two-stage NAS methods initially train a supernet, often
through random sampling of subnetworks, and subsequently employ black-box optimization to
identify optimal subnetworks (Bender et al., 2018} |Guo et al., 2020; [Li & Talwalkar, [2020).

Hardware-aware and Multi-objective Neural Architecture Search. Early NAS methods primarily
focused on maximizing accuracy for a given task. In contrast, hardware-aware NAS aims to optimize
architectures for efficient performance on specific hardware devices (Benmeziane et al.,2021; Lee
et al.} 2020; [Shaw et al.,|2019; Zhang et al.,[2020), naturally leading to multi-objective NAS (Hsu
et al., 2018 |Kim et al.;, 2021} Tan et al.| 2019). Two-stage NAS methods can be adapted to this context
by incorporating a multi-objective search in the second stage (Cai et al.| 2018} [Ito & Von Zuben,
2023). However, most two-stage methods depend on random sampling during supernet training,
which doesn’t prioritize promising architectures. Differentiable NAS methods, such as those in|Cai
et al.| (2018); |[Fu et al.| (2020); Jiang et al.|(2021)); [Wang et al.|(2021)); Wu et al.| (2019;2021); [ Xu et al.
(2020b)), use latency proxies like layer-wise latencies and FLOPS (Dudziak et al.l 2020) to evaluate
hardware performance, combining task and hardware objectives with fixed weighting to find a single
optimal solution. However, changing the objective weighting requires a complete search rerun, which
is computationally demanding.

In contrast, our proposed search algorithm offers the entire Pareto Front of objectives in a single run,
making it more efficient. While our focus is on multi-objective NAS for hardware constraints, our
technique is applicable to other objectives such as fairness (Das & Dooleyl 2023; [Dooley et al.| [2023]
Martinez et al.,[2020), suggesting promising avenues for future research.

19



1
2
3
4
5

Under review as a conference paper at ICLR 2025

B ALGORITHMIC COMPONENTS

In this section, we provide the pseudocodes for some of the algorithmic components we use in
MODNAS.

B.1 DISCRETE SAMPLERS

Given the architecture parameters ag from the MetaHypernetwork, we obtain a differen-
tiable discrete architecture sample from the Architect as as < m — stop_g(m) + s, where
o ~ Cat(softma}q (5@)) and

ap + softmax, ((s) softmax; (fs)
2 2

Here, Cat is the categorical distribution, 7 is the temperature in the tempered softmax

P = % and stop_g(+) duplicates its input and detaches it from backprop-
j=1 expla; /T
agation. Refer to the ReinMax paper (Liu et al.||2023)) for more details. The algorithm pseudocode
on how a one-hot encoded (discrete) architecture is sampled given an unnormalized architectural
distribution & is given in Algorithm [2and Algorithm 3] for the Straight-Through (Jang et al.l 2017)

and ReinMax (Liu et al., 2023)) gradient estimators, respectively.

7 < 2 - softmax, (stop_g(ln( ) — ds) + &4,) -

softmax, ()

Algorithm 2: Straight — Through (Jang Algorithm 3: ReinMax (Liu et al.}[2023)
et al, 2017) Data: a: softmax input, 7 : temperature
Data: &: softmax input, 7 : temperature Result: a: one-hot samples

Result: o: one-hot samples 1 Mo < softmax: (&)

7o < softmax; (&) 2 a ~ Cat(mo)

o~ Cat(ﬂ'o) 3 M a+softmax, (&)

2
T + softmax; (stop_g(ln(m) —d) +d)
7T2=2~771—%'7T0

6 o ¢ Ty — stop_g(m) + «

return «

1 < softmax, (&)
a <+ m — stop_g(m) + «
return o

wn s

N

B.2 FRANK-WOLFE SOLVER

In this section, we provide the pseudocode of the Frank-Wolfe solver (Jaggi, 2013)) used to compute
the gradient coefficients used for the MGD updates. To solve the constrained optimization problem,
the Frank-Wolfe solver uses analytical solution for the line search with 7" = 2 (Algorithm [5).

Algorithm 4: FrankWolfeSolver (Jaggi,|[2013)

Data: g, ..., 94

Result: v = (1, ..., v7)

Initializey ¢ (F,..., 7)

Precompute M s.t. M; ; = (9%)T (%)

repeat
t < argmin, 23:1 Ye Mt A
ep — M; // t-th row of M
0 « argming ((1— &)y + 5e£)TM((1 — 8)y + de;) ; // using [Algorithm 5
v (1=0)y+ de;

until § ~ 0 or Number of Iterations Limit;

return -y

1

I~

20



[ I N S

]

Under review as a conference paper at ICLR 2025

Algorithm 5: Solver mins¢o 1) |[66 + (1 — 5)5“;
if 6T6 > 6T9 then

| 0«1
else if 979 > 6T0 then

| 60
else

0-6)To
t 0 To—ars

return &

C MULTI-OBJECTIVE NAS ALGORITHMS

This section elaborates on the multi-objective NAS methods we utilize as baselines in Section [4]

* Random Search (RS) is a robust baseline for both single-objective (Bergstra & Bengio, [2012; L1
& Talwalkar, [2020) and multi-objective (Cai et al.,|2020; (Chen et al.||2021a)) architecture searches.
This baseline involves randomly sampling architectures from the search space and computing the
Pareto front from these samples. While RS is computationally efficient and often effective, it may
not always find the optimal architectures, especially in larger search spaces.

* Local Search (LS) is adapted to refine solutions near Pareto-optimal points in multi-objective
optimization, iteratively improving solutions within defined neighborhoods.

* Multi-objective Asynchronous Successive Halving (MO-ASHA) (Schmucker et al.,[2021) is a
multi-fidelity method that utilizes an asynchronous successive halving scheduler (L1 et al.,|2018]) and
non-dominating sorting for budget allocation. MO-ASHA uses the NSGA-II selection mechanism
and the e-net (Salinas et al.| 2021)) exploration strategy that ranks candidates in the same Pareto
set by iteratively selecting the one with the largest Euclidian distance from the previous set of
candidates.

* Multi-Objective Regularized Evolution (MO-RE) builds on Regularized Evolution (RE) (Real
et al.,|2019), which evolves a population of candidates through mutation and periodically removes
the oldest individuals, thus regularizing the population. MO-RE adapts this by using multi-objective
non-dominated sorting to score candidates, with parents sampled based on these scores.

* Non-dominated Sorting Genetic Algorithm IT (NSGA-II) (Deb et al.|[2002) is a multi-objective
evolutionary algorithm designed to find a Pareto set of architectures. It ranks architectures using non-
dominated sorting and maintains diversity with crowding distance. Through selection, crossover,
and mutation, NSGA-II evolves populations towards the Pareto front, although it is known for
being sample inefficient.

* Covariance Matrix Adaptation Evolution Strategy (CMA-ES) (Igel et al.,|2007) is an evolu-
tionary algorithm particularly effective in continuous optimization problems. In a multi-objective
context, it adapts its covariance matrix to the shape of the search space, iteratively updating its sam-
pling distribution to favor promising regions. This method efficiently handles complex, non-linear
optimization landscapes and can be adapted to multi-objective scenarios by using techniques such
as Pareto-based selection to maintain a diverse set of solutions.

* Latent Action MOO (LaMOO) (Zhao et al.,[2022)) uses a parametric model and Monte Carlo Tree
Search (MCTS) to learn to partition the objective space based on the dominance number, which
indicates the vicinity of a point to the Pareto front relative to the other samples. gGEHVI+LaMOO
and CMA-ES+LaMOO use the original gEHVI and CMA-ES, respectively, as an inner routine in
the learned subspaces.

e Bayesian Optimization with Random Scalarizations (RS-BO) (Paria et al.| 2020) uses an
acquisition function based on random linear scalarizations of objectives across multiple points to
find the Pareto-optimal set that minimizes Bayesian regret.

* Bayesian Optimization with Linear Scalarizations (LS-BO) is similar to RS-BO but optimizes
a single objective derived from a fixed linear combination of two objectives instead of using
randomized linear scalarizations.

21



Under review as a conference paper at ICLR 2025

* Expected Hypervolume Improvement (QEHVI) (Daulton et al., 2020) is a Bayesian optimization
acquisition function that explores the Pareto front by quantifying potential hypervolume improve-
ment. This approach measures the volume dominated by Pareto-optimal solutions and guides
the search towards regions likely to offer better trade-offs, aiding in the discovery of diverse
Pareto-optimal solutions.

D EVALUATION DETAILS

D.1 OTHER METRICS

For NAS-Bench-201, in addition, we evaluate the generational distance (GD) and inverse generational
distance (IGD) (see Appendix D). See Figure 20| for the results complementary to the hypervolume
radar plot in Figure 3] of the main paper.

Generational Distance (G D) and Inverse Generational Distance (/G D). Given a reference set
S C A and a Pareto set P, C A with dim(A) = K, the GD indicator is defined as the distance
between every point « € P, and the closest point in s € S, averaged over the size of P,:

! . , 1/2
GD(P,,S) = N (a; grélgd(a,s) > ,

where d(a, s) = Zle (o — si)? is the Euclidean distance from « to its nearest reference point
inS.
The inverted generational distance (IGD) is computed as IGD(P,,S) = GD(S,P,,).

Generational Distance Plus (GD') and Inverse Generational Distance Plus (/GD).
GD™(P,,S) = IGD* (S, P,) replaces the euclidean distance d(c, s) in GD with:

K
dt(a,s) = Z(max{ak — $5,0})2
k=1

D.2 MODNAS-SOTL

On the NAS-Bench-201 search space, since the architectures evaluated with the supernetwork weights
are not highly correlated to the ones trained independently from scratch, we employ the Sum of
Training Losses (SoTL) proxy from |Ru et al.|(2021)). To profile the Pareto front with SoTL, we firstly
evaluate the 24 architectures using the exponential moving average of the sum of training losses for
the initial 12 epochs of training as 12, 0.9127¢ L4 (4, o), and then train from scratch only the
subset of architectures in the Pareto set built using the SoTL evaluations. We present the results of
MODNAS-SoTL in Figure 20| where we compare to the other baselines as well. As we see, we can
further decrease the evaluation cost via MODNAS-SoTL, by trading off the number of solutions in
the Pareto set with HV.

E EXPERIMENTAL DETAILS

E.1 MetaPredictor ARCHITECTURES

For all search spaces we set the dimensionality of the hardware embedding to 10. This corresponds
to latency evaluations on a set of 10 reference architectures, which are the same used by |[Lee et al.
(2021b).

NAS-Bench-201. For the NAS-Bench-201 (Dong & Yang| 2020) search space we use a Graph
Convolutional Network (GCN) as proposed in |Dudziak et al.|(2020). Furthermore, in addition to
the one-hot operation encoding and adjacency matrix corresponding to the architecture cells, we
also input the hardware embedding to this predictor, as done by [Lee et al.[(2021b). The number
of nodes in the GCN is 8 and the dimensionality of the layers is set to 100 following HELP (Lee
et al.,[2021b)). In order to show the effectiveness of our MetaHypernetwork to learn the hardware

22



Under review as a conference paper at ICLR 2025

device similarities, in Figure [I2] we cluster the original device embedding vectors and the learned
MetaHypernetwork embeddings using K-means clustering after reducing their dimensionality using
t-SNE. As we can see, the MetaHypernetwork learns to cluster similar devices together in latent
space, demonstrating the efficacy of our algorithm.

MobileNetV3 (OFA). Following HELP (Lee et al.,|2021b)), we employ a simple feedforward neural
network in the MobileNetV3 search space. The input dimension of the MetaPredictor is set to 160,
matching the concatenated architecture encoding dimension. We set the size of the hidden layers to
100. Specifically, the MetaPredictor comprises 2 linear layers with ReLU activation for processing
the 160-dimensional one-hot architecture encoding and 2 linear layers for processing the hardware
embedding. The outputs from these two paths are concatenated and passed through a final linear
layer to predict the latency.

TSNE Projection for Hardware Embeddings TSNE Projection for Device Pool Similarities
gitanx_1 300 eyeriss ® Clustero
2004 1080ti_37 samsung_s7 2004 samsung_s7 samsung_a50 gii; ;
1080ti_! yaspi4 . ® Cluster3
@el3 @old 6240 gold_6226 1004 pixel3 titan_rtx_256
100 - i
o titanx_32 ~ . pixel2
c = c o4 titanx_256
2 ] fgilver 42100 3 1080ti 256 @ilver_41dag2
g o Sams""'ggﬂ‘,r"}lga @ssential_ph_1 g
£ £ -100 @ilver_a210r
% ifan_rtx_256 % @old_6240
= 1004 sasp"- @ixel2 = 2009 @spential_ph_1
@080ti_256 6226
~300 ol
@tanx 256 @® Cluster0 @old_ @t 32
2004 Cluster 1 @osoti_32 -
Cluster 2 —4004 @tam 1
gyeriss ® Cluster3 ‘OSO(LI -
—-600 —400  —200 0 200 400 -300 -250 —200 -150 =100 =50 0 50 100
TSNE Dimension 1 TSNE Dimension 1
(a) Original hardware embeddings (b) MetaHypernetwork embeddings

Figure 12: K-means clustering on the t-SNE projections of the original hardware device embeddings
and learned embeddings from the MetaHypernetwork on NB201.

Seq-Seq Transformer (HAT). HELP rﬂ does not release the architecture or the meta-learned
pretrained predictor for HAT(Wang et al., 2020b). However, HAT E] releases code and pretrained
models for each of the devices and tasks trained independently. Hence, we build our single per-task
MetaPredictor based on the architecture of the HAT predictor, i.e. a simple feedforward neural
network. The input dimension corresponds to the one-hot architecture encoding of the candidate
Transformer architecture. Additionally, to condition on the hardware embedding, we include 2
extra linear layers for processing the hardware embedding, which is then concatenated with the
processed architecture encoding to produce the final latency prediction. The hidden dimension of the
MetaHypernetwork is set to 400, with 6 hidden layers. The predictor’s input feature dimension is
130.

HW-GPT-Bench. We utilize the raw energy observations released in (Sukthanker et al., [2024)
to train a single hardware-aware meta-predictor across energy observations from eight GPU types.
Our meta-predictor is a simple MLP, similar to the one in HAT, with 4 hidden layers, 2 layers for
processing the hardware embedding (which the network is conditioned on). The MLP’s hidden
dimension is 256, and the input feature dimension matches the one-hot encoded architecture feature
map for this space, i.e., 80.

E.2 MetaHypernetwork ARCHITECTURE

Given a preference vector r € RM, we use the hypernetwork hg(r) : RM — A, parameterized
by ¢ € R™, to generate an un-normalized architecture distribution ¢ that is later used to compute
the upper-level updates in . In our experiments, iy is composed of M — 1 E]embedding layers

3https://github.com/HayeonLee/HELP
4ht‘cps ://9ithub.com/mit-han-lab/hardware-aware-transformers
>m = 1 (CE loss) does not have an hardware embedding.

23


https://github.com/HayeonLee/HELP
https://github.com/mit-han-lab/hardware-aware-transformers

Under review as a conference paper at ICLR 2025

dim(A)

e™, m € {2,..., M} with n,, possible learnable vectors of size =~%5. The output of Ay, is the

concatenation of all M — 1 outputs of €™, such that its size matches dim(A). See Figurefor
details.

In order to enable the hypernetwork to generate
architectures across multiple devices, inspired
by Wang et al.| (2022)) and [Lin et al.| (2020),
we propose a MetaHypernetwork Hg(r,d;) :
RM x HM~=1 — A that can meta-learn across T’
different hardware devices (see Figure[I]). The
input to Hg is a concatenation of device feature
vectors across all metrics, i.e. dy = ®M_,d".
Similar to [Lee et al.| (2021b), di* € H is a
fixed-size feature vector representative of device
t € {1,...,T} and objective m € {2,..., M},
that is obtained by evaluating a fixed set of ref-
erence architectures for a given metric. The
MetaHypernetwork, with ® = U ¢ pa-
rameters, contains a bank of K > T hyper-
networks {h, (r)}f<, and an additional linear
layer ey, (d;) : HM 1 — RE at the beginning,
that learns a similarity map for every device fea-
ture to the hypernetworks’ bank. If we denote by
B = (hg, - he, )T the vector of all hyper-
networks in the bank, then, given a preference
vector 7, to obtain & for device ¢, we compute a
weighted mixture of predictions of all hg in the
hypernetwork bank as follows:

dim(R) /M -1

dy

Figure 13: MetaHypernetwork architecture
overview in the case of M objectives. Note that
m = 1 is reserved for the accuracy objective,
which we model through the cross-entropy loss

K
a9 = Ho(r,d) = Ze¢o (dt)[k] “hg, (r) ) He S10S.
k=1 in the Supernetwork. The initial linear layer e,

= €¢o (dt) ’ h¢1;k (Ir)

We keep the MetaHypernetwork architecture
similar across search spaces. The only thing
we adapt is the output dimensionality of the
hypernetwork (in the hypernetwork bank of
MetaHypernetwork), which corresponds to the
dimensionality of the architecture parameters of
the respective search space. We set the size of
the initial hardware embedding layer and the hy-
pernetwork bank to 50 for all search spaces. Fur-
thermore, each hypernetwork has 100 possible

gets the d; hardware embedding and outputs a
weight that scales each of the K hypernetworks’
(orange boxes) outputs from the hypernetwork
bank. The scaled architectural parameters are then
summed up element-wise. All individual hyper-
network hg, get as input the same scalarization
r. Each of them has M — 1 embedding layers
with dimensions 7, X dﬂ{“f) ,Yme{2,...,M}
that gets as input the scalarizations for objectives
m = 2,...,m = M, and yields a vector of size
d’#&f). The output from the M — 1 embedding
layers are concatenated to give the architecture en-

learnable embeddings €™, for every objective
m € {2,..., M}, to map the scalarization vec-
tor to an architecture. We quantize the continuous sampled r,,, € [0, 1] to the discrete [0, 1, ... 100]
interval before indexing the respective embedding layers. See Figure 2] for an illustration of the
MetaHypernetwork architecture.

coding &.

For the NAS-Bench-201 search space, we use a single embedding layer of dimensionality 30, corre-
sponding to the dimensionality of the architecture space: 6 X 5 (6 edges and 5 operation choices on
each edge). For the 3-objective experiment, we include an additional embedding for the energy usage
objective, concatenated with the latency embedding before passing it to the MetaHypernetwork. The
individual hypernetworks in the MetaHypernetwork bank have 2 embedding layers with dimension-
ality 15, whose outputs are concatenated to match the architecture space dimensions.

In the MobileNetV3 space, we use 4 embedding layers — for depth, expansion ratio, kernel size, and
resolution. The space comprises 5 blocks, each with 3 depth choices, making the depth embedding
layer dimensionality 5 x 3. The kernel and expansion embedding layers have dimensions 5 x 4 x 3,
corresponding to 5 blocks with a maximum depth of 4 and 3 possible kernel size or expansion ratio

24



Under review as a conference paper at ICLR 2025

choices. The resolution embedding layer has a dimension of 25, representing 25 possible resolution
choices.

In the Seq-Seq Transformer (HAT) space, the individual hypernetworks of the MetaHypernetwork
utilize 9 embedding layers (the encoder layer count is fixed; see Table[3):

* 2 embedding layers of size 2 for the encoder and decoder blocks to map the scalarization to the
embedding dimension architecture parameter, held constant throughout the encoder or decoder
block.

» 2 embedding layers with dimensions 6 x 3 (6 encoder/decoder layers, 3 choices) for the linear
layer size in every attention block for both encoder and decoder.

» 2 embedding layers with dimensions 6 x 2 for the number of heads in each attention block.

* 1 embedding layer of size 6 to encode the 6 possible choices for the number of layers in the
decoder.

* 1 embedding layer of size 6 x 3 (6 encoder layers, 3 choices) for the arbitrary encoder layer
choice for attention.

* 1 embedding layer of size 6 x 2 (6 encoder layers, 2 choices) for the number of heads in the
encoder-decoder attention.

For the HW-GPT-Bench space, the individual hypernetworks of the MetaHypernetwork contain 5
embedding layers:

* 1 embedding layer of dimension 1 x 3 for mapping the scalarization to the embedding dimension
architecture parameter of the language model, with 3 choices.

* 1 embedding layer of dimension 1 x 3 for mapping the scalarization to the layer number dimension
architecture parameter of the language model, with 3 choices.

* 1 embedding layer of dimension 12 x 3 for mapping the scalarization to the mlp_ratio dimension
architecture parameter of the language model, with 12 layers and 3 mlp_ratio choices per layer.

* 1 embedding layer of dimension 12 x 3 for mapping the scalarization to the num_heads dimension
architecture parameter of the language model, with 12 layers and 3 choices per layer.

* 1 embedding layer of dimension 2 for toggling the bias in linear layers on or off.

E.3 MODNAS HYPERPARAMETER CONFIGURATIONS

In Table[6] we show the search hyperparameters and their corresponding values we use to conduct
our experiments with MODNAS. For the convolutional spaces we subtract a cosine similarity penalty
from the scalarized loss following (Ruchte & Grabockal [2021):

TTLt (Dvalid7 w, O‘<I>) (6)
|[7[| Lt (Doatia, w, as)||’
where || - || is the I norm. We set A to 0.001. Empirically we did not observe significant differences
on disabling the cosine penalty term.

g(tb — ’I’TV@Lt (Dualida w, O“I)) - )\V(}

E.4 NORMALIZATION OF OBJECTIVES

Since our method relies on a scalarization of different objectives, it is important that the objectives
being optimized are on the same scale. For simplicity, lets consider the scenario where the two
objectives of interest are the cross-entropy loss and latency. Since we pretrain and freeze our
MetaPredictor, the latency-scale remains constant throughout the search, while the cross-entropy
loss of the Supernetwork (likely) decreases over time. To this end, we use the following max-min
normalization to normalize the objectives:

m L7(-, ap) — min(L)
£ ae) max(L) — min(L) ’ ™
where L = (J¥| stop_g (L} (-, ;)?) is the set of losses evaluated on N architectures and potentially
N previous steps. For the latency objective, we precompute these sample-statistics using N samples
(ground-truth for NAS-Bench-201 and predicted for OFA and HAT spaces) from the search space,
whilst for the cross-entropy loss we compute them throughout the search. Furthermore, to take into
account the decreasing cross-entropy, we reset the cross-entropy loss statistics after every epoch.

25



Under review as a conference paper at ICLR 2025

F DETAILS ON SEARCH SPACES

NAS-Bench-201 (Dong & Yang| 2020) is a convolutional, Table 3: Encoder-Decoder Search Space
cell-based search space. The search space consists of for HAT.
3 stages, each with number of channels 16, 32 and 64,

respectively. Each stage contains a convolutional cell re- _Module _Searchable Dim Choices
: H 3 Encoder No. of Layers [6] (fixed)
peated 5 times. Here, every cell is represented as a di Embeciding dim {640, 512]
rected acyclic graph (DAG) which has 4 nodes, densely No. of heads I8, 4]
ted with 6 edges. Each edge has 5 possible op- TN 13072, 208, 1o
COIII.ICC ) g . . g p . P Decoder  No. of layers [6,5,4,3,2,1]
eration choices: a skip connection, a zero operation, a Embedding dim (640, 512]
. - No. of head: 8,4
3x3 convolution, a 5x5 convolution or an average pool- FEN i s, 2045, 10241
ing operation. NAS-Bench-201 is a tabular benchmark subitrary-Bncoder-Layer - L1 1.2)
nc-Dec attention num heads  [8, 4]

exhaustively constructed, where the objective is finding
the optimal cell for the given macro skeleton.

MobileNetV3 proposed in OFA (Cai et al., 2020) is a macro convolutional search space. The
different searchable dimensions in the search space are the depth (per block), the kernel size (for
every layer in every block) and the channel expansion ratio (for every layer in every block). There
are a total of 5 blocks, each with 3 possible depth choices and every layer in this block has 3 possible
kernel sizes and channel expansion ratio choices. This amounts to a total search space size of
((3x3)24+(3x3)3+(3x3)*)% ~ 2 x 10'°. Additionally, every architecture has 25 possible choices
for the size of the input resolution. The 3 possible choices for depth, kernel size and expansion ratio
are {2,3,4}, {3,5,7} and {3, 4, 6}, respectively. The input resolution choices are {128, 132, 136,
140, 144, 148, 152, 156, 160, 164, 168, 172, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216,
220, 224}. We use a width factor of 1.2 similar to OFA (Cai et al., 2020).

Seq-Seq Encoder-Decoder Transformer (HAT) (Wang et al., 2020a) for the En-De machine
translation task has a searchable number of layers, embedding dimension, feedforward expansion
layer dim per-layer, number of heads per-layer for both the encoder and the decoder sub-modules. In
addition to this, the number of encoder layers the decoder attends to, and the number of attention
heads in the encoder-decoder attention is also searchable. We present the details of the search space
in Table 3l

HW-GPT-Bench (Sukthanker et al., [2024])) is a decoder-only transformer space designed for autore-
gressive language modeling. The search space includes choices for embedding dimensions {768, 384,
192}, the number of layers from {10, 11, 12}, the MLP expansion ratio per layer from {2,3,4}, the
number of heads per layer from {12,8,4}, and the option to toggle the bias parameter on or off in the
layers.

G DATASETS AND DEVICES

This section describes the hardware devices and tasks used to evaluate MODNAS and the MOO
baselines throughout the paper. We assess our methods across small- and large-scale image clas-
sification datasets, including CIFAR-10 and ImageNet-1K. For the machine translation task, we
evaluate our method on the WMT’ 14 En-De dataset (Machacek & Bojar, 2014), and we use the
OpenWebText (Gokaslan & Cohen, [2019) dataset for language modeling. Furthermore, we evaluate
MODNAS across 19 devices on NAS-Bench-201, 12 devices on MobileNetV3, three devices on Seq-
Seq Transformer, and eight devices from HW-GPT-Bench (Sukthanker et al., [2024), with zero-shot
generalization to test devices. Table[d]lists the devices used. For more details on the devices, we refer
readers to|Lee et al.|(2021b), |Cai et al.| (2020), Wang et al.| (2020b)), [Li et al.| (2021}, and |Sukthanker
et al.[(2024).

H RUNTIME COMPARISON

In Table[5|we provide the number of GPU hours we ran MODNAS and baselines on every search space.
We ran the search on NAS-Bench-201, OFA, together with the evaluations on Nvidia RTX2080Ti,
while for HAT we used NVidia A6000. For both OFA and HAT, we used 8 GPUs in parallel. Similar
as in [Sukthanker et al.| (2024)), on the HW-GPT-Bench space we ran the MODNAS search and
evaluations on 4 Nvidia A100 GPUs.

26



Under review as a conference paper at ICLR 2025

Table 4: Search-test split for hardware devices and datasets for different search spaces.

Search Space Train-devices Test devices Dataset
1080ti_1, 1080ti_32, 1080ti_256, silver_4114, titan_rtx_256, gold_6226,
NAS-Bench-201 silver_4210r, samsung_a50, pixel3, essential_ph_1, fpga, pixel2, CIFARI0

samsung_s7, titanx_1, titanx_32, titanx_256, gold_6240

raspi4, eyeriss

2080ti_1, 2080ti_32, 2080ti_64, titan_xp_1,

titan_rtx_64

MobileNetV3 (OFA) titan_xp_32, titan_xp_64, v100_1, v100_32, ImageNet-1k
v100_64, titan_rtx_1, titan_rtx_32

Seq-Seq Transformer (HAT) titanxp gpu, cpu xeon cpu raspberrypi WMT14.en-de

HW-GPT-Bench a40, v100, rtx2080, rtx3080 al00, h100, P100, a6000 ~ OpenWebText

Table 5: Total amount of GPU hours required to run MODNAS’ and baselines’ search on every

search space.

Search Spaces  Method Lat/En/Mem Pred. Supernet Acc./Ppl Pred. Search Total Time
MetaD2A+HELP 25 - 8629 0.3 8654.3
NASBench201 - “\160 Baselines - - - 3705 3705
MODNAS 3 22 - 0.05 25.25
OFA+HELP 6 1200 356 10 1572
Once-For-All - “\160 Baselines 6 1200 356 192 1754
MODNAS 6 1392 - 0.05 1398.25
HAT 15 346.7 - 210.9 572.6
HAT MOO Baselines 15 346.7 - 576 937.7
MODNAS 5 576 - 0.05 581.25
HW-GPT-Bench MOO Baselines 1 192 - 48 241
MODNAS 1 216 - 0.05 217.25

27



Under review as a conference paper at ICLR 2025

Table 6: Hyperparameters used on different search spaces

Search Space | Hyperparameter Type | Value
learning rate 3e-4
weight decay Te-3
embedding layer size 100

MetaHypernetwork hypernetwork bank size 50
optimizer Adam
ReinMax temperature 1
learning rate 0.025
momentum 0.9

NAS-Bench-201 weight decay 0.0027
learning rate scheduler cosine
epochs 100

Supernetwork batch size 256
gradient clipping 5
cutout true
cutout length 16
initial channels 16
optimizer SGD
train portion 0.5
learning rate le-5
weight decay Te-3
embedding layer size 100

MetaHypernetwork hypernetwork bank size 50
optimizer Adam
ReinMax temperature 1
learning rate Te-3
momentum 0.9

MobileNetV3 (OFA) weight decay e
learning rate scheduler cosine
epochs 50

Supernetwork batch size 32
bn_momentum 0.1
bn_eps le-5
dropout 0.1
width 1.2
optimizer SGD
train portion 1.0
learning rate 3e-4
weight decay le-3
embedding layer size 100

MetaHypernetwork hypernetwork bank size 50
optimizer Adam
ReinMax temperature 1
learning rate le-7
momentum 0.9

R weight decay 0.0

Seq-Seq Transformer (HAT) learning rate scheduler cosine
epochs 110

Supernetwork batch size/max-tokens 4096
criterion label_smoothed_cross_entropy
attention-dropout 0.1
dropout 0.3
precision float32
optimizer Adam
train portion 1.0
learning rate le-5
weight decay Te-3
embedding layer size 100

MetaHypernetwork hypernetwork bank size 50
optimizer Adam
ReinMax temperature 1
learning rate 0.000316
momentum -

HW-GPT-Bench weight decay 0.1
learning rate scheduler cosine
steps 800k

Supernetwork ba‘tchAsize/max—tokens 32768
criterion Cross_entropy
attention-dropout 0.0
dropout 0.0
precision bfloat16
optimizer AdamW
train portion 1.0

28



Under review as a conference paper at ICLR 2025

I ADDITIONAL EXPERIMENTS

1.1 PREDICTED V/S GROUND-TRUTH LATENCIES

In Figure 8, we present the scatter plots of the predictions of our hardware-aware MetaPredictor vs.
the ground-truth latencies of different architectures. In the figure title we also report the kendall-tau
correlation coefficient for every device. As observed, our predictor achieves high kendall-7 correlation
coefficient across all devices.

1.2 ADDITIONAL RESULTS ON NAS-BENCH-201

In Figure[T9] we present the Pareto fronts obtained by our method in comparison to different baselines
on the NAS-Bench-201 search space. In Figure 20} we present different additional metrics, such as
GD and IGD (see Section[D)), to evaluate the quality of the Pareto fronts obtained on NAS-Bench-201.
Figure 21| presents the Pareto front MODNAS yields when applying different latency constraints
during the search phase. Figure[I5alcompares our method using the ReinMax gradient estimator to
the GDAS estimator (Dong & Yang| [2019). As we can see, ReinMax obtains a qualitatively better
hypervolume coverage compared to GDAS. Figure [I6]presents the 3D Pareto front and hypervolume
obtained by MODNAS compared to other baselines when optimizing for accuracy, latency and
energy usage on NAS-Bench-201. Figure [24] presents the comparison of MODNAS with MGD to
other gradient aggregation schemes, such as mean, sequential and MC sampling (see Section4.1)),
across multiple hardware devices. Finally, in Figure 25| we present the robustness of MODNAS to
the fraction of devices used for the predictor training and the search phase. In addition, in Figure [T§]
and [Figure 17] we compare MODNAS against different MO baselines on the CIFAR-100 dataset on
two different devices.

1.3 ADDITIONAL RESULTS ON HARDWARE-AWARE TRANSFORMERS (EN-DE)

We show the Pareto fronts of MODNAS compared to baselines for the Transformer space in Figure[26]
as well as their comparison with respect to hypervolume for the SacreBLEU metric in Figure 28]
These results demonstrate the superior performance of our method compared to the other baselines
on this benchmark. All evaluations are done by inheriting the weights of a pretrained supernet.

1.4 ADDITIONAL RESULTS ON THE HW-GPT SPACE

In figure[29] we present the Pareto fronts on all the 8 GPU types for MODNAS and different baselines.
The Pareto fronts are obtained using the perplexity and energy predictors trained on data collected in
the HW-GPT-Bench (Sukthanker et al., [2024).

1.5 ADDITIONAL RESULTS ON MOBILENETV 3

In Figure [30] we present the Pareto fronts of our method compared to different baselines for
12 different hardware devices on the MobileNetV3 space. We show as well the Pareto front of
OFA+HELP (Lee et al.}[2021b), ran with the original setting.

29



Under review as a conference paper at ICLR 2025

Device: fpga, Kendall Tau: 0.983 Device: eyeriss, Kendall Tau: 0.749 Device: gold_6226, Kendall Tau: 0.924 Device: pixel2, Kendall Tau: 0.678
8 s 18 . 0
; 2 . 16 .
%
6 : 3 ' 1
I I 2 I
H H H H
§ & ' § §20
L i g" 3
3 ® 3 3
& & g1 8
3t :5 H 315
14 14 14 14
I & 1] &
3 2
6 10
2 15
i 4
. 5
1 10
12 3 4 s 618 2 4 6 8 10 46 8 W 1 W 16 1B 5 1520 3 0 B 4
True Latency True Latency True Latency True Latency
Device: raspi4, Kendall Tau: 0.899 Device: titan_rtx_256, Kendall Tau: 0.981 Device: 1080ti_1, Kendall Tau: 0.894 Device: 1080ti_32, Kendall Tau: 0.900
N 1 1
80
3 0
1
30 9
60
2 3 s 3"
H H H ¢
H i35 H H
8 8 i, LR
e f K
< 220 < 2
H 5 56 H
g 3 . ¢ g
& & & &
2 15 P 5 ‘i- B
ey
3
4
10
o !
0 . 3. 4
0 2 0 60 80 0015w B N B 4 6 IS R - B VA 46 8 W 12 ¥ 16 18
True Latency True Latency True Latency True Latency.
Device: 1080ti 256, Kendall Tau: 0.975 Device: essential_ph_1, Kendall Tau: 0.822 Device: gold_6240, Kendall Tau: 0.842 Device: pixel3, Kendall Tau: 0.890
3% R »
20
. 18
[ %
£ 2 K 16
T 3 M g
g i g g
3 i gn i
3 3 3 3
e Y15 Oy g
3 3 3 3
g g [ 10
£ & £ I
15 ¢
10 5
6
0]
594 4 0
10 15 2 > 30 3 5 10 15 2 b3 0 25 50 75 100 125 150 15 200 25 0 50 15w BN
Tiue Latency True Latency True Latency T Latency
Device: samsung_s7, Kendall Tau: 0.830 Device: samsung_a50, Kendall Tau: 0.939 Device: silver 4114, Kendall Tau: 0.846 Device: silver_4210r, Kendall Tau: 0.960
. . @ . -
50 . . £l
" 3
%
@ 0
> > > >
g g s 8
o ¥ F 3 3
g g I g
H H g0 s15
3 [ H 8
4 c20 4 [
2 15
j
10
0 10
5 5
00 0 4 50 6 W 10 2 £l 0 50 s 15 2 5 N B4 H 10 15 2 5 3
True Latency True Latency True Latency True Latency

Device: titanx_1, Kendall Tau: 0.890 Device: titanx_256, Kendall Tau: 0.958

14 35
14
n 2 30
N > >
g H g
H 2 g
i s 8%
3 H 3
& 2 2
3 33 H
£t i R
¢ 6
15
L
o
B o .
! 10
& 6 8 W R U % 4 6 500 o ou oW 05 N %
Tue Latency Tue Ltency Tue Lateney

Figure 14: Scatter plots of predicted latencies from our pretrained MetaPredictor vs. ground-truth
latencies (test devices in red).

30



Under review as a conference paper at ICLR 2025

—¥— MODNAS (Reinmax)

titap

0
" 256 gold 6226
MODNAS (GDAS) ~ —¥— MODNAS (MiLeNAS) ~ —¥— MODNAS (Reinmax)

(a) Hypervolume

%
i,
an
1256 gold 6226

MODNAS (GDAS) ~ —¥— MODNAS (MiLeNAS) ~ —¥— MODNAS (Reinmax) MODNAS (GDAS)

wo°

%0
i,
tan,
" 256 gold 6226

—¥— MODNAS (MiLeNAS)

(b) GD+ (c) IGD+

Figure 15: Hypervolume, GD+ and IGD+ of MODNAS with Reinmax as gradient estimator in the
Architect vs. the one from GDAS (Dong & Yang| [2019) and MiLeNAS 2020) across 19

devices on NAS-Bench-201. Higher area in the radar indicates better performance for every metric.
Test devices are colored in red around the radar plot.

Eyeriss

090

Hypervolume

070

Ko

KBious SSLIO:

Global opt.
RS

RHPN
MODNAS
LS-BO
MO-RE
MO-ASHA
NSGA-II
RS-BO
qEHVI

4 0 B VY o % 4« > X o

035
030
s 020 025

0.1
0.10
000 005 orror

Figure 16: HV (left) and Pareto front (right) of MODNAS and baselines on Eyeriss with 3 normalized
objectives: error, latency and energy usage. HV was computed using the (1,1, 1) reference point on

the right 3D plot.

Hypervolume

edgegpu_latency

Figure 17: Hypervolume on CIFAR-
100 and edgegpu device.

pixel3_latency

0.91 0.91
0.9 0

0.86 0.86

Hypervolume
o
®
g

0.75
0.70
0.65
0.60
AR

Figure 18: Hypervolume on CIFAR-
100 and Pixel3 device.

31



Under review as a conference paper at ICLR 2025

08 pixel2 raspid eyeriss fpga
‘ o8 0.7 " —«- Global opt.
0r - 07y ! —a RHPN
: 07 } QEHVI+LaMOO
06 061 1 —+ CMAES+LaMOO
0.6 0.6 1 CMAES
g g Zos > RS
505 gos g £o® s
s K k] 8 > MO-ASHA
S04 S oa 504 T 04 e RSB0
g g g g —— 1580
H H 503 To3 —+— MORE
£02 o3 £ E —+— qEHVI
2 2 2 S = NSGAI
02 02 0.2 0.2 —v— MODNAS
01 01 01 01
— —a
00 0.0 0.0 00
00 02 04 06 08 00 01 02 03 04 00 02 04 06 08 00 02 04 06 08
Normalized error Normalized error Normalized error Normalized error
gold 6226 titan_rtx 256 1080ti_1 1080ti 32
08
t
0.8 07 0.8 07
06 06
> > > >
Zos6 2 Zos g
gos gos
3 o4 3 go4
No4 oy So4 £
5 T s 5
g 203 £ E£03
H B H H
02 02 02 0.2
0.1 0.1
0.0 0.0 0.0 0.0
00 02 04 06 08 00 02 04 06 08 00 02 04 06 08 00 02 04 06 08
Normalized error Normalized error Normalized error Normalized error
1080ti_256 essential_ph_1 gold_6240 pixel3
06 07 0.8
08
07
05 0.6
Zoe 9 Zos 2"
g H i Sos
5 5 5 he
3 3 3™ Boa
g™ g ” 2o3 5
E E E™ E03
2 202 205 2
02 - 02
o1 01 01
—a
0.0 0.0 0.0 0.0
00 02 04 06 08 0.0 02 0.4 06 08 00 02 04 06 08 00 01 02 03 04
Normalized error Normalized error Normalized error Normalized error
samsung_s7 samsung a50 silver 4114 silver_4210r
05 0.30 081y 0811
0.7 0.7
025
04 06 o6
g Zo20] | g g
ELE] g 1 gos Fos
° = | o °
g oasy i, gosa Foa
H 2 it H H
go2 ] | £03 Eo03
H 5010 S 2
0.2 0.2
01 0.05
: 0.1 01
0.0 0.00 0.0 0.0
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
Normalized error Normalized error Normalized error Normalized error
titanx_1 titanx_32 titanx_256
b 1.0
0814 08
08
> > >
$0° 50° 5
& 2 gos
o o 3
P g g
2 So4 o
g s 204
E E E
5 5 5
2 2 2
02 02 02
0.0 0.0 0.0
00 02 04 06 08 00 02 04 06 08 00 02 0.4 06 08
Normalized error Normalized error Normalized error

Figure 19: Pareto fronts of MODNAS and baselines on NAS-Bench-201. MODNAS-SoTL is not
shown for better visibility.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

“ o
tit, 10
ot 256 gola 6226
—¥— MODNAS —+— CMA-ES+LaMOO  —e— RS-BO  —#— NSGA-Il
—— RS —o— CMA-ES —#— LSBO  -+- MODNAS-SoTL
—&— RHPN —— LS —e— MO-RE  —e- Global opt.
—<— QEHVI+LaMOO  —— MO-ASHA —#— QEHVI
(@) HV

s0silver.
Y r_a210r Sy,

R
€ """"v\:,,‘

0 0
i titg
"-tx 255 gold 6226 "-tx 255 gold 6226

—¥— MODNAS —— CMA-ES+LaMOO  —e— RS-BO  —#— gEHVI —¥— MODNAS —— CMA-ES+LaMOO  —e— RS-BO  —#— gEHVI

—»— RS ~4- CMAES —#— LS-BO ~#- NSGA-Il —»— RS ~4- CMAES —#— LS-BO ~#- NSGA-Il
—&— RHPN —— LS —e— MO-RE =<~ MODNAS-SoTL —&— RHPN —— LS —e— MO-RE ~«= MODNAS-SoTL
< QgEHVI+LaMOO —»— MO-ASHA < QEHVI+LaMOO ~»— MO-ASHA

(b) GD (c) IGD

g‘ms‘“\‘_.SﬂllN-rjllOr S,

.
=N\
7

o

)
H
§
I3
g
H
%
)

titay
" 256 gold_6226

—¥— MODNAS —+— CMA-ES+LaMOO  —e— RS-BO  —#— QEHVI

—< RS 4 CMAES —#— LS-BO -~ NSGAl

—&— RHPN - s —e— MO-RE  -<- MODNAS-SoTL
~<~ QEHVI+LaMOO  —»— MO-ASHA

(d) GD+

tita
"1 255 gold_6226

—¥— MODNAS —+— CMA-ES+LaMOO  —e— RS-BO  —#— QEHVI

— RS 4 CMAES —#— LS-BO -~ NSGAl

—&— RHPN - s —e— MO-RE  -<- MODNAS-SoTL
~<~ QEHVI+LaMOO  —»— MO-ASHA

(e) IGD+

Figure 20: HV, GD, GD+, IGD and IGD+ of MODNAS and baselines across 19 devices on NAS-
Bench-201. For every device we optimize for 2 objectives, namely latency (ms) and test accuracy
on CIFAR-10. For method, metric and device we report the mean of 3 independent search runs.
Higher area in the radar indicates better performance for every metric. Test devices are colored in red
around the radar plot. Here we allocate double the budget to baselines, i.e. we run all baselines for 50
function evaluations.

33



Under review as a conference paper at ICLR 2025

o o
I

°
w

Normalized latency

°
9

o o

°

.3

Normalized latency

°
>

°
=

Normalized latency

°
@

°
=

Normalized latency

eyeriss o gold_6226 pixel2 raspi4
i Latency constraint it Latency constraint Latency constraint 07151 Latency constraint
\ —— MODNAS 0.71 i —— MODNAS 0.6 + —— MODNAS Y —— MODNAS
—<- MODNAS (0.2) —<= MODNAS (0.2) —<= MODNAS (0.2) 06 —«- MODNAS (0.2)
—v~ MODNAS (0.4) 0.6 —=~ MODNAS (0.4) 05 —~ MODNAS (0.4) —=~ MODNAS (0.4)
—e~ MODNAS (0.6) > —e- MODNAS (0.6) > | —e- MODNAS (0.6) 205 —e- MODNAS (0.6)
— - MODNAS (0.8) £05 — - MODNAS (0.8) S04 —~ MODNAS (0.8) g R — - MODNAS (0.8)
—+~ MODNAS (1.0) = —+~ MODNAS (1.0) = k —+~ MODNAS (1.0) S04 < —+~ MODNAS (1.0)
MetaD2A+HELP 3 0.4 MetaD2A+HELP 3 | MetaD2A+HELP 3 MetaD2A+HELP
N N 0.3 N
3 3 503
g 03 g g
202 202 202
01 0.1 0.1
0.0 0.0 0.0
0.0 0.2 ¥ 06 08 0.0 02 . ¥ 08 0.0 0.2 X 0.8 000 005 010 015 020 025 030
Normalized error Normalized error Normalized error Normalized error
fpga titan_rtx 256 1080ti_1 1080ti_32
0.7
i Latency constraint 07dqt Latency constraint 08l Latency constraint Latency constraint
i —— MODNAS i —— MODNAS i —— MODNAS 06 —— MODNAS
%= MODNAS (0.2) 061 —<= MODNAS (0.2) —<= MODNAS (0.2) —<= MODNAS (0.2)
—v- MODNAS (0.4) —v- MODNAS (0.4) —v- MODNAS (0.4) —v- MODNAS (0.4)
—e~ MODNAS (0.6) Z05 —e~ MODNAS (0.6) 506 —~ MODNAS (0.6) 200 —e~ MODNAS (0.6)
— = MODNAS (0.8) H — = MODNAS (0.8) H — =~ MODNAS (0.8) g — = MODNAS (0.8)
—&«~ MODNAS (1.0) & 04 —«~ MODNAS (1.0) = ' —~ MODNAS (1.0) 504 —+- MODNAS (1.0)
MetaD2A+HELP 4 : MetaD2A+HELP k4 0.4 ) MetaD2A+HELP k4 MetaD2A+HELP
8 go. 8
o 2 203
gos E H
1 s s
202 2 202
02
0.1 0.1 ==n
0.0 0.0 0.0
0.0 0.2 0.4 0.8 0.0 0.4 0.8 0.0 0.2 0.4 0.8 0.0 0.1 0.2 03 0.4 0.5
Normalized error Normalized error Normalized error Normalized error
1080ti_256 _ph_1 gold_6240 pixel3
Latency constraint 05 Latency constraint X Latency constraint Latency constraint
i —— MODNAS —— MODNAS 081 1t —— MODNAS 071 —— MODNAS
3 —<= MODNAS (0.2) —«- MODNAS (0.2) y —<= MODNAS (0.2) —<= MODNAS (0.2)
—v~ MODNAS (0.4) 04 —=~ MODNAS (0.4) —- MODNAS (0.4) 06 —v~ MODNAS (0.4)
—e~ MODNAS (0.6) > —e- MODNAS (0.6) > —- MODNAS (0.6) > —e- MODNAS (0.6)
i —=~ MODNAS (0.8) S —~ MODNAS (0.8) £06 —=~ MODNAS (0.8) 505 —~ MODNAS (0.8)
—=~ MODNAS (1.0) Bo3 —~ MODNAS (1.0) s —- MODNAS (L.0) k] —~ MODNAS (1.0)
MetaD2A+HELP 3 MetaD2A+HELP 3 MetaD2A+HELP 3 04 MetaD2A+HELP
£l S £
Eo02 X1 E £03
2 2 2
0.2
01 02
—————————— . 0.1
i A
0.0 0.0 M 0.0
0.0 0.2 0.4 06 08 0.0 02 0.4 06 08 00 01 02 03 04 05 000 005 010 015 020 025 030
Normalized error Normalized error Normalized error Normalized error
_s7 _a50 silver 4114 silver_4210r
1 Latency constraint 025 Latency constraint 08 Latency constraint 07 hi Latency constraint
i —— MODNAS e 1 —— MODNAS i —— MODNAS
i —%~ MODNAS (0.2) 0 - MODNAS (0.2) —%= MODNAS (0.2) i —%~ MODNAS (0.2)
i —*- MODNAS (0.4) 0201 § —+- MODNAS (0.4) X —=- MODNAS (0.4) 06 —=- MODNAS (0.4)
i —e~ MODNAS (0.6) - —e- MODNAS (0.6) 5061 % —~ MODNAS (0.6) Zos —e~ MODNAS (0.6)
i — = MODNAS (0.8) g —- MODNAS (0.8) 5 —~ MODNAS (0.8) g —= MODNAS (0.8)
X i —&- MODNAS (1.0) o015 —+~ MODNAS (1.0) = —&~ MODNAS (1.0) 5 04 —&~ MODNAS (1.0)
i MetaD2A+HELP | 3 MetaD2A+HELP | B 0.4 MetaD2A+HELP | 3 MetaD2A+HELP
E H H
go1o £ £ i
5 5 5 :
2 2 20,
02
0.05
0.1
0.00 0.0 0.0
00 01 02 03 04 05 00 02 4 06 08 00 01 02 04 05 00 02 04 056 038
Normalized error Normalized error Normalized error Normalized error
titanx_1 titanx_32 titanx_256
08 i Latency constraint 087 .1 Latency constraint 08 A Latency constraint
e \] —<— MODNAS by —<— MODNAS 07 i —<— MODNAS
1 —¢= MODNAS (0.2) 071 R == MODNAS (0.2) : == MODNAS (0.2)
0.6 —¥~ MODNAS (0.4) —=~ MODNAS (0.4) 0.6 —=~ MODNAS (0.4)
> —e~ MODNAS (0.6) 50¢ —e- MODNAS (0.6) > A —e- MODNAS (0.6)
§os —~ MODNAS (0.8) Sos —=~ MODNAS (0.8) Sos F) — - MODNAS (0.8)
& —+~ MODNAS (1.0) = 4 —~ MODNAS (1.0) s —=~ MODNAS (1.0)
goa MetaD2A+HELP || g 0.4 MetaD2A+HELP || § 0.4 MetaD2A+HELP
T T s
E03 E03 £03
5 5 5
2 2 2
0.2 02 0.2
0.1 0.1 0.1
0.0 0.0 0.0
00 02 04 0% 038 00 02 04 06 08 00 02 04 06 08

Normalized error

Normalized error

Normalized er

rror

Figure 21: Pareto fronts of MODNAS ran with different latency constraints during search.

34



Under review as a conference paper at ICLR 2025

5Osilver_42.
amsund-" -4210r Sityg,

titap
"X 256 gold_6226

tit, 09>
a"J‘{ass gold_6226

—<¢ MODNAS —e- MODNAS (0.6) &~ MODNAS (1.0) —<— MODNAS —e- MODNAS (0.6)

== MODNAS (0.2) —=~ MODNAS (0.8) MetaD2A+HELP

—¥- MODNAS (0.4)

—&~ MODNAS (1.0)
MetaD2A+HELP

== MODNAS (0.2)

—== MODNAS (0.8)
—¥- MODNAS (0.4)

(a) GD (b) IGD

a50silver 4210,
ung? - s
sams! ver.

‘o
tita,
=" 256 gold_6226

it
1t 254 gold_6226
—<— MODNAS —e- MODNAS (0.6) ~&~ MODNAS (1.0) —<&— MODNAS —e- MODNAS (0.6)
== MODNAS (0.2) —=~ MODNAS (0.8) MetaD2A+HELP
—¥- MODNAS (0.4)

—<- MODNAS (0.2)
—¥- MODNAS (0.4)

—&- MODNAS (1.0)
MetaD2A+HELP

—=~ MODNAS (0.8)

(c) GD+ (d) IGD+

Figure 22: GD, GD+, IGD and IGD+ of MODNAS with different latency constraints during search

across 19 devices on NAS-Bench-201. Higher area in the radar indicates better performance for every
metric. Test devices are colored in red around the radar plot.

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

fpga eyeriss gold 6226 pixel2
0.5
; 050 095
085
o A o o0
£ 5 Soso £
H H H amonoo |2
H £o. §os awrsiiomon | £
z z z i z
o 070 Nosstn
080
070 065
o065 21 060 075
B Bl %0 Eg B Ed o B B Eg
Num. evaluations Num. evaluations Num. evaluations. Num,. evaluations
raspid. titan rtx 256 1080t 1 1080t 32
0975 095 05
0950
090 090
0925
085
20900 go g
H H 200
z = Zors
075
070 =
e
070 065
% 50 % B B Ed T B B g
Num. evaluations Num. evaluations Num. evaluations. Num,. evaluations
1080ti 256 essential ph_1 gold_6240 pixel3
098
09 Ezeer? 095
095 096
o8 0.0 ooa
090
2 n o085 5092
£ H ¢ = H
3o H H oo |2
H goss Zos0 — ameseanoo [ 209
s 3 13 e Soss
£ B B — Z
oe 075 = woasHA
080 = hseo 086
=z
070 ose 084
0s 075 By
065 = o 08z
) @ T £

20 30
Num. evaluations

samsung s7

20 0
Num. evaluations

samsung_a50

20 EQ
Num. evaluations.

silver 4114

o 50
Num. evaluations

silver_4210r

Hypervolume

Hypervolume

Hypervolume

= oowss

Hypervolume

titanx 1

20 50 W )
Num. evaluations

titanx 32

20 30
Num. evaluations.

Hypervolume

Hypervolume

Hypervolume

Figure 23: HV over number of evaluated architectures on NAS-Bench-201 of MODNAS and the

20 30
Num. evaluations

20 30
Num. evaluations.

20 E
Num. evaluations

blackbox MOO baselines. Note that for MODNAS we only have 24 evaluations in the end.

36




Under review as a conference paper at ICLR 2025

fpga eyeriss gold_6226 pixel2
@ @
5 5
B B
2 g
B iy H
2= wCsamping| 4 L
0.65] —- Sequential
— Mean
o o o
20 40 60 80 20 40 60 80 20 40 60 80 100 20 40 60 80
Search Epochs Search Epochs Search Epochs Search Epochs
raspi4 titan_rtx 256 1080t 1 1080ti_32
090
085
® o o e
£ E Eo £
H H H H
3 3 3 30
g g go. g
Lo7s go. g 2o
z £ EN z
070
0.65 0.65 0.65 0.65
o 0. o o
20 ) 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
Search Epochs Search Epochs Search Epochs Search Epochs
1080ti_256 essential_ph_1 gold_6240 pixel3
095
090 ¥4t Vi g
0.0 b ¢ q BV
SR o Y7
0 085 7k a8 ,\‘i' | o
g, 3 I AT A
3 3080 VR i T 2
S0 8 os uly {'\_I\,,'\v‘-\l i g
H H TIALAL £
070 070
065 065 065
o o X
40 60 20 40 60 80 100 20 ) 60 80
Search Epochs Search Epochs Search Epochs
samsung_s7 silver 4114 005 silver_4210r
095 095
090 0.90
2085 o o ®
g goss ¢ g
3 0.80 1 3 0.0 3 H
§ ! g § Zo7s
5075 So07s 5 s
z £ z z
070 0.70 070
0.65 0.65 0.65
o 0. o 0.
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
Search Epochs Search Epochs Search Epochs Search Epochs
titanx_256
0.90 090
0.85 o08s{
o £ Eoeol AN 5 ]
N H H il
go. % go7s ‘-L.ji i i
£ £ £ [
0.70 3 ozt |
i
065 065 !
1
0. X o
20 80 100 20 80 100 20

40 0 40 60
Search Epochs Search Epochs

Figure 24: HV over time on NAS-Bench-201 of MODNAS with different gradient update schemes.

37



Under review as a conference paper at ICLR 2025

fpga eyeriss gold_6226 pixel2
096 094 T
094 092
092 , 090
£ £
5090 5
H ; s
goss g
£0.86 £
084
084
082 082
o. o 0.80 X
20 40 60 80 100 20 40 60 80 100 0 20 40 60 80 100 20 40 60 80 100
Search Epochs Search Epochs Search Epochs Search Epochs
raspid. titan_rtx 256 1080t 1 1080ti_32
0.94 ) T
X AL 092
0.96 0.92
090
095 0.90
H g £oss H
So S o088y 3 3
2o Foss i Vi1 §oss §
s 3 A A s s
z £ £ z
092 0sa 8 ¥ 084
0.91 0.82 0.82
o o o
20 40 60 80 100 20 40 60 80 100 20 4 80 100 20 40 60 80 100
Search Epochs search Epochs Search Epochs Search Epochs
1080ti 256 essential ph 1 pixel3
0975 0.4
090
0.950 0.92
@ 0925 o 090 @
g 085 e ¢ g
2 3 0.900 3o 2
2 g e £ 0.
S e Z 2
0850 084
075
0825 082
o o o
40 6 80 100 20 0 60 80 100 20 40 6 80 100 20 40 6 80 100
Search Epochs Search Epochs Search Epochs Search Epochs
samsung_s7 samsung_a50 silver 4114 silver 4210r
0.96 0.94 Y { )
00 092
092
® 20.90 °
£0.90 £ £
3 3 0.8 3
fose o g
3 20.86 lbary i s
2086 B Va £
084 084
082 091 082
o o o 0.
20 80 100 20 80 100 20 80 100 20 80 100

40 60 40 60
Search Epochs Search Epochs

titanx_256

0.90 0.90
E 0.85 E E 0.85
H ] 3
Zos0 = goso
2 B 2

075 075

o o. o |

%0 s 100 % % 100 20 80 100

40 60 40 60 40 60
Search Epochs Search Epochs Search Epochs

Figure 25: HV over time on NAS-Bench-201 of MODNAS with different number of devices during
search. For number of devices less than 13 (default one) we randomly select a subset from these 13
devices.

38



Under review as a conference paper at ICLR 2025

RaspberryPi-CPU

0.046 s#=.RS
—e— MO-RE
0,044
@ 0.042
E
a
=
0.040
0.038

3000 4000 5000 6000 7000
Latency (ms)

8000 9000

RaspberryPi-CPU

—»— RS
0.046 —e— MO-RE
— s
—a— NSGA-Il
—— LS-BO
R 0.044 T ReRo
o ~»— MO-ASHA
2 —+— qEHVI
30.042 —+— RHPN
2 —v— MODNAS
HAT
0.040
0.038

3000 4000 5000 6000 7000
Latency (ms)

8000 9000

GPU-TitanXP 0.006 CPU-Xeon
’ —e— MO-RE
0.043 LS
—=— NSGA-II
0.042 0.044 —e— LS-BO
—e— RS-BO
0.041 —+— MO-ASHA
S 5 0.042 —+— gEHVI
o o —— RS
& 0.040 2
A = —+— RHPN
MODNAS
0,039 0.040
0.038
0.038
0.037
50 100 150 200 250 100 150 200 250 300 350 400
Latency (ms) Latency (ms)
GPU-TitanXP CPU-Xeon
0.046 —— MO-RE
0.043 = 1S
—=— NSGA-II
—=— LS-80
0.042 0.044 —s— RS-BO
~»— MO-ASHA
2 2 —+ gEHVI
@ 0.041 a —— RS
@ £ 0.042
S S —+— RHPN
Z0.040 < —v— MODNAS
HAT
0.040
0.039
0.038 0.038
50 100 150 200 250 100 150 200 250 300 350 400
Latency (ms) Latency (ms)

Figure 26: Pareto fronts of MODNAS and baselines on the HAT space for the WMT’ En-De task.
All performance metrics are obtained from the inherited supernet weights.

0.70

o
Y
&

Hypervolume
°
>
3

o
Y
g

0.62

RaspberryPi-CPU

TitanXP-GPU

Xeon-CPU

0.80

°

Hypervolume
o

°
S
N

0.72

0.70

o

L
S

RS e
SRS )
> &g \go"v

0.80

o o
S S
a >

Hypervolume

o
N

0.72

<
&
«©

& XD 9P
& NS
TEEL TG
&

o
<
&

S O L
VX
K R

Figure 27: Hypervolume (HV) of MODNAS and baselines across devices on the HAT space. The
obiectives used to compute the HV are latency and BLEU score. Leftmost plot is for the test device.

0.70

o
Y
&

Hypervolume
°
>
3

°
Y
2

0.62

R
&
B

RaspberryPi-CPU

TitanXP-GPU

Xeon-CPU

DN O
PV
&K\v\é’ 2
&

Hypervolume

0.82

Hypervolume

O N & &0 % R N I
> L ¥ XK F TSP o
§ TGS TS g,o&oiop O &g

Figure 28: Hypervolume (HV) of MODNAS and baselines across devices on the HAT space. The
objectives used to compute the HV are latency and SacreBLEU score. Leftmost plot is for the test
device. MODNAS is the best or on par to the baselines across all three devices.

39



Under review as a conference paper at ICLR 2025

RTX3080 V100 RTX2080
408 408 408 408
36.3 363 363 363
2z 2 z 2
3 3 3 3
2318 2318 5318 2318
o o g o
& & 2 &
273 273 273 27.3
28 22.8 = 22.8 ~ 22.8
050 0.75 1.00 125 1.50 175 2.00 0’5 10 15 200 03 04 05 06 07 08 1 2 3 a
Energy (Wh) Energy (Wh) Energy (Wh) Energy (Wh)
A6000 H100 Al00 P100
RS —— RS
408 —+— MOREA 408 408 —+— MOREA
—— LS —+ LS
—=— NSGA2 363 —=— NSGA2
36.3 e 1SBO 363 e 1580
z —=— RSBO z z z —=— RSBO
3 —»— MOASHA 3 118 3 3 —»— MOASHA
2318 —— 5 g 2318
5 EHVI 5 5 5 EHVI
& MODNAS & = & MODNAS
273 273 273
228 228 228
06 08 10 12 03 04 05 06 02 03 04 05 0 5 10 15 20
Energy (Wh) Energy (Wh) Energy (Wh) Energy (Wh)

Figure 29: Pareto fronts of MODNAS and baselines optimizing for GPU energy consumption (Wh)
and perplexity on the HW-GPT-Bench space.

2080ti_1 v100_1 v100_32 v100_64
0.78
0.78
0.76
0.76 0.74
3 z 3 3
g 8 £o. go72
<074 < <o, <070
0.68 L3
072 ~»- LS-B0
0.6 <+ MO-ASHA 0.66 > MO-ASHA
e~ RS-BO : e~ RS-BO
070 0.64 i MO-RE 064 - MO-RE
8 10 12 14 16 8 10 12 14 10 15 20 10 20 30 40
Latency Latency Latency Latency
2080ti 32 2080ti_64 titan_xp_1 titan xp_32
078
0.76
0.74
z z o) z
e 2072 e 2o
5 5 5 5
g g g g
< <070 < <
0.68
0.661 f
i RS-BO
0.64 *-- MO-RE
10 15 20 25 10 20 30 40 50 10 20 30 40 50
Latency Latency Latency Latency
titan_xp_64 titan_rtx_1 titan_rtx_32 titan_rtx_64
0.78 0.78 0.78
0.76 0.76
0.76
0.74 0.74
z z z z
g g g g
Lorz Sors So. fom
g g g g
<070 h <o <070
0.72
0.68 0.68
--=- LS-BO
066 <+~ MO-ASHA 0.70 0.6
e~ RS-B0
0641 MO-RE 068 064
20 40 60 80 100 2 5 6 7 8 5 10 15 20 25 5 10 15 20 25 30
Latency Latency Latency Latency

Figure 30: Pareto fronts of MODNAS and baselines on the MobileNetV3 space.

40



Under review as a conference paper at ICLR 2025

080 titan_rtx_1 0 titan_rtx_32 titan_rtx_64
0.76
0.760.76
075
0.75
075 075 0750.750 74 674 074
0.72
0.70 0.70
[ 1 [
£ € £070
2 2 2
[<3 [} [<3
0.65 S 0.5
g @ 2 068
o o Qo
= = =
T T T

0.66

o
o
3
o
@
3

0.64

0.55 0.55

0.80 0. 0.80
0.75 0.75 0.75
0.70 0.70 0.70

Hypervolume

°

Y

&
Hypervolume

°

Y

&
Hypervolume

°

Y

&

o
o
3
o
Y
3
o
Y
3

0.55 0.55 0.55

0.50 0.50 0.50
PP LTS EF O L O

F LT & O FSF

& ¥ VT W E

& &S ©

titan_xp_64
0.80 0. 0.80 =
0.760.75 0.75

075 0.75 0.75 RL30.750.74
0.70 0.70 0.70

Hypervolume
°
S
a
Hypervolume
°
@

&
Hypervolume
°
S
&

0.60 0.60 0.60
0.55 0.55 0.55
0.50 050 050
& & N
S © S
0.80 0. 0.80
0.75 0.75 0.75
0.70 0.70 0.70
1 o Qo
£ € €
2 2 2
g 0.65 g 0.65 g 0.65
o o o
E K s
e T I
0.60 0.60 0.60
0.55 0.55 0.55
0.50 0.50 0.50

Figure 31: Hypervolume across devices on the MobileNetV3 search space of MODNAS and baselines.
Here the Nvidia Titan RTX is the test device.

41



Under review as a conference paper at ICLR 2025

J ADDITIONAL DISCUSSION ON THE ROBUSTNESS OF MODNAS

Initially observed by [2020), differentiable NAS methods can be very sensitive to their
hyperparameter choices, especially the regularization ones responsible for the loss landscape in the
upper level problem. In our experiments, there were three crucial components that made MODNAS
robust and to work reliably across benchmarks:

1. Choice of MetaHypernetwork update scheme: this played a pivotal role in the performance
of MODNAS. Although other gradient update strategies underperformed or started diverging
(Figure [6), MGD converged relatively quickly to a hypervolume close to that of the global
Pareto front. The convergence of MGD to a pareto stationary point is discussed in
(2012)) and more recently in [Zhang et al| (2024b). The convergence of MGD in bilevel
optimization is an open research topic (see recent results from|Ye et al.[(2024) and|Yang et al.
(2024)). One potential scenario when MGD could fail is when the gradient directions of
the objectives it is optimizing point in different opposing directions; however, this becomes
practically unlikely, especially as the number of objectives grows (in our case we use it to
find the common gradient across devices, which is for instance 13 on NAS-Bench-201).

2. Choice of gradient estimation method in the Architect: In Section[3] we discuss our
choice for the method that enables gradient estimation through discrete variables (since
architectures are discrete variables). We noticed that the ReinMax [2023) estimator
always outperformed previous estimators such as the one in GDAS (Dong & Yang| [2019)
(Figure[T3a)), so we believe this choice is crucial.

3. Weight entanglement vs. weight sharing in the Supernetwork: In early experiments on
NB201 we noticed that weight sharing in the Supernetwork, was not only more expensive,
but much more unstable as well when compared to weight entanglement
Sukthanker et al} [2023)), even yielding diverging solutions quite often (common pattern
seen in differentiable NAS with shared weights as you mention; see for
instance).

We hypothesize that all design choices mentioned above play an implicit regularization effect on the
upper level optimization in the bi-level problem, leading to a faster convergence and robustness (Chen

K ALIGNMENT OF PREFERENCE VECTORS WITH PARETO FRONT

Pareto Front with Preference Vectors

—— Pareto Front Eyeriss

0.6

0.5+

0.1+

0.0

o0 o o o o
Error
Figure 32: Pareto front and preference vectors on the normalized Eyeriss latency and test error of

NAS-Bench-201.

In this section, we provide empirical evidence that the solutions generated using the
MetaHypernetwork align well with the preference vectors. To this end, we utilize one of our

42



Under review as a conference paper at ICLR 2025

runs on the NAS-Bench-201 test devices, namely Eyeriss. In Figure 32] we show the Pareto front
of the normalized test error and latency on Eyeriss. Note that of the 24 sampled preference vectors,
17 generate solutions that are in the Pareto set. Each point in the Pareto front with a certain color
corresponds to the preference vector with the same color. In the figure, there are actually 17 points
in the Pareto front; however, some of them are really close to each other or are the same, since the
function mapping preference vectors to architectures is a many-to-one function. Nevertheless, we can
visually notice that the preference vectors starting from the origin align very well with the generated
solutions. The missing vectors are mainly in the center, where there are not many solutions available
for this particular device.

L TRAINING AND VALIDATION LOSS CURVES

In addition to the hypervolume indicator, in this section, we provide the training and validation loss
curves in Figure[33] At each mini-batch iteration we plot the average cross entropy loss across all
devices. As expected both training and validation cross-entropy go down and we do not notice any
overfitting. The high noise is common for sample-based NAS optimizers, since a sampled different
architecture is activate at each mini-batch iteration. In the plot, for visualization purposes, we have
used a running average with a window size of 100 to smooth out the noise.

M MULTI-OBJECTIVE OPTIMIZATION BASELINES WITH MORE BUDGET

Black-box multi-objective optimizers can po- g Loss
tentially reach the global Pareto front if the 2154 —— Validation Loss
compute resources are not a concern and given
enough time. However, it is not practical to
train or even evaluate these architectures, espe-
cially for larger model sizes (e.g. Transformer
spaces from HW-GPT-Bench). Sometimes in
practice, the user wants to get a quick estima-
tion of the Pareto front instead the global opti-
mum, and this is the use-case where MODNAS
shines. Given enough budget, even a random
search (RS) will find a near-optimal solution.
For example, in NAS-Bench-201, the size of 10° 10°
the search space is K = 15625 architectures. steps
The optimal theoretical number of RS steps n
to achieve a success probability « is approxi-
mately: n > Kin(1/1 — «), therefore, for ran-
dom search to have a success probability higher
than 0.5 it requires n > 10781 iterations in theory. For the other guided search methods, this number
is even smaller, though similar to MODNAS, they have the same limitation that they can converge
to a local minimum. We conducted the same experiment as the one in Figure[3] but this time with
baselines given 4 times more budget than MODNAS. We show the result in Figure[34] As we can see,
some of the methods such as LS-BO can reach results closer to the global Pareto front compared to
MODNAS.

N

H

o
L

g

=}

S}
s

Loss (Running Avg)

=

©

v
L

1.904

Figure 33: Average training and validation cross-
entropy loss across devices during the MODNAS
search on NAS-Bench-201.

N ADDITIONAL DETAILS ON THE Architect

In this section, we provide additional details on how the Architect utilizes the Straight-Through
Estimator (STE) to backpropagate through the sampling of discrete architectural parameters.

Forward pass:

1. The MetaHypernetwork parameterizes the unnormalized architectural distribution: & =
Hg, where ® are the MetaHypernetwork parameters.

2. acis passed to Architect and it does the following steps:

(a) Normalizes & and samples a one-hot (discrete) a: o ~ Categorical(Softmaz(@)).

43



Under review as a conference paper at ICLR 2025

sam

L)
"
(-]
=]
(-]
£l
‘v
4
g
>

o

tit, w9°
an\wngs gold_6226

—%¥— MODNAS —— MO-ASHA —e— MO-RE —m— NSGA-II

—<— RS —e— RS-BO —#— gEHVI —e— Global opt.

—4— LS —»— LS-BO

Figure 34: HV of MODNAS and baselines across 19 devices on NAS-Bench-201. For every device
we optimize for 2 objectives, namely latency (ms) and test accuracy on CIFAR-10. For method,
metric and device we report the mean of 3 independent search runs. Higher area in the radar indicates
better performance for every metric. Test devices are colored in red around the radar plot. Here we
allocate 4 times the budget to baselines, i.e. we run all baselines for 100 function evaluations.

(b) Sets the Supernetwork architectural parameters to the one-hot ¢, i.e. resulting in a
single subnetwork by masking the Supernetwork.

(c) Passes « as input to MetaPredictor.

3. The Supernetwork and MetaPredictor do a forward pass using the training data (e.g.,
images) and hardware embedding, respectively.

4. Compute the scalarized loss function.

The main problem now is that we cannot directly backpropagate the gradient computation through
the Architect to update the MetaHypernetwork parameters ®. This is due to the sampling from
the Categorical distribution in step 2/(a) above being non-differentiable. The STE approximates the
gradient for the discrete architectural parameters by ignoring this actual non-differentiable sampling
operation.

Backward pass:

1. Calculate the gradient of the scalarized loss with respect to the discrete architectural param-
eters a: OL/da.

2. Propagate this gradient back to ® (MetaHypernetwork parameters) via the probability
distribution:
oL O

~ da dSoftmax

STE backpropagates "through" a proxy that treats the non-differentiable function (sampling
of «) as an identity function (as a result % = 1) and computes the gradient w.r.t. to
the MetaHypernetwork parameters:

Vol VeSoftmaz(Hg).

Vol = %V@Softmaa:(Hq))

44



Under review as a conference paper at ICLR 2025

To recap, during the forward pass the Architect samples a discrete architecture from an architecture
distribution parameterized by the MetaHypernetwork, and during backpropagation the STE is
utilized to propagate back through the sampling operation and update the MetaHypernetwork
parameters, hence the distribution from which the discrete architectures in the next iteration will be
sampled.

O EXPERIMENTS ON PERPLEXITY AND MEMORY USAGE OBJECTIVES

In this section, we showcase the application of MODNAS 301 4+ gERVI
for optimizing memory usage (using Bfloat16 precision —— MO-ASHA
and context size of 1024) and perplexity on OpenWeb- 28 8- L3820
text within the HW-GPT-Bench (Sukthanker et al|[2024) > - :ISO’RE
GPT-L search space, featuring Transformer models up J‘;—< 261 —e— RSBO
to 774M parameters. Since memory usage does not de- @ —& [5Gl
pend on the device type, our approach does not utilize the ~ Q- 241 I 50[“ a5
MGD updates in Algorithm[I]for computing the common Q2

gradient descent direction, instead leveraging only pref-

erence vectors to calculate the scalarized objective. This 20 -

highlights once again the flexibility of MODNAS across

diverse settings, even the ones it was not designed for. 1 3 3 p) z
Despite this adjustment, MODNAS remains competitive,

delivering a Pareto front comparable to leading black-box Bfloatl6 Memory (MB)
MOO baselines. We show the results in Figure [33]

Figure 35: MODNAS vs. baselines on
optimizing memory usage and perplexity
on GPT-L (774M) of HW-GPT-Bench.

In this section, we want to briefly discuss the potential application of MODNAS to other tasks
not mentioned in this work. Object detection is a very important application since it is probably
one of the most important use cases of neural networks on embedded devices (e.g., in self-driving
cars) (Baller et al, 2021}, [Lazarevich et al} 2023} [Lee et al., [2023). An interesting benchmark is
YOLOBench (Lazarevich et al.,|2023)), where the authors benchmark more than 550 architectures on
four datasets and four different hardware platforms. One way to leverage the Supernetwork here
would be to parameterize the search space via the AutoDeepLab [2019a) supernetwork
model, which parameterizes the resolution too. This parameterization would not only leverage
MODNAS to work for object detection, but for other computer vision tasks such as semantic

segmentation, disparity estimation, etc (Mohan et al.| 2023).

P APPLICATION TO OTHER TASKS

45



2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

46



	Introduction
	Background and Related Work
	Hardware-aware Multi-objective Differentiable Neural Architecture Search
	Problem Definition & Sketch of Solution Approach
	Algorithm Design and Components
	Optimizing the MetaHypernetwork via MGD

	Experiments
	Simultaneous Pareto Set Learning across 19 devices and Ablations
	Pareto Front Profiling on Transformer Space
	Efficient Differentiable MOO starting from Pretrained Supernetworks
	Computational Complexity

	Broader Impact and Limitations
	Conclusion
	Extended Related Work
	Algorithmic components
	Discrete Samplers
	Frank-Wolfe Solver

	Multi-objective NAS algorithms
	Evaluation Details
	Other Metrics
	MODNAS-SoTL

	Experimental Details
	MetaPredictor Architectures
	MetaHypernetwork Architecture
	MODNAS Hyperparameter Configurations
	Normalization of objectives

	Details on Search Spaces
	Datasets and Devices
	Runtime Comparison
	Additional Experiments
	Predicted v/s Ground-Truth Latencies
	Additional Results on NAS-Bench-201
	Additional Results on Hardware-aware Transformers (En-De)
	Additional Results on the HW-GPT space
	Additional Results on MobileNetV3

	Additional Discussion on the Robustness of MODNAS
	Alignment of Preference Vectors with Pareto Front
	Training and Validation Loss Curves
	Multi-objective Optimization Baselines with More Budget
	Additional Details on the Architect
	Experiments on Perplexity and Memory usage Objectives
	Application to Other Tasks

